1
|
Eivazi Zadeh Z, Nour S, Kianersi S, Jonidi Shariatzadeh F, Williams RJ, Nisbet DR, Bruggeman KF. Mining human clinical waste as a rich source of stem cells for neural regeneration. iScience 2024; 27:110307. [PMID: 39156636 PMCID: PMC11326931 DOI: 10.1016/j.isci.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Abstract
Neural diseases are challenging to treat and are regarded as one of the major causes of disability and morbidity in the world. Stem cells can provide a solution, by offering a mechanism to replace damaged circuitry. However, obtaining sufficient cell sources for neural regeneration remains a significant challenge. In recent years, waste-derived stem(-like) cells (WDS-lCs) extracted from both prenatal and adult clinical waste tissues/products, have gained increasing attention for application in neural tissue repair and remodeling. This often-overlooked pool of cells possesses favorable characteristics; including self-renewal, neural differentiation, secretion of neurogenic factors, cost-effectiveness, and low ethical concerns. Here, we offer a perspective regarding the biological properties, extraction protocols, and preclinical and clinical treatments where prenatal and adult WDS-lCs have been utilized for cell replacement therapy in neural applications, and the challenges involved in optimizing these approaches toward patient led therapies.
Collapse
Affiliation(s)
- Zahra Eivazi Zadeh
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- Polymer Science Group, Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Sogol Kianersi
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences, University of Galway, Galway, Ireland
| | | | - Richard J. Williams
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- iMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - David R. Nisbet
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- The Graeme Clark Institute, University of Melbourne, Melbourne, VIC, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, ANU College of Health & Medicine, Canberra, ACT, Australia
- Research School of Chemistry, ANU College of Science, Canberra, ACT, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Founder and Scientific Advisory of Nano Status, Building 137, Sullivans Creek Rd, ANU, Acton, Canberra, ACT, Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research, School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Yi N, Zeng Q, Zheng C, Li S, Lv B, Wang C, Li C, Jiang W, Liu Y, Yang Y, Yan T, Xue J, Xue Z. Functional variation among mesenchymal stem cells derived from different tissue sources. PeerJ 2024; 12:e17616. [PMID: 38952966 PMCID: PMC11216188 DOI: 10.7717/peerj.17616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.
Collapse
Affiliation(s)
- Ning Yi
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Qiao Zeng
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Chunbing Zheng
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Shiping Li
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Bo Lv
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Cheng Wang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Chanyi Li
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjiao Jiang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yun Liu
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Yuan Yang
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Tenglong Yan
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| | - Jinfeng Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
| | - Zhigang Xue
- Translational Center for Stem Cell Research, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Stem Cell Research Center, School of Medicine, Tongji University, Shanghai, China
- Hunan Jiahui Genetics Hospital, Changsha, China
- Changsha Institute of Industrial Technology for Stem Cell and Regenerative Medicine, Yuanpin Cell Technology Co. Ltd., Changsha, China
| |
Collapse
|
3
|
Chen DH, Huang JR, Su SL, Chen Q, Wu BY. Therapeutic potential of mesenchymal stem cells for cerebral small vessel disease. Regen Ther 2024; 25:377-386. [PMID: 38414558 PMCID: PMC10899004 DOI: 10.1016/j.reth.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 11/05/2023] [Indexed: 02/29/2024] Open
Abstract
Cerebral small vessel disease (CSVD), as the most common, chronic and progressive vascular disease on the brain, is a serious neurological disease, whose pathogenesis remains unclear. The disease is a leading cause of stroke and vascular cognitive impairment and dementia, and contributes to about 20% of strokes, including 25% of ischemic strokes and 45% of dementias. Undoubtedly, the high incidence and poor prognosis of CSVD have brought a heavy economic and medical burden to society. The present treatment of CSVD focuses on the management of vascular risk factors. Although vascular risk factors may be important causes or accelerators of CSVD and should always be treated in accordance with best clinical practice, controlling risk factors alone could not curb the progression of CSVD brain injury. Therefore, developing safer and more effective treatment strategies for CSVD is urgently needed. Recently, mesenchymal stem cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of central nervous system disease, given their paracrine properties and immunoregulatory. Herein, we discussed the therapeutic potential of MSCs for CSVD, aiming to enable clinicians and researchers to understand of recent progress and future directions in the field.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Jia-Rong Huang
- Neurology Department, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Shuo-Lei Su
- Shaoguan University, No.288 University Road, Xinshaozhen Zhenjiang District, Shaoguan, 512005, China
| | - Qiong Chen
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| | - Bing-Yi Wu
- Medical Research center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
- Precision Medicine Center of Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou Avenue North, Baiyun District, Guangzhou, 510515, China
| |
Collapse
|
4
|
Takamiya S, Kawabori M, Fujimura M. Stem Cell Therapies for Intracerebral Hemorrhage: Review of Preclinical and Clinical Studies. Cell Transplant 2023; 32:9636897231158153. [PMID: 36823970 PMCID: PMC9969479 DOI: 10.1177/09636897231158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Despite recent developments in the treatments for ischemic stroke, such as tissue plasminogen activator (t-PA) and thrombectomy, effective therapies for intracerebral hemorrhage (ICH) remain scarce. Stem cell therapies have attracted considerable attention owing to their potential neuro-regenerative ability; preclinical and clinical studies have been conducted to explore strategies for achieving functional recovery following ICH. In this review, we summarize the findings of preclinical studies on stem cell therapies of ICH, with a focus on different animal models, stem cell sources, transplantation methods, and their potential mechanisms of action. We also provide an overview of data from clinical trials to discuss the current status and future perspectives. Understanding the effectiveness and limitations of stem cell therapy and the future prospects could expand the applications of this novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Soichiro Takamiya
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| | - Miki Fujimura
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Li C, Qin H, Zeng L, Hu Z, Chen C. Efficacy of stem cell therapy in animal models of intracerebral hemorrhage: an updated meta-analysis. Stem Cell Res Ther 2022; 13:452. [PMID: 36064468 PMCID: PMC9446670 DOI: 10.1186/s13287-022-03158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple studies have reported that stem cell therapy has beneficial effects in animal models of intracerebral hemorrhage (ICH). However, this finding remains inconclusive. This study was performed to systematically determine the effect size of stem cell therapy in ICH animal models by pooling and analyzing data from newly published studies. METHODS A literature search identified studies of stem cells in animal models of ICH. We searched mainstream databases from inception to November, 2021. And pooled effect size of stem cells was determined for diversified neurobehavioral scales and structural endpoints using random effects models. RESULTS The median quality score of 62 included studies was 5.32. Our results revealed an overall positive effect of stem cell therapy. More specifically, the SMD was - 2.27 for mNSS, - 2.14 for rotarod test, - 2.06 for MLPT, - 1.33 for cylinder test, - 1.95 for corner turn test, - 1.42 for tissue loss, and - 1.86 for brain water content. For mNSS, classifying comparisons by quality score showed significant differences in estimates of effect size (p = 0.013), and high-quality comparisons showed a better outcome (SMD = - 2.57) compared with low-quality comparisons (SMD = - 1.59). Besides, different delivery routes also showed a significant difference in the estimates of effect size for mNSS (p = 0.002), and the intraperitoneal route showed the best outcome (SMD = - 4.63). For tissue loss, the autologous blood-induced ICH model showed a better outcome (SMD = - 1.84) compared with the collagenase-induced ICH model (SMD = - 0.94, p = 0.035). Additionally, stem cell therapy initiated within 8 h post-ICH showed the greatest efficacy on tissue loss reduction, followed by initiated with 24 h post-ICH. Finally, stem cells with different sources and types showed similar beneficial effects for mNSS as well as tissue loss. CONCLUSIONS Our results suggested that stem cell therapy had remarkable benefits on ICH animals on both the functional and structural outcomes in animal models of ICH, with very large effect size. These findings support the utility of further studies to translate stem cells in the treatment of ICH in humans. Moreover, the results should be interpreted in the light of the limitations in experimental design and the methodological quality of the studies included in the meta-analysis.
Collapse
Affiliation(s)
- Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Haiyun Qin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
7
|
Kuramoto Y, Fujita M, Takagi T, Takeda Y, Doe N, Yamahara K, Yoshimura S. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. J Neuroinflammation 2022; 19:48. [PMID: 35151317 PMCID: PMC8840774 DOI: 10.1186/s12974-022-02411-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/05/2022] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a significant cause of death and disabilities. Recently, cell therapies using mesenchymal stem cells have been shown to improve ICH-induced neurobehavioral deficits. Based on these findings, we designed this study to evaluate the therapeutic efficacy and underlying mechanisms by which human amnion-derived stem cells (hAMSCs) would ameliorate neurobehavioral deficits of ICH-bearing hosts. Methods hAMSCs were induced from amnia obtained by cesarean section and administered intravenously to ICH-bearing mice during the acute phase. The mice were then subject to multitask neurobehavioral tests at the subacute phase. We attempted to optimize the dosage and timing of the hAMSC administrations. In parallel with the hAMSCs, a tenfold higher dose of human adipose-derived stem cells (ADSCs) were used as an experimental control. Specimens were obtained from the ICH lesions to conduct immunostaining, flow cytometry, and Western blotting to elucidate the underlying mechanisms of the hAMSC treatment. Results The intravenous administration of hAMSCs to the ICH-bearing mice effectively improved their neurobehavioral deficits, particularly when the treatment was initiated at Day 1 after the ICH induction. Of note, the hAMSCs promoted clinical efficacy equivalent to or better than that of hADSCs at 1/10 the cell number. The systemically administered hAMSCs were found in the ICH lesions along with the local accumulation of macrophages/microglia. In detail, the hAMSC treatment decreased the number of CD11b+CD45+ and Ly6G+ cells in the ICH lesions, while splenocytes were not affected. Moreover, the hAMSC treatment decreased the number of apoptotic cells in the ICH lesions. These results were associated with suppression of the protein expression levels of macrophage-related factors iNOS and TNFα. Conclusions Intravenous hAMSC administration during the acute phase would improve ICH-induced neurobehavioral disorders. The underlying mechanism was suggested to be the suppression of subacute inflammation and apoptosis by suppressing macrophage/microglia cell numbers and macrophage functions (such as TNFα and iNOS). From a clinical point of view, hAMSC-based treatment may be a novel strategy for the treatment of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02411-3.
Collapse
|
8
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Liu J, He J, Huang Y, Ge L, Xiao H, Zeng L, Jiang Z, Lu M, Hu Z. Hypoxia-preconditioned mesenchymal stem cells attenuate microglial pyroptosis after intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1362. [PMID: 34733914 PMCID: PMC8506532 DOI: 10.21037/atm-21-2590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023]
Abstract
Background Microglia plays a vital role in neuroinflammation, contributing to the pathogenesis of intracerebral hemorrhage (ICH)-induced brain injury. Mesenchymal stem cells (MSCs) hold great potential for treating ICH. We previously revealed that MSCs ameliorate the microglial pyroptosis caused by an ischemic stroke. However, whether MSCs can modulate microglial pyroptosis after ICH remains unknown. This study aimed to investigate the neuroprotective effects of hypoxia-preconditioned olfactory mucosa MSCs (OM-MSCs) on ICH and the possible mechanisms. Methods ICH was induced in mice via administration of collagenase IV. At 6 h post-ICH, 2-4×105 normoxic/hypoxic OM-MSCs or saline were intracerebrally administered. To evaluate the neuroprotective effects, the behavioral outcome, apoptosis, and neuronal injury were measured. Microglia activation and pro-inflammatory cytokines were applied to detect neuroinflammation. Microglial pyroptosis was determined by western blotting, immunofluorescence staining, and transmission electron microscopy (TEM). Results The two OM-MSC-transplanted groups exhibited significantly improved functional recovery and reduced neuronal injury, especially the hypoxic OM-MSCs group. Hypoxic OM-MSCs attenuated microglial activation as well as the levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Moreover, we found that hypoxia-preconditioned OM-MSCs ameliorated pyroptosis by diminishing the levels of pyroptosis-associated proteins in peri-hematoma brain tissues, decreasing the expression of the microglial nod-like receptor family protein 3 (NLRP3) and caspase-1, and reducing the membrane pores on microglia post-ICH. Conclusions Our study showed that hypoxic preconditioning augments the therapeutic efficacy of OM-MSCs, and hypoxia-preconditioned OM-MSCs alleviate microglial pyroptosis in the ICH model.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Han Xiao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Lu
- Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China.,Hunan Provincial Key Laboratory of Neurorestoratology, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Ahn H, Lee SY, Jung WJ, Lee KH. Treatment of acute ischemic stroke by minimally manipulated umbilical cord-derived mesenchymal stem cells transplantation: A case report. World J Stem Cells 2021; 13:1151-1159. [PMID: 34567432 PMCID: PMC8422927 DOI: 10.4252/wjsc.v13.i8.1151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/23/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Stroke is one of the major causes of disability and death worldwide. Some treatments for stroke exist, but existing treatment methods have limitations such as difficulty in the regeneration of damaged neuronal cells of the brain. Recently, mesenchymal stem cells (MSCs) have been studied as a therapeutic alternative for stroke, and various preclinical and case studies have been reported.
CASE SUMMARY A 55-year-old man suffered an acute stroke, causing paralysis in the left upper and lower limbs. He intravenously transplanted the minimally manipulated human umbilical cord-derived MSCs (MM-UC-MSCs) twice with an 8-d interval. At 65 wk after transplantation, the patient returned to his previous occupation as a veterinarian with no adverse reactions.
CONCLUSION MM-UC-MSCs transplantation potentially treats patients who suffer from acute ischemic stroke.
Collapse
Affiliation(s)
- Hyunjun Ahn
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Sang Yeon Lee
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| | - Won Ju Jung
- 97.7 Beauty&Health (B&H) Clinics, Seoul 04420, South Korea
| | - Kye-Ho Lee
- bio Beauty&Health Company (bBHC)-Stem Cell Treatment & Research Institute (STRI), Seoul 04420, South Korea
| |
Collapse
|
11
|
Murali VP, Holmes CA. Mesenchymal stromal cell-derived extracellular vesicles for bone regeneration therapy. Bone Rep 2021; 14:101093. [PMID: 34095360 PMCID: PMC8166743 DOI: 10.1016/j.bonr.2021.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose To analyze preclinical bone regeneration studies employing mesenchymal stromal cell (MSC)- derived extracellular vesicles (EVs) and highlight any commonalities in EV biomarker expression, miRNA cargo(s) or pathway activation that will aid in understanding the underlying therapeutic mechanisms. Methods Articles employing EVs derived from either MSCs or MSC-like osteogenic stromal cells in preclinical bone regeneration studies are included in this review. Results EVs derived from a variety of MSC types were able to successfully induce bone formation in preclinical models. Many studies failed to perform in-depth EV characterization. The studies with detailed EV characterization data report very different miRNA cargos, even in EVs isolated from the same species and cell types. Few preclinical studies have analyzed the underlying mechanisms of MSC-EV therapeutic action. Conclusion There is a critical need for mechanistic preclinical studies with thorough EV characterization to determine the best therapeutic MSC-EV source for bone regeneration therapies. Issues including controlled EV delivery, large scale production, and proper storage also need to be addressed before EV-based bone regeneration therapies can be translated for clinical bone repair.
EVs from different MSC sources successfully regenerate bone in preclinical models. Studies were reviewed to find commonalities in EV cargo(s)/pathways activated in MSC-EV-based bone regeneration therapies. Issues that need to be overcome to enable clinical translation of EV-based therapies were addressed.
Collapse
Affiliation(s)
- Vishnu Priya Murali
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| | - Christina A Holmes
- Department of Chemical and Biomedical Engineering, College of Engineering, Florida A&M University-Florida State University, 2525 Pottsdamer Street, Room A131, Tallahassee, FL 32310, USA
| |
Collapse
|
12
|
Li J, Xiao L, He D, Luo Y, Sun H. Mechanism of White Matter Injury and Promising Therapeutic Strategies of MSCs After Intracerebral Hemorrhage. Front Aging Neurosci 2021; 13:632054. [PMID: 33927608 PMCID: PMC8078548 DOI: 10.3389/fnagi.2021.632054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke with high disability and high mortality rates, and there is no effective treatment. The predilection site of ICH is in the area of the basal ganglia and internal capsule (IC), where exist abundant white matter (WM) fiber tracts, such as the corticospinal tract (CST) in the IC. Proximal or distal white matter injury (WMI) caused by intracerebral parenchymal hemorrhage is closely associated with poor prognosis after ICH, especially motor and sensory dysfunction. The pathophysiological mechanisms involved in WMI are quite complex and still far from clear. In recent years, the neuroprotection and repairment capacity of mesenchymal stem cells (MSCs) has been widely investigated after ICH. MSCs exert many unique biological effects, including self-recovery by producing growth factors and cytokines, regenerative repair, immunomodulation, and neuroprotection against oxidative stress, providing a promising cellular therapeutic approach for the treatment of WMI. Taken together, our goal is to discuss the characteristics of WMI following ICH, including the mechanism and potential promising therapeutic targets of MSCs, aiming at providing new clues for future therapeutic strategies.
Collapse
Affiliation(s)
- Jing Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linglong Xiao
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Dian He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhao Luo
- Division of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Division of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of The Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Ravan AP, Goudarzi F, Rafieemehr H, Bahmani M, Rad F, Jafari M, Mahmoodi M. Human umbilical cord-mesenchymal stem cells conditioned medium attenuates CCl 4 induced chronic liver fibrosis. TOXIN REV 2021. [DOI: 10.1080/15569543.2019.1590849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alireza Pouyandeh Ravan
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Bahmani
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Fariba Rad
- Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Jafari
- Department of Pathology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Mahmoodi
- Department of Biostatistics, School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
14
|
Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal Stem Cells for Neurological Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002944. [PMID: 33854883 PMCID: PMC8024997 DOI: 10.1002/advs.202002944] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/23/2020] [Indexed: 05/13/2023]
Abstract
Neurological disorders are becoming a growing burden as society ages, and there is a compelling need to address this spiraling problem. Stem cell-based regenerative medicine is becoming an increasingly attractive approach to designing therapies for such disorders. The unique characteristics of mesenchymal stem cells (MSCs) make them among the most sought after cell sources. Researchers have extensively studied the modulatory properties of MSCs and their engineering, labeling, and delivery methods to the brain. The first part of this review provides an overview of studies on the application of MSCs to various neurological diseases, including stroke, traumatic brain injury, spinal cord injury, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and other less frequently studied clinical entities. In the second part, stem cell delivery to the brain is focused. This fundamental but still understudied problem needs to be overcome to apply stem cells to brain diseases successfully. Here the value of cell engineering is also emphasized to facilitate MSC diapedesis, migration, and homing to brain areas affected by the disease to implement precision medicine paradigms into stem cell-based therapies.
Collapse
Affiliation(s)
- Anna Andrzejewska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Sylwia Dabrowska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Barbara Lukomska
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
| | - Miroslaw Janowski
- NeuroRepair DepartmentMossakowski Medical Research CentrePASWarsaw02‐106Poland
- Center for Advanced Imaging ResearchDepartment of Diagnostic Radiology and Nuclear MedicineUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
- Tumor Immunology and Immunotherapy ProgramUniversity of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201‐1595USA
| |
Collapse
|
15
|
Gong YH, Hao SL, Wang BC. Mesenchymal Stem Cells Transplantation in Intracerebral Hemorrhage: Application and Challenges. Front Cell Neurosci 2021; 15:653367. [PMID: 33841103 PMCID: PMC8024645 DOI: 10.3389/fncel.2021.653367] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the leading causes of death and long-term disability worldwide. Mesenchymal stem cell (MSC) therapies have demonstrated improved outcomes for treating ICH-induced neuronal defects, and the neural network reconstruction and neurological function recovery were enhanced in rodent ICH models through the mechanisms of neurogenesis, angiogenesis, anti-inflammation, and anti-apoptosis. However, many key issues associated with the survival, differentiation, and safety of grafted MSCs after ICH remain to be resolved, which hinder the clinical translation of MSC therapy. Herein, we reviewed an overview of the research status of MSC transplantation after ICH in different species including rodents, swine, monkey, and human, and the challenges for MSC-mediated ICH recovery from pathological microenvironment have been summarized. Furthermore, some efficient strategies for the outcome improvement of MSC transplantation were proposed.
Collapse
Affiliation(s)
- Yu-Hua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shi-Lei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Bo-Chu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
16
|
Jiang M, Liu L, Liu R, Lam KS, Lane NE, Yao W. A new anabolic compound, LLP2A-Ale, reserves periodontal bone loss in mice through augmentation of bone formation. BMC Pharmacol Toxicol 2020; 21:76. [PMID: 33187558 PMCID: PMC7664094 DOI: 10.1186/s40360-020-00454-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/27/2020] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Currently, there are no effective medications to reverse periodontal disease (PD)-induced bone loss. The objective of this study was to test a new anabolic compound, LLP2A-Ale, or with the combination treatment of mesenchymal stromal cell (MSC), in the treatment of bone loss secondary to PD. METHODS PD was induced in mice by placing a ligature around the second right molar. At one week after disease induction, the mice were treated with placebo, LLP2A-Ale, MSCs, or combination of LLP2A-Ale + MSCs, and euthanized at week 4. RESULTS We found that PD induced alveolar bone loss that was associated with reduced bone formation. LLP2A-Ale alone or in combination with MSCs sustained alveolar bone formation and reversed alveolar bone loss. Additionally, PD alone caused systemic inflammation and increased the circulating levels of G-CSF, IP-10, MIP-1a, and MIP2, which were suppressed by LLP2A-Ale +/- MSCs. LLP2A-Ale +/- MSCs increased bone formation at the peripheral skeletal site (distal femur), which was otherwise suppressed by PD. CONCLUSION Our findings indicated that LLP2A-Ale treatment rescued alveolar bone loss caused by PD, primarily by increasing bone formation. LLP2A-Ale also attenuated the circulating levels of a series of inflammatory cytokines and reversed the PD-induced suppression of systemic bone formation.
Collapse
Affiliation(s)
- Min Jiang
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lixian Liu
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
- Yunan Vocational and Technical College of Agriculture, Kunming, 650031, Yunan, China
| | - Ruiwu Liu
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kit S Lam
- Department of Biochemistry & Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Nancy E Lane
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA
| | - Wei Yao
- Department of Internal Medicine, University of California, Davis Medical Center, 4625 2nd Avenue, Sacramento, CA, 95817, USA.
| |
Collapse
|
17
|
Chen X, Liang H, Xi Z, Yang Y, Shan H, Wang B, Zhong Z, Xu C, Yang GY, Sun Q, Sun Y, Bian L. BM-MSC Transplantation Alleviates Intracerebral Hemorrhage-Induced Brain Injury, Promotes Astrocytes Vimentin Expression, and Enhances Astrocytes Antioxidation via the Cx43/Nrf2/HO-1 Axis. Front Cell Dev Biol 2020; 8:302. [PMID: 32457903 PMCID: PMC7227447 DOI: 10.3389/fcell.2020.00302] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a particularly severe form of stroke, and reactive astrogliosis is a common response following injury to the central nervous system (CNS). Mesenchymal stem cells (MSCs) are reported to promote neurogenesis and alleviate the late side effects in injured brain regions. Gap junctions (Gjs) are abundant in the brain, where the richest connexin (Cx) is Cx43, most prominently expressed in astrocytes. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor regulating antioxidant reactions. Here, we aimed to explore whether bone marrow MSCs (BM-MSCs) could alleviate brain injury and protect astrocytes from apoptosis, by regulating Cx43 and Nrf2. We validated the effect of BM-MSC transplantation in an ICH model in vivo and in vitro and detected changes using immunofluorescence, as well as protein and mRNA expression of glial fibrillary acidic protein (GFAP), vimentin (VIM), Cx43, Nrf2, and heme oxygenase-1 (HO-1). Our results showed that BM-MSC transplantation attenuated brain injury after ICH and upregulated VIM expression in vivo and in vitro. Additionally, Cx43 upregulation and Nrf2 nuclear translocation were observed in astrocytes cocultured with BM-MSC. Knockdown of Cx43 by siRNA restrained Nrf2 nuclear translocation. Cx43 and Nrf2 had a connection as determined by immunofluorescence and coimmunoprecipitation. We demonstrated that astrocytes undergo astroglial-mesenchymal phenotype switching and have anti-apoptotic abilities after BM-MSC transplantation, where Cx43 upregulation triggers Nrf2 nuclear translocation and promotes its phase II enzyme expression. The Cx43/Nrf2 interaction of astrocytes after BM-MSC transplantation may provide an important therapeutic target in the management of ICH.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huaibin Liang
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyu Xi
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Yang
- Department of Neurosurgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huimin Shan
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Baofeng Wang
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihong Zhong
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Canxin Xu
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Mello TG, Rosado-de-Castro PH, Campos RMP, Vasques JF, Rangel-Junior WS, Mattos RSDARD, Puig-Pijuan T, Foerster BU, Gutfilen B, Souza SAL, Boltze J, Paiva FF, Mendez-Otero R, Pimentel-Coelho PM. Intravenous Human Umbilical Cord-Derived Mesenchymal Stromal Cell Administration in Models of Moderate and Severe Intracerebral Hemorrhage. Stem Cells Dev 2020; 29:586-598. [PMID: 32160799 DOI: 10.1089/scd.2019.0176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is as a life-threatening condition that can occur in young adults, often causing long-term disability. Recent preclinical data suggest mesenchymal stromal cell (MSC)-based therapies as promising options to minimize brain damage after ICH. However, therapeutic evidence and mechanistic insights are still limited, particularly when compared with other disorders such as ischemic stroke. Herein, we employed a model of collagenase-induced ICH in young adult rats to investigate the potential therapeutic effects of an intravenous injection of human umbilical cord Wharton's jelly-derived MSCs (hUC-MSCs). Two doses of collagenase were used to cause moderate or severe hemorrhages. Magnetic resonance imaging showed that animals treated with hUC-MSCs after moderate ICH had smaller residual hematoma volumes than vehicle-treated rats, whereas the cell therapy failed to decrease the hematoma volume in animals with a severe ICH. Functional assessments (rotarod and elevated body swing tests) were performed for up to 21 days after ICH. Enduring neurological impairments were seen only in animals subjected to severe ICH, but the cell therapy did not induce statistically significant improvements in the functional recovery. The biodistribution of Technetium-99m-labeled hUC-MSCs was also evaluated, showing that most cells were found in organs such as the spleen and lungs 24 h after transplantation. Nevertheless, it was possible to detect a weak signal in the brain, which was higher in the ipsilateral hemisphere of rats subjected to a severe ICH. These data indicate that hUC-MSCs have moderately beneficial effects in cases of less severe brain hemorrhages in rats by decreasing the residual hematoma volume, and that optimization of the therapy is still necessary.
Collapse
Affiliation(s)
- Tanira Giara Mello
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Engenharia Nuclear, Comissão Nacional de Energia Nuclear, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Paulo Henrique Rosado-de-Castro
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil.,Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | | | | | - Teresa Puig-Pijuan
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Bernd Uwe Foerster
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| | - Pedro Moreno Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Lattanzi S, Di Napoli M, Ricci S, Divani AA. Matrix Metalloproteinases in Acute Intracerebral Hemorrhage. Neurotherapeutics 2020; 17:484-496. [PMID: 31975152 PMCID: PMC7283398 DOI: 10.1007/s13311-020-00839-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) accounts for 10-30% of all strokes and affects more than one million people every year worldwide, and it is the stroke subtype associated with the highest rates of mortality and residual disability. So far, clinical trials have mainly targeted primary cerebral injury and have substantially failed to improve clinical outcomes. The understanding of the pathophysiology of early and delayed injury after ICH is, hence, of paramount importance to identify potential targets of intervention and develop effective therapeutic strategies. Matrix metalloproteinases (MMPs) represent a ubiquitous superfamily of structurally related zinc-dependent endopeptidases able to degrade any component of the extracellular matrix. They are upregulated after ICH, in which different cell types, including leukocytes, activated microglia, neurons, and endothelial cells, are involved in their synthesis and secretion. The aim of this review is to summarize the available experimental and clinical evidence about the role of MMPs in brain injury following spontaneous ICH and provide critical insights into the underlying mechanisms.
Collapse
Affiliation(s)
- Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Mario Di Napoli
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Silvia Ricci
- Department of Neurology and Stroke Unit, San Camillo de' Lellis District General Hospital, Rieti, Italy
| | - Afshin A Divani
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico, USA.
| |
Collapse
|
20
|
The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater 2020; 102:1-12. [PMID: 31751809 DOI: 10.1016/j.actbio.2019.11.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023]
Abstract
Functional deficits due to neuronal loss are a common theme across multiple neuropathologies, including traumatic brain injury (TBI). Apart from mitigating cell death, another approach to treating brain injuries involves re-establishing the neural circuitry at the lesion site by utilizing exogeneous and/or endogenous stem cells to achieve functional recovery. While there has been limited success, the emergence of new bioactive matrices that promote neural repair introduces new perspectives on the development of regenerative therapies for TBI. This review briefly discusses current development on cell-based therapies and the use of bioactive matrices, hydrogels in particular, when incorporated in regenerative therapies. Desirable characteristics of bioactive matrices that have been shown to augment neural repair in TBI models were identified and further discussed. Understanding the relative outcomes of newly developed biomaterials implanted in vivo can better guide the development of biomaterials as a therapeutic strategy, for biomaterial-based cellular therapies are still in their nascent stages. Nonetheless, the value of bioactive matrices as a treatment for acute brain injuries should be appreciated and further developed. STATEMENT OF SIGNIFICANCE: Cell-based therapies have received attention as an alternative therapeutic strategy to improve clinical outcome post-traumatic brain injury but have achieved limited success. Whilst the incorporation of newly developed biomaterials in regenerative therapies has shown promise in augmenting neural repair, studies have revealed new hurdles which must be overcome to improve their therapeutic efficacy. This review discusses the recent development of cell-based therapies with a specific focus on the use of bioactive matrices in the form of hydrogels, to complement cell transplantation within the injured brain. Moreover, this review consolidates in vivo animal studies that demonstrate relative functional outcome upon the implantation of different biomaterials to highlight their desirable traits to guide their development for regenerative therapies in traumatic brain injury.
Collapse
|
21
|
Song Z, Zhang JH. Recent Advances in Stem Cell Research in Subarachnoid Hemorrhage. Stem Cells Dev 2019; 29:178-186. [PMID: 31752600 DOI: 10.1089/scd.2019.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with significant morbidity and mortality, and it often leads to poor clinical outcome. Although great efforts have been made toward animal and clinical studies, optimal therapy of SAH remains a challenge for scientists and clinicians. Increasing evidence suggests that stem-cell-based therapies may provide innovative approaches for treatment of SAH-related disability. In this review, we summarized the recent advances in stem cell research in SAH. Neuroregeneration after SAH could be conducted by the activation of endogenous neural stem cells (NSCs), transplantation of external stem cells, or reprogramming non-neuronal cell to neurons. The potential mechanism and signaling pathways, as well as the efficiency and safety of these stem cell treatments, were discussed in detail. Although lots of challenges remain for translating the laboratory findings and technologies into clinical therapies, these research studies provided the foundation and guidance for using different resources of stem cells as a brain repair strategy after SAH.
Collapse
Affiliation(s)
- Zhijun Song
- Department of Neurosurgery, Xingtai Third Hospital, Xingtai, China.,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, California
| | - John H Zhang
- Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, California.,Department of Neurosurgery, Loma Linda University, Loma Linda, California.,Department of Anesthesiology, Loma Linda University, Loma Linda, California
| |
Collapse
|
22
|
Turnbull MT, Zubair AC, Meschia JF, Freeman WD. Mesenchymal stem cells for hemorrhagic stroke: status of preclinical and clinical research. NPJ Regen Med 2019; 4:10. [PMID: 31098299 PMCID: PMC6513857 DOI: 10.1038/s41536-019-0073-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Significant progress has been made during the past few decades in stem cell therapy research for various diseases and injury states; however this has not been overwhelmingly translated into approved therapies, despite much public attention and the rise in unregulated 'regenerative clinics'. In the last decade, preclinical research focusing on mesenchymal stem/stromal cell (MSC) therapy in experimental animal models of hemorrhagic stroke has gained momentum and has led to the development of a small number of human trials. Here we review the current studies focusing on MSC therapy for hemorrhagic stroke in an effort to summarize the status of preclinical and clinical research. Preliminary evidence indicates that MSCs are both safe and tolerable in patients, however future randomized controlled trials are required to translate the promising preclinical research into an effective therapy for hopeful patients.
Collapse
Affiliation(s)
| | - Abba C. Zubair
- Department of Laboratory Medicine and Pathology, Mayo Clinic Florida, Jacksonville, FL USA
| | - James F. Meschia
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL USA
| | - William D. Freeman
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL USA
- Department of Neurologic Surgery, Mayo Clinic Florida, Jacksonville, FL USA
- Department of Critical Care Medicine, Mayo Clinic Florida, Jacksonville, FL USA
| |
Collapse
|
23
|
Martín-Del-Campo M, Sampedro JG, Flores-Cedillo ML, Rosales-Ibañez R, Rojo L. Bone Regeneration Induced by Strontium Folate Loaded Biohybrid Scaffolds. Molecules 2019; 24:E1660. [PMID: 31035627 PMCID: PMC6539601 DOI: 10.3390/molecules24091660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Nowadays, regenerative medicine has paid special attention to research (in vitro and in vivo) related to bone regeneration, specifically in the treatment of bone fractures or skeletal defects, which is rising worldwide and is continually demanding new developments in the use of stem cells, growth factors, membranes and scaffolds based on novel nanomaterials, and their applications in patients by using advanced tools from molecular biology and tissue engineering. Strontium (Sr) is an element that has been investigated in recent years for its participation in the process of remodeling and bone formation. Based on these antecedents, this is a review about the Strontium Folate (SrFO), a recently developed non-protein based bone-promoting agent with interest in medical and pharmaceutical fields due to its improved features in comparison to current therapies for bone diseases.
Collapse
Affiliation(s)
- Marcela Martín-Del-Campo
- Departamento de Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, CSIC, 28006 Madrid, Spain.
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Manuel Nava 6, Zona Universitaria, San Luis Potosí C.P. 78290, S.L.P., Mexico.
| | - María Lisseth Flores-Cedillo
- División de Ingeniería Industrial, Instituto Tecnológico Superior de San Luis Potosí, Capital, Carretera 57 Tramo Qro-SLP Km 189+100 No. 6501, Deleg, Villa de Pozos, San Luis Potosí C.P. 78421, S.L.P., Mexico.
| | - Raul Rosales-Ibañez
- Escuela de Etudios Superiores, Iztacala, Universidad Nacional Autónoma de Mexico, UNAM, Tlalnepantla 54090, Mexico.
| | - Luis Rojo
- Departamento de Biomateriales, Instituto de Ciencia y Tecnología de Polímeros, CSIC, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomedica en red, CIBER-BBN, 28029 Madrid, Spain.
| |
Collapse
|
24
|
Safety and Efficacy of Intraventricular Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in Hemorrhagic Stroke Model. Sci Rep 2019; 9:5674. [PMID: 30952961 PMCID: PMC6450980 DOI: 10.1038/s41598-019-42182-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
External ventricular drain (EVD) is used clinically to relieve intracranial pressure and occasionally to deliver medications following intracerebral hemorrhage (ICH). Mesenchymal stem cell (MSC) therapy has been shown to be neuroprotective and can induce neuroregeneration in stroke models. We evaluated the safety and efficacy of delivering MSCs intraventricularly in a rat hemorrhagic stroke model. Using autologous blood, hemorrhagic stroke was induced at specific coordinates in the right basal ganglia. After 30 minutes, rats were treated with either bone marrow-derived MSCs or a phosphate-buffered saline placebo via direct intraventricular infusion. Three dosages (2 × 105/kg, 5 × 105/kg, and 1 × 106/kg) of MSCs were administered. Forelimb use asymmetry test was employed to evaluate functional improvement after cell therapy. At the end of the experiment, peripheral blood samples and organs were harvested; biochemistry, cytokine, and growth factor analysis and histology evaluations were performed to explore cell toxicity and cell fate, and the effects of MSC therapy on injury volume, anti-inflammation, and neurogenesis. Intraventricular administration of MSCs in ICH rat model showed improved behavior and alleviated brain damage. Additionally, treated ICH rats showed significantly reduced expression of IL-1α, IL-6, and IFN-γ. No obvious cell toxicity was noticed through blood chemistry and histology evaluation. None of the infused MSCs were detected at the end of the experiment. EVD is safe and effective to use as a method of delivering MSCs to treat ICH. Intraventricularly delivered MSCs have anti-inflammatory properties and a capacity to induce neurogenesis and improve function following ICH injury.
Collapse
|
25
|
Lin W, Hsuan YCY, Lin MT, Kuo TW, Lin CH, Su YC, Niu KC, Chang CP, Lin HJ. Human Umbilical Cord Mesenchymal Stem Cells Preserve Adult Newborn Neurons and Reduce Neurological Injury after Cerebral Ischemia by Reducing the Number of Hypertrophic Microglia/Macrophages. Cell Transplant 2018; 26:1798-1810. [PMID: 29338384 PMCID: PMC5784525 DOI: 10.1177/0963689717728936] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Microglia are the first source of a neuroinflammatory cascade, which seems to be involved in every phase of stroke-related neuronal damage. Two weeks after transient middle cerebral artery occlusion (MCAO), vehicle-treated rats displayed higher numbers of total ionized calcium-binding adaptor molecule 1 (Iba-1)-positive cells, greater cell body areas of Iba-1-positive cells, and higher numbers of hypertrophic Iba-1-positive cells (with a cell body area over 80 μm2) in the ipsilateral ischemic brain regions including the frontal cortex, striatum, and parietal cortex. In addition, MCAO decreased the number of migrating neuroblasts (or DCX- and 5-ethynyl-2′-deoxyuridine-positive cells) in the cortex, subventricular zone, and hippocampus of the ischemic brain, followed by neurological injury (including brain infarct and neurological deficits). Intravenous administration of human umbilical cord–derived mesenchymal stem cells (hUC-MSCs; 1 × 106 or 4 × 106) at 24 h after MCAO reduced neurological injury, decreased the number of hypertrophic microglia/macrophages, and increased the number of newborn neurons in rat brains. Thus, the accumulation of hypertrophic microglia/macrophages seems to be detrimental to neurogenesis after stroke. Treatment with hUC-MSCs preserved adult newborn neurons and reduced functional impairment after transient cerebral ischemia by reducing the number of hypertrophic microglia/macrophages.
Collapse
Affiliation(s)
- Willie Lin
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | | | - Mao-Tsun Lin
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ting-Wei Kuo
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | | | - Yu-Chin Su
- 1 Meridigen Biotech Co., Ltd., Neihu, Taipei City, Taiwan
| | - Ko-Chi Niu
- 4 Department of Hyperbaric Oxygen, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Ping Chang
- 2 Department of Medical Research, Chi Mei Medical Center, Tainan City, Taiwan.,3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,5 The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Hung-Jung Lin
- 3 Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan.,6 Department of Emergency Medicine, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
26
|
Gao L, Xu W, Li T, Chen J, Shao A, Yan F, Chen G. Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage. Cell Transplant 2018; 27:1809-1824. [PMID: 29871521 PMCID: PMC6300771 DOI: 10.1177/0963689718773363] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/28/2022] Open
Abstract
Spontaneous intracerebral hemorrhage (ICH) is one type of the most devastating cerebrovascular diseases worldwide, which causes high morbidity and mortality. However, efficient treatment is still lacking. Stem cell therapy has shown good neuroprotective and neurorestorative effect in ICH and is a promising treatment. In this study, our aim was to review the therapeutic effects, strategies, related mechanisms and safety issues of various types of stem cell for ICH treatment. Numerous studies had demonstrated the therapeutic effects of diverse stem cell types in ICH. The potential mechanisms include tissue repair and replacement, neurotrophy, promotion of neurogenesis and angiogenesis, anti-apoptosis, immunoregulation and anti-inflammation and so forth. The microenvironment of the central nervous system (CNS) can also influence the effects of stem cell therapy. The detailed therapeutic strategies for ICH treatment such as cell type, the number of cells, time window, and the routes of medication delivery, varied greatly among different studies and had not been determined. Moreover, the safety issues of stem cell therapy for ICH should not be ignored. Stem cell therapy showed good therapeutic effect in ICH, making it a promising treatment. However, safety should be carefully evaluated, and more clinical trials are required before stem cell therapy can be extensively applied to clinical use.
Collapse
Affiliation(s)
- Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Jingyin Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| |
Collapse
|
27
|
Min S, Kim OJ, Bae J, Chung TN. Effect of Pretreatment with the NADPH Oxidase Inhibitor Apocynin on the Therapeutic Efficacy of Human Placenta-Derived Mesenchymal Stem Cells in Intracerebral Hemorrhage. Int J Mol Sci 2018; 19:ijms19113679. [PMID: 30469327 PMCID: PMC6274986 DOI: 10.3390/ijms19113679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Several studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on intracerebral hemorrhage (ICH). Enhancement of the therapeutic efficacy of MSCs in ICH is necessary, considering the diseases high association with mortality and morbidity. Various preconditioning methods to enhance the beneficial properties of MSCs have been introduced. We suggested apocynin, a well-known nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, as a novel preconditioning regimen to enhance the therapeutic efficacy of MSCs in ICH. Rat ICH models were made using bacterial collagenase. 24 h after ICH induction, the rats were randomly divided into apocynin-preconditioned MSC-treated (Apo-MSC), naïve MSC-treated and control groups. Hematoma volume, brain edema, and degenerating neuron count were compared at 48 h after the ICH induction. The expression of tight junction proteins (occludin, zona occludens [ZO]-1) were also compared. Hematoma size, hemispheric enlargement and degenerating neuron count were significantly lower in the Apo-MSC group than in the naïve MSC group (p = 0.004, 0.013 and 0.043, respectively), while the expression of occludin was higher (p = 0.024). Apocynin treatment enhances the therapeutic efficacy of MSCs in ICH in the acute stage, through the improvement of the beneficial properties of MSCs, such as neuroprotection and the reinforcement of endovascular integrity of cerebral vasculature.
Collapse
Affiliation(s)
- Saehong Min
- Department of Emergency Medicine, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam 13496, Korea.
| | - Ok Joon Kim
- Department of Neurology, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam 13496, Korea.
| | - Jinkun Bae
- Department of Emergency Medicine, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam 13496, Korea.
| | - Tae Nyoung Chung
- Department of Emergency Medicine, CHA University School of Medicine, 59 Yatap-Ro, Bundang-Gu, Seongnam 13496, Korea.
| |
Collapse
|
28
|
An JH, Song WJ, Li Q, Kim SM, Yang JI, Ryu MO, Nam AR, Bhang DH, Jung YC, Youn HY. Prostaglandin E 2 secreted from feline adipose tissue-derived mesenchymal stem cells alleviate DSS-induced colitis by increasing regulatory T cells in mice. BMC Vet Res 2018; 14:354. [PMID: 30453939 PMCID: PMC6245895 DOI: 10.1186/s12917-018-1684-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an intractable autoimmune disease, relatively common in cats, with chronic vomiting and diarrhea. Previous studies have reported that mesenchymal stem cells (MSCs) alleviate inflammation by modulating immune cells. However, there is a lack of research on cross-talk mechanism between feline adipose tissue-derived mesenchymal stem cells (fAT-MSCs) and immune cells in IBD model. Hence, this study aimed to evaluate the therapeutic effects of fAT-MSC on mice model of colitis and to clarify the therapeutic mechanism of fAT-MSCs. RESULTS Intraperitoneal infusion of fAT-MSC ameliorated the clinical and histopathologic severity of colitis, including body weight loss, diarrhea, and inflammation in the colon of Dextran sulfate sodium (DSS)-treated mice (C57BL/6). Since regulatory T cells (Tregs) are pivotal in modulating immune responses and maintaining tolerance in colitis, the relation of Tregs with fAT-MSC-secreted factor was investigated in vitro. PGE2 secreted from fAT-MSC was demonstrated to induce elevation of FOXP3 mRNA expression and adjust inflammatory cytokines in Con A-induced feline peripheral blood mononuclear cells (PBMCs). Furthermore, in vivo, FOXP3+ cells of the fAT-MSC group were significantly increased in the inflamed colon, relative to that in the PBS group. CONCLUSION Our results suggest that PGE2 secreted from fAT-MSC can reduce inflammation by increasing FOXP3+ Tregs in mice model of colitis. Consequently, these results propose the possibility of administration of fAT-MSC to cats with not only IBD but also other immune-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Ju-Hyun An
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Woo-Jin Song
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Qiang Li
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sang-Min Kim
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-In Yang
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Ok Ryu
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - A Ryung Nam
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Dong Ha Bhang
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Yun-Chan Jung
- Chaon Corporation, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Hwa-Young Youn
- Labolatory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Millán-Rivero JE, Nadal-Nicolás FM, García-Bernal D, Sobrado-Calvo P, Blanquer M, Moraleda JM, Vidal-Sanz M, Agudo-Barriuso M. Human Wharton's jelly mesenchymal stem cells protect axotomized rat retinal ganglion cells via secretion of anti-inflammatory and neurotrophic factors. Sci Rep 2018; 8:16299. [PMID: 30389962 PMCID: PMC6214908 DOI: 10.1038/s41598-018-34527-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is emerging as an ideal tool to restore the wounded central nervous system (CNS). MSCs isolated from extra-embryonic tissues have some advantages compared to MSCs derived from adult ones, such as an improved proliferative capacity, life span, differentiation potential and immunomodulatory properties. In addition, they are more immunoprivileged, reducing the probability of being rejected by the recipient. Umbilical cords (UCs) are a good source of MSCs because they are abundant, safe, non-invasively harvested after birth and, importantly, they are not encumbered with ethical problems. Here we show that the intravitreal transplant of Wharton´s jelly mesenchymal stem cells isolated from three different human UCs (hWJMSCs) delays axotomy-induced retinal ganglion cell (RGC) loss. In vivo, hWJMSCs secrete anti-inflammatory molecules and trophic factors, the latter alone may account for the elicited neuroprotection. Interestingly, this expression profile differs between naive and injured retinas, suggesting that the environment in which the hWJMSCs are modulates their secretome. Finally, even though the transplant itself is not toxic for RGCs, it is not innocuous as it triggers a transient but massive infiltration of Iba1+cells from the choroid to the retina that alters the retinal structure.
Collapse
Affiliation(s)
- Jose E Millán-Rivero
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Francisco M Nadal-Nicolás
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Retinal Neurophysiology Section, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - David García-Bernal
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Paloma Sobrado-Calvo
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Miguel Blanquer
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Jose M Moraleda
- Unidad de Terapia Celular y Trasplante Hematopoyético. Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.,Dpto Medicina Interna, Universidad de Murcia, Murcia, Spain
| | - Manuel Vidal-Sanz
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain.,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Marta Agudo-Barriuso
- Dpto Oftalmología, Universidad de Murcia, Murcia, Spain. .,Grupo de Oftalmología Experimental, Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain.
| |
Collapse
|
30
|
Dhall S, Coksaygan T, Hoffman T, Moorman M, Lerch A, Kuang JQ, Sathyamoorthy M, Danilkovitch A. Viable cryopreserved umbilical tissue (vCUT) reduces post-operative adhesions in a rabbit abdominal adhesion model. Bioact Mater 2018; 4:97-106. [PMID: 30723842 PMCID: PMC6351431 DOI: 10.1016/j.bioactmat.2018.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 12/22/2022] Open
Abstract
Post-operative adhesions, a common complication of surgery, cause pain, impair organ functionality, and often require additional surgical interventions. Control of inflammation, protection of injured tissue, and rapid tissue repair are critical for adhesion prevention. Adhesion barriers are biomaterials used to prevent adhesions by physical separation of opposing injured tissues. Current adhesion barriers have poor anti-inflammatory and tissue regenerative properties. Umbilical cord tissue (UT), a part of the placenta, is inherently soft, conforming, biocompatible, and biodegradable, with antimicrobial, anti-inflammatory, and antifibrotic properties, making it an attractive alternative to currently available adhesion barriers. While use of fresh tissue is preferable, availability and short storage time limit its clinical use. A viable cryopreserved UT (vCUT) "point of care" allograft has recently become available. vCUT retains the extracellular matrix, growth factors, and native viable cells with the added advantage of a long shelf life at -80 °C. In this study, vCUT's anti-adhesion property was evaluated in a rabbit abdominal adhesion model. The cecum was abraded on two opposing sides, and vCUT was sutured to the abdominal wall on the treatment side; whereas the contralateral side of the abdomen served as an internal untreated control. Gross and histological evaluation was performed at 7, 28, and 67 days post-surgery. No adhesions were detectable on the vCUT treated side at all time points. Histological scores for adhesion, inflammation, and fibrosis were lower on the vCUT treated side as compared to the control side. In conclusion, the data supports the use of vCUT as an adhesion barrier in surgical procedures.
Collapse
Key Words
- ANGPT1, angiopoietin-1
- ANGPT2, angiopoietin-2
- ASTM, American Society for Testing and Materials
- Adhesiolysis
- Ang, angiogenin
- C, Celsius
- CD, cluster of differentiation
- CO2, carbon dioxide
- Cryopreserved
- DAB, 3,3′-Diaminobenzidine
- DMEM, Dulbecco’s modified Eagle’s medium
- DMSO, dimethyl sulfoxide
- DPBS, Dulbecco’s phosphate-buffered saline
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EtHd-1, ethidium homodimer-1
- FBS, fetal bovine serum
- FDA, United States Food & Drug Administration
- Fibrosis
- H&E, hematoxylin and eosin
- HGF, hepatocyte growth factor
- HRP, horseradish peroxidase
- IGFBP-1, insulin-like growth factor binding protein-1
- IL-10, interleukin 10
- IL-1RA, interleukin-1 receptor antagonist
- IV, intravenous
- IgG, immunoglobulin
- Inflammation
- MT, Masson’s trichrome
- PBS, phosphate-buffered saline
- PDGF-AA, platelet-derived growth factor AA
- PDGF-BB, platelet-derived growth factor BB
- PLGA, poly(lactic-co-glycolic acid)
- PLGF, placental growth factor
- Placental
- Post-surgical
- SD, standard deviation
- SDF-1α, stromal cell-derived factor 1 alpha
- TIMP-1, tissue inhibitor of metalloproteinases-1
- UT, umbilical cord tissue
- VEGF-D, vascular endothelial growth factor-D
- bFGF, basic fibroblast growth factor
- cAM, calcein acetoxymethyl
- cm, centimeter
- iNOS, inducible nitric oxide synthase
- mg/kg, milligram/kilogram
- mm, millimeter
- rpm, revolutions per minute
- vCUT, viable cryopreserved umbilical tissue
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Turhan Coksaygan
- University of Maryland, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Tyler Hoffman
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Matthew Moorman
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Anne Lerch
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | - Jin-Qiang Kuang
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| | | | - Alla Danilkovitch
- Osiris Therapeutics, Inc., 7015 Albert Einstein Dr, Columbia, MD, 21046, USA
| |
Collapse
|
31
|
Luo ZJ, Guo TM, Tu Q, Cheng XL, Huang Y, Xiang MQ. Therapeutic effect of integrating Chinese patent medicine Xuesaitong Injection and western medicine in treating patients with hypertensive intracerebral hemorrhage: A prospective randomized controlled trial. Eur J Integr Med 2018. [DOI: 10.1016/j.eujim.2018.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Him A, Onger ME, Delibas B. Periferik Sinir Rejenerasyonu ve Kök Hücre Tedavileri. ACTA ACUST UNITED AC 2018. [DOI: 10.31832/smj.404819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Yang C, Wang G, Ma F, Yu B, Chen F, Yang J, Feng J, Wang Q. Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments. Stem Cell Res Ther 2018; 9:136. [PMID: 29751769 PMCID: PMC5948759 DOI: 10.1186/s13287-018-0879-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/08/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background Spinal cord injuries (SCIs) are sustained by an increasing number of patients each year worldwide. The treatment of SCIs has long been a hard nut to crack for doctors around the world. Mesenchymal stem cells (MSCs) have shown benefits for the repair of SCI and recovery of function. Our present study aims to investigate the effects of intravenously infused human umbilical cord blood-derived MSCs (hUCB-MSCs) on functional recovery after subacute spinal cord compression injury of two noncontinuous segments. In addition, we compared the effects of single infusion and repeated intravenous (i.v.) injections on the recovery of spinal cord function. Methods A total of 43 adult rabbits were randomly divided into four groups: control, single injection (SI), repeated injection at a 3-day (3RI) or repeated injection at a 7-day interval (7RI) groups. Non-immunosuppressed rabbits in the transplantation groups were infused with either a single complete dose or three divided doses of 2 × 106 hUCB-MSCs (3-day or 7-day intervals) on the first day post decompression. Behavioural scores and somatosensory evoked potentials (SEPs) were used to evaluate hindlimb functional recovery. The survival and differentiation of the transplanted human cells and the activation of the host glial and inflammatory reaction in the injured spinal cord were studied by immunohistochemical staining. Results Our results showed that hUCB-MSCs survived, proliferated, and primarily differentiated into oligodendrocytes in the injured area. Treatment with hUCB-MSCs reduced the extent of astrocytic activation, increased axonal preservation, potentially promoted axonal regeneration, decreased the number of Iba-1+ and TUNEL+ cells, increased the amplitude and decreased the onset latency of SEPs and significantly promoted functional improvement. However, these effects were more pronounced in the 3RI group compared with the SI and 7RI groups. Conclusions Our results suggest that treatment with i.v. injected hUCB-MSCs after subacute spinal cord compression injury of two noncontinuous segments can promote functional recovery through the differentiation of hUCB-MSCs into specific cell types and the enhancement of anti-inflammatory, anti-astrogliosis, anti-apoptotic and axonal preservation effects. Furthermore, the recovery was more pronounced in the rabbits repeatedly injected with cells at 3-day intervals. The results of this study may provide a novel and useful treatment strategy for the transplantation treatment of SCI. Electronic supplementary material The online version of this article (10.1186/s13287-018-0879-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Gaoju Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China
| | - Baoqing Yu
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Fancheng Chen
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jin Yang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China
| | - Jianjun Feng
- Department of Orthopaedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| | - Qing Wang
- Department of Spine Surgery, Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Jiangyang Area, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
34
|
Human Placenta-Derived Mesenchymal Stem Cells Reduce Mortality and Hematoma Size in a Rat Intracerebral Hemorrhage Model in an Acute Phase. Stem Cells Int 2018; 2018:1658195. [PMID: 29853907 PMCID: PMC5954892 DOI: 10.1155/2018/1658195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/05/2018] [Accepted: 04/08/2018] [Indexed: 01/01/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a critical disease, highly associated with mortality and morbidity. Several studies have demonstrated the beneficial effect of mesenchymal stem cells (MSCs) on ICH, mostly focused on their mid-to-long-term effect. Acute hematoma expansion is one of the most important prognostic factors of ICH. We hypothesized that MSCs would decrease mortality and hematoma size in acute ICH, based on the findings of a few recent researches reporting their effect on blood-brain barrier and endothelial integrity. Rat ICH models were made using bacterial collagenase. One hour after ICH induction, the rats were randomly divided into MSC-treated and control groups. Mortality, hematoma volume, ventricular enlargement, brain edema, and degenerating neuron count were compared at 24 hours after ICH induction. Expression of tight junction proteins (ZO-1, occludin) and coagulation factor VII mRNA was also compared. Mortality rate (50% versus 8.3%), hematoma size, ventricular size, hemispheric enlargement, and degenerating neuron count were significantly lower in the MSC-treated group (p = 0.034, 0.038, 0.001, 0.022, and <0.001, resp.), while the expression of ZO-1 and occludin was higher (p = 0.007 and 0.012). Administration of MSCs may prevent hematoma expansion in the hyperacute stage of ICH and decrease acute mortality by enhancing the endothelial integrity of cerebral vasculature.
Collapse
|
35
|
Tan C, Zhao S, Higashikawa K, Wang Z, Kawabori M, Abumiya T, Nakayama N, Kazumata K, Ukon N, Yasui H, Tamaki N, Kuge Y, Shichinohe H, Houkin K. [ 18F]DPA-714 PET imaging shows immunomodulatory effect of intravenous administration of bone marrow stromal cells after transient focal ischemia. EJNMMI Res 2018; 8:35. [PMID: 29717383 PMCID: PMC5930298 DOI: 10.1186/s13550-018-0392-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background The potential application of bone marrow stromal cell (BMSC) therapy in stroke has been anticipated due to its immunomodulatory effects. Recently, positron emission tomography (PET) with [18F]DPA-714, a translocator protein (TSPO) ligand, has become available for use as a neural inflammatory indicator. We aimed to evaluate the effects of BMSC administration after transient middle cerebral artery occlusion (MCAO) using [18F]DPA-714 PET. The BMSCs or vehicle were administered intravenously to rat MCAO models at 3 h after the insult. Neurological deficits, body weight, infarct volume, and histology were analyzed. [18F]DPA-714 PET was performed 3 and 10 days after MCAO. Results Rats had severe neurological deficits and body weight loss after MCAO. Cell administration ameliorated these effects as well as the infarct volume. Although weight loss occurred in the spleen and thymus, cell administration suppressed it. In both vehicle and BMSC groups, [18F]DPA-714 PET showed a high standardized uptake value (SUV) around the ischemic area 3 days after MCAO. Although SUV was increased further 10 days after MCAO in both groups, the increase was inhibited in the BMSC group, significantly. Histological analysis showed that an inflammatory reaction occurred in the lymphoid organs and brain after MCAO, which was suppressed in the BMSC group. Conclusions The present results suggest that BMSC therapy could be effective in ischemic stroke due to modulation of systemic inflammatory responses. The [18F]DPA-714 PET/CT system can accurately demonstrate brain inflammation and evaluate the BMSC therapeutic effect in an imaging context. It has great potential for clinical application.
Collapse
Affiliation(s)
- Chengbo Tan
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan.,Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan
| | - Songji Zhao
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Zifeng Wang
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Masahito Kawabori
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Takeo Abumiya
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoki Nakayama
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Kazumata
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| | - Naoyuki Ukon
- Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, Japan.,Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nagara Tamaki
- Department of Nuclear Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan.,Department of Integrated Molecular Imaging, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideo Shichinohe
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan. .,Division of Clinical Research Administration, Hokkaido University Hospital, Sapporo, Japan.
| | - Kiyohiro Houkin
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University, N15 W7, Kita-ku, Sapporo, 060-8638, Japan
| |
Collapse
|
36
|
Yuan Y, Zhou C, Chen X, Tao C, Cheng H, Lu X. Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: A possible role for apoptosis and Wnt signaling. Oncol Lett 2018; 15:8536-8544. [PMID: 29805590 PMCID: PMC5950566 DOI: 10.3892/ol.2018.8368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent potential therapeutic tools for solid tumors. However, there are numerous inconsistent results regarding the effects of hUCMSCs on tumors, and the mechanisms underlying this remain poorly understood. The present study further examined this controversial issue by analyzing the molecular mechanisms of the inhibitory effects of hUCMSCs on the proliferation and migration of the human lung cancer A549 cell line and the human hepatocellular carcinoma (HCC) BEL7402 cell line in vitro. Flow cytometric analysis demonstrated that hUCMSCs arrested tumor cells in specific phases of the cell cycle and induced the apoptosis of tumor cells by using the hUCMSC-conditioned medium (hUCMSC-CM). The hUCMSC-CM also attenuated the migratory abilities of the two tumor cell types. Furthermore, the expression of B-cell lymphoma 2 (Bcl-2), the pro-form of caspase-7 (pro-caspase-7), β-catenin and c-Myc was downregulated, while that of ephrin receptor (EphA5), a biomarker of cancer cell dormancy, was slightly increased in these two tumor cell lines treated with hUCMSC-CM. Specifically, when co-cultured via direct cell-to-cell contact, hUCMSCs were able to spontaneously fuse with any of the two types of solid tumor cells. These observations suggested that hUCMSCs may be a promising candidate for the biological therapy of lung cancer and HCC. Future studies should focus on detailed evidence for cell fusion, as well as other mechanisms proposed in the present study, by introducing additional experimental approaches and models.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Chang Zhou
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Xuan Chen
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Changli Tao
- School of Life Science and Biopharmacology, School of Anatomy and Histology, Guangdong Provincial Key Laboratory of Biotechnology Candidate Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
| | - Huiqing Cheng
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Xin Lu
- School of Life Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| |
Collapse
|
37
|
Orekhov PY, Konoplyannikov MA, Baklaushev VP, Kalsin VAA, Averyanov AV, Konopliannikov AG, Habazov RI, Troitskiy AV. Bone marrow stem cells for the critical limb ischemia treatment: biological aspects and clinical application. GENES & CELLS 2018; 13:20-34. [DOI: 10.23868/201805002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Cell therapy is one of the most promising directions in the treatment of critical limb ischemia (CLI). In spite of certain advances achieved in this field in the last decades, which are related to application of bone marrow stem cells (BMSC), a large number of problems still remain unsolved. In this review, we discuss the BMSC biology, mechanisms of their therapeutic effect in the CLI treatment and results of the most notable BMSC-based clinical studies in detail.
Collapse
|
38
|
Transplantation of Human Umbilical Cord Blood Mononuclear Cells Attenuated Ischemic Injury in MCAO Rats via Inhibition of NF-κB and NLRP3 Inflammasome. Neuroscience 2017; 369:314-324. [PMID: 29175152 DOI: 10.1016/j.neuroscience.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Accumulated evidence displayed that transplantation of stem cells may be a promising approach for the treatment of neurological disorders. However, the underlying mechanisms remain to be well elucidated. Moreover, some investigators cannot reproduce similar results as the previous. The present results showed that transplantation of fresh human umbilical cord blood mononuclear cells (cbMNCs) attenuated ischemic damage in middle cerebral artery occlusion (MCAO) rats, accompanied with improvement of neurologic deficits, learning and memory function. The increase in neovascularization and related molecules such as vascular endothelial growth factor (VEGF), Angiopoietin-1 (Ang-1) and endothelium-specific receptor tyrosine kinase 2 (Tie-2) in the injured brain was observed in cbMNCs-treated rats. Moreover, nuclear factor-κB (NF-κB) activation and nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome were also inhibited by the cells graft, resulting in reduction in cleaved caspase-1 and mature interleukin-1β (IL-1β) content. These results suggested that the protective actions of the cells on the cerebral ischemia may be related to inhibition of NF-κB pathway and NLRP3 inflammasome.
Collapse
|
39
|
Zhou X, Chen J, Wang C, Wu L. Anti-inflammatory effects of Simvastatin in patients with acute intracerebral hemorrhage in an intensive care unit. Exp Ther Med 2017; 14:6193-6200. [PMID: 29285177 PMCID: PMC5740808 DOI: 10.3892/etm.2017.5309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 04/28/2017] [Indexed: 01/01/2023] Open
Abstract
Intracerebral hemorrhage is one of the most common types of cerebrovascular disease in humans and often causes paralysis, a vegetative state and even death. Patients with acute intracerebral hemorrhage are frequently monitored in intensive care units (ICUs). Spontaneous intracerebral hemorrhage is associated with a higher rate of mortality and morbidity than other intracephalic diseases. The expression levels of inflammatory factors have important roles in inflammatory responses indicative of changes in a patient's condition and are therefore important in the monitoring and treatment of affected patients at the ICU as well as the development of therapeutic strategies for acute cerebral hemorrhage. The present study investigated the anti-inflammatory effects of Simvastatin in patients with acute intracerebral hemorrhage at an ICU, and inflammatory factors and cellular changes were systematically analyzed. The plasma concentrations of inflammatory factors, including interleukin (IL)-4, IL-6, IL-8 and IL-10, were evaluated by ELISAs. The plasma concentrations of inflammatory cellular changes were detected by using flow cytometry. The results demonstrated that after Simvastatin treatment of patients with acute cerebral hemorrhage at the ICU, the plasma concentrations of IL-4, IL-6, IL-8 and IL-10 were downregulated compared with those in placebo-treated controls. In addition, Simvastatin treatment at the ICU decreased lymphocytes, granulocytes and mononuclear cells in patients with acute cerebral hemorrhage. The levels of inflammatory factors were associated with brain edema in patients with acute cerebral hemorrhage treated at the ICU. In addition, the amount of bleeding was reduced in parallel with the inflammatory cell plasma concentration of lymphocytes, granulocytes and mononuclear cells. Importantly, Simvastatin treatment produced beneficial outcomes by improving brain edema and reducing the amount of bleeding. In conclusion, the present study demonstrated the efficacy of Simvastatin in treating acute intracerebral hemorrhage and evidenced the association between inflammatory responses and the progress of affected patients at the ICU, thereby providing insight for applying effective therapies for patients with acute intracerebral hemorrhage.
Collapse
Affiliation(s)
- Xiurong Zhou
- Department of Neurosurgery, People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Jiafeng Chen
- Department of Neurology, People's Hospital, Weifang, Shandong 261041, P.R. China.,Intensive Care Unit, People's Hospital of Changle County, Weifang, Shandong 262400, P.R. China
| | - Chengdong Wang
- Central Laboratory, People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lili Wu
- Department of Neurology, People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
40
|
Wang Y, Ji X, Leak RK, Chen F, Cao G. Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Res Rev 2017; 34:39-50. [PMID: 27876573 PMCID: PMC5250574 DOI: 10.1016/j.arr.2016.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 11/04/2016] [Indexed: 02/06/2023]
Abstract
Aging, a complex process associated with various structural, functional and metabolic changes in the brain, is an important risk factor for neurodegenerative diseases and stroke. These diseases share similar neuropathological changes, such as the formation of misfolded proteins, oxidative stress, loss of neurons and synapses, dysfunction of the neurovascular unit (NVU), reduction of self-repair capacity, and motor and/or cognitive deficiencies. In addition to gray matter dysfunction, the plasticity and repair capacity of white matter also decrease with aging and contribute to neurodegenerative diseases. Aging not only renders patients more susceptible to these disorders, but also attenuates their self-repair capabilities. In addition, low drug responsiveness and intolerable side effects are major challenges in the prevention and treatment of senile diseases. Thus, stem cell therapies-characterized by cellular plasticity and the ability to self-renew-may be a promising strategy for aging-related brain disorders. Here, we review the common pathophysiological changes, treatments, and the promises and limitations of stem cell therapies in age-related neurodegenerative diseases and stroke.
Collapse
Affiliation(s)
- Yuan Wang
- Departments of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Xunming Ji
- Departments of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
41
|
Hei WH, Almansoori AA, Sung MA, Ju KW, Seo N, Lee SH, Kim BJ, Kim SM, Jahng JW, He H, Lee JH. Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor (BDNF) tohuman umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) promotescrush-injured rat sciatic nerve regeneration. Neurosci Lett 2017; 643:111-120. [PMID: 28215880 DOI: 10.1016/j.neulet.2017.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 02/06/2023]
Abstract
This study was designed toinvestigate the efficacy of adenovirus vector-mediated brain-derived neurotrophic factor (BDNF) ex vivo gene transfer to human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) in a rat sciatic nerve crush injury model. BDNF protein and mRNA expression after infection was checked through an enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). Male Sprague-Dawley rats (200-250g, 6 weeks old) were distributed into threegroups (n=20 each): the control group, UCB-MSC group, and BDNF-adenovirus infected UCB-MSC (BDNF-Ad+UCB-MSC) group. UCB-MSCs (1×106cells/10μl/rat) or BDNF-Ad+UCB-MSCs (1×106cells/10μl/rat)were transplantedinto the rats at the crush site immediately after sciatic nerve injury. Cell tracking was done with PKH26-labeled UCB-MSCs and BDNF-Ad+UCB-MSCs (1×106cells/10μl/rat). The rats were monitored for 4 weeks post-surgery. Results showed that expression of BDNF at both the protein and mRNA levels was higher inthe BDNF-Ad+UCB-MSC group compared to theUCB-MSC group in vitro.Moreover, BDNF mRNA expression was higher in both UCB-MSC group and BDNF-Ad+ UCB-MSC group compared tothe control group, and BDNF mRNA expression in theBDNF-Ad+UCB-MSC group was higher than inboth other groups 5days after surgeryin vivo. Labeled neurons in the dorsal root ganglia (DRG), axon counts, axon density, and sciatic function index were significantly increased in the UCB-MSC and BDNF-Ad+ UCB-MSCgroupscompared to the controlgroup four weeksaftercell transplantation. Importantly,the BDNF-Ad+UCB-MSCgroup exhibited more peripheral nerve regeneration than the other two groups.Our results indicate thatboth UCB-MSCs and BDNF-Ad+UCB-MSCscan improve rat sciatic nerve regeneration, with BDNF-Ad+UCB-MSCsshowing a greater effectthan UCB-MSCs.
Collapse
Affiliation(s)
- Wei-Hong Hei
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Akram A Almansoori
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ae Sung
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Won Ju
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Nari Seo
- Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sung-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Bong-Ju Kim
- Clinical Translational Research Center for Dental Science (CTRC), Seoul National University Dental Hospital, Seoul, Republic of Korea
| | - Soung-Min Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong Won Jahng
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Jong-Ho Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul, Republic of Korea; Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential. Stem Cells Int 2017; 2017:5173732. [PMID: 28286525 PMCID: PMC5327785 DOI: 10.1155/2017/5173732] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration.
Collapse
|
43
|
Ding R, Lin C, Wei S, Zhang N, Tang L, Lin Y, Chen Z, Xie T, Chen X, Feng Y, Wu L. Therapeutic Benefits of Mesenchymal Stromal Cells in a Rat Model of Hemoglobin-Induced Hypertensive Intracerebral Hemorrhage. Mol Cells 2017; 40:133-142. [PMID: 28190323 PMCID: PMC5339504 DOI: 10.14348/molcells.2017.2251] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that bone marrow mesenchymal stromal cell (MSC) transplantation significantly improves the recovery of neurological function in a rat model of intracerebral hemorrhage. Potential repair mechanisms involve anti-inflammation, anti-apoptosis and angiogenesis. However, few studies have focused on the effects of MSCs on inducible nitric oxide synthase (iNOS) expression and subsequent peroxynitrite formation after hypertensive intracerebral hemorrhage (HICH). In this study, MSCs were transplanted intracerebrally into rats 6 hours after HICH. The modified neurological severity score and the modified limb placing test were used to measure behavioral outcomes. Blood-brain barrier disruption and neuronal loss were measured by zonula occludens-1 (ZO-1) and neuronal nucleus (NeuN) expression, respectively. Concomitant edema formation was evaluated by H&E staining and brain water content. The effect of MSCs treatment on neuroinflammation was analyzed by immunohistochemical analysis or polymerase chain reaction of CD68, Iba1, iNOS expression and subsequent peroxynitrite formation, and by an enzyme-linked immunosorbent assay of pro-inflammatory factors (IL-1β and TNF-α). The MSCs-treated HICH group showed better performance on behavioral scores and lower brain water content compared to controls. Moreover, the MSC injection increased NeuN and ZO-1 expression measured by immunochemistry/immunofluorescence. Furthermore, MSCs reduced not only levels of CD68, Iba1 and pro-inflammatory factors, but it also inhibited iNOS expression and peroxynitrite formation in perihematomal regions. The results suggest that intracerebral administration of MSCs accelerates neurological function recovery in HICH rats. This may result from the ability of MSCs to suppress inflammation, at least in part, by inhibiting iNOS expression and subsequent peroxynitrite formation.
Collapse
Affiliation(s)
- Rui Ding
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Chunnan Lin
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - ShanShan Wei
- Department of Hematology, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Naichong Zhang
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Liangang Tang
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Yumao Lin
- Department of Neurosurgery, Maoming People’s Hospital, Maoming 525000, Guangdong,
China
| | - Zhijun Chen
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Teng Xie
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - XiaoWei Chen
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - Yu Feng
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| | - LiHua Wu
- Department of Neurosurgery, Jingmen No. 1 People’s Hospital, Jingmen 448000, Hubei,
China
| |
Collapse
|
44
|
Zhou X, Cui L, Zhou X, Yang Q, Wang L, Guo G, Hou Y, Cai W, Han Z, Shi Y, Han Y. Induction of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells by defined microRNAs. J Cell Mol Med 2016; 21:881-893. [PMID: 27874233 PMCID: PMC5387126 DOI: 10.1111/jcmm.13027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/03/2016] [Indexed: 12/15/2022] Open
Abstract
Generating functional hepatocyte‐like cells (HLCs) from mesenchymal stem cells (MSCs) is of great urgency for bio‐artificial liver support system (BALSS). Previously, we obtained HLCs from human umbilical cord‐derived MSCs by overexpressing seven microRNAs (HLC‐7) and characterized their liver functions in vitro and in vivo. Here, we aimed to screen out the optimal miRNA candidates for hepatic differentiation. We sequentially removed individual miRNAs from the pool and examined the effect of transfection with remainder using RT‐PCR, periodic acid—Schiff (PAS) staining and low‐density lipoprotein (LDL) uptake assays and by assessing their function in liver injury models. Surprisingly, miR‐30a and miR‐1290 were dispensable for hepatic differentiation. The remaining five miRNAs (miR‐122, miR‐148a, miR‐424, miR‐542‐5p and miR‐1246) are essential for this process, because omitting any one from the five‐miRNA combination prevented hepatic trans‐differentiation. We found that HLCs trans‐differentiated from five microRNAs (HLC‐5) expressed high level of hepatic markers and functioned similar to hepatocytes. Intravenous transplantation of HLC‐5 into nude mice with CCl4‐induced fulminant liver failure and acute liver injury not only improved serum parameters and their liver histology, but also improved survival rate of mice in severe hepatic failure. These data indicated that HLC‐5 functioned similar to HLC‐7 in vitro and in vivo, which have been shown to resemble hepatocytes. Instead of using seven‐miRNA combination, a simplified five‐miRNA combination can be used to obtain functional HLCs in only 7 days. Our study demonstrated an optimized and efficient method for generating functional MSC‐derived HLCs that may serve as an attractive cell alternative for BALSS.
Collapse
Affiliation(s)
- Xia Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lina Cui
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xinmin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Qiong Yang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Lu Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yu Hou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Weile Cai
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zheyi Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Yongquan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
45
|
Yang J, Wang X, Liu S, Xue G. BDNF expression is up-regulated by progesterone in human umbilical cord mesenchymal stem cells. Neurol Res 2016; 38:1088-1093. [PMID: 27748163 DOI: 10.1080/01616412.2016.1235248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To investigate whether promotion of neuronal differentiation of human umbilical cord mesenchymal stem cells (HUMSCs) by progesterone (PROG) involves changes in brain-derived neurotrophic factor (BDNF) levels. METHODS We used rat brain tissue extracts to mimic the brain microenvironment. Quantitative sandwich enzyme-linked immunosorbent assay was performed to measure levels of BDNF in cultured medium with or without PROG. RESULTS Progesterone increased levels of BDNF in HUMSCs. CONCLUSION Progesterone enhancement of brain-derived neurotrophic factor levels may be involved in PROG activated-pathways to promote neuronal differentiation of HUMSCs.
Collapse
Affiliation(s)
- Jie Yang
- a Department of Pharmacy , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Xianying Wang
- a Department of Pharmacy , The Third Hospital of Hebei Medical University , Shijiazhuang , China
| | - Sha Liu
- b Department of Pharmacy , Bethune International Peace Hospital of Chinese PLA , Shijiazhuang , China
| | - Gai Xue
- b Department of Pharmacy , Bethune International Peace Hospital of Chinese PLA , Shijiazhuang , China
| |
Collapse
|
46
|
Elshaer SL, Lorys RE, El-Remessy AB. Cell Therapy and Critical Limb Ischemia: Evidence and Window of Opportunity in Obesity. ACTA ACUST UNITED AC 2016; 3. [PMID: 28979948 DOI: 10.15226/2374-8354/3/1/00121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sally L Elshaer
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | - Renee E Lorys
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| | - A B El-Remessy
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, Georgia 30912, USA
| |
Collapse
|
47
|
Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A. Quality and exploitation of umbilical cord blood for cell therapy: Are we beyond our capabilities? Dev Dyn 2016; 245:710-7. [PMID: 27043849 DOI: 10.1002/dvdy.24408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023] Open
Abstract
There is increasing interest in identifying novel stem cell sources for application in emerging cell therapies. In this context, umbilical cord blood (UCB) shows great promise in multiple clinical settings. The number of UCB banks has therefore increased worldwide, with the objective of preserving potentially life-saving cells that are usually discarded after birth. After a rather long and costly processing procedure, the resultant UCB-derived cell products are cryopreserved until transplantation to patients. However, in many cases, only a small proportion of administered cells engraft successfully. Thus, can we do any better regarding current UCB-based therapeutic approaches? Here we discuss concerns about the use of UCB that are not critically pondered by researchers, clinicians, and banking services, including wasting samples with small volumes and the need for more reliable quality and functional controls to ensure the biological activity of stem cells and subsequent engraftment and treatment efficacy. Finally, we appeal for collaborative agreements between research institutions and UCB banks in order to redirect currently discarded small-volume UCB units for basic and clinical research purposes. Developmental Dynamics 245:710-717, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Santiago Roura
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Center of Regenerative Medicine in Barcelona, c/ Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Josep Maria Pujal
- Cell Processing Laboratory, Edifici Giroemprèn, Pic de Peguera 11, Parc Científic i Tecnològic Universitat de Girona, 17003, Girona, Spain
| | - Carolina Gálvez-Montón
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Cardiology Service, Germans Trias i Pujol University Hospital, Crta.Can Ruti-Camí Escoles s/n, 08916, Badalona, Spain
- Department of Medicine, Crta. Can Ruti-Camí Escoles s/n, Universitat Autònoma de Barcelona, 08916, Badalona, Spain
| |
Collapse
|
48
|
Zhou H, Zhang H, Yan Z, Xu R. Transplantation of human amniotic mesenchymal stem cells promotes neurological recovery in an intracerebral hemorrhage rat model. Biochem Biophys Res Commun 2016; 475:202-8. [PMID: 27188654 DOI: 10.1016/j.bbrc.2016.05.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
Human amniotic membrane mesenchymal stem cells (hAMSCs) have recently been suggested as ideal candidate stem cells for cell-based therapy. Many studies have reported the therapeutic effects of hAMSCs in numerous disease models. However, no studies have used hAMSCs to treat intracerebral hemorrhage (ICH). In the present study, we examined the therapeutic potential of hAMSCs in a rat model of ICH, and characterized the possible mechanisms of action. Adult male Wistar rats were subjected to ICH by intrastriatal injection of VII collagenase, and then were intracerebrally administered hAMSCs, fibroblasts, or phosphate-buffered saline (PBS) at 24 h after ICH. Compared with the fibroblasts and the PBS control, hAMSCs treatment significantly promoted neurological recovery, and reduced the numbers of ED1(+) activated microglia, as well as myeloperoxidase (MPO(+)), and caspase-3(+) cells in the brain injury model. In addition, hAMSCs treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in the injured brain, and promoted neurogenesis and angiogenesis, compared with the fibroblasts and the PBS control. The transplanted hAMSCs survived for at least 27 days and were negative for β-tubulin III and glial fibrillary acidic protein (GFAP). Taken together, the results suggest that hAMSCs treatment significantly promotes neurological recovery in rats after ICH. The mechanism of action could be mediated by inhibition of inflammation and apoptosis, increasing neurotrophic factor expression, and promotion of neurogenesis and angiogenesis. Thus, hAMSCs are candidate stem cells for the treatment of ICH.
Collapse
Affiliation(s)
- Honglong Zhou
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University, Beijing, China; Neurosurgery Institute of Beijing Military Region, Beijing, China
| | - Hongri Zhang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University, Beijing, China; Neurosurgery Institute of Beijing Military Region, Beijing, China
| | - Zhongjie Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Ruxiang Xu
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Southern Medical University, Beijing, China; Neurosurgery Institute of Beijing Military Region, Beijing, China.
| |
Collapse
|
49
|
Martin-del-Campo M, Rosales-Ibañez R, Alvarado K, Sampedro JG, Garcia-Sepulveda CA, Deb S, San Román J, Rojo L. Strontium folate loaded biohybrid scaffolds seeded with dental pulp stem cells induce in vivo bone regeneration in critical sized defects. Biomater Sci 2016; 4:1596-1604. [DOI: 10.1039/c6bm00459h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Strontium folate loaded biohybrid scaffolds enhance dental pulp stem cells replication and differentiation, promoting complete regeneration of critical bone defects.
Collapse
Affiliation(s)
| | - Raul Rosales-Ibañez
- Facultad de Estomatología
- Universidad Autónoma de San Luis Potosí
- México
- Facultad de Estudios Superiores Iztacala
- Universidad Nacional Autonoma de Mexico
| | - Keila Alvarado
- Center of Biomaterials and Tissue Engineering
- Technical University of Valencia
- Spain
| | - Jose G. Sampedro
- Instituto de Física
- Universidad Autónoma de San Luis Potosí
- México
| | | | - Sanjukta Deb
- Division of Tissue Engineering &Biophotonics. Dental Institute King's College London
- UK
| | - Julio San Román
- Institute of Polymer Science and Technology
- CSIC and CIBER-BBN
- Spain
| | - Luis Rojo
- Division of Tissue Engineering &Biophotonics. Dental Institute King's College London
- UK
- Institute of Polymer Science and Technology
- CSIC and CIBER-BBN
- Spain
| |
Collapse
|
50
|
Mechanisms of Cerebral Hemorrhage. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|