1
|
Li L, Cheng M, Jin J, Zhao Y, Bai W, Zhang D, Zhang S, Bai Y, Xu J. The m6A reader YTHDF2 protects vascular smooth muscle cells against the osteogenic differentiation through targeting Runx2. Ren Fail 2025; 47:2488876. [PMID: 40230077 PMCID: PMC12001846 DOI: 10.1080/0886022x.2025.2488876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Vascular calcification (VC) is an important pathological development progress in chronic kidney disease (CKD) and may increase mortality but lacks effective treatments. N6-methyladenosine (m6A) has been verified to be the most prevalent internal chemical RNA modification in mammalian mRNAs. The M6A-modified mRNA degradation process is mediated by the reader YTHDF2 in an m6A-dependent manner. Nevertheless, the exact role and molecular mechanism of YTHDF2 in VC remain unclear. This study aimed to investigate the potential role of YTHDF2 in the osteogenic differentiation of vascular smooth muscle cells (VSMCs). It was found that YTHDF2 was markedly downregulated in both in vivo and in vitro calcified models. Functionally, YTHDF2 plays a protective role in VC. The overexpression of YTHDF2 inhibited the transdifferentiation of VSMCs from a contractile to an osteogenic phenotype, thus decreasing the expression of mineralization regulatory proteins and calcium deposition. Conversely, YTHDF2 deficiency aggravated this process. At the mechanistic level, YTHDF2 suppressed osteogenic transdifferentiation of VSMCs by regulating the Runt-related transcription factor 2 (Runx2). RNA immunoprecipitation-qPCR (RIP-qPCR) confirmed the binding of YTHDF2 to Runx2, and luciferase reporter assays confirmed the presence of the m6A site in Runx2. In addition, an actinomycin D assay showed that the half-life of Runx2 mRNA was dramatically shortened in VSMCs overexpressing YTHDF2. These results suggest that YTHDF2 directly binds to the m6A modification site of Runx2 to mediate the mRNA degradation that prevents VC by inhibiting the osteogenic development of VSMCs. Therefore, YTHDF2 can be considered a potential therapeutic target for managing VC.
Collapse
Affiliation(s)
- Lanmei Li
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Meijuan Cheng
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jingjing Jin
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Yunfeng Zhao
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Weiwei Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Dongxue Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Shenglei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Yaling Bai
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| | - Jinsheng Xu
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Clinical Research Center for Chronic Kidney Disease, Hebei Key Laboratory of Vascular Calcification in Kidney Disease, Shijiazhuang, China
| |
Collapse
|
2
|
Liu 刘运畅 Y, Zeng 曾利平 L, Cai 蔡琦 Q, Zeng 曾云飞 Y, Zheng 郑硕 S, Gong 龚雪 X, Zhou 周栌 L, Tian 田苗 M, Chen 陈良龙 L, Wu 吴庚泽 G, Zeng 曾春雨 C. Cytoskeletal-related genes function as checkpoints for the maintenance of VSMC contractile phenotype and prevent pathological remodeling in arterial diseases. J Adv Res 2025:S2090-1232(25)00386-8. [PMID: 40516911 DOI: 10.1016/j.jare.2025.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/28/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
INTRODUCTION Arterial pathological remodeling, central to arterial diseases including atherosclerosis and aortic aneurysms, is characterized by vascular smooth muscle cell (VSMC) phenotypic switching with concomitant loss of contractile markers. Uncovering the molecular changes initiating phenotypic transition may advance the understanding of vascular pathogenesis and provide new therapeutic strategies. OBJECTIVES To construct a cross-species integrative model of VSMC transition in arterial diseases including atherosclerosis and aortic aneurysm, identify key genes regulating phenotypic switching in the trajectory from contractile to other phenotypes, and further validate their function in arterial remodeling models. METHODS Public single-cell RNA-seq datasets were analyzed to map VSMC transcriptional dynamics and identify regulated gene expression patterns during transition. The changes were further checked using experimental animal aneurysm samples and PDGF-BB treated VSMCs. Functional validation included in vitro siRNA-mediated knockdown using primary VSMCs and in vivo gene-manipulated (AAv-shRNA/Adv-overexpression) wire-injury models. RESULTS Dysregulation of cytoskeletal-related genes (Fblim1, Tns1, and Synpo2) may cause disarrangement of actin cytoskeleton, and were identified as checkpoint process before VSMCs transition initiation. Knockdown of target genes suppressed contractile markers, enhanced proliferation, migration, and disrupted cytoskeleton architecture in VSMCs. In animal models, gene down-regulation exacerbated pathological remodeling while over-expression partially reverted these effects. CONCLUSION The findings highlight the critical role of cytoskeleton-related genes in arterial diseases that function as a critical checkpoint in preventing VSMC pathological phenotypic switching.
Collapse
Affiliation(s)
- Yunchang Liu 刘运畅
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Liping Zeng 曾利平
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China
| | - Qi Cai 蔡琦
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Yunfei Zeng 曾云飞
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Shuo Zheng 郑硕
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Xue Gong 龚雪
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China; Department of Cardiology, General Hospital of Southern Theatre Command of PLA, Guangzhou, Guangdong, P.R. China 100048
| | - Lu Zhou 周栌
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Miao Tian 田苗
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China
| | - Lianglong Chen 陈良龙
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University Union Hospital, Fuzhou 350001, PR China.
| | - Gengze Wu 吴庚泽
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China.
| | - Chunyu Zeng 曾春雨
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing 400042, PR China; Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease, Ministry of Education, PR China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, PR China; Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, PR China.
| |
Collapse
|
3
|
Fu M, Lan Z, Ye Y, Gong Y, Liang Q, Li M, Feng L, Chen A, Dong Q, Li Y, Wang S, Liu X, Zhang X, Ou JS, Lu L, Yan J. The metabolite alpha-ketoglutarate inhibits vascular calcification partially through modulation of TET2/NLRP3 inflammasome signaling pathway. Kidney Int 2025:S0085-2538(25)00394-1. [PMID: 40383231 DOI: 10.1016/j.kint.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 05/20/2025]
Abstract
INTRODUCTION Vascular calcification is prevalent in chronic kidney disease (CKD), but existing medical treatments fail to achieve satisfactory therapeutic effects. Vascular calcification is now recognized as an active multifactorial process involving diverse mechanisms. Alpha-ketoglutarate (AKG), an intermediate in tricarboxylic acid cycle, has been demonstrated to extend lifespan and ameliorate age-related osteoporosis. However, whether AKG inhibits vascular calcification remains unknown. METHODS Here, mineral deposition was studied with AKG treatment in rodent and human vascular smooth muscle cells (VSMCs) under osteogenic conditions in vivo and in vitro. RESULTS AKG treatment remarkably ameliorated calcification of rat and human arterial rings ex vivo and aortic calcification in CKD rats and mice. Mechanistically, AKG treatment upregulated DNA demethylase ten-eleven translocation 2 (TET2) expression during vascular calcification. Knockdown of TET2 by siRNA and pharmacological inhibition of TET2 by Bobcat339 promoted vascular calcification in rat VSMCs. Bobcat339 also enhanced rat aortic ring calcification. Conversely, TET2 overexpression ameliorated vascular calcification in rat VSMCs, rat aortic rings and CKD rats. Furthermore, VSMC-specific TET2 deficiency promoted aortic calcification in CKD mice. Both TET2 siRNA and Bobcat339 independently counteracted the inhibitory effect of AKG on vascular calcification of rat VSMCs. Inhibitory effect of AKG administration on vascular calcification was reduced in TET2 knockout mice. TET2 overexpression reduced the levels of the NLRP3 inflammasome pathway, cleaved Caspase-1 and IL-1β protein expression in VSMCs and NLRP3 agonist Nigericin-induced cell calcification. CONCLUSIONS Our study demonstrate that AKG attenuates vascular calcification partially via upregulation of TET2 and inhibition of NLRP3 inflammasome, indicating the critical role of epigenetic modifier in vascular calcification. Modulation of TET2 may become a promising strategy for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Mingwei Fu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Yuan Gong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510665, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Siyi Wang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Xiaoyu Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease; Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou 510280, China.
| |
Collapse
|
4
|
Persiani E, Ceccherini E, Falleni A, Gisone I, Ippolito C, Mattii L, Cecchettini A, Vozzi F. Ultrastructural and Molecular Analysis of Vascular Smooth Muscle Cells During the Switch from a Physiological to a Pathological Phenotype. Biomedicines 2025; 13:1127. [PMID: 40426954 PMCID: PMC12108999 DOI: 10.3390/biomedicines13051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Under physiological conditions, vascular smooth muscle cells (VSMCs) are in a quiescent contractile state, but under pathological conditions, such as atherosclerosis, they change their phenotype to synthetic, characterized by increased proliferation, migration, and production of an extracellular matrix. Furthermore, VSMCs can undergo calcification, switching to an osteoblast-like phenotype, contributing to plaque instability. Methods: In this study, we analyzed the phenotypic changes in VSMCs during the transition from a physiological to a pathological state, a key process in the progression of atherosclerosis, using confocal and transmission electron microscopy, real-time PCR, and intracellular calcium quantification. Results: Confocal and transmission electron microscopy revealed a prominent remodeling of the actin cytoskeleton, increasing autophagic vacuoles in synthetic VSMCs and the deposition of calcium microcrystals in calcified cells. Immunofluorescence analysis revealed differential expression of α-SMA (contractile marker) and galectin-3 (synthetic marker), confirming the phenotypic changes. Real-time PCR further validated these changes, showing upregulation of RUNX-2, a marker of osteogenic transition, in calcified VSMCs. Conclusions: This study highlights the dynamic plasticity of VSMCs and their role in atherosclerosis progression. Understanding the characteristics of these phenotypic transitions can help develop targeted therapies to mitigate vascular calcification and plaque instability, potentially countering cardiovascular disease.
Collapse
Affiliation(s)
- Elisa Persiani
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.P.); (I.G.); (A.C.); (F.V.)
| | - Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.P.); (I.G.); (A.C.); (F.V.)
| | - Alessandra Falleni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.F.); (C.I.); (L.M.)
| | - Ilaria Gisone
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.P.); (I.G.); (A.C.); (F.V.)
| | - Chiara Ippolito
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.F.); (C.I.); (L.M.)
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.F.); (C.I.); (L.M.)
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.P.); (I.G.); (A.C.); (F.V.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (A.F.); (C.I.); (L.M.)
| | - Federico Vozzi
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (E.P.); (I.G.); (A.C.); (F.V.)
| |
Collapse
|
5
|
Salido E, de Medeiros Vieira C, Mosquera JV, Zade R, Parikh P, Suryavanshi S, Miller CL, Lo Sardo V. The 9p21.3 Coronary Artery Disease Risk Locus Drives Vascular Smooth Muscle Cells to an Osteochondrogenic State. Arterioscler Thromb Vasc Biol 2025; 45:702-721. [PMID: 40143812 PMCID: PMC12017600 DOI: 10.1161/atvbaha.124.322045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Genome-wide association studies have identified common genetic variants at ≈300 human genomic loci linked to coronary artery disease susceptibility. Among these genomic regions, the most impactful is the 9p21.3 coronary artery disease risk locus, which spans a 60-kb gene desert and encompasses ≈80 SNPs (single nucleotide polymorphism) in high linkage disequilibrium. Despite ≈2 decades since its discovery, the role of the 9p21.3 locus in cells of the vasculature remains incompletely resolved. METHODS We differentiated induced pluripotent stem cells (iPSCs) from risk, nonrisk donors at 9p21.3, and isogenic knockouts into vascular smooth muscle cells (VSMCs). We performed single-cell transcriptomic profiling, including coembedding and comparison with publicly available human arterial data sets. We conducted functional characterization using migration and calcification assays and confirmed our findings on iPSC-VSMCs derived from additional donors. Finally, we used overexpression of ANRIL followed by gene expression analysis. RESULTS We demonstrated that iPSC-VSMCs harboring the 9p21.3 risk haplotype preferentially adopt an osteochondrogenic state and show remarkable similarity to fibrochondrocytes from human artery tissue. The transcriptional profile and functional assessment of migration and calcification capacity across iPSC-VSMC lines from multiple donors concordantly resemble an osteochondrogenic state. Importantly, we identified numerous transcription factors driving different VSMC state trajectories. Additionally, we prioritized LIMCH1 and CRABP1 as signature genes critical for defining the risk transcriptional program. Finally, overexpression of a short isoform of ANRIL in 9p21.3 knockout cells was sufficient to induce the osteochondrogenic transcriptional signature. CONCLUSIONS Our study provides new insights into the mechanism of the 9p21.3 risk locus and defines its previously undescribed role in driving a disease-prone transcriptional and functional state in VSMCs concordant with an osteochondrogenic-like state. Our data suggest that the 9p21.3 risk haplotype likely promotes arterial calcification, through altered expression of ANRIL, in a cell type-specific and cell-autonomous manner, providing insight into potential risk assessment and treatment for carriers.
Collapse
MESH Headings
- Humans
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Chromosomes, Human, Pair 9/genetics
- Genetic Predisposition to Disease
- Coronary Artery Disease/genetics
- Coronary Artery Disease/pathology
- Coronary Artery Disease/metabolism
- Cell Movement
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Polymorphism, Single Nucleotide
- Cells, Cultured
- Phenotype
- Vascular Calcification/genetics
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Risk Factors
- Cell Differentiation
- Haplotypes
- Gene Expression Profiling
- Transcriptome
- Genome-Wide Association Study
Collapse
Affiliation(s)
- Elsa Salido
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| | - Carolina de Medeiros Vieira
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| | - Jose Verdezoto Mosquera
- Department of Genome Sciences, and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Rohan Zade
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| | - Parth Parikh
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| | - Shraddha Suryavanshi
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| | - Clint L. Miller
- Department of Genome Sciences, and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville (J.V.M., C.L.M.)
| | - Valentina Lo Sardo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison (E.S., C.d.M.V., R.Z., P.P., S.S., V.L.S.)
| |
Collapse
|
6
|
Fujihara K, Yoneda T, Sugidono A, Okada Y, Hiyama S, Kajikawa S, Fukunaga Y, Koch M, Izu Y. Collagen XII deficiency promotes ligament-specific heterotopic ossification via fibrochondrocyte differentiation. Biochem Biophys Res Commun 2025; 757:151621. [PMID: 40088675 DOI: 10.1016/j.bbrc.2025.151621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Heterotopic ossification of tendons and ligaments causes pain and dysfunction, significantly reducing quality of life. However, its underlying mechanisms remain elusive. In addition to injury, tissue organization and stiffness have been implicated in heterotopic ossification. Collagen XII, a member of the fibril-associated collagens with interrupted triple helices (FACIT) family, plays a crucial role in maintaining the structural integrity and function of tendons and ligaments. Its deficiency alters tissue stiffness and predisposes ligaments to rupture. In this study, we investigated whether collagen XII contributes to the development of heterotopic ossification. Three-dimensional microcomputed tomography (3D-μCT) and X-ray analyses revealed heterotopic bone formation in the knee and ankle ligaments, but not in tendons, of Col12a1-deficient mice, with a 100 % incidence in mice older than 19 weeks. Histological analysis showed the presence of Alcian blue- and Toluidine blue-positive fibrochondrocyte-like cells in Col12a1-deficient ligaments, which were subsequently replaced by bone tissue, as indicated by Alizarin red staining. Real-time qPCR analysis of knee ligaments demonstrated a slight increase in chondrogenic markers and a significant upregulation of osteogenic markers in Col12a1-deficient mice compared with wild-type controls. In vitro chondrogenesis and osteogenesis assays using primary tenocytes from wild-type and Col12a1-deficient mice revealed that collagen XII deficiency enhanced osteogenic potential, whereas chondrogenic potential remained comparable. Our findings indicate that collagen XII deficiency specifically induces heterotopic bone formation in knee and ankle ligaments, occurring via fibrochondrocytes rather than through endochondral or intramembranous ossification.
Collapse
Affiliation(s)
- Kei Fujihara
- Graduate School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Comparative Cell Biology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Taiju Yoneda
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Akira Sugidono
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yukina Okada
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Sakura Hiyama
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Shuhei Kajikawa
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931, Cologne, Germany
| | - Yayoi Izu
- Graduate School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Comparative Cell Biology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.
| |
Collapse
|
7
|
Salido E, de Medeiros Vieira C, Mosquera JV, Zade R, Parikh P, Suryavanshi S, Miller CL, Lo Sardo V. The 9p21.3 coronary artery disease risk locus drives vascular smooth muscle cells to an osteochondrogenic state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.25.595888. [PMID: 38853913 PMCID: PMC11160673 DOI: 10.1101/2024.05.25.595888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Genome-wide association studies have identified common genetic variants at ~300 human genomic loci linked to coronary artery disease (CAD) susceptibility. Among these genomic regions, the most impactful is the 9p21.3 CAD risk locus, which spans a 60 kb gene desert and encompasses ~80 SNPs in high linkage disequilibrium. Despite nearly two decades since its discovery, the role of the 9p21.3 locus in cells of the vasculature remains incompletely resolved. Methods We differentiated induced pluripotent stem cells (iPSCs) from risk and non-risk donors at 9p21.3 into vascular smooth muscle cells. We performed single-cell transcriptomic profiling, including co-embedding and comparison with publicly available human arterial datasets. We conducted functional characterization using migration and calcification assays and confirmed our findings on iPSC-VSMCs derived from additional donors. Finally, we used overexpression of ANRIL followed by gene expression analysis. Results We demonstrated that iPSC-VSMCs harboring the 9p21.3 risk haplotype preferentially adopt an osteochondrogenic state and show remarkable similarity to fibrochondrocytes from human artery tissue. The transcriptional profile and functional assessment of migration and calcification capacity across iPSC-VSMCs lines from multiple donors concordantly resemble an osteochondrogenic state. Importantly, we identified numerous transcription factors driving different VSMC state trajectories. Additionally, we prioritized LIMCH1 and CRABP1 as signature genes critical for defining the risk transcriptional program. Finally, overexpression of a short isoform of ANRIL in non-risk cells was sufficient to induce the osteochondrogenic transcriptional signature. Conclusions Our study provides new insights into the mechanism of the 9p21.3 risk locus and defines its previously undescribed role in driving a disease-prone transcriptional and functional state in VSMCs concordant with an osteochondrogenic-like state. Our data suggest that the 9p21.3 risk haplotype likely promotes arterial calcification, through altered expression of ANRIL, in a cell-type specific and cell-autonomous manner, providing insight into potential risk assessment and treatment for carriers.
Collapse
Affiliation(s)
- Elsa Salido
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison, WI 53705 USA
| | | | - José Verdezoto Mosquera
- Department of Genome Sciences; Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville, VA 22908 USA
| | - Rohan Zade
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Parth Parikh
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Shraddha Suryavanshi
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison, WI 53705 USA
| | - Clint L. Miller
- Department of Genome Sciences; Department of Biochemistry and Molecular Genetics; University of Virginia; Charlottesville, VA 22908 USA
| | - Valentina Lo Sardo
- Department of Cell and Regenerative Biology; University of Wisconsin-Madison; Madison, WI 53705 USA
| |
Collapse
|
8
|
Zhang T, Zhu M, Ma J, Liu Z, Zhang Z, Chen M, Zhao Y, Li H, Wang S, Wei X, Zhang W, Yang X, Little PJ, Kamato D, Hu H, Duan Y, Zhang B, Xiao J, Xu S, Chen Y. Moscatilin inhibits vascular calcification by activating IL13RA2-dependent inhibition of STAT3 and attenuating the WNT3/β-catenin signalling pathway. J Adv Res 2025; 68:445-457. [PMID: 38432393 PMCID: PMC11785559 DOI: 10.1016/j.jare.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Vascular calcification, a devastating vascular complication accompanying atherosclerotic cardiovascular disease and chronic kidney disease, increases the incidence of adverse cardiovascular events and compromises the efficacy of vascular interventions. However, effective therapeutic drugs and treatments to delay or prevent vascular calcification are lacking. OBJECTIVES This study was designed to test the therapeutic effects and mechanism of Moscatilin (also known as dendrophenol) from Dendrobium huoshanense (an eminent traditional Chinese medicine) in suppressing vascular calcification in vitro, ex vivo and in vivo. METHODS Male C57BL/6J mice (25-week-old) were subjected to nicotine and vitamin D3 (VD3) treatment to induce vascular calcification. In vitro, we established the cellular model of osteogenesis of human aortic smooth muscle cells (HASMCs) under phosphate conditions. RESULTS By utilizing an in-house drug screening strategy, we identified Moscatilin as a new naturally-occurring chemical entity to reduce HASMC calcium accumulation. The protective effects of Moscatilin against vascular calcification were verified in cultured HASMCs. Unbiased transcriptional profiling analysis and cellular thermal shift assay suggested that Moscatilin suppresses vascular calcification via binding to interleukin 13 receptor subunit A2 (IL13RA2) and augmenting its expression. Furthermore, IL13RA2 was reduced during HASMC osteogenesis, thus promoting the secretion of inflammatory factors via STAT3. We further validated the participation of Moscatilin-inhibited vascular calcification by the classical WNT/β-catenin pathway, among which WNT3 played a key role in this process. Moscatilin mitigated the crosstalk between WNT3/β-catenin and IL13RA2/STAT3 to reduce osteogenic differentiation of HASMCs. CONCLUSION This study supports the potential of Moscatilin as a new naturally-occurring candidate drug for treating vascular calcification via regulating the IL13RA2/STAT3 and WNT3/β-catenin signalling pathways.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaxin Li
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shengnan Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoning Wei
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenwen Zhang
- Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
9
|
Zhao C, Shen J, Lu Y, Ni H, Xiang M, Xie Y. Dedifferentiation of vascular smooth muscle cells upon vessel injury. Int Immunopharmacol 2025; 144:113691. [PMID: 39591824 DOI: 10.1016/j.intimp.2024.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/23/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Highly differentiated mature vascular smooth muscle cells (VSMCs) are the predominant type of cells constituting arterial walls, which are essential for maintaining the structural and functional integrity of blood vessels. VSMCs demonstrate a notable degree of adaptability following vascular damage, a characteristic that plays a crucial role in the progression of vascular remodeling. Advances in single-cell RNA sequencing in both healthy and pathological vascular tissues have offered profound insights into the complexity of VSMCs, revealing a more intricate diversity than previously recognized. In response to injury, VSMCs undergo dedifferentiation and exhibit pluripotent markers. This review summarizes the researches that have employed lineage tracing alongside single-cell sequencing analysis to explore the dynamics of vascular damage. The primary focus of this study was on the process of dedifferentiation in VSMCs, with particular attention to its underlying mechanisms. The discussion included the impact of microenvironmental cues, the control of transcription factors, and the various molecular pathways involved in VSMCs dedifferentiation. Herein, we provide a comprehensive analysis of cells dedifferentiated from adult VSMCs upon vascular injury.
Collapse
Affiliation(s)
- Chaoyue Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Yunrui Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Transvascular Implantation Devices, 88 Jiefang Road, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
10
|
Yan W, Cheng J, Wu H, Gao Z, Li Z, Cao C, Meng Q, Wu Y, Ren S, Zhao F, Wang H, Liu P, Wang J, Hu X, Ao Y. Vascular Smooth Muscle Cells Transdifferentiate into Chondrocyte-Like Cells and Facilitate Meniscal Fibrocartilage Regeneration. RESEARCH (WASHINGTON, D.C.) 2024; 7:0555. [PMID: 39717465 PMCID: PMC11665451 DOI: 10.34133/research.0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
The effective and translational strategy to regenerate knee meniscal fibrocartilage remained challenging. Herein, we first identified vascular smooth muscle cells (VSMCs) transdifferentiated into fibrochondrocytes and participated in spontaneous meniscal regeneration using smooth muscle cell lineage tracing transgenic mice meniscal defect model. Then, we identified low-intensity pulsed ultrasound (LIPUS) acoustic stimulus enhanced fibrochondrogenic transdifferentiation of VSMCs in vitro and in vivo. Mechanistically, LIPUS stimulus could up-regulate mechanosensitive ion channel Piezo1 expression and then activate the transforming growth factor β1 (TGFβ1) signal, following repression of the Notch signal, consequently enhancing fibrochondrogenic transdifferentiation of VSMCs. Finally, we demonstrated that the regular LIPUS stimulus enhanced anisotropic native-like meniscal fibrocartilage tissue regeneration in a beagle canine subtotal meniscectomy model at 6 months postoperatively. The single-cell RNA sequencing analysis confirmed the role of VSMC fibrochondrogenic transdifferentiation in meniscal regeneration.
Collapse
Affiliation(s)
- Wenqiang Yan
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jin Cheng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Haoda Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zeyuan Gao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Zong Li
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Chenxi Cao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Qingyang Meng
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yue Wu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Shuang Ren
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Fengyuan Zhao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Hongde Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Ping Liu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Xiaoqing Hu
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| | - Yingfang Ao
- Department of Sports Medicine, Peking University Third Hospital,
Institute of Sports Medicine of Peking University, Beijing, China
- Beijing Key Laboratory of Sports Injuries, Beijing, China
- Engineering Research Center of Sports Trauma Treatment Technology and Devices, Ministry of Education, Beijing, China
| |
Collapse
|
11
|
Cabiati M, Vozzi F, Ceccherini E, Guiducci L, Persiani E, Gisone I, Sgalippa A, Cecchettini A, Del Ry S. Exploring Bone Morphogenetic Protein-2 and -4 mRNA Expression and Their Receptor Assessment in a Dynamic In Vitro Model of Vascular Calcification. Cells 2024; 13:2091. [PMID: 39768183 PMCID: PMC11674890 DOI: 10.3390/cells13242091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Vascular calcification (VC) is a dynamic, tightly regulated process driven by cellular activity and resembling the mechanisms of bone formation, with specific molecules playing pivotal roles in its progression. We aimed to investigate the involvement of the bone morphogenic proteins (BMP-2, BMP-4, BMPR-1a/1b, and BMPR-2) system in this process. Our study used an advanced in vitro model that simulates the biological environment of the vascular wall, assessing the ability of a phosphate mixture to induce the osteoblastic switch in human coronary artery smooth muscle cells (HCASMCs). METHODS HCASMCs were grown in mono- and co-culture with human coronary artery endothelial cells (HCAECs) in a double-flow bioreactor (LiveBox2 and IVTech), allowing static and dynamic conditions through a peristaltic pump. The VC was stimulated by incubation in a calcifying medium for 7 days. A BMP system Real-Time PCR was performed at the end of each experiment. RESULTS In monocultures, BMP-2 expression increased in calcified HCASMCs in static (p = 0.01) and dynamic conditions. BMP-4 and the biological receptors were expressed in all the experimental settings, increasing mainly in dynamic flow conditions. In co-cultures, we observed a marked increase in BMP-2 and BMP-4, BMPR-1a (p = 0.04 and p = 0.01, respectively), and BMPR-2 (p = 0.001) in the calcifying setting mostly in dynamic conditions. CONCLUSIONS The increase in BMP-2/4 in co-culture suggests that these genes might promote the switch towards an osteogenic-like phenotype, data also supported by the rise of both BMPR-1a and BMPR-2. Thus, our findings provide insights into the mechanisms by which dynamic co-culture modulates the BMP system activation in an environment mimicking in vivo VC's cellular and mechanical characteristics.
Collapse
Affiliation(s)
- Manuela Cabiati
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Federico Vozzi
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Elisa Ceccherini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Letizia Guiducci
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Elisa Persiani
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Ilaria Gisone
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
| | - Agnese Sgalippa
- Health Science Interdisciplinary Center, Sant’Anna School of Advanced Studies, 56100 Pisa, Italy;
| | - Antonella Cecchettini
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| | - Silvia Del Ry
- Institute of Clinical Physiology IFC-CNR, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy; (F.V.); (E.C.); (L.G.); (E.P.); (I.G.); (S.D.R.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
12
|
Dong Q, Liu F, Zhu J, Li M, Chen A, Feng L, Lan Z, Ye Y, Lu L, Liang Q, Yan J. 4-Octyl itaconate inhibits vascular calcification partially via modulation of HMOX-1 signaling. Eur J Pharmacol 2024; 985:177122. [PMID: 39532225 DOI: 10.1016/j.ejphar.2024.177122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification frequently occurs in patients with chronic conditions such as chronic kidney disease (CKD), diabetes, and hypertension and represents a significant cause of cardiovascular events. Thus, identifying effective therapeutic targets to inhibit the progression of vascular calcification is essential. 4-Octyl itaconate (4-OI), a derivative of itaconate, exhibits anti-inflammatory and antioxidant activity, both of which play an essential role in the progression of vascular calcification. However, the role and molecular mechanisms of 4-OI in vascular calcification have not yet been elucidated. In this study, we investigated the effects of exogenous 4-OI on vascular calcification using vascular smooth muscle cells (VSMCs), arterial rings, and mice. Alizarin red staining and western blot revealed that 4-OI inhibited calcification and osteogenic differentiation of human VSMCs. Similarly, 4-OI inhibited calcification of rat and human arterial rings and VitD3-overloaded mouse aortas. Mechanistically, RNA sequencing analysis revealed that 4-OI treatment is most likely to affect heme oxygenase 1 (HMOX-1) mRNA expression. The study demonstrated that 4-OI treatment increased HMOX-1 mRNA and protein levels, but suppressed inflammation and oxidative stress in VSMCs under osteogenic conditions. Moreover, HMOX-1 knockdown by siRNA or treatment with the HMOX-1 inhibitor ZnPP9 significantly reversed the suppression effect on calcification of VSMCs and aortas of VitD3-overloaded mice by 4-OI. Furthermore, HMOX-1 knockdown by siRNA markedly abrogated the inhibitory effect of 4-OI on inflammation in VSMCs. These findings suggest that 4-OI alleviates vascular calcification and inhibits oxidative stress and inflammation through modulation of HMOX-1, indicating its potential as a therapeutic target for vascular calcification.
Collapse
MESH Headings
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Animals
- Humans
- Heme Oxygenase-1/metabolism
- Succinates/pharmacology
- Signal Transduction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Male
- Rats
- Osteogenesis/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Cells, Cultured
Collapse
Affiliation(s)
- Qianqian Dong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Fang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Jiahui Zhu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, China.
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, China.
| |
Collapse
|
13
|
Xu L, Liu B, Ma H, Qi E, Ma J, Chang T, Zhang J, Zhang W, Chen W, Cao X, Xiong X. O-GlcNAc transferase promotes vascular smooth muscle calcification through modulating Wnt/β-catenin signaling. FASEB J 2024; 38:e70271. [PMID: 39704274 DOI: 10.1096/fj.202401649rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Vascular calcification (VC), associated with high cardiovascular mortality in patients with chronic kidney disease (CKD), involves osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs). O-GlcNAcylation, a dynamic post-translational modification, is closely linked to cardiovascular diseases, including VC. However, the exact role and molecular mechanism of O-GlcNAc signaling in abnormal mineral metabolism-induced VC remain unclear. In the current study, we found that the levels of O-GlcNAc transferase (OGT) and global protein O-GlcNAcylation were significantly upregulated in the artery tissues of mouse calcification models and CKD patients with VC. To further delineate the in vivo role of OGT in VC, we generated Ogt smooth muscle cell-specific knockout mice and challenged them with 5/6 nephrectomy (5/6 Nx) or high-dose vitamin D3 to induce VC. Deletion of Ogt in VSMCs led to alleviated VC in response to 5/6 Nx or VD3. Moreover, elevated O-GlcNAcylation, induced by Thiamet-G, facilitated osteogenic transdifferentiation in VSMCs in response to phosphate, whereas OSMI-1, which reduces O-GlcNAcylation, exhibited an opposite phenotypic effect. Mechanistically, O-GlcNAc signaling enhanced the osteogenic conversion of VSMCs through regulation of canonical Wnt/β-catenin pathway. Indeed, β-catenin was O-GlcNAcylated by OGT and further increased its transcriptional activity in VSMCs. Furthermore, pharmacological activation of Wnt/β-catenin signaling largely reversed the diminished aortic calcification caused by Ogt ablation. Our findings demonstrate that smooth muscle O-GlcNAc signaling plays an important role in regulating hyperphosphatemia-induced VC and reveal that O-GlcNAcylation of β-catenin protein modulates its content and activity in VSMCs.
Collapse
MESH Headings
- Animals
- N-Acetylglucosaminyltransferases/metabolism
- N-Acetylglucosaminyltransferases/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Wnt Signaling Pathway
- Mice
- Mice, Knockout
- Humans
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Male
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- beta Catenin/metabolism
- Cells, Cultured
- Osteogenesis
Collapse
Affiliation(s)
- Lin Xu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Boao Liu
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Honghui Ma
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Enbo Qi
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie Ma
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tingmin Chang
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinghong Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wencheng Zhang
- Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weiqian Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Xuan Cao
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Xiwen Xiong
- Xinxiang Key Laboratory of Metabolism and Integrative Physiology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Health Commission Key Laboratory of Gastrointestinal Cancer Prevention and Treatment, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
14
|
Cai Z, Satyanarayana G, Song P, Zhao F, You S, Liu Z, Mu J, Ding Y, He B, Zou MH. Regulation of Ptbp1-controlled alternative splicing of pyruvate kinase muscle by liver kinase B1 governs vascular smooth muscle cell plasticity in vivo. Cardiovasc Res 2024; 120:1780-1793. [PMID: 39189621 PMCID: PMC11587553 DOI: 10.1093/cvr/cvae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/12/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS Vascular smooth muscle cell (VSMC) plasticity is a state in which VSMCs undergo phenotypic switching from a quiescent contractile phenotype into other functionally distinct phenotypes. Although emerging evidence suggests that VSMC plasticity plays critical roles in the development of vascular diseases, little is known about the key determinant for controlling VSMC plasticity and fate. METHODS AND RESULTS We found that smooth muscle cell-specific deletion of Lkb1 in tamoxifen-inducible Lkb1flox/flox;Myh11-Cre/ERT2 mice spontaneously and progressively induced aortic/arterial dilation, aneurysm, rupture, and premature death. Single-cell RNA sequencing and imaging-based lineage tracing showed that Lkb1-deficient VSMCs transdifferentiated gradually from early modulated VSMCs to fibroblast-like and chondrocyte-like cells, leading to ossification and blood vessel rupture. Mechanistically, Lkb1 regulates polypyrimidine tract binding protein 1 (Ptbp1) expression and controls alternative splicing of pyruvate kinase muscle (PKM) isoforms 1 and 2. Lkb1 loss in VSMC results in an increased PKM2/PKM1 ratio and alters the metabolic profile by promoting aerobic glycolysis. Treatment with PKM2 activator TEPP-46 rescues VSMC transformation and aortic dilation in Lkb1flox/flox;Myh11-Cre/ERT2 mice. Furthermore, we found that Lkb1 expression decreased in human aortic aneurysm tissue compared to control tissue, along with changes in markers of VSMC fate. CONCLUSION Lkb1, via its regulation of Ptbp1-dependent alterative splicing of PKM, maintains VSMC in contractile states by suppressing VSMC plasticity.
Collapse
MESH Headings
- Animals
- Polypyrimidine Tract-Binding Protein/metabolism
- Polypyrimidine Tract-Binding Protein/genetics
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Cell Plasticity
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Alternative Splicing
- Phenotype
- Mice, Knockout
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/genetics
- Humans
- Cells, Cultured
- Male
- Disease Models, Animal
- Glycolysis
- Mice, Inbred C57BL
- Vascular Remodeling
- Signal Transduction
- Mice
- AMP-Activated Protein Kinase Kinases/metabolism
- AMP-Activated Protein Kinase Kinases/genetics
- Pyruvate Kinase
- AMP-Activated Protein Kinases
Collapse
Affiliation(s)
- Zhaohua Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai 200030, China
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ganesh Satyanarayana
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Fujie Zhao
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Shaojin You
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Zhixue Liu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Jing Mu
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ye Ding
- Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, 241 Huaihai West Road, Shanghai 200030, China
| | - Ming-Hui Zou
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, China
| |
Collapse
|
15
|
Liu B, Cai Z, Wang Y, Liu X, Zhang B, Zheng Q, Li J, Li C, Cui Y, Lv P, Yang D. Transglutaminase 2 regulates endothelial cell calcification via IL-6-mediated autophagy. Front Pharmacol 2024; 15:1393534. [PMID: 39654623 PMCID: PMC11625581 DOI: 10.3389/fphar.2024.1393534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Endothelial cell (EC) calcification is an important marker of atherosclerotic calcification. ECs play a critical role not only in atherogenesis but also in intimal calcification, as they have been postulated to serve as a source of osteoprogenitor cells that initiate this process. While the role of transglutaminase 2 (TG2) in cellular differentiation, survival, apoptosis, autophagy, and cell adhesion is well established, the mechanism underlying the TG2-mediated regulation of EC calcification is yet to be fully elucidated. Methods The TG2 gene was overexpressed or silenced by using siRNA and recombinant adenovirus. RT-PCR and WB were used to analyze the relative expression of target genes and proteins. 5-BP method analyzed TG2 activity. mCherry-eGFP-LC3 adenovirus and transmission electron microscopy analyzed EC autophagy level. Calcium concentrations were measured by using a calcium colorimetric assay kit. Alizarin red S staining assay analyzed EC calcification level. Elisa analyzed IL-6 level. Establishing EC calcification model by using a calcification medium (CM). Results Our findings demonstrated that CM increased TG2 activity and expression, which activated the NF-κB signaling pathway, and induced IL-6 autocrine signaling in ECs. Furthermore, IL-6 activated the JAK2/STAT3 signaling pathway to suppress cell autophagy and promoted ECs calcification. Discussion ECs are not only critical for atherogenesis but also believed to be a source of osteoprogenitor cells that initiate intimal calcification. Previous research has shown that TG2 plays an important role in the development of VC, but the mechanism by which it exerts this effect is not yet fully understood. Our results demonstrated that TG2 forms complexes with NF-κB components inhibition of autophagy promoted endothelial cell calcification through EndMT. Therefore, our research investigated the molecular mechanism of EC calcification, which can provide new insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Cai
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- The First Department of Ocular Fundus Diseases, Zhengzhou Second Hospital, Zhengzhou, Henan, China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zheng
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingye Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Cien Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of clinical laboratory, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Li L, Wang J, Ren S, Hao X. P4HA2 knockdown prevents the progression of intracranial aneurysm by inducing prolyl hydroxylation of YAP1. Neurosurg Rev 2024; 47:858. [PMID: 39560705 DOI: 10.1007/s10143-024-03101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Prolyl 4-hydroxylase subunit alpha 2 (P4HA2), a key enzyme modulating the post-transcription of proteins, was reported to be a causative gene in IA. Nevertheless, the exact function and mechanism of P4HA2 in the formation and rupture of IA is elusive. The current study first explored the expression of P4HA2 and its association with the clinicopathological demonstrations in patients with IA. In addition, an in vitro model of IA was established using H2O2 to stimulate vascular smooth muscle cells (VSMCs). The behaviors of treated VSMCs were evaluated using CCK-8, Wound healing, and Transwell assays. The expression of genes was detected by RT-qPCR and Western blot. Interaction between genes was confirmed using Luciferase Reporter assay and Co-immunoprecipitation (Co-IP) assay. Our results revealed that P4HA2 expression was upregulated in IA, especially ruptured IA; high P4HA2 expression correlates with unfavorable clinicopathological parameters. Through the in vitro experiments, it was discovered that P4HA2 knockdown rescued VSMCs from H2O2-induced viability impairment, enhancement in migration and apoptosis, switch from contractile phenotype, and augmentation of oxidative stress and inflammation. Mechanistically, P4HA2 was found to trigger the prolyl hydroxylation of YAP1 to negatively regulate the transcriptional activity of YAP1 in H2O2-challenged VSMCs. The effect of P4HA2 on H2O2-challenged VSMCs could be annulled by the mutation of YAP1 hydroxylation sites. In summary, P4HA2 served as a contributing factor during IA progression through its suppression on YAP1 activity by prolyl hydroxylation.
Collapse
Affiliation(s)
- Lirong Li
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China.
| | - Jingchun Wang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China
| | - Shaohua Ren
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China
| | - Xudong Hao
- Department of Neurosurgery, Shanxi Provincial People's Hospital, No. 29 Shuangtasi Street, Yingze District, Taiyuan, Shanxi, 030012, China
| |
Collapse
|
17
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
18
|
Gentier A, Aizaz M, Halder M, Florea A, Dijkgraaf I, Mottaghy FM, Hackeng T, Kooi ME. Why Current Detection of Vascular Calcification Falls Short and How to Improve on It. TH OPEN 2024; 8:e340-e349. [PMID: 39734622 PMCID: PMC11679638 DOI: 10.1055/a-2495-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024] Open
Abstract
Vascular calcification is a common phenomenon in various vascular diseases, where its presence heralds increased occurrence of adverse disease events, which invariably lead to increased morbidity and mortality in patients. Although the impact of calcification has become apparent, adequate and early detection of the most damaging form of early microcalcification is still in its infancy, preventing reliable identification of locations that would benefit from intervention. In this review, we will provide an overview of the current state-of-the-art noninvasive calcification imaging and its persisting limitations. We discuss promising approaches that may address these limitations in the future. In this context particular attention will be paid to imaging modalities such as CT, PET, and ultrasonography and molecular and cellular mechanisms and agents involved in physiological bone formation.
Collapse
Affiliation(s)
- Anouk Gentier
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Mueez Aizaz
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maurice Halder
- Department for Renal and Hypertensive, Rheumatological and Immunological Diseases (Department of Medicine II), RWTH Aachen, Medical Faculty, Aachen, Germany
| | - Alexandru Florea
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Tilman Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Eline Kooi
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
19
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
20
|
Tóth A, Balogh E, Jeney V. In Vitro Models of Cardiovascular Calcification. Biomedicines 2024; 12:2155. [PMID: 39335668 PMCID: PMC11429067 DOI: 10.3390/biomedicines12092155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/15/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular calcification, characterized by hydroxyapatite deposition in the arterial wall and heart valves, is associated with high cardiovascular morbidity and mortality. Cardiovascular calcification is a hallmark of aging but is frequently seen in association with chronic diseases, such as chronic kidney disease (CKD), diabetes, dyslipidemia, and hypertension in the younger population as well. Currently, there is no therapeutic approach to prevent or cure cardiovascular calcification. The pathophysiology of cardiovascular calcification is highly complex and involves osteogenic differentiation of various cell types of the cardiovascular system, such as vascular smooth muscle cells and valve interstitial cells. In vitro cellular and ex vivo tissue culture models are simple and useful tools in cardiovascular calcification research. These models contributed largely to the discoveries of the numerous calcification inducers, inhibitors, and molecular mechanisms. In this review, we provide an overview of the in vitro cell culture and the ex vivo tissue culture models applied in the research of cardiovascular calcification.
Collapse
Affiliation(s)
- Andrea Tóth
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Enikő Balogh
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Viktória Jeney
- MTA-DE Lendület Vascular Pathophysiology Research Group, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
21
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
22
|
Jia K, Luo X, Yi J, Zhang C. Hormonal influence: unraveling the impact of sex hormones on vascular smooth muscle cells. Biol Res 2024; 57:61. [PMID: 39227995 PMCID: PMC11373308 DOI: 10.1186/s40659-024-00542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Sex hormones play a pivotal role as endocrine hormones that exert profound effects on the biological characteristics and vascular function of vascular smooth muscle cells (VSMCs). By modulating intracellular signaling pathways, activating nuclear receptors, and regulating gene expression, sex hormones intricately influence the morphology, function, and physiological state of VSMCs, thereby impacting the biological properties of vascular contraction, relaxation, and growth. Increasing evidence suggests that abnormal phenotypic changes in VSMCs contribute to the initiation of vascular diseases, including atherosclerosis. Therefore, understanding the factors governing phenotypic alterations in VSMCs and elucidating the underlying mechanisms can provide crucial insights for refining interventions targeted at vascular diseases. Additionally, the varying levels of different types of sex hormones in the human body, influenced by sex and age, may also affect the phenotypic conversion of VSMCs. This review aims to explore the influence of sex hormones on the phenotypic switching of VSMCs and the development of associated vascular diseases in the human body.
Collapse
Affiliation(s)
- Keran Jia
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xin Luo
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jingyan Yi
- Department of Medical Cell Biology and Genetics, School of Basic Medical Sciences, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital, Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
23
|
Mencke R, Al Ali L, de Koning MSLY, Pasch A, Minnion M, Feelisch M, van Veldhuisen DJ, van der Horst ICC, Gansevoort RT, Bakker SJL, de Borst MH, van Goor H, van der Harst P, Lipsic E, Hillebrands JL. Serum Calcification Propensity Is Increased in Myocardial Infarction and Hints at a Pathophysiological Role Independent of Classical Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2024; 44:1884-1894. [PMID: 38899469 DOI: 10.1161/atvbaha.124.320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS T50 was measured by nephelometry in 347 patients from the GIPS-III trial (Metabolic Modulation With Metformin to Reduce Heart Failure After Acute Myocardial Infarction: Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction: a Randomized Controlled Trial) and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Lawien Al Ali
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Marie-Sophie L Y de Koning
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland (A.P.)
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Austria (A.P.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Dirk J van Veldhuisen
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | | | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, the Netherlands (P.v.d.H.)
| | - Erik Lipsic
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| |
Collapse
|
24
|
Towler DA. Parathyroid hormone-PTH1R signaling in cardiovascular disease and homeostasis. Trends Endocrinol Metab 2024; 35:648-660. [PMID: 38429163 PMCID: PMC11233248 DOI: 10.1016/j.tem.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Primary hyperparathyroidism (pHPT) afflicts our aging population with an incidence approaching 50 per 100 000 patient-years at a female:male ratio of ~3:1. Decisions surrounding surgical management are currently driven by age, hypercalcemia severity, presence of osteoporosis, renal insufficiency, or hypercalciuria with or without nephrolithiasis. Cardiovascular (CV) disease (CVD) is not systematically considered. This is notable since the parathyroid hormone (PTH) 1 receptor (PTH1R) is biologically active in the vasculature, and adjusted CV mortality risk is increased almost threefold in individuals with pHPT who do not meet contemporary recommendations for surgical cure. We provide an overview of epidemiology, pharmacology, and physiology that highlights the need to: (i) identify biomarkers that establish a healthy 'set point' for CV PTH1R signaling tone; (ii) better understand the pharmacokinetic-pharmacodynamic (PK-PD) relationships of PTH1R ligands in CV homeostasis; and (iii) incorporate CVD risk assessment into the management of hyperparathyroidism.
Collapse
Affiliation(s)
- Dwight A Towler
- Department of Internal Medicine - Endocrine Division, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
25
|
Lu Y, Meng L, Ren R, Wang X, Sui W, Xue F, Xie L, Chen A, Zhao Y, Yang J, Zhang W, Yu X, Xi B, Xu F, Zhang M, Zhang Y, Zhang C. Paraspeckle protein NONO attenuates vascular calcification by inhibiting bone morphogenetic protein 2 transcription. Kidney Int 2024; 105:1221-1238. [PMID: 38417578 DOI: 10.1016/j.kint.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Vascular calcification is a pathological process commonly associated with atherosclerosis, chronic kidney disease, and diabetes. Paraspeckle protein NONO is a multifunctional RNA/DNA binding protein involved in many nuclear biological processes but its role in vascular calcification remains unclear. Here, we observed that NONO expression was decreased in calcified arteries of mice and patients with CKD. We generated smooth muscle-specific NONO-knockout mice and established three different mouse models of vascular calcification by means of 5/6 nephrectomy, adenine diet to induce chronic kidney failure, or vitamin D injection. The knockout mice were more susceptible to the development of vascular calcification relative to control mice, as verified by an increased calcification severity and calcium deposition. Likewise, aortic rings from knockout mice showed more significant vascular calcification than those from control mice ex vivo. In vitro, NONO deficiency aggravated high phosphate-induced vascular smooth muscle cell osteogenic differentiation and apoptosis, whereas NONO overexpression had a protective effect. Mechanistically, we demonstrated that the regulation of vascular calcification by NONO was mediated by bone morphogenetic protein 2 (BMP2). NONO directly bound to the BMP2 promoter using its C-terminal region, exerting an inhibitory effect on the transcription of BMP2. Thus, our study reveals that NONO is a novel negative regulator of vascular calcification, which inhibits osteogenic differentiation of vascular smooth muscle cell and vascular calcification via negatively regulating BMP2 transcription. Hence, NONO may provide a promising target for the prevention and treatment of vascular calcification.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Aortic Diseases/genetics
- Aortic Diseases/prevention & control
- Aortic Diseases/pathology
- Aortic Diseases/metabolism
- Apoptosis/drug effects
- Bone Morphogenetic Protein 2/metabolism
- Bone Morphogenetic Protein 2/genetics
- Cell Differentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Osteogenesis/drug effects
- Promoter Regions, Genetic
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/prevention & control
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Transcription, Genetic
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Vascular Calcification/metabolism
- Vascular Calcification/genetics
- Vascular Calcification/etiology
Collapse
Affiliation(s)
- Yue Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ruiqing Ren
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xinlu Wang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhai Sui
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Xie
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ang Chen
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yuxia Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Traditional Chinese Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
26
|
Wei R, Zhang Y, Huang M, Piao H, Gu Z, Zhu C. Associations between bone mineral density and abdominal aortic calcification: Results of a nationwide survey. Nutr Metab Cardiovasc Dis 2024; 34:1488-1495. [PMID: 38494366 DOI: 10.1016/j.numecd.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/21/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Vascular calcification has been linked to bone mineral density (BMD). This study aimed to investigate the association between BMD and abdominal aortic calcification (AAC). METHODS AND RESULTS Data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) were utilized. Participants lacking BMD and AAC score data were excluded. BMD at the femoral neck was measured using dual-energy X-ray absorptiometry. AAC scores were assessed using the Kauppila scoring system, with AAC defined as a score greater than zero, and severe AAC defined as a score greater than six. Weighted multivariable regression analysis and subgroup analysis were conducted to examine the independent relationship between BMD and AAC score, AAC, and severe AAC. A total of 2965 participants were included. After adjusting for multiple covariates, BMD showed a negative association with higher AAC scores (β = -0.17, 95% CI -0.29, -0.05, p = 0.0066). The odds of having AAC and severe AAC decreased by 9% and 16%, respectively, for every one-unit increase in BMD (AAC: odds ratio [OR] = 0.91, 95% CI 0.82, 1.00, p = 0.0431; severe AAC: OR = 0.84, 95% CI 0.71, 0.99, p = 0.0334). CONCLUSION Low BMD is associated with higher AAC scores and an increased risk of AAC and severe AAC. Considering the detrimental impact of low BMD on cardiovascular health, individuals with AAC should be evaluated for osteopenia and osteoporosis in clinical settings.
Collapse
Affiliation(s)
- Ran Wei
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China
| | - Yixin Zhang
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China
| | - Maoxun Huang
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China
| | - Hulin Piao
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China
| | - Zhaoxuan Gu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China
| | - Cuilin Zhu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Jilin Province, China.
| |
Collapse
|
27
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Sevag Packard RR. Invasive electrochemical impedance spectroscopy with phase delay for experimental atherosclerosis phenotyping. FASEB J 2024; 38:e23700. [PMID: 38787606 PMCID: PMC11759406 DOI: 10.1096/fj.202302544rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalia Neverova
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gentian Lluri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sandra Duarte
- Division of Laboratory and Animal Medicine, University of California, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - René R. Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
28
|
Ivanova NG. A Sole Case of the FGF23 Gene Mutation c.202A>G (p.Thr68Ala) Associated with Multiple Severe Vascular Aneurysms and a Hyperphosphatemic Variant of Tumoral Calcinosis-A Case Report. Life (Basel) 2024; 14:613. [PMID: 38792634 PMCID: PMC11123361 DOI: 10.3390/life14050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tumoral calcinosis is an extremely rare genetic disease caused by mutations in three genes, GALNT3, FGF23, and KL, which disrupt phosphorus metabolism. The hallmark of this condition is the formation of tumors in the soft tissues around the joints. Other phenotypic features of tumoral calcinosis are dental involvement and brain and vascular calcifications. The clinical case reported herein presents for the first time to the scientific community the c.202A>G (p.Thr68Ala) mutation of the FGF23 gene, associated with a hyperphosphatemic variant of tumoral calcinosis and multiple severe vascular aneurysms. A female patient underwent multiple surgeries for tumor formations in her soft tissues that first appeared at the age of 12 months. On this occurrence, the patient was found to have hyperphosphatemia, low phosphate clearance, increased tubular reabsorption with normal levels of total and ionized calcium, vitamin D3, and parathyroid hormone, and no effect of treatment with sevelamer hydrochloride and a low-phosphate diet. At the age of 39, the patient underwent imaging studies due to edema and a pulsating formation in the neck area, which revealed multiple vascular aneurysms with thrombosis, for which she received operative and interventional treatment. In this connection, and because of the established phosphorus metabolism disturbance, a genetic disease was suspected. The sequence analysis and deletion/duplication testing of the 358 genes performed on this occasion revealed that the woman was homozygous for a variant of the c.202A>G (p.Thr68Ala) mutation of the FGF23 gene. The established mutation is not present in population databases. The presented clinical case is the first and only one in the world to demonstrate the role of this type of FGF23 gene mutation in the development of a hyperphosphatemic variant of tumoral calcinosis characterized by aggressive formation of multiple vascular aneurysms.
Collapse
Affiliation(s)
- Nevena Georgieva Ivanova
- Department of Urology and General Medicine, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; ; Tel.: +35-98-8913-0416
- St Karidad MHAT, Karidad Medical Health Center, 4004 Plovdiv, Bulgaria
| |
Collapse
|
29
|
Ahmed IA, Liu M, Gomez D. Nuclear Control of Vascular Smooth Muscle Cell Plasticity during Vascular Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:525-538. [PMID: 37820925 PMCID: PMC10988766 DOI: 10.1016/j.ajpath.2023.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. It summarizes and discusses the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss-of-function and single-cell omics approaches.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- Department of Pathology, New York University, New York, New York
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
30
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
31
|
Zhao Y, Yang Y, Wu X, Zhang L, Cai X, Ji J, Chen S, Vera A, Boström KI, Yao Y. CDK1 inhibition reduces osteogenesis in endothelial cells in vascular calcification. JCI Insight 2024; 9:e176065. [PMID: 38456502 PMCID: PMC10972591 DOI: 10.1172/jci.insight.176065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
32
|
Zhang K, Chen J, Chen B, Han Y, Cai T, Zhao J, Gu Z, Gao M, Hou Z, Yu X, Gu F, Gao Y, Hu R, Xie J, Liu T, Cui D, Li B. Association between dietary folate intake and severe abdominal aorta calcification in adults: A cross-sectional analysis of the national health and nutrition examination survey. Diab Vasc Dis Res 2024; 21:14791641241246555. [PMID: 38597693 PMCID: PMC11015784 DOI: 10.1177/14791641241246555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Prior studies have established a connection between folate intake and cardiovascular disease (CVD). Abdominal aortic calcification (AAC) has been introduced as a good predictor of CVD events, but no previous study has investigated the relationship between dietary folate intake and severe AAC. Therefore, the study aims to explore the association between dietary folate intake and severe AAC in the United States (US) middle-aged and elderly population. METHODS This study employed cross-sectional data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES) to examine the relationship between dietary folate intake and severe AAC. Two 24-h dietary recall interviews were conducted to assess dietary folate intake and its sources, while a DXA scan was used to determine the AAC score. To analyze the association between dietary folate intake and severe AAC, a multivariable logistic regression model was applied, and a subgroup analysis was performed. RESULTS Our analysis utilized data from 2640 participants aged 40 years and above, including 288 individuals diagnosed with severe AAC. After adjusting for confounding factors, we observed an inverted L-shaped association between folate intake and severe AAC. Upon further adjustment for specific confounding factors and covariates, the multivariable-adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) for the second, third, and fourth quartiles of folate intake, using the first quartile as the reference, were as follows: 1.24 (0.86-1.79), 0.86 (0.58-1.27), and 0.63 (0.41-0.97), respectively. Subgroup analysis results were consistent with the logistic regression models, indicating concordant findings. Moreover, no significant interaction was observed in the subgroup analyses. CONCLUSIONS The study findings suggest an inverted L-shaped association between dietary folate intake and severe AAC. However, additional prospective investigations are necessary to explore the impact of dietary folate intake on severe AAC in patients.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Jianguo Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Bowen Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Tianyi Cai
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - JiaYu Zhao
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - ZhaoXuan Gu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhengyan Hou
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Xiaoqi Yu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - FangMing Gu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Yafang Gao
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Rui Hu
- Bethune Second School of Clinical Medicine, Jilin University, Changchun, China
| | - Jinyu Xie
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Cui
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| | - Bo Li
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Lin A, Ramaswamy Y, Misra A. Developmental heterogeneity of vascular cells: Insights into cellular plasticity in atherosclerosis? Semin Cell Dev Biol 2024; 155:3-15. [PMID: 37316416 DOI: 10.1016/j.semcdb.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023]
Abstract
Smooth muscle cells, endothelial cells and macrophages display remarkable heterogeneity within the healthy vasculature and under pathological conditions. During development, these cells arise from numerous embryological origins, which confound with different microenvironments to generate postnatal vascular cell diversity. In the atherosclerotic plaque milieu, all these cell types exhibit astonishing plasticity, generating a variety of plaque burdening or plaque stabilizing phenotypes. And yet how developmental origin influences intraplaque cell plasticity remains largely unexplored despite evidence suggesting this may be the case. Uncovering the diversity and plasticity of vascular cells is being revolutionized by unbiased single cell whole transcriptome analysis techniques that will likely continue to pave the way for therapeutic research. Cellular plasticity is only just emerging as a target for future therapeutics, and uncovering how intraplaque plasticity differs across vascular beds may provide key insights into why different plaques behave differently and may confer different risks of subsequent cardiovascular events.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, NSW, Australia; Heart Research Institute, The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Zhou G, Liu P, Zhang C, Huang Q, Zhao Z, Wu S, Li D, Liu H. HDAC2 counteracts vascular calcification by activating autophagy in chronic kidney disease. FASEB J 2024; 38:e23470. [PMID: 38354035 DOI: 10.1096/fj.202301429r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/16/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Vascular calcification is a major risk factor for cardiovascular disease mortality, with a significant prevalence in chronic kidney disease (CKD). Pharmacological inhibition of histone acetyltransferase has been proven to protect against from vascular calcification. However, the role of Histone Deacetylase 2 (HDAC2) and molecular mechanisms in vascular calcification of CKD remains unknown. An in vivo model of CKD was established using mouse fed with a high adenine and phosphate diet, and an in vitro model was produced using human aortic vascular smooth muscle cells (VSMCs) stimulated with β-glycerophosphate (β-GP). HDAC2 expression was found to be reduced in medial artery of CKD mice and β-GP-induced VSMCs. Overexpression of HDAC2 attenuated OPN and OCN upregulation, α-SMA and SM22α downregulation, and calcium deposition in aortas of CKD. The in vitro results also demonstrated that β-GP-induced osteogenic differentiation was inhibited by HDAC2. Furthermore, we found that HDAC2 overexpression caused an increase in LC3II/I, a decrease in p62, and an induction of autophagic flux. Inhibition of autophagy using its specific inhibitor 3-MA blocked HDAC2's protective effect on osteogenic differentiation in β-GP-treated VSMCs. Taken together, these results suggest that HDAC2 may protect against vascular calcification by the activation of autophagy, laying out a novel insight for the molecular mechanism in vascular calcification of CKD.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Pai Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qun Huang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Si Wu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Detian Li
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongbo Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Li Y, Jie W, Qi Y, Mo M, Lian Y, Yin L, Huang H. Inhibition of RIPK1 alleviating vascular smooth muscle cells osteogenic transdifferentiation via Runx2. iScience 2024; 27:108766. [PMID: 38318355 PMCID: PMC10839642 DOI: 10.1016/j.isci.2023.108766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 12/18/2023] [Indexed: 02/07/2024] Open
Abstract
Vascular calcification (VC) is recognized as a crucial risk factor for cardiovascular diseases. Our previous report revealed that the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) plays a role in this process. However, the underlying molecular mechanisms remain elusive. Notably, receptor-interacting protein kinase 1 (RIPK1) has been implicated in the development of cardiovascular diseases, yet its role and mechanisms in VC remain unexplored. To address this gap, we established models using chronic kidney disease mice and calcifying VSMCs to investigate the impact of RIPK1 on VC. Subsequently, a RIPK1-specific inhibitor (NEC-1) was applied in both in vitro and in vivo models. Our findings indicate significant activation of RIPK1 in calcified human arterial tissue, as well as in animal and cellular models. RIPK1 activation promotes the osteogenic transdifferentiation of VSMCs. Treatment with the NEC-1 substantially reduced VC. These results demonstrate that RIPK1 is a target for preventing VC.
Collapse
Affiliation(s)
- Yue Li
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Wei Jie
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yanli Qi
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Mingxing Mo
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yaxin Lian
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Li Yin
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
36
|
Faleeva M, Ahmad S, Theofilatos K, Lynham S, Watson G, Whitehead M, Marhuenda E, Iskratsch T, Cox S, Shanahan CM. Sox9 Accelerates Vascular Aging by Regulating Extracellular Matrix Composition and Stiffness. Circ Res 2024; 134:307-324. [PMID: 38179698 PMCID: PMC10826924 DOI: 10.1161/circresaha.123.323365] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Vascular calcification and increased extracellular matrix (ECM) stiffness are hallmarks of vascular aging. Sox9 (SRY-box transcription factor 9) has been implicated in vascular smooth muscle cell (VSMC) osteo/chondrogenic conversion; however, its relationship with aging and calcification has not been studied. METHODS Immunohistochemistry was performed on human aortic samples from young and aged patients. Young and senescent primary human VSMCs were induced to produce ECM, and Sox9 expression was manipulated using adenoviral overexpression and depletion. ECM properties were characterized using atomic force microscopy and proteomics, and VSMC phenotype on hydrogels and the ECM were examined using confocal microscopy. RESULTS In vivo, Sox9 was not spatially associated with vascular calcification but correlated with the senescence marker p16 (cyclin-dependent kinase inhibitor 2A). In vitro Sox9 showed mechanosensitive responses with increased expression and nuclear translocation in senescent cells and on stiff matrices. Sox9 was found to regulate ECM stiffness and organization by orchestrating changes in collagen (Col) expression and reducing VSMC contractility, leading to the formation of an ECM that mirrored that of senescent cells. These ECM changes promoted phenotypic modulation of VSMCs, whereby senescent cells plated on ECM synthesized from cells depleted of Sox9 returned to a proliferative state, while proliferating cells on a matrix produced by Sox9 expressing cells showed reduced proliferation and increased DNA damage, reiterating features of senescent cells. LH3 (procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3) was identified as an Sox9 target and key regulator of ECM stiffness. LH3 is packaged into extracellular vesicles and Sox9 promotes extracellular vesicle secretion, leading to increased LH3 deposition within the ECM. CONCLUSIONS These findings highlight the crucial role of ECM structure and composition in regulating VSMC phenotype. We identify a positive feedback cycle, whereby cellular senescence and increased ECM stiffening promote Sox9 expression, which, in turn, drives further ECM modifications to further accelerate stiffening and senescence.
Collapse
Affiliation(s)
- Maria Faleeva
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Sadia Ahmad
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Konstantinos Theofilatos
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry (S.L.) King’s College London, United Kingdom
| | - Gabriel Watson
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Meredith Whitehead
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| | - Emilie Marhuenda
- School of Engineering and Material Science, Queen Mary University of London, United Kingdom (E.M., T.I.)
| | - Thomas Iskratsch
- School of Engineering and Material Science, Queen Mary University of London, United Kingdom (E.M., T.I.)
| | - Susan Cox
- Randall Centre for Cell & Molecular Biophysics, Faculty of Life Sciences & Medicine (S.C.) King’s College London, United Kingdom
| | - Catherine M. Shanahan
- British Heart Foundation (BHF) Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences (M.F., S.A., K.T., G.W., M.W., C.M.S.) King’s College London, United Kingdom
| |
Collapse
|
37
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
38
|
Caetano CCS, Azamor T, Meyer NM, Onwubueke C, Calabrese CM, Calabrese LH, Visperas A, Piuzzi NS, Husni ME, Foo SS, Chen W. Mechanistic insights into bone remodelling dysregulation by human viral pathogens. Nat Microbiol 2024; 9:322-335. [PMID: 38316931 PMCID: PMC11045166 DOI: 10.1038/s41564-023-01586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/12/2023] [Indexed: 02/07/2024]
Abstract
Bone-related diseases (osteopathologies) associated with human virus infections have increased around the globe. Recent findings have highlighted the intricate interplay between viral infection, the host immune system and the bone remodelling process. Viral infections can disrupt bone homeostasis, contributing to conditions such as arthritis and soft tissue calcifications. Osteopathologies can occur after arbovirus infections such as chikungunya virus, dengue virus and Zika virus, as well as respiratory viruses, such as severe acute respiratory syndrome coronavirus 2 and enteroviruses such as Coxsackievirus B. Here we explore how human viruses dysregulate bone homeostasis, detailing viral factors, molecular mechanisms, host immune response changes and bone remodelling that ultimately result in osteopathologies. We highlight model systems and technologies to advance mechanistic understanding of viral-mediated bone alterations. Finally, we propose potential prophylactic and therapeutic strategies, introduce 'osteovirology' as a research field highlighting the underestimated roles of viruses in bone-related diseases, and discuss research avenues for further investigation.
Collapse
Affiliation(s)
- Camila C S Caetano
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tamiris Azamor
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nikki M Meyer
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chineme Onwubueke
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Cassandra M Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Leonard H Calabrese
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Anabelle Visperas
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Nicolas S Piuzzi
- Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - M Elaine Husni
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| | - Suan-Sin Foo
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Weiqiang Chen
- Infection Biology Program, Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
39
|
Zhang K, Gu F, Han Y, Cai T, Gu Z, Chen J, Chen B, Gao M, Hou Z, Yu X, Zhao J, Gao Y, Xie J, Hu R, Liu T, Li B. Association between dietary calcium intake and severe abdominal aorta calcification among American adults: a cross-sectional analysis of the National Health and Nutrition Examination Survey. Ther Adv Cardiovasc Dis 2024; 18:17539447241232774. [PMID: 38415471 PMCID: PMC10903221 DOI: 10.1177/17539447241232774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Evidence regarding the relationship between dietary calcium intake and severe abdominal aortic calcification (AAC) is limited. Therefore, this study aimed to investigate the association between dietary calcium intake and severe AAC in American adults based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS The present cross-sectional study utilized data from the NHANES 2013-2014, a population-based dataset. Dietary calcium intake was assessed using two 24-h dietary recall interviews. Quantification of the AAC scores was accomplished utilizing the Kauppila score system, whereby severe AAC was defined as having an AAC score greater than 6. We used multivariable logistic regression models, a restricted cubic spline analysis, and a two-piecewise linear regression model to show the effect of calcium intake on severe AAC. RESULTS Out of the 2640 individuals examined, 10.9% had severe AAC. Following the adjustment for confounding variables, an independent association was discovered between an augmented intake of dietary calcium and the incidence of severe AAC. When comparing individuals in the second quartile (Q2) of dietary calcium intake with those in the lowest quartile (Q1), a decrease in the occurrence of severe AAC was observed (odds ratio: 0.66; 95% confidence interval: 0.44-0.99). Furthermore, the relationship between dietary calcium intake and severe AAC demonstrated an L-shaped pattern, with an inflection point observed at 907.259 mg/day. Subgroup analyses revealed no significant interaction effects. CONCLUSION The study revealed that the relationship between dietary calcium intake and severe AAC in American adults is L-shaped, with an inflection point of 907.259 mg/day. Further research is required to confirm this association.
Collapse
Affiliation(s)
- Kai Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Fangming Gu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Han
- Department of Ophthalmology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tianyi Cai
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaoxuan Gu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jianguo Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Bowen Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengyan Hou
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaoqi Yu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - JiaYu Zhao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yafang Gao
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinyu Xie
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Hu
- Bethune First College of Clinical Medicine, Jilin University, Changchun, Jilin, China
| | - Tianzhou Liu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Bo Li
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, 130000, China
| |
Collapse
|
40
|
Hashmi S, Shah PW, Aherrahrou Z, Aikawa E, Aherrahrou R. Beyond the Basics: Unraveling the Complexity of Coronary Artery Calcification. Cells 2023; 12:2822. [PMID: 38132141 PMCID: PMC10742130 DOI: 10.3390/cells12242822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Coronary artery calcification (CAC) is mainly associated with coronary atherosclerosis, which is an indicator of coronary artery disease (CAD). CAC refers to the accumulation of calcium phosphate deposits, classified as micro- or macrocalcifications, that lead to the hardening and narrowing of the coronary arteries. CAC is a strong predictor of future cardiovascular events, such as myocardial infarction and sudden death. Our narrative review focuses on the pathophysiology of CAC, exploring its link to plaque vulnerability, genetic factors, and how race and sex can affect the condition. We also examined the connection between the gut microbiome and CAC, and the impact of genetic variants on the cellular processes involved in vascular calcification and atherogenesis. We aimed to thoroughly analyze the existing literature to improve our understanding of CAC and its potential clinical and therapeutic implications.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan;
| | - Pashmina Wiqar Shah
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Rédouane Aherrahrou
- Institute for Cardiogenetics, Universität zu Lübeck, 23562 Lübeck, Germany; (P.W.S.); (Z.A.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Heart Centre Lübeck, 23562 Lübeck, Germany
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
41
|
Mosquera JV, Auguste G, Wong D, Turner AW, Hodonsky CJ, Alvarez-Yela AC, Song Y, Cheng Q, Lino Cardenas CL, Theofilatos K, Bos M, Kavousi M, Peyser PA, Mayr M, Kovacic JC, Björkegren JLM, Malhotra R, Stukenberg PT, Finn AV, van der Laan SW, Zang C, Sheffield NC, Miller CL. Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis. Cell Rep 2023; 42:113380. [PMID: 37950869 DOI: 10.1016/j.celrep.2023.113380] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 11/13/2023] Open
Abstract
Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.
Collapse
Affiliation(s)
- Jose Verdezoto Mosquera
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Computer Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Qi Cheng
- CVPath Institute, Gaithersburg, MD 20878, USA
| | - Christian L Lino Cardenas
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | - Maxime Bos
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI 48019, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London WC2R 2LS, UK; National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Rajeev Malhotra
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Chongzhi Zang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Nathan C Sheffield
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Clint L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA; Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Hutton M, Frazer M, Lin A, Patel S, Misra A. New Targets in Atherosclerosis: Vascular Smooth Muscle Cell Plasticity and Macrophage Polarity. Clin Ther 2023; 45:1047-1054. [PMID: 37709601 DOI: 10.1016/j.clinthera.2023.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
PURPOSE Despite an increase in treatment options, and substantial reductions in cardiovascular mortality over the past half-century, atherosclerosis remains the most prevalent cause of premature mortality worldwide. The development of innovative new therapies is crucial to further minimize atherosclerosis-related deaths. The diverse array of cell phenotypes derived from vascular smooth muscle cells (SMCs) and macrophages within atherosclerotic plaques are increasingly becoming recognized for their beneficial and detrimental roles in plaque stability and disease burden. This review explores how contemporary transcriptomics and fate-mapping studies have revealed vascular cell plasticity as a relatively unexplored target for therapeutic intervention. METHODS Recent literature for this narrative review was obtained by searching electronic databases (ie, Google Scholar, PubMed). Additional studies were sourced from reference lists and the authors' personal databases. FINDINGS The lipid-rich and inflammatory plaque milieu induces SMC phenotypic switching to both beneficial and detrimental phenotypes. Likewise, macrophage heterogeneity increases with disease burden to a variety of pro-inflammatory and anti-inflammatory activation states. These vascular cell phenotypes are determinants of plaque structure stability, and it is therefore highly likely that they influence clinical outcomes. Development of clinical treatments targeting deleterious phenotypes or promoting pro-healing phenotypes remains in its infancy. However, existing treatments (statins) have shown beneficial effects toward macrophage polarization, providing a rationale for more targeted approaches. In contrast, beneficial SMC phenotypic modulation with these pharmacologic agents has yet to be achieved. The range of modulated vascular cell phenotypes provides a multitude of novel targets and the potential to reduce future adverse events. IMPLICATIONS Vascular cell phenotypic heterogeneity must continue to be explored to lower cardiovascular events in the future. The rapidly increasing weight of evidence surrounding the role of SMC plasticity and macrophage polarity in plaque vulnerability provides a strong foundation upon which development of new therapeutics must follow. This approach may prove to be crucial in reducing cardiovascular events and improving patient benefit in the future.
Collapse
Affiliation(s)
- Michael Hutton
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Madeleine Frazer
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
| | - Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia; Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
Ishikawa M, Kanzaki H, Kodera R, Sekimizu T, Wada S, Tohyama S, Ida T, Shimoyama M, Manase S, Tomonari H, Kuroda N. Early diagnosis of aortic calcification through dental X-ray examination for dental pulp stones. Sci Rep 2023; 13:18576. [PMID: 37903847 PMCID: PMC10616172 DOI: 10.1038/s41598-023-45902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
Vascular calcification, an ectopic calcification exacerbated by aging and renal dysfunction, is closely associated with cardiovascular disease. However, early detection indicators are limited. This study focused on dental pulp stones, ectopic calcifications found in oral tissues that are easily identifiable on dental radiographs. Our investigation explored the frequency and timing of these calcifications in different locations and their relationship to aortic calcification. In cadavers, we examined the association between the frequency of dental pulp stones and aortic calcification, revealing a significant association. Notably, dental pulp stones appeared prior to aortic calcification. Using a rat model of hyperphosphatemia, we confirmed that dental pulp stones formed earlier than calcification in the aortic arch. Interestingly, there were very few instances of aortic calcification without dental pulp stones. Additionally, we conducted cell culture experiments with vascular smooth muscle cells (SMCs) and dental pulp cells (DPCs) to explore the regulatory mechanism underlying high phosphate-mediated calcification. We found that DPCs produced calcification deposits more rapidly and exhibited a stronger augmentation of osteoblast differentiation markers compared with SMCs. In conclusion, the observation of dental pulp stones through X-ray examination during dental checkups could be a valuable method for early diagnosis of aortic calcification risk.
Collapse
Affiliation(s)
- Misao Ishikawa
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan.
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ryo Kodera
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Takehiro Sekimizu
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| | - Satoshi Wada
- Department of Oral and Maxillofacial Surgery, Kanazawa Medical University, Kanazawa, Japan
| | - Syunnosuke Tohyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Tomomi Ida
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Miho Shimoyama
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Shugo Manase
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Noriyuki Kuroda
- Department of Anatomy, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa Pref., 230-8501, Japan
| |
Collapse
|
44
|
Abstract
The medial layer of the arterial wall is composed mainly of vascular smooth muscle cells (VSMCs). Under physiological conditions, VSMCs assume a contractile phenotype, and their primary function is to regulate vascular tone. In contrast with terminally differentiated cells, VSMCs possess phenotypic plasticity, capable of transitioning into other cellular phenotypes in response to changes in the vascular environment. Recent research has shown that VSMC phenotypic switching participates in the pathogenesis of atherosclerosis, where the various types of dedifferentiated VSMCs accumulate in the atherosclerotic lesion and participate in the associated vascular remodeling by secreting extracellular matrix proteins and proteases. This review article discusses the 9 VSMC phenotypes that have been reported in atherosclerotic lesions and classifies them into differentiated VSMCs, intermediately dedifferentiated VSMCs, and dedifferentiated VSMCs. It also provides an overview of several methodologies that have been developed for studying VSMC phenotypic switching and discusses their respective advantages and limitations.
Collapse
Affiliation(s)
- Runji Chen
- Shantou University Medical CollegeShantouChina
| | - David G. McVey
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
| | - Daifei Shen
- Research Center for Translational MedicineThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | | | - Shu Ye
- Shantou University Medical CollegeShantouChina
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUnited Kingdom
- Cardiovascular‐Metabolic Disease Translational Research ProgrammeNational University of SingaporeSingapore
| |
Collapse
|
45
|
Wei J, Li Z, Fan Y, Feng L, Zhong X, Li W, Guo T, Ning X, Li Z, Ou C. Lactobacillus rhamnosus GG aggravates vascular calcification in chronic kidney disease: A potential role for extracellular vesicles. Life Sci 2023; 331:122001. [PMID: 37625519 DOI: 10.1016/j.lfs.2023.122001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
AIMS Lactobacillus rhamnosus GG (LGG) is a probiotic with great promise in future clinical application, which can significantly promote bone formation. However, the effect of LGG on CKD-related vascular calcification is unclear. In this study, we aimed to investigate the effect of LGG on CKD-related vascular calcification. MATERIALS AND METHODS After 2 weeks of 5/6 nephrectomy, CKD rats received a special diet (4 % calcium and 1.8 % phosphate) combined with 1,25-dihydroxyvitamin D3 to induce vascular calcification. Meanwhile, CKD rats in the LGG group were gavaged orally with LGG (1 × 109 CFU bacteria/day). 16S RNA amplicon sequencing was performed to analyze the effect of LGG treatment on gut microbiota composition. Furthermore, differential ultracentrifugation was utilized to extract EVs. The effects of EVs on vascular calcification were evaluated in rat VSMCs, rat aortic rings, and CKD rat calcification models. In this study, vascular calcification was assessed by microcomputed tomography analysis, alizarin red staining, calcium content determination, and the expression of osteogenic transcription factors RUNX2 and BMP2. KEY FINDINGS LGG remarkably aggravated vascular calcification. LGG supplementation significantly altered gut microbiota composition in CKD rats, particularly increasing Lactobacillus. Interestingly, EVs presented a significant promoting effect on the development of calcification. Finally, mechanistic analysis proved that EVs aggravated vascular calcification through PI3K/AKT signaling. SIGNIFICANCE These results do not support the supplementation of LGG in CKD-associated vascular calcification patients. Our study presented a fresh perspective on LGG with potential risks and adverse effects. CKD patients should use specific probiotic strains cautiously.
Collapse
Affiliation(s)
- Jintao Wei
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Ying Fan
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xinglong Zhong
- Department of Cardiology, The Fourth Affiliated Hospital of Guangxi Medical University/Liuzhou Workers' Hospital, Liuzhou, PR China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Tingting Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, PR China
| | - Xiaodong Ning
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| | - Caiwen Ou
- The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Dongguan 523018, PR China.
| |
Collapse
|
46
|
Li W, Lin A, Hutton M, Dhaliwal H, Nadel J, Rodor J, Tumanov S, Örd T, Hadden M, Mokry M, Mol BM, Pasterkamp G, Padula MP, Geczy CL, Ramaswamy Y, Sluimer JC, Kaikkonen MU, Stocker R, Baker AH, Fisher EA, Patel S, Misra A. Colchicine promotes atherosclerotic plaque stability independently of inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560632. [PMID: 37873248 PMCID: PMC10592948 DOI: 10.1101/2023.10.03.560632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease which is driven in part by the aberrant trans -differentiation of vascular smooth muscle cells (SMCs). No therapeutic drug has been shown to reverse detrimental SMC-derived cell phenotypes into protective phenotypes, a hypothesized enabler of plaque regression and improved patient outcome. Herein, we describe a novel function of colchicine in the beneficial modulation of SMC-derived cell phenotype, independent of its conventional anti-inflammatory effects. Using SMC fate mapping in an advanced atherosclerotic lesion model, colchicine induced plaque regression by converting pathogenic SMC-derived macrophage-like and osteoblast-like cells into protective myofibroblast-like cells which thickened, and thereby stabilized, the fibrous cap. This was dependent on Notch3 signaling in SMC-derived plaque cells. These findings may help explain the success of colchicine in clinical trials relative to other anti-inflammatory drugs. Thus, we demonstrate the potential of regulating SMC phenotype in advanced plaque regression through Notch3 signaling, in addition to the canonical anti-inflammatory actions of drugs to treat atherosclerosis.
Collapse
|
47
|
Syed AZ, Xu Y, Alluri LS, Jadallah B, Mendes RA, Pinto A. Mönckeberg's medial arteriosclerosis in the oral and maxillofacial region: A pilot study. Oral Dis 2023; 29:2938-2943. [PMID: 36165852 DOI: 10.1111/odi.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the prevalence of medial vascular calcifications in the oral and maxillofacial region and their association with systemic diseases. MATERIALS AND METHODS The study included 211 consecutive patients with systemic diseases (January 2015-May 2016). Medical history and radiographic images were evaluated. Univariate analysis (t-test) was performed for continuous variables (age). The Chi square test was applied for the categorical variables (Mönckeberg medial arteriosclerosis [MMA], gender). RESULTS There was a 6.2% prevalence of MMA. The mean age of patients with MMA was 65.46 ± 13.38. The prevalence of kidney disease in patients with MMA was significantly higher than in those without MMA (p < 0.001). This finding was maintained even after adjusting for other systemic diseases (OR = 31.84 [8.63-136.78]). CONCLUSION A significant prevalence of MMA in kidney disease patients was observed in this pilot study.
Collapse
Affiliation(s)
- Ali Z Syed
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
| | - Yuanming Xu
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
| | - Leela Subhashini Alluri
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
- Department of Periodontics, Meharry Medical College School of Dentistry, Nashville, Tennessee, USA
| | - Buthainah Jadallah
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
| | - Rui Amaral Mendes
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
- CINTESIS@RISE - Center for Health Technology and Services Research, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Andres Pinto
- Department of Oral & Maxillofacial Medicine and Diagnostic Sciences, CWRU School of Dental Medicine, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Packard RRS. Flexible 3-D Electrochemical Impedance Spectroscopy Sensors Incorporating Phase Delay for Comprehensive Characterization of Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558681. [PMID: 37786712 PMCID: PMC10541620 DOI: 10.1101/2023.09.20.558681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies.We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Methods Male New Zealand White rabbits (n=16) were placed on a high-fat diet for 4 or 8 weeks, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68 Ga-DOTATATE, 18 F-NaF, and 18 F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histological analyses. Analyses were performed blindly. Results Phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r=0.883 at 1 kHz, P =0.004) and %stenosis (r=0.901 at 0.25 kHz, P =0.002), similar to IVUS. Moreover, impedance was associated with markers of plaque activity including macrophage infiltration (r=0.813 at 10 kHz, P =0.008) and macrophage/smooth muscle cell (SMC) ratio (r=0.813 at 25 kHz, P =0.026). 68 Ga-DOTATATE correlated with intimal macrophage infiltration (r=0.861, P =0.003) and macrophage/SMC ratio (r=0.831, P =0.021), 18 F-NaF with SMC infiltration (r=-0.842, P =0.018), and 18 F-FDG correlated with macrophage/SMC ratio (r=0.787, P =0.036). Conclusions EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS as a comprehensive modality for evaluation of human coronary artery disease. GRAPHICAL ABSTRACT HIGHLIGHTS Electrochemical impedance spectroscopy (EIS) characterizes both anatomic features - via phase delay; and inflammatory activity - via impedance profiles, of underlying atherosclerosis.EIS can serve as an integrated, comprehensive metric for atherosclerosis evaluation by capturing morphological and compositional plaque characteristics that otherwise require multiple imaging modalities to obtain.Translation of these findings from animal models to human coronary artery disease may provide an additional strategy to help guide clinical management.
Collapse
|
49
|
Chin DD, Patel N, Lee W, Kanaya S, Cook J, Chung EJ. Long-term, in vivo therapeutic effects of a single dose of miR-145 micelles for atherosclerosis. Bioact Mater 2023; 27:327-336. [PMID: 37122900 PMCID: PMC10140752 DOI: 10.1016/j.bioactmat.2023.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is characterized by the build-up of lipid-rich plaques in the arterial walls. The standard treatment for patients with atherosclerosis is statin therapy aimed to lower serum lipid levels. Despite its widespread use, many patients taking statins continue to experience acute events. Thus, to develop improved and alternative therapies, we previously reported on microRNA-145 (miR-145 micelles) and its ability to inhibit atherosclerosis by targeting vascular smooth muscle cells (VSMCs). Importantly, one dose of miR-145 micelles significantly abrogated disease progression when evaluated two weeks post-administration. Thus, in this study, to evaluate how long the sustained effects of miR-145 micelles can be maintained and towards identifying a dosing regimen that is practical for patients with chronic disease, the therapeutic effects of a single dose of miR-145 micelles were evaluated for up to two months in vivo. After one and two months post-treatment, miR-145 micelles were found to reduce plaque size and overall lesion area compared to all other controls including statins without causing adverse effects. Furthermore, a single dose of miR-145 micelle treatment inhibited VSMC transdifferentiation into pathogenic macrophage-like and osteogenic cells in plaques. Together, our data shows the long-term efficacy and sustained effects of miR-145 micelles that is amenable using a dosing frequency relevant to chronic disease patients.
Collapse
Affiliation(s)
- Deborah D. Chin
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Neil Patel
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Woori Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Sonali Kanaya
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Jackson Cook
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, United States
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, United States
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, United States
| |
Collapse
|
50
|
Li XZ, Xiong ZC, Zhang SL, Hao QY, Liu ZY, Zhang HF, Wang JF, Gao JW, Liu PM. Upregulated LncRNA H19 Sponges MiR-106a-5p and Contributes to Aldosterone-Induced Vascular Calcification via Activating the Runx2-Dependent Pathway. Arterioscler Thromb Vasc Biol 2023; 43:1684-1699. [PMID: 37409531 DOI: 10.1161/atvbaha.123.319308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Excess aldosterone is implicated in vascular calcification (VC), but the mechanism by which aldosterone-MR (mineralocorticoid receptor) complex promotes VC is unclear. Emerging evidence indicates that long-noncoding RNA H19 (H19) plays a critical role in VC. We examined whether aldosterone-induced osteogenic differentiation of vascular smooth muscle cells (VSMCs) through H19 epigenetic modification of Runx2 (runt-related transcription factor-2) in a MR-dependent manner. METHODS We induced in vivo rat model of chronic kidney disease using a high adenine and phosphate diet to explore the relationship among aldosterone, MR, H19, and VC. We also cultured human aortic VSMCs to explore the roles of H19 in aldosterone-MR complex-induced osteogenic differentiation and calcification of VSMCs. RESULTS H19 and Runx2 were significantly increased in aldosterone-induced VSMC osteogenic differentiation and VC, both in vitro and in vivo, which were significantly blocked by the MR antagonist spironolactone. Mechanistically, our findings reveal that the aldosterone-activated MR bound to H19 promoter and increased its transcriptional activity, as determined by chromatin immunoprecipitation, electrophoretic mobility shift assay, and luciferase reporter assay. Silencing H19 increased microRNA-106a-5p (miR-106a-5p) expression, which subsequently inhibited aldosterone-induced Runx2 expression at the posttranscriptional level. Importantly, we observed a direct interaction between H19 and miR-106a-5p, and downregulation of miR-106a-5p efficiently reversed the suppression of Runx2 induced by H19 silencing. CONCLUSIONS Our study clarifies a novel mechanism by which upregulation of H19 contributes to aldosterone-MR complex-promoted Runx2-dependent VSMC osteogenic differentiation and VC through sponging miR-106a-5p. These findings highlight a potential therapeutic target for aldosterone-induced VC.
Collapse
Affiliation(s)
- Xiong-Zhi Li
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Now with Cardiovascular Department, the First Affiliated Hospital of Shaoyang University, Hunan, China (X.-Z.L.)
| | - Zhuo-Chao Xiong
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shao-Ling Zhang
- Department of Endocrinology (S.-L.Z.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yun Hao
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Yu Liu
- Medical Research Center (Z.-Y.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wei Gao
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Pin-Ming Liu
- Department of Cardiology, Guangzhou Key Laboratory on the Molecular Mechanisms of Major Cardiovascular Disease, Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology (X.-Z.L., Z.-C.X., Q.-Y.H., H.-F.Z., J.-F.W., J.-W.G., P.-M.L.), Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|