1
|
Mohsin S, Khan M. Cardiac Progenitor Cell Metabolism. Methods Mol Biol 2024; 2835:147-154. [PMID: 39105913 DOI: 10.1007/978-1-0716-3995-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Metabolism has emerged recently as an important determinant of stem cell function. Changes in metabolic signaling pathways precede changes in stem cell molecular and functional response. Pluripotent stem cells are highly proliferative and known to exhibit increased glycolysis. Similarly, adult stem cells reside in tissue niches in a quiescent state operating via glycolysis. Upon activation, adult stem cell metabolism transitions from glycolysis to oxidative phosphorylation which coincides with reduced proliferation and multilineage potential. In the heart, different populations of cardiac progenitor cells (CPCs) have been identified. CPCs regenerative potential is linked to changes in metabolic characteristics of cells, impacting cardiac repair following injury. Here, we discuss the methodologies for isolation and characterization of a novel cardiac progenitor cell population from the heart including measurement its metabolic features.
Collapse
Affiliation(s)
- Sadia Mohsin
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Hoffman JR, Park HJ, Bheri S, Platt MO, Hare JM, Kaushal S, Bettencourt JL, Lai D, Slesnick TC, Mahle WT, Davis ME. Statistical modeling of extracellular vesicle cargo to predict clinical trial outcomes for hypoplastic left heart syndrome. iScience 2023; 26:107980. [PMID: 37868626 PMCID: PMC10589850 DOI: 10.1016/j.isci.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023] Open
Abstract
Cardiac-derived c-kit+ progenitor cells (CPCs) are under investigation in the CHILD phase I clinical trial (NCT03406884) for the treatment of hypoplastic left heart syndrome (HLHS). The therapeutic efficacy of CPCs can be attributed to the release of extracellular vesicles (EVs). To understand sources of cell therapy variability we took a machine learning approach: combining bulk CPC-derived EV (CPC-EV) RNA sequencing and cardiac-relevant in vitro experiments to build a predictive model. We isolated CPCs from cardiac biopsies of patients with congenital heart disease (n = 29) and the lead-in patients with HLHS in the CHILD trial (n = 5). We sequenced CPC-EVs, and measured EV inflammatory, fibrotic, angiogeneic, and migratory responses. Overall, CPC-EV RNAs involved in pro-reparative outcomes had a significant fit to cardiac development and signaling pathways. Using a model trained on previously collected CPC-EVs, we predicted in vitro outcomes for the CHILD clinical samples. Finally, CPC-EV angiogenic performance correlated to clinical improvements in right ventricle performance.
Collapse
Affiliation(s)
- Jessica R. Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Hyun-Ji Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
| | - Joshua M. Hare
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sunjay Kaushal
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judith L. Bettencourt
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Dejian Lai
- Coordinating Center for Clinical Trials, Department of Biostatistics and Data Science, University of Texas Health Science Center School of Public Health, Houston, TX 77030, USA
| | - Timothy C. Slesnick
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - William T. Mahle
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine & Georgia Institute of Technology, Atlanta, GA 30322, USA
- Molecular & Systems Pharmacology Graduate Training Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
- Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Saha P, Kim M, Tulshyan A, Guo Y, Mishra R, Li D, Civin CI, Kaushal S, Sharma S. Hypoxia-inducible factor 1-alpha enhances the secretome to rejuvenate adult cardiosphere-derived cells. J Thorac Cardiovasc Surg 2023; 165:e56-e65. [PMID: 34465468 DOI: 10.1016/j.jtcvs.2021.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVE After cardiac injury, endogenous repair mechanisms are ineffective. However, cell-based therapies provide a promising clinical intervention based on their ability to restore and remodel injured myocardium due to their paracrine factors. Recent clinical trials have demonstrated that adult cardiosphere-derived cell therapy is safe for the treatment of ischemic heart failure, although with limited regenerative potential. The limited efficiency of cardiosphere-derived cells after myocardial infarction is due to the inferior quality of their secretome. This study sought to augment the therapeutic potential of cardiosphere-derived cells by modulating hypoxia-inducible factor-1α, a regulator of paracrine factors. METHODS Cardiosphere-derived cells were isolated and expanded from the right atrial appendage biopsies of patients undergoing cardiac surgery. To study the effect of hypoxia-inducible factor-1α on the secretome, cardiosphere-derived cells were transduced with hypoxia-inducible factor-1α-overexpressing lentivirus, and various cardioprotective factors within the secretome were quantified using enzyme-linked immunosorbent assays. Comparative analysis of the regenerative potential of cardiosphere-derived cells was performed in a rat myocardial infarction model. RESULTS Mechanistically, overexpression of hypoxia-inducible factor-1α in adult cardiosphere-derived cells led to the enrichment of the secretome with vascular endothelial growth factor A, angiopoietin 1, stromal cell-derived factor 1α, and basic fibroblast growth factor. Intramyocardial administration of cardiosphere-derived cells transduced with hypoxia-inducible factor-1α after myocardial infarction significantly improved left ventricular ejection fraction, fractional shortening, left ventricular end-systolic volume, and cardiac output. Functional improvement of the rat heart correlated with improved adaptive remodeling of the infarcted myocardium by enhanced angiogenesis and decreased myocardial fibrosis. We also showed that hypoxia-inducible factor-1α expression in cardiosphere-derived cells was adversely affected by aging. CONCLUSIONS Hypoxia-inducible factor-1α improves the functional potency of cardiosphere-derived cells to preserve myocardial function after myocardial infarction by enriching the cardiosphere-derived cells' secretome with cardioprotective factors. This strategy may be useful for improving the efficacy of allogeneic cell-based therapies in future clinical trials.
Collapse
Affiliation(s)
- Progyaparamita Saha
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - MinJung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Md; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Md
| | - Antariksh Tulshyan
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Yin Guo
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Rachana Mishra
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Deqiang Li
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Md
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Md; Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Md; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Md; Department of Physiology, University of Maryland School of Medicine, Baltimore, Md
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Ill; Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, Ill.
| |
Collapse
|
4
|
Kaushal S, Hare JM, Shah AM, Pietris NP, Bettencourt JL, Piller LB, Khan A, Snyder A, Boyd RM, Abdullah M, Mishra R, Sharma S, Slesnick TC, Si MS, Chai PJ, Davis BR, Lai D, Davis ME, Mahle WT. Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome (CHILD Study). Pediatr Cardiol 2022; 43:1481-1493. [PMID: 35394149 DOI: 10.1007/s00246-022-02872-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/07/2022] [Indexed: 11/30/2022]
Abstract
Mortality in infants with hypoplastic left heart syndrome (HLHS) is strongly correlated with right ventricle (RV) dysfunction. Cell therapy has demonstrated potential improvements of RV dysfunction in animal models related to HLHS, and neonatal human derived c-kit+ cardiac-derived progenitor cells (CPCs) show superior efficacy when compared to adult human cardiac-derived CPCs (aCPCs). Neonatal CPCs (nCPCs) have yet to be investigated in humans. The CHILD trial (Autologous Cardiac Stem Cell Injection in Patients with Hypoplastic Left Heart Syndrome) is a Phase I/II trial aimed at investigating intramyocardial administration of autologous nCPCs in HLHS infants by assessing the feasibility, safety, and potential efficacy of CPC therapy. Using an open-label, multicenter design, CHILD investigates nCPC safety and feasibility in the first enrollment group (Group A/Phase I). In the second enrollment group, CHILD uses a randomized, double-blinded, multicenter design (Group B/Phase II), to assess nCPC efficacy based on RV functional and structural characteristics. The study plans to enroll 32 patients across 4 institutions: Group A will enroll 10 patients, and Group B will enroll 22 patients. CHILD will provide important insights into the therapeutic potential of nCPCs in patients with HLHS.Clinical Trial Registration https://clinicaltrials.gov/ct2/home NCT03406884, First posted January 23, 2018.
Collapse
Affiliation(s)
- Sunjay Kaushal
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA.
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA.
| | - Aakash M Shah
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Nicholas P Pietris
- Division of Pediatric Cardiology, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | | | - Linda B Piller
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, 9th Floor, Miami, FL, 33136, USA
| | - Abigail Snyder
- Division of Cardiac Surgery, University of Maryland School of Medicine, 110 S. Paca Street, 7th Floor, Baltimore, MD, 21228, USA
| | - Riley M Boyd
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Mohamed Abdullah
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Rachana Mishra
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Sudhish Sharma
- Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Chicago, IL, 60611, USA
| | - Timothy C Slesnick
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA
| | - Ming-Sing Si
- University of Michigan, CS Mott Children's Hospital, 1540 E. Hospital Drive, 11-735, Ann Arbor, MI, 48109, USA
| | - Paul J Chai
- Department of Cardiac Surgery, Emory University Children's Healthcare of Atlanta, 1405 Clifton Road NE, Atlanta, GA, 30322, USA
| | - Barry R Davis
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Dejian Lai
- School of Public Health, UT Health, 1200 Pressler, Houston, TX, 77030, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University School of Medicine, 1760 Haygood Drive W200, Atlanta, GA, 30322, USA.,Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| | - William T Mahle
- Division of Cardiology, Department of Pediatrics, Emory University, Children's Healthcare of Atlanta, Atlanta, 201 Uppergate Drive, Atlanta, GA, 30322, USA
| |
Collapse
|
5
|
Mishra R, Saha P, Datla SR, Mellacheruvu P, Gunasekaran M, Guru SA, Fu X, Chen L, Bolli R, Sharma S, Kaushal S. Transplanted allogeneic cardiac progenitor cells secrete GDF-15 and stimulate an active immune remodeling process in the ischemic myocardium. J Transl Med 2022; 20:323. [PMID: 35864544 PMCID: PMC9306063 DOI: 10.1186/s12967-022-03534-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/13/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Despite promising results in clinical studies, the mechanism for the beneficial effects of allogenic cell-based therapies remains unclear. Macrophages are not only critical mediators of inflammation but also critical players in cardiac remodeling. We hypothesized that transplanted allogenic rat cardiac progenitor cells (rCPCs) augment T-regulatory cells which ultimately promote proliferation of M2 like macrophages by an as-yet undefined mechanism. METHODS AND RESULTS To test this hypothesis, we used crossover rat strains for exploring the mechanism of myocardial repair by allogenic CPCs. Human CPCs (hCPCs) were isolated from adult patients undergoing coronary artery bypass grafting, and rat CPCs (rCPCs) were isolated from male Wistar-Kyoto (WKY) rat hearts. Allogenic rCPCs suppressed the proliferation of T-cells observed in mixed lymphocyte reactions in vitro. Transplanted syngeneic or allogeneic rCPCs significantly increased cardiac function in a rat myocardial infarct (MI) model, whereas xenogeneic CPCs did not. Allogeneic rCPCs stimulated immunomodulatory responses by specifically increasing T-regulatory cells and M2 polarization, while maintaining their cardiac recovery potential and safety profile. Mechanistically, we confirmed the inactivation of NF-kB in Treg cells and increased M2 macrophages in the myocardium after MI by transplanted CPCs derived GDF15 and it's uptake by CD48 receptor on immune cells. CONCLUSION Collectively, these findings strongly support the active immunomodulatory properties and robust therapeutic potential of allogenic CPCs in post-MI cardiac dysfunction.
Collapse
Affiliation(s)
- Rachana Mishra
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Progyaparamita Saha
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Srinivasa Raju Datla
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Pranav Mellacheruvu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Muthukumar Gunasekaran
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Sameer Ahmad Guru
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Xubin Fu
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Ling Chen
- grid.16753.360000 0001 2299 3507Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA ,grid.413808.60000 0004 0388 2248Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital, Chicago, IL USA
| | - Roberto Bolli
- grid.266623.50000 0001 2113 1622Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville, Louisville, USA
| | - Sudhish Sharma
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| | - Sunjay Kaushal
- Department of Cardiovascular-Thoracic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA.
| |
Collapse
|
6
|
Gunasekaran M, Mishra R, Saha P, Morales D, Cheng WC, Jayaraman AR, Hoffman JR, Davidson L, Chen L, Shah AM, Bittle G, Fu X, Tulshyan A, Abdullah M, Kingsbury T, Civin C, Yang P, Davis ME, Bolli R, Hare JM, Sharma S, Kaushal S. Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury. iScience 2022; 25:104656. [PMID: 35847554 PMCID: PMC9283895 DOI: 10.1016/j.isci.2022.104656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/08/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Muthukumar Gunasekaran
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Rachana Mishra
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Progyaparamita Saha
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - David Morales
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Wen-Chih Cheng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Arun R. Jayaraman
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, GA 30322, USA
| | - Jessica R. Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, GA 30322, USA
| | - Lauran Davidson
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Ling Chen
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Aakash M. Shah
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Gregory Bittle
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Xuebin Fu
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Antariksh Tulshyan
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Mohamed Abdullah
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Department of Cardiothoracic Surgery, Cairo University, Cairo 11553, Egypt
| | - Tami Kingsbury
- Center for Stem Cell Biology and Regenerative Medicine, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Curt Civin
- Center for Stem Cell Biology and Regenerative Medicine, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peixin Yang
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, 1760 Haygood Drive, W200, Atlanta, GA 30322, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40202, USA
| | - Joshua M. Hare
- University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Sudhish Sharma
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Corresponding author
| | - Sunjay Kaushal
- Departments of Surgery and Pediatrics, Ann and Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, 225 E. Chicago Avenue, Chicago, IL 60611, USA
- Corresponding author
| |
Collapse
|
7
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
8
|
Kogan PS, Wirth F, Tomar A, Darr J, Teperino R, Lahm H, Dreßen M, Puluca N, Zhang Z, Neb I, Beck N, Luzius T, de la Osa de la Rosa L, Gärtner K, Hüls C, Zeidler R, Ramanujam D, Engelhardt S, Wenk C, Holdt LM, Mononen M, Sahara M, Cleuziou J, Hörer J, Lange R, Krane M, Doppler SA. Uncovering the molecular identity of cardiosphere-derived cells (CDCs) by single-cell RNA sequencing. Basic Res Cardiol 2022; 117:11. [PMID: 35258704 PMCID: PMC8902493 DOI: 10.1007/s00395-022-00913-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/31/2023]
Abstract
Cardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs' cellular origin in the heart remains elusive. We studied the molecular identity of CDCs using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and endothelial cells/ECs). We identified CDCs as a distinct and mitochondria-rich cell type that shared biological similarities with non-myocyte cells but not with cardiac progenitor cells derived from human-induced pluripotent stem cells. CXCL6 emerged as a new specific marker for CDCs. By analysis of sc-RNAseq data from human right atrial biopsies in comparison with CDCs we uncovered transcriptomic similarities between CDCs and CFs. By direct comparison of infant and adult CDC sc-RNAseq data, infant CDCs revealed GO-terms associated with cardiac development. To analyze the beneficial effects of CDCs (pro-angiogenic, anti-fibrotic, anti-apoptotic), we performed functional in vitro assays with CDC-derived extracellular vesicles (EVs). CDC EVs augmented in vitro angiogenesis and did not stimulate scarring. They also reduced the expression of pro-apoptotic Bax in NRCMs. In conclusion, CDCs were disclosed as mitochondria-rich cells with unique properties but also with similarities to right atrial CFs. CDCs displayed highly proliferative, secretory and immunomodulatory properties, characteristics that can also be found in activated or inflammatory cell types. By special culture conditions, CDCs earn some bioactivities, including angiogenic potential, which might modify disease in certain disorders.
Collapse
Affiliation(s)
- Palgit-S. Kogan
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Felix Wirth
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Archana Tomar
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jonatan Darr
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Raffaele Teperino
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany ,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Harald Lahm
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Martina Dreßen
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Nazan Puluca
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Zhong Zhang
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Irina Neb
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Nicole Beck
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Tatjana Luzius
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Luis de la Osa de la Rosa
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| | - Kathrin Gärtner
- Research Unit Gene Vectors, Helmholtz Center Munich German Research Center for Environmental Health, Munich, Germany
| | - Corinna Hüls
- Research Unit Gene Vectors, Helmholtz Center Munich German Research Center for Environmental Health, Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Center Munich German Research Center for Environmental Health, Munich, Germany ,Department of Otorhinolaryngology, Klinikum der Universität (KUM), Munich, Germany
| | - Deepak Ramanujam
- DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany ,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Stefan Engelhardt
- DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany ,Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, 80802 Munich, Germany
| | - Catharina Wenk
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Lesca M. Holdt
- Institute of Laboratory Medicine, University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Mimmi Mononen
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden ,Department of Surgery, Yale University School of Medicine, CN06510 New Haven, CT USA
| | - Julie Cleuziou
- School of Medicine and Health, Department of Pediatric and Congenital Heart Surgery, Institute Insure, Technical University of Munich, Lazarettstraße 36, 80636 Munich, Germany
| | - Jürgen Hörer
- School of Medicine and Health, Department of Pediatric and Congenital Heart Surgery, Technical University of Munich, German Heart Center Munich, Lazarettstraße 36, 80636 Munich, Germany ,Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rüdiger Lange
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany ,DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Markus Krane
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany ,DZHK (German Center for Cardiovascular Research)-Partner Site Munich Heart Alliance, Biedersteiner Straße 29, 80802 Munich, Germany ,Division of Cardiac Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT USA
| | - Stefanie A. Doppler
- School of Medicine and Health, Department of Cardiovascular Surgery, Institute Insure, Technical University of Munich, German Heart Center Munich, Lazarettstrasse 36, 80636 Munich, Germany
| |
Collapse
|
9
|
Kasai-Brunswick TH, Carvalho AB, Campos de Carvalho AC. Stem cell therapies in cardiac diseases: Current status and future possibilities. World J Stem Cells 2021; 13:1231-1247. [PMID: 34630860 PMCID: PMC8474720 DOI: 10.4252/wjsc.v13.i9.1231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases represent the world's leading cause of death. In this heterogeneous group of diseases, ischemic cardiomyopathies are the most devastating and prevalent, estimated to cause 17.9 million deaths per year. Despite all biomedical efforts, there are no effective treatments that can replace the myocytes lost during an ischemic event or progression of the disease to heart failure. In this context, cell therapy is an emerging therapeutic alternative to treat cardiovascular diseases by cell administration, aimed at cardiac regeneration and repair. In this review, we will cover more than 30 years of cell therapy in cardiology, presenting the main milestones and drawbacks in the field and signaling future challenges and perspectives. The outcomes of cardiac cell therapies are discussed in three distinct aspects: The search for remuscularization by replacement of lost cells by exogenous adult cells, the endogenous stem cell era, which pursued the isolation of a progenitor with the ability to induce heart repair, and the utilization of pluripotent stem cells as a rich and reliable source of cardiomyocytes. Acellular therapies using cell derivatives, such as microvesicles and exosomes, are presented as a promising cell-free therapeutic alternative.
Collapse
Affiliation(s)
- Tais Hanae Kasai-Brunswick
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Adriana Bastos Carvalho
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- National Institute of Science and Technology in Regenerative Medicine, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil.
| |
Collapse
|
10
|
Kurian J, Bohl V, Behanan M, Mohsin S, Khan M. Transcriptional Profiling of Cardiac Cells Links Age-Dependent Changes in Acetyl-CoA Signaling to Chromatin Modifications. Int J Mol Sci 2021; 22:ijms22136987. [PMID: 34209657 PMCID: PMC8268808 DOI: 10.3390/ijms22136987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism has emerged as a regulator of core stem cell properties such as proliferation, survival, self-renewal, and multilineage potential. Metabolites serve as secondary messengers, fine-tuning signaling pathways in response to microenvironment alterations. Studies show a role for central metabolite acetyl-CoA in the regulation of chromatin state through changes in histone acetylation. Nevertheless, metabolic regulators of chromatin remodeling in cardiac cells in response to increasing biological age remains unknown. Previously, we identified novel cardiac-derived stem-like cells (CTSCs) that exhibit increased functional properties in the neonatal heart (nCTSC). These cells are linked to a unique metabolism which is altered with CTSC aging (aCTSC). Here, we present an in-depth, RNA-sequencing-based (RNA-Seq) bioinformatic with cluster analysis that details a distinct epigenome present in nCTSCs but not in aCTSCs. Gene Ontology (GO) and pathway enrichment reveal biological processes, including metabolism, gene regulation enriched in nCTSCs, and STRING analysis that identifies a network of genes related to acetyl-CoA that can potentially influence chromatin remodeling. Additional validation by Western blot and qRT-PCR shows increased acetyl-CoA signaling and histone acetylation in nCTSCs compared to aCTSCs. In conclusion, our data reveal that the link between metabolism and histone acetylation in cardiac cells is altered with the aging of the cardiac tissue.
Collapse
Affiliation(s)
- Justin Kurian
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Veronica Bohl
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Michael Behanan
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
| | - Sadia Mohsin
- Cardiovascular Research Center (CVRC), LKSOM, Temple University, Philadelphia, PA 19140, USA;
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), LKSOM, Temple University, Philadelphia, PA 19140, USA; (J.K.); (V.B.); (M.B.)
- Department of Physiology, LKSOM, Temple University, Philadelphia, PA 19140, USA
- Correspondence: ; Tel.: +1-215-707-1921
| |
Collapse
|
11
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
12
|
Ishigami S, Sano T, Krishnapura S, Ito T, Sano S. An overview of stem cell therapy for paediatric heart failure. Eur J Cardiothorac Surg 2020; 58:881-887. [PMID: 32588055 DOI: 10.1093/ejcts/ezaa155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Significant achievements in paediatric cardiology, surgical treatment and intensive care of congenital heart disease have drastically changed clinical outcomes for paediatric patients. Nevertheless, late-onset heart failure in children after staged surgeries still remains a serious concern in the medical community. Heart transplantation is an option for treatment; however, the shortage of available organs is a persistent problem in many developed countries. In order to resolve these issues, advanced technologies, such as innovative mechanical circulatory support devices and regenerative therapies, are strongly desired. Accumulated evidence regarding cell-based cardiac regenerative therapies has suggested their safety and efficacy in treating adult heart failure. Given that young children seem to have a higher regenerative capacity than adults, stem cell-based therapies appear a promising treatment option for paediatric heart failure as well. Based on the findings from past trials and studies, we present the potential of various different types of stem cells, ranging from bone marrow mononuclear cells to cardiosphere-derived stem cells for use in paediatric cell-based therapies. Here, we assess both the current challenges associated with cell-based therapies and novel strategies that may be implemented in the future to advance stem cell therapy in the paediatric population.
Collapse
Affiliation(s)
- Shuta Ishigami
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Toshikazu Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Sunaya Krishnapura
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tatsuo Ito
- Department of Hygiene, Kawasaki Medical University, Kurashiki, Japan
| | - Shunji Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Kurian J, Yuko AE, Kasatkin N, Rigaud VOC, Busch K, Harlamova D, Wagner M, Recchia FA, Wang H, Mohsin S, Houser SR, Khan M. Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Transl Med 2020; 10:144-156. [PMID: 32964621 PMCID: PMC7780806 DOI: 10.1002/sctm.20-0123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular replacement in the heart is restricted to postnatal stages with the adult heart largely postmitotic. Studies show that loss of regenerative properties in cardiac cells seems to coincide with alterations in metabolism during postnatal development and maturation. Nevertheless, whether changes in cellular metabolism are linked to functional alternations in cardiac cells is not well studied. We report here a novel role for uncoupling protein 2 (UCP2) in regulation of functional properties in cardiac tissue derived stem‐like cells (CTSCs). CTSC were isolated from C57BL/6 mice aged 2 days (nCTSC), 2 month (CTSC), and 2 years old (aCTSC), subjected to bulk‐RNA sequencing that identifies unique transcriptome significantly different between CTSC populations from young and old heart. Moreover, results show that UCP2 is highly expressed in CTSCs from the neonatal heart and is linked to maintenance of glycolysis, proliferation, and survival. With age, UCP2 is reduced shifting energy metabolism to oxidative phosphorylation inversely affecting cellular proliferation and survival in aged CTSCs. Loss of UCP2 in neonatal CTSCs reduces extracellular acidification rate and glycolysis together with reduced cellular proliferation and survival. Mechanistically, UCP2 silencing is linked to significant alteration of mitochondrial genes together with cell cycle and survival signaling pathways as identified by RNA‐sequencing and STRING bioinformatic analysis. Hence, our study shows UCP2‐mediated metabolic profile regulates functional properties of cardiac cells during transition from neonatal to aging cardiac states.
Collapse
Affiliation(s)
- Justin Kurian
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Antonia E Yuko
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Nicole Kasatkin
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Vagner O C Rigaud
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Kelsey Busch
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Daria Harlamova
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Marcus Wagner
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Fabio A Recchia
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Sadia Mohsin
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Steven R Houser
- Cardiovascular Research Institute (CVRC), Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.,Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Saha P, Sharma S, Korutla L, Datla SR, Shoja-Taheri F, Mishra R, Bigham GE, Sarkar M, Morales D, Bittle G, Gunasekaran M, Ambastha C, Arfat MY, Li D, Habertheuer A, Hu R, Platt MO, Yang P, Davis ME, Vallabhajosyula P, Kaushal S. Circulating exosomes derived from transplanted progenitor cells aid the functional recovery of ischemic myocardium. Sci Transl Med 2020; 11:11/493/eaau1168. [PMID: 31118291 DOI: 10.1126/scitranslmed.aau1168] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/11/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022]
Abstract
The stem cell field is hindered by its inability to noninvasively monitor transplanted cells within the target organ in a repeatable, time-sensitive, and condition-specific manner. We hypothesized that quantifying and characterizing transplanted cell-derived exosomes in the recipient plasma would enable reliable, noninvasive surveillance of the conditional activity of the transplanted cells. To test this hypothesis, we used a human-into-rat xenogeneic myocardial infarction model comparing two well-studied progenitor cell types: cardiosphere-derived cells (CDCs) and c-kit+ cardiac progenitor cells (CPCs), both derived from the right atrial appendage of adults undergoing cardiopulmonary bypass. CPCs outperformed the CDCs in cell-based and in vivo regenerative assays. To noninvasively monitor the activity of transplanted CDCs or CPCs in vivo, we purified progenitor cell-specific exosomes from recipient total plasma exosomes. Seven days after transplantation, the concentration of plasma CPC-specific exosomes increased about twofold compared to CDC-specific exosomes. Computational pathway analysis failed to link CPC or CDC cellular messenger RNA (mRNA) with observed myocardial recovery, although recovery was linked to the microRNA (miRNA) cargo of CPC exosomes purified from recipient plasma. We further identified mechanistic pathways governing specific outcomes related to myocardial recovery associated with transplanted CPCs. Collectively, these findings demonstrate the potential of circulating progenitor cell-specific exosomes as a liquid biopsy that provides a noninvasive window into the conditional state of the transplanted cells. These data implicate the surveillance potential of cell-specific exosomes for allogeneic cell therapies.
Collapse
Affiliation(s)
- Progyaparamita Saha
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sudhish Sharma
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laxminarayana Korutla
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Srinivasa Raju Datla
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Farnaz Shoja-Taheri
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rachana Mishra
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Grace E Bigham
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Malini Sarkar
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David Morales
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gregory Bittle
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Muthukumar Gunasekaran
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Chetan Ambastha
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mir Yasir Arfat
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Deqiang Li
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andreas Habertheuer
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert Hu
- Division of Cardiovascular Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peixin Yang
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering and Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Sunjay Kaushal
- Division of Cardiovascular Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Maghin E, Garbati P, Quarto R, Piccoli M, Bollini S. Young at Heart: Combining Strategies to Rejuvenate Endogenous Mechanisms of Cardiac Repair. Front Bioeng Biotechnol 2020; 8:447. [PMID: 32478060 PMCID: PMC7237726 DOI: 10.3389/fbioe.2020.00447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
True cardiac regeneration of the injured heart has been broadly described in lower vertebrates by active replacement of lost cardiomyocytes to functionally and structurally restore the myocardial tissue. On the contrary, following severe injury (i.e., myocardial infarction) the adult mammalian heart is endowed with an impaired reparative response by means of meager wound healing program and detrimental remodeling, which can lead over time to cardiomyopathy and heart failure. Lately, a growing body of basic, translational and clinical studies have supported the therapeutic use of stem cells to provide myocardial regeneration, with the working hypothesis that stem cells delivered to the cardiac tissue could result into new cardiovascular cells to replenish the lost ones. Nevertheless, multiple independent evidences have demonstrated that injected stem cells are more likely to modulate the cardiac tissue via beneficial paracrine effects, which can enhance cardiac repair and reinstate the embryonic program and cell cycle activity of endogenous cardiac stromal cells and resident cardiomyocytes. Therefore, increasing interest has been addressed to the therapeutic profiling of the stem cell-derived secretome (namely the total of cell-secreted soluble factors), with specific attention to cell-released extracellular vesicles, including exosomes, carrying cardioprotective and regenerative RNA molecules. In addition, the use of cardiac decellularized extracellular matrix has been recently suggested as promising biomaterial to develop novel therapeutic strategies for myocardial repair, as either source of molecular cues for regeneration, biological scaffold for cardiac tissue engineering or biomaterial platform for the functional release of factors. In this review, we will specifically address the translational relevance of these two approaches with ad hoc interest in their feasibility to rejuvenate endogenous mechanisms of cardiac repair up to functional regeneration.
Collapse
Affiliation(s)
- Edoardo Maghin
- Tissue Engineering Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy.,Department of Women's and Children Health, University of Padova, Padua, Italy
| | - Patrizia Garbati
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Rodolfo Quarto
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy.,UOC Cellular Oncology, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Martina Piccoli
- Tissue Engineering Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Sveva Bollini
- Regenerative Medicine Laboratory, Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
16
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
17
|
Brown MA, Rajamarthandan S, Francis B, O'Leary-Kelly MK, Sinha P. Update on stem cell technologies in congenital heart disease. J Card Surg 2019; 35:174-179. [PMID: 31705822 DOI: 10.1111/jocs.14312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) continues to be among the most common birth defects, affecting an estimated 40 000 births annually in the United States. The most common complication of CHD is heart failure. With improved medical management and surgical outcomes, survival for complex congenital heart defects has dramatically improved, but consequentially there are more adults with CHD than children with CHD. Due to longer-term sequelae of CHD, surgical and medical treatment previously thought to be curative is now realized at best to be palliative, and there is a considerable burden of CHD-related heart failure. Stem cell therapy as an adjunct to current surgical and medical strategies is being explored in an effort to ameliorate CHD-related heart failure. This review aims to explore the current literature with regard to stem cell therapy for CHD as well as ongoing trials. METHODS A MEDLINE (Ovid), MEDLINE (Pubmed), and clinicaltrials.gov search were performed using the medical subject headings congenital heart defects combined with hematopoietic stem cells, stem cell transplantation, mesenchymal stem cells (MSC), cell- or tissue-based therapy, or MSC transplantation. Articles must have been published after 2010. RESULTS Twenty three articles and 9 ongoing trials met all inclusion criteria. CONCLUSIONS Areas of interest include myocardiocyte regeneration, tissue graft development to minimize reoperations, and methods of stem cell delivery. While several small trials are showing promise, it is too soon to make definitive statements about the future of stem cell therapies in this field.
Collapse
Affiliation(s)
- Matthew A Brown
- School of Medicine, Georgetown University, Washington, District of Columbia
| | | | - Berline Francis
- School of Medicine, Georgetown University, Washington, District of Columbia
| | | | - Pranava Sinha
- Department of Cardiac Surgery, Children's National Medical Center, Washington, District of Columbia
| |
Collapse
|
18
|
Li Calzi S, Cook T, Della Rocca DG, Zhang J, Shenoy V, Yan Y, Espejo A, Rathinasabapathy A, Jacobsen MH, Salazar T, Sandusky GE, Shaw LC, March K, Raizada MK, Pepine CJ, Katovich MJ, Grant MB. Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model. Stem Cells Int 2019; 2019:3945850. [PMID: 31781239 PMCID: PMC6875168 DOI: 10.1155/2019/3945850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
We compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Todd Cook
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | | | - Juan Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Vinayak Shenoy
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Yuanqing Yan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Espejo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | | | - Max H. Jacobsen
- Pathology and Laboratory Med., IUPUI, Indianapolis, IN 46202, USA
| | - Tatiana Salazar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | | | - Lynn C. Shaw
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Keith March
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Katovich
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| |
Collapse
|
19
|
Abstract
This review described the current status of research into the regeneration potential of myocardial cells after myocardial injury, focussing on possible mechanisms of regeneration and the application of animal models to human biology, all with the aim of evaluating any novel approaches to the regeneration of human cardiomyocytes. A literature review was undertaken of the PubMed® and The Cochrane Library databases using the search terms ‘regeneration’, ‘heart regeneration’, ‘cardiac regeneration’, ‘proliferation’, ‘animal model’, ‘repair’ and ‘myocardial cell injury’ in English language publications only. The search covered publications between 1 January 2002 to 31 December 2017. The cardiac regeneration capability significantly differed among different species. In lower vertebrates, such as zebrafish, cardiomyocytes possess a sustained regeneration capacity under specific conditions. In mammalian animals, such as mice, the cardiomyocytes retain a regeneration capability under specific conditions, which gradually declines. Inflammation, non-coding RNA, gene regulatory elements, signal transduction and cell phenotype transformation play pivotal roles in cardiomyocyte regeneration. Myocardial regeneration appears to be a viable repair strategy for cardiomyocyte loss, which deserves further research in order to validate its clinical applicability in humans.
Collapse
Affiliation(s)
- Kai Sheng
- Department of Cardiac Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yu Nie
- Department of Cardiac Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Centre for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingren Gao
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
- Bingren Gao, Department of Cardiac Surgery, Lanzhou University Second Hospital, 82 Cuiyingmen Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
20
|
Wang S, Chen W, Ma L, Zou M, Dong W, Yang H, Sun L, Chen X, Duan J. Infant cardiosphere-derived cells exhibit non-durable heart protection in dilated cardiomyopathy rats. Cytotechnology 2019; 71:1043-1052. [PMID: 31583508 DOI: 10.1007/s10616-019-00328-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells provide a new strategy for the treatment of cardiac diseases; however, their effectiveness in dilated cardiomyopathy (DCM) has not been investigated. In this study, cardiosphere-derived cells (CDCs) were isolated from infants (≤ 24 months) and identified by the cell surface markers CD105, CD90, CD117 and CD45, which is consistent with a previous report, although increased CD34 expression was observed. The molecular expression profile of CDCs from infants was determined by RNA sequencing and compared with adult CDCs, showing that infant CDCs have almost completely altered gene expression patterns compared with adult CDCs. The upregulated genes in infant CDCs are mainly related to the biological processes of cell morphogenesis and differentiation. The molecular profile of infant CDCs was characterized by lower expression of inflammatory cytokines and higher expression of stem cell markers and growth factors compared to adult CDCs. After intramyocardial administration of infant CDCs in the heart of DCM rats, we found that infant CDCs remained in the heart of DCM rats for at least 7 days, improved DCM-induced cardiac function impairment and protected the myocardium by elevating the left ventricular ejection fraction and fraction shortening. However, the effectiveness of transplanted CDCs was reversed later, as increased fibrosis formation instead of angiogenesis was observed. We concluded that infant CDCs, with higher expression of stem cell markers and growth factors, exhibit non-durable heart protection due to limited residence time in the heart of DCM animals, suggesting that multiple administrations of the CDCs or post-regulation after transplantation may be the key for cell therapy in the future.
Collapse
Affiliation(s)
- Siyuan Wang
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Weidan Chen
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Li Ma
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Minghui Zou
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Wenyan Dong
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Haili Yang
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Lei Sun
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China
| | - Xinxin Chen
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.
| | - Jinzhu Duan
- Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China. .,Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, No. 9 JinSui Road, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
21
|
Bittle GJ, Morales D, Deatrick KB, Parchment N, Saha P, Mishra R, Sharma S, Pietris N, Vasilenko A, Bor C, Ambastha C, Gunasekaran M, Li D, Kaushal S. Stem Cell Therapy for Hypoplastic Left Heart Syndrome: Mechanism, Clinical Application, and Future Directions. Circ Res 2019; 123:288-300. [PMID: 29976693 DOI: 10.1161/circresaha.117.311206] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoplastic left heart syndrome is a type of congenital heart disease characterized by underdevelopment of the left ventricle, outflow tract, and aorta. The condition is fatal if aggressive palliative operations are not undertaken, but even after the complete 3-staged surgical palliation, there is significant morbidity because of progressive and ultimately intractable right ventricular failure. For this reason, there is interest in developing novel therapies for the management of right ventricular dysfunction in patients with hypoplastic left heart syndrome. Stem cell therapy may represent one such innovative approach. The field has identified numerous stem cell populations from different tissues (cardiac or bone marrow or umbilical cord blood), different age groups (adult versus neonate-derived), and different donors (autologous versus allogeneic), with preclinical and clinical experience demonstrating the potential utility of each cell type. Preclinical trials in small and large animal models have elucidated several mechanisms by which stem cells affect the injured myocardium. Our current understanding of stem cell activity is undergoing a shift from a paradigm based on cellular engraftment and differentiation to one recognizing a primarily paracrine effect. Recent studies have comprehensively evaluated the individual components of the stem cells' secretomes, shedding new light on the intracellular and extracellular pathways at the center of their therapeutic effects. This research has laid the groundwork for clinical application, and there are now several trials of stem cell therapies in pediatric populations that will provide important insights into the value of this therapeutic strategy in the management of hypoplastic left heart syndrome and other forms of congenital heart disease. This article reviews the many stem cell types applied to congenital heart disease, their preclinical investigation and the mechanisms by which they might affect right ventricular dysfunction in patients with hypoplastic left heart syndrome, and finally, the completed and ongoing clinical trials of stem cell therapy in patients with congenital heart disease.
Collapse
Affiliation(s)
- Gregory J Bittle
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - David Morales
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Kristopher B Deatrick
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Nathaniel Parchment
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Progyaparamita Saha
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Rachana Mishra
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Sudhish Sharma
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Nicholas Pietris
- Division of Cardiology (N. Pietris), University of Maryland School of Medicine, Baltimore
| | - Alexander Vasilenko
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Casey Bor
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Chetan Ambastha
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Muthukumar Gunasekaran
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Deqiang Li
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| | - Sunjay Kaushal
- From the Division of Cardiac Surgery (G.J.B., D.M., K.B.D., N. Parchment, P.S., R.M., S.S., A.V., C.B., C.A., M.G., D.L., S.K.)
| |
Collapse
|
22
|
Zhao ZA, Han X, Lei W, Li J, Yang Z, Wu J, Yao M, Lu XA, He L, Chen Y, Zhou B, Hu S. Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts. Circ Res 2019; 123:e21-e31. [PMID: 30359191 DOI: 10.1161/circresaha.118.313005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Aging is one of the most significant risk factors for cardiovascular diseases, and the incidence of myocardial ischemia increases dramatically with age. Some studies have reported that cardiosphere-derived cells (CDCs) could benefit the injured heart. Nevertheless, the convincing evidence on CDC-induced improvement of aging heart is still limited. OBJECTIVE In this study, we tested whether the CDCs isolated from neonatal mice could benefit cardiac function in aging mice. METHODS AND RESULTS We evaluated cardiac function of PBS- (n=15) and CDC-injected (n=19) aging mice. Echocardiography indicated that left ventricular (LV) ejection fraction (57.46%±3.57% versus 57.86%±2.44%) and LV fraction shortening (30.67%±2.41% versus 30.51%±1.78%) showed similar values in PBS- and CDC-injected mice. The diastolic wall thickness of LV was significantly increased after CDC injection, resulting in reduced diastolic LV volume. The pulse-wave Doppler and tissue Doppler imaging indicated that aging mice receiving PBS or CDC injection presented similar values of the peak early transmitral flow velocity, the peak late transmitral flow velocity, the ratio of the peak early transmitral flow velocity to the peak late transmitral flow velocity, and the ratio of the peak early transmitral flow velocity to the peak early diastolic mitral annular velocity, respectively. Pressure-volume loop experiment indicated that the LV end-diastolic pressure-volume relationship and end-systolic pressure-volume relationship were comparable in both PBS- and CDC-injected mice. Postmortem analysis of aging mouse hearts showed similar fibrotic degree in the 2 groups. In addition, the aging markers showed comparable expression levels in both PBS- and CDC-injected mice. The systemic aging performance measures, including exercise capacity, hair regrowth capacity, and inflammation, showed no significant improvement in CDC-injected mice. Finally, the telomere length was comparable between PBS- and CDC-injected mice. CONCLUSIONS Together, these results indicate that CDCs do not improve heart function and systemic performances in aging mice.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Xinglong Han
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Wei Lei
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jingjing Li
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Zhuangzhuang Yang
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jie Wu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Mengchao Yao
- School of Life Science, Shanghai University, China (M.Y.)
| | - Xing-Ai Lu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Lingjuan He
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Yihuan Chen
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Bin Zhou
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Shijun Hu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| |
Collapse
|
23
|
Trac D, Hoffman JR, Bheri S, Maxwell JT, Platt MO, Davis ME. Predicting Functional Responses of Progenitor Cell Exosome Potential with Computational Modeling. Stem Cells Transl Med 2019; 8:1212-1221. [PMID: 31385648 PMCID: PMC6811701 DOI: 10.1002/sctm.19-0059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Congenital heart disease can lead to severe right ventricular heart failure (RVHF). We have shown that aggregated c‐kit+ progenitor cells (CPCs) can improve RVHF repair, likely due to exosome‐mediated effects. Here, we demonstrate that miRNA content from monolayer (2D) and aggregated (3D) CPC exosomes can be related to in vitro angiogenesis and antifibrosis responses using partial least squares regression (PLSR). PLSR reduced the dimensionality of the data set to the top 40 miRNAs with the highest weighted coefficients for the in vitro biological responses. Target pathway analysis of these top 40 miRNAs demonstrated significant fit to cardiac angiogenesis and fibrosis pathways. Although the model was trained on in vitro data, we demonstrate that the model can predict angiogenesis and fibrosis responses to exosome treatment in vivo with a strong correlation with published in vivo responses. These studies demonstrate that PLSR modeling of exosome miRNA content has the potential to inform preclinical trials and predict new promising CPC therapies. stem cells translational medicine2019;8:1212–1221
Collapse
Affiliation(s)
- David Trac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jessica R Hoffman
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sruti Bheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Manu O Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, Georgia, USA
| |
Collapse
|
24
|
Sano S, Ishigami S, Sano T. New era of heart failure therapy in pediatrics: Cardiac stem cell therapy on the start line. J Thorac Cardiovasc Surg 2019; 158:845-849. [PMID: 31248633 DOI: 10.1016/j.jtcvs.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shunji Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif.
| | - Shuta Ishigami
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif
| | - Toshikazu Sano
- Department of Pediatric Cardiothoracic Surgery, University of California, San Francisco, San Francisco, Calif
| |
Collapse
|
25
|
Reconstruction of the pulmonary artery by a novel biodegradable conduit engineered with perinatal stem cell-derived vascular smooth muscle cells enables physiological vascular growth in a large animal model of congenital heart disease. Biomaterials 2019; 217:119284. [PMID: 31255979 PMCID: PMC6658806 DOI: 10.1016/j.biomaterials.2019.119284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Lack of growth potential of available grafts represents a bottleneck in the correction of congenital heart defects. Here we used a swine small intestinal submucosa (SIS) graft functionalized with mesenchymal stem cell (MSC)-derived vascular smooth muscle cells (VSMCs), for replacement of the pulmonary artery in piglets. MSCs were expanded from human umbilical cord blood or new-born swine peripheral blood, seeded onto decellularized SIS grafts and conditioned in a bioreactor to differentiate into VSMCs. Results indicate the equivalence of generating grafts engineered with human or swine MSC-derived VSMCs. Next, we conducted a randomized, controlled study in piglets (12–15 kg), which had the left pulmonary artery reconstructed with swine VSMC-engineered or acellular conduit grafts. Piglets recovered well from surgery, with no casualty and similar growth rate in either group. After 6 months, grafted arteries had larger circumference in the cellular group (28.3 ± 2.3 vs 18.3 ± 2.1 mm, P < 0.001), but without evidence of aneurism formation. Immunohistochemistry showed engineered grafts were composed of homogeneous endothelium covered by multi-layered muscular media, whereas the acellular grafts exhibited a patchy endothelial cell layer and a thinner muscular layer. Results show the feasibility and efficacy of pulmonary artery reconstruction using clinically available grafts engineered with allogeneic VSMCs in growing swine.
Collapse
|
26
|
Shoja-Taheri F, George A, Agarwal U, Platt MO, Gibson G, Davis ME. Using Statistical Modeling to Understand and Predict Pediatric Stem Cell Function. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2019; 12:e002403. [PMID: 31100989 PMCID: PMC6581595 DOI: 10.1161/circgen.118.002403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Congenital heart defects are a leading cause of morbidity and mortality in children, and despite advanced surgical treatments, many patients progress to heart failure. Currently, transplantation is the only effective cure and is limited by donor availability and organ rejection. Recently, cell therapy has emerged as a novel method for treating pediatric heart failure with several ongoing clinical trials. However, efficacy of stem cell therapy is variable, and choosing stem cells with the highest reparative effects has been a challenge. METHODS We previously demonstrated the age-dependent reparative effects of human c-kit+ progenitor cells (hCPCs) in a rat model of juvenile heart failure. Using a small subset of patient samples, computational modeling analysis showed that regression models could be made linking sequencing data to phenotypic outcomes. In the current study, we used a similar quantitative model to determine whether predictions can be made in a larger population of patients and validated the model using neonatal hCPCs. We performed RNA sequencing from c-kit+ progenitor cells isolated from 32 patients, including 8 neonatal samples. We tested 2 functional parameters of our model, cellular proliferation and chemotactic potential of conditioned media. RESULTS Interestingly, the observed proliferation and migration responses in each of the selected neonatal hCPC lines matched their predicted counterparts. We then performed canonical pathway analysis to determine potential mechanistic signals that regulated hCPC performance and identified several immune response genes that correlated with performance. ELISA analysis confirmed the presence of selected cytokines in good performing hCPCs and provided many more signals to further validate. CONCLUSIONS These data show that cell behavior may be predicted using large datasets like RNA sequencing and that we may be able to identify patients whose c-kit+ progenitor cells exceed or underperform expectations. With systems biology approaches, interventions can be tailored to improve cell therapy or mimic the qualities of reparative cells.
Collapse
Affiliation(s)
- Farnaz Shoja-Taheri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Alex George
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Udit Agarwal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Manu O. Platt
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Children’s Heart Research and Outcomes (HeRO) Center, Emory University & Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
27
|
Suzuki G, Weil BR, Young RF, Fallavollita JA, Canty JM. Nonocclusive multivessel intracoronary infusion of allogeneic cardiosphere-derived cells early after reperfusion prevents remote zone myocyte loss and improves global left ventricular function in swine with myocardial infarction. Am J Physiol Heart Circ Physiol 2019; 317:H345-H356. [PMID: 31125261 DOI: 10.1152/ajpheart.00124.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intracoronary cardiosphere-derived cells (icCDCs) infused into the infarct-related artery reduce scar volume but do not improve left ventricular (LV) ejection fraction (LVEF). We tested the hypothesis that this reflects the inability of regional delivery to prevent myocyte death or promote myocyte proliferation in viable myocardium remote from the infarct. Swine (n = 23) pretreated with oral cyclosporine (200 mg/day) underwent a 1-h left anterior descending coronary artery (LAD) occlusion, which reduced LVEF from 61.6 ± 1.0 to 45.3 ± 1.5% 30 min after reperfusion. At that time, animals received global infusion of allogeneic icCDCs (n = 8), regional infusion of icCDCs restricted to the LAD using the stop-flow technique (n = 8), or vehicle (n = 7). After 1 mo, global icCDCs increased LVEF from 44.8 ± 1.9 to 60.8 ± 3.8% (P < 0.05) with no significant change after LAD stop-flow icCDCs (44.8 ± 3.6 to 50.9 ± 3.1%) or vehicle (46.5 ± 2.5 to 47.7 ± 2.6%). In contrast, global icCDCs did not alter infarct volume (%LV mass) assessed at 2 days (11.2 ± 2.3 vs. 12.6 ± 2.3%), whereas it was reduced after LAD stop-flow icCDCs (7.1 ± 1.1%, P < 0.05). Histopathological analysis of remote myocardium after global icCDCs demonstrated a significant increase in myocyte proliferation (147 ± 32 vs. 14 ± 10 nuclei/106 myocytes, P < 0.05) and a reduction in myocyte apoptosis (15 ± 9 vs. 46 ± 10 nuclei/106 myocytes, P < 0.05) that increased myocyte nuclear density (1,264 ± 39 vs. 1,157 ± 33 nuclei/mm2, P < 0.05) and decreased myocyte diameter (13.2 ± 0.2 vs. 14.5 ± 0.3 μm, P < 0.05) compared with vehicle-treated controls. In contrast, remote zone changes after regional LAD icCDCs were no different from vehicle. These data indicate that changes in global LVEF after icCDCs are dependent upon preventing myocyte loss and hypertrophy in myocardium remote from the infarct. These arise from stimulating myocyte proliferation and reducing myocyte apoptosis indicating the importance of directing cell therapy to viable remote regions.NEW & NOTEWORTHY Administration of allogeneic cardiosphere-derived cells to the entire heart via global intracoronary infusion shortly after myocardial infarction favorably influenced left ventricular ejection fraction by preventing myocyte death and promoting myocyte proliferation in remote, noninfarcted myocardium in swine. In contrast, regional intracoronary cell infusion did not significantly affect remote zone myocyte remodeling. Global cell administration targeting viable myocardium remote from the infarct may be an effective approach to prevent adverse ventricular remodeling after myocardial infarction.
Collapse
Affiliation(s)
- Gen Suzuki
- Department of Medicine, University at Buffalo, Buffalo, New York.,Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York
| | - Brian R Weil
- Physiology and Biophysics, University at Buffalo, Buffalo, New York.,Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York
| | - Rebeccah F Young
- Department of Medicine, University at Buffalo, Buffalo, New York.,Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York
| | - James A Fallavollita
- Veterans Affairs Western New York Health Care System, Buffalo, New York.,Department of Medicine, University at Buffalo, Buffalo, New York.,Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York
| | - John M Canty
- Veterans Affairs Western New York Health Care System, Buffalo, New York.,Department of Medicine, University at Buffalo, Buffalo, New York.,Physiology and Biophysics, University at Buffalo, Buffalo, New York.,Biomedical Engineering, University at Buffalo, Buffalo, New York.,Clinical and Translational Research Institute, University at Buffalo, Buffalo, New York
| |
Collapse
|
28
|
Michel-Behnke I, Pavo I, Recla S, Khalil M, Jux C, Schranz D. Regenerative therapies in young hearts with structural or congenital heart disease. Transl Pediatr 2019; 8:140-150. [PMID: 31161081 PMCID: PMC6514281 DOI: 10.21037/tp.2019.03.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pediatric heart failure (HF) is rare. The prognosis is generally poor. HF is most frequently related to cardiomyopathy or congenital heart disease (CHD). Associated phenotypes are HF with preserved (HFpEF) or reduced ejection fraction (HFrEF); both in children with biventricular or univentricular circulation. Cardiac growth, differentiation, proliferation and consecutively regenerative and repair mechanisms are inversely related to the patient's age; edaphic and circulating cardiac progenitor cells as well; in sum, there are enormous endogenous potentials repairing a diseased heart in particular in young children. Efforts supporting pediatric cardiac regeneration are clearly justified; cell-based therapies have been addressed in small series of children with end-stage HF of either the left or right ventricle, more recently in randomized clinical trials. Different cell populations like autologous bone marrow mononuclear cells, progenitor cells or cardiac derived cells have been injected into coronaries or directly into the myocardium. Beneficial at least transient improvement of cardiac function was observed in patients with dilative cardiomyopathy and CHD, mainly hypoplastic left heart syndrome (HLHS). Cellular repopulation and possibly more crucial, paracrine effects contributed in slowing down progression of pediatric end-stage HF. Our review summarizes the current knowledge in different scenarios of HF by cell-based cardiac therapies in critically ill children. Based on the actual clinical experience future work to distinguish responders from non-responders among other refinements will lead to individualized precision treatment of HF in children, what means a lot to a child on a long list waiting for heart transplantation (HTX).
Collapse
Affiliation(s)
- Ina Michel-Behnke
- University Hospital for Children and Adolescent Medicine, Division of Pediatric Cardiology, Pediatric Heart Center, Medical University Vienna, Vienna, Austria
| | - Imre Pavo
- University Hospital for Children and Adolescent Medicine, Division of Pediatric Cardiology, Pediatric Heart Center, Medical University Vienna, Vienna, Austria
| | - Sabine Recla
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Markus Khalil
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Dietmar Schranz
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
29
|
Affiliation(s)
- Ke Xiao
- From the Institute of Molecular and Translational Therapeutic Strategies (K.X., T.T.) and Excellence Cluster REBIRTH (T.T.), Hannover Medical School, Germany
| | - Thomas Thum
- From the Institute of Molecular and Translational Therapeutic Strategies (K.X., T.T.) and Excellence Cluster REBIRTH (T.T.), Hannover Medical School, Germany.
| |
Collapse
|
30
|
Trac D, Maxwell JT, Brown ME, Xu C, Davis ME. Aggregation of Child Cardiac Progenitor Cells Into Spheres Activates Notch Signaling and Improves Treatment of Right Ventricular Heart Failure. Circ Res 2019; 124:526-538. [PMID: 30590978 PMCID: PMC6375764 DOI: 10.1161/circresaha.118.313845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Congenital heart disease can lead to life-threatening right ventricular (RV) heart failure. Results from clinical trials support expanding cardiac progenitor cell (CPC) based therapies. However, our recent data show that CPCs lose function as they age, starting as early as 1 year. OBJECTIVE To determine whether the aggregation of child (1-5-year-old) CPCs into scaffold-free spheres can improve differentiation by enhancing Notch signaling, a known regulator of CPC fate. We hypothesized that aggregated (3-dimensional [3D]) CPCs will repair RV heart failure better than monolayer (2-dimensional [2D]) CPCs. METHODS AND RESULTS Spheres were produced with 1500 CPCs each using a microwell array. CPC aggregation significantly increased gene expression of Notch1 compared with 2D CPCs, accompanied by significant upregulation of cardiogenic transcription factors (GATA4, HAND1, MEF2C, NKX2.5, and TBX5) and endothelial markers (CD31, FLK1, FLT1, VWF). Blocking Notch receptor activation with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) diminished these effects. To evaluate the therapeutic improvements of CPC aggregation, RV heart failure was induced in athymic rats by pulmonary artery banding, and cells were implanted into the RV free wall. Echocardiographic measurements 28 days postimplantation showed significantly improved RV function with 3D compared with 2D CPCs. Tracking implanted CPCs via DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide)-labeling showed improved retention of 3D CPCs. Transducing 3D CPCs with Notch1-shRNA (short hairpin RNA) did not reduce retention, but significantly reduced RV functional improvements. Histological analyses showed 3D treatment reduced RV fibrosis and increased angiogenesis. Although 3D CPCs formed CD31+ vessel-like cells in vivo, these effects are more likely because of improved 3D CPC exosome function compared with 2D CPC exosomes. CONCLUSIONS Spherical aggregation improves child CPC function in a Notch-dependent manner. The strong reparative ability of CPC spheres warrants further investigation as a treatment for pediatric heart failure, especially in older children where reparative ability may be reduced.
Collapse
Affiliation(s)
- David Trac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Joshua T. Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Milton E. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, Georgia, 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
31
|
Ebrahimi B. Cardiac progenitor reprogramming for heart regeneration. CELL REGENERATION 2019; 7:1-6. [PMID: 30671223 PMCID: PMC6326243 DOI: 10.1016/j.cr.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Myocardial infarction leads to the loss of a huge number of cardiomyocytes and the reparatory response to this phenomenon is scar tissue formation, which impairs heart function. Direct reprogramming technology offers an alternative strategy for the generation of functional cardiomyocytes not only in vitro, but also in vivo in the site of injury. Results have demonstrated cardiac tissue regeneration and improvement in heart function after myocardial infarction following local injection of vectors encoding reprogramming transcription factors or miRNAs. This shows the great potential of cardiac reprogramming technology for heart regeneration. However, in addition to cardiomyocytes, other cell types, including endothelial cells and smooth muscle cells are also required to be generated in the damaged area in order to achieve complete cardiac tissue regeneration. To this aim induced proliferative/expandable cardiovascular progenitor cells (iCPCs) appear to be an appropriate cell source, which is capable of differentiation into three cardiovascular lineages both in vitro and in vivo. In this regard, this study goes over in vitro and in vivo cardiac reprogramming technology and specifically deals with cardiac progenitor reprogramming and its potential for heart regeneration.
Collapse
Key Words
- CASD, cell-activation and signaling-directed
- Cellular reprogramming
- ECs, endothelial cells
- FGF, fibroblast growth factor
- GMT, Gata4, Mef2c, and Tbx5
- Heart regeneration
- Myocardial infarction
- PI3K/AKT, phosphoinositol 3-kinase pathway
- SMCs, smooth muscle cells
- TF, transcription factor
- Transdifferentiation
- VEGF, vascular endothelial growth factor
- iCMs, induced cardiomyocytes
- iCPCs, induced cardiac progenitor cells
- iCSs, induced cardiospheres
- iPSC, induced pluripotent stem cell
- p38 MAPK, p38 mitogen-activated protein kinase pathway
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
32
|
Yadav SK, Mishra PK. Isolation, Characterization, and Differentiation of Cardiac Stem Cells from the Adult Mouse Heart. J Vis Exp 2019. [PMID: 30663680 DOI: 10.3791/58448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Myocardial infarction (MI) is a leading cause of morbidity and mortality around the world. A major goal of regenerative medicine is to replenish the dead myocardium after MI. Although several strategies have been used to regenerate myocardium, stem cell therapy remains a major approach to replenish the dead myocardium of an MI heart. Accumulating evidence suggests the presence of resident cardiac stem cells (CSCs) in the adult heart and their endocrine and/or paracrine effects on cardiac regeneration. However, CSC isolation and their characterization and differentiation toward myocardial cells, especially cardiomyocytes, remains a technical challenge. In the present study, we provided a simple method for the isolation, characterization, and differentiation of CSCs from the adult mouse heart. Here, we describe a density gradient method for the isolation of CSCs, where the heart is digested by a 0.2% collagenase II solution. To characterize the isolated CSCs, we evaluated the expression of CSCs/cardiac markers Sca-1, NKX2-5, and GATA4, and pluripotency/stemness markers OCT4, SOX2, and Nanog. We also determined the proliferation potential of isolated CSCs by culturing them in a Petri dish and assessing the expression of the proliferation marker Ki-67. For evaluating the differentiation potential of CSCs, we selected seven- to ten-days cultured CSCs. We transferred them to a new plate with a cardiomyocyte differentiation medium. They are incubated in a cell culture incubator for 12 days, while the differentiation medium is changed every three days. The differentiated CSCs express cardiomyocyte-specific markers: actinin and troponin I. Thus, CSCs isolated with this protocol have stemness and cardiac markers, and they have a potential for proliferation and differentiation toward cardiomyocyte lineage.
Collapse
Affiliation(s)
- Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center; Department of Anesthesiology, University of Nebraska Medical Center;
| |
Collapse
|
33
|
Wang K, Ding R, Ha Y, Jia Y, Liao X, Wang S, Li R, Shen Z, Xiong H, Guo J, Jie W. Hypoxia-stressed cardiomyocytes promote early cardiac differentiation of cardiac stem cells through HIF-1 α/Jagged1/Notch1 signaling. Acta Pharm Sin B 2018; 8:795-804. [PMID: 30245966 PMCID: PMC6148082 DOI: 10.1016/j.apsb.2018.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/26/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is beneficial for the differentiation of stem cells transplanted for myocardial injury, but mechanisms underlying this benefit remain unsolved. Here, we report the impact of hypoxia-induced Jagged1 expression in cardiomyocytes (CMs) for driving the differentiation of cardiac stem cells (CSCs). Forced hypoxia-inducible factor 1α (HIF-1α) expression and physical hypoxia (5% O2) treatment could induce Jagged1 expression in neonatal rat CMs. Pharmacological inhibition of HIF-1α by YC-1 attenuated hypoxia-promoted Jagged1 expression in CMs. An ERK inhibitor (PD98059), but not inhibitors of JNK (SP600125), Notch (DAPT), NF-κB (PTDC), JAK (AG490), or STAT3 (Stattic) suppressed hypoxia-induced Jagged1 protein expression in CMs. c-Kit+ CSCs isolated from neonatal rat hearts using a magnetic-activated cell sorting method expressed GATA4, SM22α or vWF, but not Nkx2.5 and cTnI. Moreover, 87.3% of freshly isolated CSCs displayed Notch1 receptor expression. Direct co-culture of CMs with BrdU-labeled CSCs enhanced CSCs differentiation, as evidenced by an increased number of BrdU+/Nkx2.5+ cells, while intermittent hypoxia for 21 days promoted co-culture-triggered differentiation of CSCs into CM-like cells. Notably, YC-1 and DAPT attenuated hypoxia-induced differentiation. Our results suggest that hypoxia induces Jagged1 expression in CMs primarily through ERK signaling, and facilitates early cardiac lineage differentiation of CSCs in CM/CSC co-cultures via HIF-1α/Jagged1/Notch signaling.
Collapse
Key Words
- BMSCs, bone marrow stem cells
- BrdU, 5-bromo-2′-deoxyuridine
- CMs, cardiomyocytes
- CSCs, cardiac stem cells
- Cardiac stem cell
- Cardiomyocyte, Co-culture
- Cell differentiation
- DAPI, 4′,6-diamidino-2-phenylindole
- DMSO, dimethyl sulfoxide
- ERK, extracellular signal-regulated kinase
- FBS, fetal bovine serum
- FITC, fluorescein isothiocyanate
- GFP, green fluorescent protein
- HIF-1α, hypoxia-inducible factor 1α
- HRE, hypoxia responsive element
- Hypoxia
- JAK, Janus kinase
- JNK, c-Jun N-terminal kinase
- MACS, magnetic-activated cell sorting
- MI, myocardial infarction
- MOI, multiplicity of infection
- N-ICD, notch intracellular domain
- NF-κB, nuclear factor κB
- Notch1 signaling
- PBS, phosphate buffer saline
- PE, phycoerythrin
- RT-PCR, reverse transcription PCR
- STAT3, signal transducer and activator of transcription 3
- YC-1, 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl-indazole
- qPCR, quantitative PCR
- vWF, von Willebrand factor
Collapse
|
34
|
Abstract
After a myocardial infarction, heart tissue becomes irreversibly damaged, leading to scar formation and inevitably ischemic heart failure. Of the many available interventions after a myocardial infarction, such as percutaneous intervention or pharmacological optimization, none can reverse the ischemic insult on the heart and restore cardiac function. Thus, the only available cure for patients with scarred myocardium is allogeneic heart transplantation, which comes with extensive costs, risks, and complications. However, multiple studies have shown that the heart is, in fact, not an end-stage organ and that there are endogenous mechanisms in place that have the potential to spark regeneration. Stem cell therapy has emerged as a potential tool to tap into and activate this endogenous framework. Particularly promising are stem cells derived from cardiac tissue itself, referred to as cardiosphere-derived cells (CDCs). CDCs can be extracted and isolated from the patient's myocardium and then administered by intramyocardial injection or intracoronary infusion. After early success in the animal model, multiple clinical trials have demonstrated the safety and efficacy of autologous CDC therapy in humans. Clinical trials with allogeneic CDCs showed early promising results and pose a potential "off-the-shelf" therapy for patients in the acute setting after a myocardial infarction. The mechanism responsible for CDC-induced cardiac regeneration seems to be a combination of triggering native cardiomyocyte proliferation and recruitment of endogenous progenitor cells, which most prominently occurs via paracrine effects. A further understanding of the mediators involved in paracrine signaling can help with the development of a stem cell-free therapy, with all the benefits and none of the associated complications.
Collapse
|
35
|
Abstract
Congenital heart disease (CHD) is the most common birth defect, affecting 1 in 100 babies. Among CHDs, single ventricle (SV) physiologies, such as hypoplastic left heart syndrome and tricuspid atresia, are particularly severe conditions that require multiple palliative surgeries, including the Fontan procedure. Although the management strategies for SV patients have markedly improved, the prevalence of ventricular dysfunction continues to increase over time, especially after the Fontan procedure. At present, the final treatment for SV patients who develop heart failure is heart transplantation; however, transplantation is difficult to achieve because of severe donor shortages. Recently, various regenerative therapies for heart failure have been developed that increase cardiomyocytes and restore cardiac function, with promising results in adults. The clinical application of various forms of regenerative medicine for CHD patients with heart failure is highly anticipated, and the latest research in this field is reviewed here. In addition, regenerative therapy is important for children with CHD because of their natural growth. The ideal pediatric cardiovascular device would have the potential to adapt to a child's growth. Therefore, if a device that increases in size in accordance with the patient's growth could be developed using regenerative medicine, it would be highly beneficial. This review provides an overview of the available regenerative technologies for CHD patients.
Collapse
|
36
|
Walravens AS, Vanhaverbeke M, Ottaviani L, Gillijns H, Trenson S, Driessche NV, Luttun A, Meyns B, Herijgers P, Rega F, Heying R, Sampaolesi M, Janssens S. Molecular signature of progenitor cells isolated from young and adult human hearts. Sci Rep 2018; 8:9266. [PMID: 29915261 PMCID: PMC6006291 DOI: 10.1038/s41598-018-26969-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The loss of endogenous cardiac regenerative capacity within the first week of postnatal life has intensified clinical trials to induce cardiac regeneration in the adult mammalian heart using different progenitor cell types. We hypothesized that donor age-related phenotypic and functional characteristics of cardiac progenitor cells (CPC) account for mixed results of cell-based cardiac repair. We compared expression profiles and cell turnover rates of human heart-derived c-kitpos progenitors (c-kitpos CPC) and cardiosphere-derived cells (CDC) from young and adult donor origin and studied their in vitro angiogenic and cardiac differentiation potential, which can be relevant for cardiac repair. We report that 3-dimensional CDC expansion recapitulates a conducive environment for growth factor and cytokine release from adult donor cells (aCDC) that optimally supports vascular tube formation and vessel sprouting. Transdifferentiation capacity of c-kitpos CPCs and CDCs towards cardiomyocyte-like cells was modest, however, most notable in young c-kitpos cells and adult CDCs. Progenitors isolated with different methods thus show cell- and donor-specific characteristics that may account for variable contributions in functional myocardial recovery.
Collapse
Affiliation(s)
| | | | - Lara Ottaviani
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Hilde Gillijns
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Sander Trenson
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | | | - Aernout Luttun
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Bart Meyns
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Paul Herijgers
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Filip Rega
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ruth Heying
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Maurilio Sampaolesi
- Department of Development and Regeneration, KU Leuven, 3000, Leuven, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
37
|
Petersen J, Kazakov A, Böhm M, Schäfers HJ, Laufs U, Abdul-Khaliq H. Cardiopulmonary bypass reduces myocardial oxidative stress, inflammation and increases c-kit +CD45 - cell population in newborns. J Transl Med 2018; 16:111. [PMID: 29703225 PMCID: PMC5921779 DOI: 10.1186/s12967-018-1478-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 04/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this study was to characterize the influence of cardiopulmonary bypass (CPB) on myocardial remodeling in newborns and children. Methods Biopsies from the right atrium were taken before and after CPB from 4 newborns (5–11 days old) and 7 children (8 months–16 years old). Immunostainings on 10 µm heart tissue frozen sections were performed to detect c-kit+ cells, leukocytes (CD45+ cells), Ki67+ cycling cells. The percentage of 8-hydroxy-guanosine (8-dOHG)+cardiomyocytes and non-cardiomyocytes [(8-dOHG)+-index] were determined to quantify oxidative stress. Results Δ c-kit+CD45− cells (resident cardiac stem cells) were increased in newborns (2.2 ± 1.9/mm2) and decreased in children − 1.5 ± 0.7/mm2, p < 0.01. The (8-dOHG)+-index was reduced by 43% in newborns and by 20% in children. CPB did not influence cardiac cell turnover; high cell proliferation was seen in newborns before and after CPB. Cardiopulmonary bypass significantly decreased the leucocyte infiltration in newborns to 40 ± 8%, p < 0.05, but not in children. Infiltration with eosinophils (eosinophils/CD45%) was completely abolished in the myocardium of newborns p < 0.05 and reduced to 22 ± 8% in children after CPB, n.s. Conclusions Immediate response and remodeling of the myocardium to CPB differs between newborns, older infants and children. Especially an increased number of c-kit expressing CD45 cells after CPB were seen in neonates in comparison to children. The clinical value of such observation needs to be further assessed in larger cohorts of patients. Electronic supplementary material The online version of this article (10.1186/s12967-018-1478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Johannes Petersen
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.,Department of Cardiovascular Surgery, University Heart Center Hamburg, Hamburg, Germany
| | - Andrey Kazakov
- Department of Cardiology, Angiology and Intensive Care Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Michael Böhm
- Department of Cardiology, Angiology and Intensive Care Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hans-Joachim Schäfers
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ulrich Laufs
- Department of Cardiology, University Medical Center Leipzig, Leipzig, Germany
| | - Hashim Abdul-Khaliq
- Department of Pediatric Cardiology, Saarland University Medical Center, 66421, Homburg/Saar, Germany.
| |
Collapse
|
38
|
Xu J, Lian W, Li L, Huang Z. Generation of induced cardiac progenitor cells via somatic reprogramming. Oncotarget 2018; 8:29442-29457. [PMID: 28199972 PMCID: PMC5438743 DOI: 10.18632/oncotarget.15272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that cardiac progenitor cells (CPCs) represent a more effective cell-based therapy for treatment of myocardial infarction. Unfortunately, their therapeutic application is limited by low yield of cell harvesting, declining quality and quantity during the ageing process, and the need for highly invasive heart biopsy. Therefore, there is an emerging interest in generating CPC-like stem cells from somatic cells via somatic reprogramming. This novel approach would provide an unlimited source of stem cells with cardiac differentiation potential. Here we would firstly discuss the different types of CPC and their importance in stem cell therapy for treatment of myocardial infarction; secondly, the necessity of generating induced CPC from somatic cells via somatic reprogramming; and finally the current progress of somatic reprogramming in cardiac cells, especially induced CPC generation.
Collapse
Affiliation(s)
- Jianyong Xu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Wei Lian
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, China.,Department of Pathogen Biology and Immunology, Shenzhen University School of Medicine, Shenzhen, China.,Shenzhen City Shenzhen University Immunodiagnostic Technology Platform, Shenzhen, China
| |
Collapse
|
39
|
Tsilimigras DI, Oikonomou EK, Moris D, Schizas D, Economopoulos KP, Mylonas KS. Stem Cell Therapy for Congenital Heart Disease: A Systematic Review. Circulation 2017; 136:2373-2385. [PMID: 29229621 DOI: 10.1161/circulationaha.117.029607] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) constitutes the most prevalent and heterogeneous group of congenital anomalies. Although surgery remains the gold standard treatment modality, stem cell therapy has been gaining ground as a complimentary or alternative treatment option in certain types of CHD. The aim of this study was to present the existing published evidence and ongoing research efforts on the implementation of stem cell-based therapeutic strategies in CHD. METHODS A systematic review was conducted by searching Medline, ClinicalTrials.gov, and the Cochrane library, along with reference lists of the included studies through April 23, 2017. RESULTS Nineteen studies were included in this review (8 preclinical, 6 clinical, and 5 ongoing trials). Various routes of cardiac stem cell delivery have been reported, including intracoronary, intramyocardial, intravenous, and epicardial. Depending on their origin and level of differentiation at which they are harvested, stem cells may exhibit different properties. Preclinical studies have mostly focused on modeling right ventricle dysfunction or failure and pulmonary artery hypertension by using pressure or volume overload in vitro or in vivo. Only a limited number of clinical trials on patients with CHD exist, and these primarily focus on hypoplastic left heart syndrome. Cell-based tissue engineering has recently been introduced, and research currently is focusing on developing cell-seeded grafts and patches that could potentially grow in parallel with whole body growth once implanted in the heart. CONCLUSIONS It seems that stem cell delivery to the diseased heart as an adjunct to surgical palliation may provide some benefits over surgery alone in terms of cardiac function, somatic growth, and quality of life. Despite encouraging preliminary results, stem cell therapies for patients with CHD should only be considered in the setting of well-designed clinical trials. More wet laboratory research experience is needed, and translation of promising findings to large clinical studies is warranted to clearly define the efficacy and safety profile of this alternative and potentially groundbreaking therapeutic approach.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- School of Medicine (D.I.T.)
- National and Kapodistrian University of Athens, Greece. Surgery Working Group (D.I.T., D.M., D.S., K.P.E)
| | | | - Demetrios Moris
- National and Kapodistrian University of Athens, Greece. Surgery Working Group (D.I.T., D.M., D.S., K.P.E)
- Society of Junior Doctors, Athens, Greece. Department of Surgery, The Ohio State Comprehensive Cancer Center, The Ohio State University, Columbus (D.M.)
| | - Dimitrios Schizas
- First Department of Surgery, Laiko General Hospital (D.S.)
- National and Kapodistrian University of Athens, Greece. Surgery Working Group (D.I.T., D.M., D.S., K.P.E)
| | - Konstantinos P Economopoulos
- National and Kapodistrian University of Athens, Greece. Surgery Working Group (D.I.T., D.M., D.S., K.P.E)
- Organ Engineering and Regeneration Laboratory (K.P.E.)
| | - Konstantinos S Mylonas
- Pediatrics Working Group (K.S.M.)
- Department of Pediatric Surgery (K.S.M.), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
40
|
Cardiac Progenitor Cells and the Interplay with Their Microenvironment. Stem Cells Int 2017; 2017:7471582. [PMID: 29075298 PMCID: PMC5623801 DOI: 10.1155/2017/7471582] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
The microenvironment plays a crucial role in the behavior of stem and progenitor cells. In the heart, cardiac progenitor cells (CPCs) reside in specific niches, characterized by key components that are altered in response to a myocardial infarction. To date, there is a lack of knowledge on these niches and on the CPC interplay with the niche components. Insight into these complex interactions and into the influence of microenvironmental factors on CPCs can be used to promote the regenerative potential of these cells. In this review, we discuss cardiac resident progenitor cells and their regenerative potential and provide an overview of the interactions of CPCs with the key elements of their niche. We focus on the interaction between CPCs and supporting cells, extracellular matrix, mechanical stimuli, and soluble factors. Finally, we describe novel approaches to modulate the CPC niche that can represent the next step in recreating an optimal CPC microenvironment and thereby improve their regeneration capacity.
Collapse
|
41
|
Tatman PD, Woulfe KC, Karimpour-Fard A, Jeffrey DA, Jaggers J, Cleveland JC, Nunley K, Taylor MR, Miyamoto SD, Stauffer BL, Sucharov CC. Pediatric dilated cardiomyopathy hearts display a unique gene expression profile. JCI Insight 2017; 2:94249. [PMID: 28724804 DOI: 10.1172/jci.insight.94249] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Our previous work showed myocellular differences in pediatric and adult dilated cardiomyopathy (DCM). However, a thorough characterization of the molecular pathways involved in pediatric DCM does not exist, limiting the development of age-specific therapies. To characterize this patient population, we investigated the transcriptome profile of pediatric patients. RNA-Seq from 7 DCM and 7 nonfailing (NF) explanted age-matched pediatric left ventricles (LV) was performed. Changes in gene expression were confirmed by real-time PCR (RT-PCR) in 36 DCM and 21 NF pediatric hearts and in 20 DCM and 10 NF adult hearts. The degree of myocyte hypertrophy was investigated in 4 DCM and 7 NF pediatric hearts and in 4 DCM and 9 NF adult hearts. Changes in gene expression in response to pluripotency-inducing factors were investigated in neonatal rat ventricular myocytes (NRVMs). Transcriptome analysis identified a gene expression profile in children compared with adults with DCM. Additionally, myocyte hypertrophy was not observed in pediatric hearts but was present in adult hearts. Furthermore, treatment of NRVMs with pluripotency-inducing factors recapitulated changes in gene expression observed in the pediatric DCM heart. Pediatric DCM is characterized by unique changes in gene expression that suggest maintenance of an undifferentiated state.
Collapse
Affiliation(s)
- Philip D Tatman
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Medical Scientist Training Program and
| | - Kathleen C Woulfe
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Danielle A Jeffrey
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | - Karin Nunley
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Matthew Rg Taylor
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shelley D Miyamoto
- Department of Paediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Brian L Stauffer
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Division of Cardiology, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Carmen C Sucharov
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
42
|
Abstract
Dramatic evolution in medical and catheter interventions and complex surgeries to treat children with congenital heart disease (CHD) has led to a growing number of patients with a multitude of long-term complications associated with morbidity and mortality. Heart failure in patients with hypoplastic left heart syndrome predicated by functional single ventricle lesions is associated with an increase in CHD prevalence and remains a significant challenge. Pathophysiological mechanisms contributing to the progression of CHD, including single ventricle lesions and dilated cardiomyopathy, and adult heart disease may inevitably differ. Although therapeutic options for advanced cardiac failure are restricted to heart transplantation or mechanical circulatory support, there is a strong impetus to develop novel therapeutic strategies. As lower vertebrates, such as the newt and zebrafish, have a remarkable ability to replace lost cardiac tissue, this intrinsic self-repair machinery at the early postnatal stage in mice was confirmed by partial ventricular resection. Although the underlying mechanistic insights might differ among the species, mammalian heart regeneration occurs even in humans, with the highest degree occurring in early childhood and gradually declining with age in adulthood, suggesting the advantage of stem cell therapy to ameliorate ventricular dysfunction in patients with CHD. Although effective clinical translation by a variety of stem cells in adult heart disease remains inconclusive with respect to the improvement of cardiac function, case reports and clinical trials based on stem cell therapies in patients with CHD may be invaluable for the next stage of therapeutic development. Dissecting the differential mechanisms underlying progressive ventricular dysfunction in children and adults may lead us to identify a novel regenerative therapy. Future regenerative technologies to treat patients with CHD are exciting prospects for heart regeneration in general practice.
Collapse
Affiliation(s)
- Hidemasa Oh
- From the Department of Regenerative Medicine, Center for Innovative Clinical Medicine, Okayama University Hospital, Japan
| |
Collapse
|
43
|
Bittle GJ, Wehman B, Karathanasis SK, Kaushal S. Clinical Progress in Cell Therapy for Single Ventricle Congenital Heart Disease. Circ Res 2017; 120:1060-1062. [PMID: 28360342 DOI: 10.1161/circresaha.117.310702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Gregory J Bittle
- From the Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore (G.J.B., B.W., S.K.); and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit, Medimmune, Inc, Gaithersburg, MD (S.K.K.)
| | - Brody Wehman
- From the Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore (G.J.B., B.W., S.K.); and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit, Medimmune, Inc, Gaithersburg, MD (S.K.K.)
| | - Sotirios K Karathanasis
- From the Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore (G.J.B., B.W., S.K.); and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit, Medimmune, Inc, Gaithersburg, MD (S.K.K.)
| | - Sunjay Kaushal
- From the Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore (G.J.B., B.W., S.K.); and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit, Medimmune, Inc, Gaithersburg, MD (S.K.K.).
| |
Collapse
|
44
|
Streif W. Myocardial infarction in a neonate. Lessons for neonatal and internal medicine. Hamostaseologie 2017; 37:219-222. [PMID: 28318007 DOI: 10.5482/hamo-16-09-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/01/2017] [Indexed: 11/05/2022] Open
Abstract
Due to the lack of evidence-based guidelines, management strategies for neonatal MI should be individualized and administered largely at the discretion of responsible treating teams. Supportive care with a focus on preserving adequate circulation and antithrombotic therapy with a view to restoring vascular patency are the mainstays of treatment. Thrombolytic therapy of neonatal MI includes a chance to completely restore myocardial function. Understanding the resilience of the neonatal heart and mechanism of cardiac cell repair in neonates may spark novel treatment strategies for severe MI in the large number of affected individuals in an aging population.
Collapse
Affiliation(s)
- Werner Streif
- Ao. Univ.-Prof. Dr. Werner Streif, Medizinische Universität Innsbruck (MUI), Dept. für Kinder- und Jugendheilkunde, Pädiatrie 1, Anichstrasse 35, A - 6020 Innsbruck, Tel: +43-512-504 23600, Fax: +43-512-504 23484, E-Mail:
| |
Collapse
|
45
|
Wang Z, Schmull S, Zheng H, Shan J, Zou R, Xue S. Ascending Aortic Constriction Promotes Cardiomyocyte Proliferation in Neonatal Rats. Int Heart J 2017; 58:264-270. [PMID: 28077821 DOI: 10.1536/ihj.16-234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adult heart suffering from increased workload will undergo myocardial hypertrophy, subsequent cardiomyocyte (CM) death, and eventually heart failure. However, the effect of increasing afterload on the neonatal heart remains unknown. We performed ascending aortic constriction (AAC) in neonatal rats 8-12 hours after birth (P0, P indicates postpartum). Seven days after surgery, in vivo heart function was evaluated using cardiac ultrasonography. Haematoxylineosin and Masson staining were used to assess CM diameter and collagen deposition. Moreover, expression of both EdU and Ki67 were evaluated to determine DNA synthesis levels, and pH3 and aurora B as markers for mitosis in CMs. CM isolation was performed by heart perfusion at P0, P3, P5, and P7, respectively. CM number on P0 was 1.01 ± 0.29 × 106. We found that CM cell cycle activation was significantly increased among constricted hearts, as demonstrated by increased Ki67, EdU, pH3, and aurora B positive cells/1000 CMs. At day 7 (P7), constriction group hearts manifested increased wall thickness (0.55 ± 0.05 mm versus 0.85 ± 0.10 mm, P < 0.01, n = 6), and improved hemodynamics as well as left ventricular ejection fraction (65.5 ± 3.7% versus 77.7 ± 4.8%, P < 0.01, n = 6). Of note, the population of CMs was also markedly increased in the constriction group (2.92 ± 0.27 × 106 versus 3.41 ± 0.40 × 106, P < 0.05, n = 6). In summary, we found that during the first week after birth significant numbers of neonatal CMs can reenter the cell cycle. Ascending aortic constriction promotes neonatal rat CM proliferation resulting in 16.7% more CMs in the heart.
Collapse
Affiliation(s)
- Zhenhua Wang
- Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University
| | | | | | | | | | | |
Collapse
|
46
|
Civitarese RA, Kapus A, McCulloch CA, Connelly KA. Role of integrins in mediating cardiac fibroblast–cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology. Basic Res Cardiol 2016; 112:6. [DOI: 10.1007/s00395-016-0598-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022]
|
47
|
Chiu HY, Lin CH, Hsu CY, Yu J, Hsieh CH, Shyu WC. IGF1R + Dental Pulp Stem Cells Enhanced Neuroplasticity in Hypoxia-Ischemia Model. Mol Neurobiol 2016; 54:8225-8241. [PMID: 27914008 DOI: 10.1007/s12035-016-0210-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/11/2016] [Indexed: 12/27/2022]
Abstract
Until now, the surface markers of multipotent mesenchymal stem cells (MSCs) had not been fully identified. Here, we found that the IGF1 receptor (IGF1R), regarded as a pluripotent marker of embryonic stem cells (ESCs), was also expressed in human dental pulp derived-mesenchymal stem cells (hDSCs), which displayed a potential for both self-renewal and multipotency. hDSC-secreted IGF1 interacted with IGF1R through an autocrine signaling pathway to maintain this self-renewal and proliferation potential. Stereotaxic implantation of immunosorted IGF1R+ hDSCs in rats with neonatal hypoxia-ischemia (NHI) promoted neuroplasticity, improving the neurological outcome by increasing expression of the anti-apoptotic protein Bcl-2, which enhanced both neurogenesis and angiogenesis. In addition, treatment with IGF1R+ hDSCs significantly modulated neurite regeneration and anti-inflammation in vivo in NHI rats and in vitro in primary cortical cultures under oxygen/glucose deprivation. Autocrine regulatory expression of IGF1R contributed to maintaining the self-renewal capacity of hDSCs. Furthermore, implantation of IGF1R+ hDSCs increased neuroplasticity with neurite regeneration and immunomodulation in and the NHI rat model.
Collapse
Affiliation(s)
- Hsiao-Yu Chiu
- Children's Hospital, China Medical University and Hospital, Taichung, Taiwan.,Translational Medicine Doctoral Degree Program, China Medical University, Taichung, Taiwan
| | - Chen-Huan Lin
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440
| | - Chung Y Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan. .,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | - Chia-Hung Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Woei-Cherng Shyu
- Translational Research Center, and Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 40440. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
48
|
Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, Saha P, Goo YA, Datla SR, Chen L, Tulapurkar ME, Taylor BS, Yang P, Karathanasis S, Goodlett DR, Kaushal S. A Deep Proteome Analysis Identifies the Complete Secretome as the Functional Unit of Human Cardiac Progenitor Cells. Circ Res 2016; 120:816-834. [PMID: 27908912 DOI: 10.1161/circresaha.116.309782] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/21/2022]
Abstract
RATIONALE Cardiac progenitor cells are an attractive cell type for tissue regeneration, but their mechanism for myocardial remodeling is still unclear. OBJECTIVE This investigation determines how chronological age influences the phenotypic characteristics and the secretome of human cardiac progenitor cells (CPCs), and their potential to recover injured myocardium. METHODS AND RESULTS Adult (aCPCs) and neonatal (nCPCs) cells were derived from patients aged >40 years or <1 month, respectively, and their functional potential was determined in a rodent myocardial infarction model. A more robust in vitro proliferative capacity of nCPCs, compared with aCPCs, correlated with significantly greater myocardial recovery mediated by nCPCs in vivo. Strikingly, a single injection of nCPC-derived total conditioned media was significantly more effective than nCPCs, aCPC-derived TCM, or nCPC-derived exosomes in recovering cardiac function, stimulating neovascularization, and promoting myocardial remodeling. High-resolution accurate mass spectrometry with reverse phase liquid chromatography fractionation and mass spectrometry was used to identify proteins in the secretome of aCPCs and nCPCs, and the literature-based networking software identified specific pathways affected by the secretome of CPCs in the setting of myocardial infarction. Examining the TCM, we quantified changes in the expression pattern of 804 proteins in nCPC-derived TCM and 513 proteins in aCPC-derived TCM. The literature-based proteomic network analysis identified that 46 and 6 canonical signaling pathways were significantly targeted by nCPC-derived TCM and aCPC-derived TCM, respectively. One leading candidate pathway is heat-shock factor-1, potentially affecting 8 identified pathways for nCPC-derived TCM but none for aCPC-derived TCM. To validate this prediction, we demonstrated that the modulation of heat-shock factor-1 by knockdown in nCPCs or overexpression in aCPCs significantly altered the quality of their secretome. CONCLUSIONS A deep proteomic analysis revealed both detailed and global mechanisms underlying the chronological age-based differences in the ability of CPCs to promote myocardial recovery via the components of their secretome.
Collapse
Affiliation(s)
- Sudhish Sharma
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Rachana Mishra
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Grace E Bigham
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Brody Wehman
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Mohd M Khan
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Huichun Xu
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Progyaparamita Saha
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Young Ah Goo
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Srinivasa Raju Datla
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Ling Chen
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Mohan E Tulapurkar
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Bradley S Taylor
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Peixin Yang
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Sotirios Karathanasis
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - David R Goodlett
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.)
| | - Sunjay Kaushal
- From the Division of Cardiac Surgery, School of Medicine (S.S., R.M., G.E.B., B.W., P.S., S.R.D., B.S.T., S.K.), Department of Pharmaceutical Sciences, School of Pharmacy (M.M.K., Y.A.G., D.R.G.), Division of Endocrinology, Diabetes and Nutrition, Department of Medicine (H.X.), Department of Physiology and Medicine, School of Medicine (L.C.), Department of OB/GYN & Reproductive Science, Department of Biochemistry and Molecular Biology, School of Medicine (P.Y.), and Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine (M.E.T.), University of Maryland, Baltimore; and Cardiovascular and Metabolic Diseases, Innovative Medicines Biotech Unit MedImmune, Inc., Gaithersburg, MD (S.K.).
| |
Collapse
|
49
|
Sugiura T, Hibino N, Breuer CK, Shinoka T. Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. J Cardiothorac Surg 2016; 11:163. [PMID: 27906085 PMCID: PMC5131419 DOI: 10.1186/s13019-016-0559-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/25/2016] [Indexed: 01/15/2023] Open
Abstract
Background Thousands of babies are born with congenital heart defects that require surgical repair involving a prosthetic implant. Lack of growth in prosthetic grafts is especially detrimental in pediatric surgery. Cell seeded biodegradable tissue engineered grafts are a novel solution to this problem. The purpose of the present study is to evaluate the feasibility of seeding human induced pluripotent stem cell derived cardiomyocytes (hiPS-CMs) onto a biodegradable cardiac patch. Methods The hiPS-CMs were cultured on a biodegradable patch composed of a polyglycolic acid (PGA) and a 50:50 poly (l-lactic-co-ε-caprolactone) copolymer (PLCL) for 1 week. Male athymic rats were randomly divided into 2 groups of 10 animals each: 1. hiPS-CM seeded group, and 2. Unseeded group. After culture, the cardiac patch was implanted to repair a defect with a diameter of 2 mm created in the right ventricular outflow tract (RVOT) wall. Hearts were explanted at 4 (n = 2), 8 (n = 2), and 16 (n = 6) weeks after patch implantation. Explanted patches were assessed immunohistochemically. Results Seeded patch explants did not stain positive for α-actinin (marker of cardiomyocytes) at the 4 week time point, suggesting that the cultured hiPS-CMs evacuated the patch in the early phase of tissue remodeling. However, after 16 weeks implantation, the area fraction of positively stained α-actinin cells was significantly higher in the seeded group than in the unseeded group (Seeded group: 6.1 ± 2.8% vs. Unseeded group: 0.95 ± 0.50%, p = 0.004), suggesting cell seeding promoted regenerative proliferation of host cardiomyocytes. Conclusions Seeded hiPS-CMs were not present in the patch after 4 weeks. However, we surmise that they influenced the regeneration of host cardiomyocytes via a paracrine mechanism. Tissue-engineered hiPS-CMs seeded cardiac patches warrant further investigation for use in the repair of congenital heart diseases.
Collapse
Affiliation(s)
- Tadahisa Sugiura
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Narutoshi Hibino
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Tissue Engineering Program and Surgical Research, Nationwide Children's Hospital, Columbus, OH, USA. .,Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, Columbus, OH, USA. .,Cardiovascular Tissue Engineering Program, Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, T2294, Columbus, OH, 43205, USA.
| |
Collapse
|
50
|
Ghafarzadeh M, Namdari M, Eatemadi A. Stem cell therapies for congenital heart disease. Biomed Pharmacother 2016; 84:1163-1171. [PMID: 27780147 DOI: 10.1016/j.biopha.2016.10.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/15/2023] Open
Abstract
Congenital heart disease (CHD) is the most prevalent congenital anomaly in newborn babies. Cardiac malformations have been induced in different animal model experiments, by perturbing some molecules that take part in the developmental pathways associated with myocyte differentiation, specification, or cardiac morphogenesis. The exact epigenetic, environmental, or genetic, basis for these molecules perturbations is yet to be understood. But, scientist have bridged this gap by introducing autologous stem cell into the defective hearts to treat CHD. The choice of stem cells to use has also raised an issue. In this review, we explore different stem cells that have been recently used, as an update into the pool of this knowledge and we suggested the future perspective into the choice of stem cells to control this disease. We propose that isolating mesenchymal stem cells from neonate will give a robust heart regeneration as compared to adults. This source are easily isolated. To unveil stem cell therapy beyond its possibility and safety, further study is required, including largescale randomized, and clinical trials to certify the efficacy of stem cell therapy.
Collapse
Affiliation(s)
- Masoumeh Ghafarzadeh
- Assalian Hospital, Center for Obstetrics and Gynecology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Mehrdad Namdari
- Department of Cardiology, Lorestan University of Medical Sciences, Postal address: 6997118544, Khoramabad, Iran.
| | - Ali Eatemadi
- Department of Medical Biotechnology, School of advance Science in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| |
Collapse
|