1
|
Sun X, Chen Y, Zhang Y, Cheng T, Peng H, Sun Y, Liu JG, Xu C. Exosomes released from immature neurons regulate adult neural stem cell differentiation through microRNA-7a-5p. Stem Cells 2025; 43:sxae082. [PMID: 39670872 DOI: 10.1093/stmcls/sxae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Exosomes in the hippocampal dentate gyrus are essential for modulating the cell signaling and controlling the neural differentiation of hippocampal neural stem cells (NSCs), which may determine the level of hippocampal adult neurogenesis. In the present study, we found that exosomes secreted by immature neurons may promote the neuronal differentiation of mouse NSCs in vitro. By miRNA sequencing, we discovered that miR-7a-5p was significantly lower in exosomes from differentiated immature neurons than those from undifferentiated NSCs. By modulating the level of miR-7a-5p, the mimic and inhibitor of miR-7a-5p could either inhibit or promote the neuronal differentiation of NSCs, respectively. Moreover, we confirmed that miR-7a-5p affected neurogenesis by directly targeting Tcf12, a transcription factor responsible for the differentiation of NSCs. The siRNA of Tcf12 inhibited neuronal differentiation of NSCs, while overexpression of Tcf12 promoted NSC differentiation. Thus, we conclude that the miR-7a-5p content in neural exosomes is essential to the fate determination of adult hippocampal neurogenesis and that miR-7a-5p directly targets Tcf12 to regulate adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Xiujian Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yexiang Chen
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Ying Zhang
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| | - Tiantian Cheng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Huisheng Peng
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yanting Sun
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Jing-Gen Liu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Chi Xu
- Department of Neurobiology and Acupuncture Research, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Binjiang, Hangzhou 310053, Zhejiang, China
| |
Collapse
|
2
|
Ranjit A, Lee CB, Tenora L, Mettu VS, Pal A, Alt J, Slusher BS, Rais R. Pharmacokinetic Evaluation of Neutral Sphinghomyelinase2 (nSMase2) Inhibitor Prodrugs in Mice and Dogs. Pharmaceutics 2024; 17:20. [PMID: 39861669 PMCID: PMC11768932 DOI: 10.3390/pharmaceutics17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC50 = 30 nM). Although promising, DPTIP exhibits poor pharmacokinetics (PKs) with a low oral bioavailability (%F < 5), and a short half-life (t1/2 ≤ 0.5 h). To address these limitations, we previously developed DPTIP prodrugs by masking its phenolic hydroxyl group, demonstrating improved plasma exposure in mice. Recognizing that species-specific metabolic differences can influence prodrug PK, we expanded our studies to evaluate selected prodrugs in both mice and dogs. Methods: The scaleup of selected prodrugs was completed and two additional valine- ester based prodrugs were synthesized. Mice were dosed prodrugs via peroral route (10 mg/kg equivalent). For dog studies DPTIP was dosed via intravenous (1 mg/kg) or peroral route (2 mg/kg) and prodrugs were given peroral at a dose 2 mg/kg DPTIP equivalent. Plasma samples were collected at predetermined points and analyzed using developed LC/MS-MS methods. Results: In mice, several of the tested prodrugs showed similar or improved plasma exposures compared to DPTIP. However, in dog studies, the double valine ester prodrug 9, showed significant improvement with an almost two-fold increase in DPTIP plasma exposure (AUC0-t = 1352 vs. 701 pmol·h/mL), enhancing oral bioavailability from 8.9% to 17.3%. Conclusions: These findings identify prodrug 9 as a promising candidate for further evaluation and underscore the critical role of species-specific differences in prodrug PKs.
Collapse
Affiliation(s)
- Arina Ranjit
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chae Bin Lee
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lukáš Tenora
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Vijaya Saradhi Mettu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Arindom Pal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Scuteri A, Donzelli E. Dual role of extracellular vesicles in neurodegenerative diseases. World J Stem Cells 2024; 16:1002-1011. [PMID: 39734484 PMCID: PMC11669982 DOI: 10.4252/wjsc.v16.i12.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases. On the other hand, EVs also form the core of a new therapeutic strategy for neuroprotection, which is based on the administration of EVs derived from a wide range of donor cells. In particular, the possibility of obtaining numerous EVs from stem cells of different origins, which is feasible for therapeutic aims, is now under investigation. In this review, we focused on neurodegenerative diseases, in which EVs could have a propagative detrimental effect or could also be exploited to deliver protective factors. This review explores the different hypotheses concerning the dual role of EVs, with the aim of shedding light on the following question: Can vesicles be used to fight vesicle-propagated diseases?
Collapse
Affiliation(s)
- Arianna Scuteri
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.
| | - Elisabetta Donzelli
- Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
4
|
Zhu Y, Wang F, Xia Y, Wang L, Lin H, Zhong T, Wang X. Research progress on astrocyte-derived extracellular vesicles in the pathogenesis and treatment of neurodegenerative diseases. Rev Neurosci 2024; 35:855-875. [PMID: 38889403 DOI: 10.1515/revneuro-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), pose significant global health risks and represent a substantial public health concern in the contemporary era. A primary factor in the pathophysiology of these disorders is aberrant accumulation and aggregation of pathogenic proteins within the brain and spinal cord. Recent investigations have identified extracellular vesicles (EVs) in the central nervous system (CNS) as potential carriers for intercellular transport of misfolded proteins associated with neurodegenerative diseases. EVs are involved in pathological processes that contribute to various brain disorders including neurodegenerative disorders. Proteins linked to neurodegenerative disorders are secreted and distributed from cell to cell via EVs, serving as a mechanism for direct intercellular communication through the transfer of biomolecules. Astrocytes, as active participants in CNS intercellular communication, release astrocyte-derived extracellular vesicles (ADEVs) that are capable of interacting with diverse target cells. This review primarily focuses on the involvement of ADEVs in the development of neurological disorders and explores their potential dual roles - both advantageous and disadvantageous in the context of neurological disorders. Furthermore, this review examines the current studies investigating ADEVs as potential biomarkers for the diagnosis and treatment of neurodegenerative diseases. The prospects and challenges associated with the application of ADEVs in clinical settings were also comprehensively reviewed.
Collapse
Affiliation(s)
- Yifan Zhu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Fangsheng Wang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Yu Xia
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Haihong Lin
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, Jiangxi, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| |
Collapse
|
5
|
Forero A, Pipicelli F, Moser S, Baumann N, Grätz C, Gonzalez Pisfil M, Pfaffl MW, Pütz B, Kielkowski P, Cernilogar FM, Maccarrone G, Di Giaimo R, Cappello S. Extracellular vesicle-mediated trafficking of molecular cues during human brain development. Cell Rep 2024; 43:114755. [PMID: 39302835 DOI: 10.1016/j.celrep.2024.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/03/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Cellular crosstalk is an essential process influenced by numerous factors, including secreted vesicles that transfer nucleic acids, lipids, and proteins between cells. Extracellular vesicles (EVs) have been the center of many studies focusing on neurodegenerative disorders, but whether EVs display cell-type-specific features for cellular crosstalk during neurodevelopment is unknown. Here, using human-induced pluripotent stem cell-derived cerebral organoids, neural progenitors, neurons, and astrocytes, we identify heterogeneity in EV protein content and dynamics in a cell-type-specific and time-dependent manner. Our results support the trafficking of key molecules via EVs in neurodevelopment, such as the transcription factor YAP1, and their localization to differing cell compartments depending on the EV recipient cell type. This study sheds new light on the biology of EVs during human brain development.
Collapse
Affiliation(s)
- Andrea Forero
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sylvain Moser
- Max Planck Institute of Psychiatry, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Grätz
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine, Biomedical Center, Ludwig Maximilian University, Munich, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, Technical University of Munich, Freising, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Pavel Kielkowski
- Department of Chemistry, Ludwig Maximilian University, Munich, Germany
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University, Munich, Germany; Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | | | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany; Department of Biology, University of Naples Federico II, Naples, Italy.
| | - Silvia Cappello
- Max Planck Institute of Psychiatry, Munich, Germany; Division of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, Ludwig Maximilian University (LMU), Munich, Germany.
| |
Collapse
|
6
|
Zanirati G, dos Santos PG, Alcará AM, Bruzzo F, Ghilardi IM, Wietholter V, Xavier FAC, Gonçalves JIB, Marinowic D, Shetty AK, da Costa JC. Extracellular Vesicles: The Next Generation of Biomarkers and Treatment for Central Nervous System Diseases. Int J Mol Sci 2024; 25:7371. [PMID: 39000479 PMCID: PMC11242541 DOI: 10.3390/ijms25137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024] Open
Abstract
It has been widely established that the characterization of extracellular vesicles (EVs), particularly small EVs (sEVs), shed by different cell types into biofluids, helps to identify biomarkers and therapeutic targets in neurological and neurodegenerative diseases. Recent studies are also exploring the efficacy of mesenchymal stem cell-derived extracellular vesicles naturally enriched with therapeutic microRNAs and proteins for treating various diseases. In addition, EVs released by various neural cells play a crucial function in the modulation of signal transmission in the brain in physiological conditions. However, in pathological conditions, such EVs can facilitate the spread of pathological proteins from one brain region to the other. On the other hand, the analysis of EVs in biofluids can identify sensitive biomarkers for diagnosis, prognosis, and disease progression. This review discusses the potential therapeutic use of stem cell-derived EVs in several central nervous system diseases. It lists their differences and similarities and confers various studies exploring EVs as biomarkers. Further advances in EV research in the coming years will likely lead to the routine use of EVs in therapeutic settings.
Collapse
Affiliation(s)
- Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Paula Gabrielli dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernanda Bruzzo
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Vinicius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Fernando Antônio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, Texas A&M University School of Medicine, College Station, TX 77807, USA;
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90610-000, RS, Brazil; (P.G.d.S.); (F.B.); (I.M.G.); (V.W.); (F.A.C.X.); (J.I.B.G.); (D.M.); (J.C.d.C.)
| |
Collapse
|
7
|
Pérez-Rubio P, Lavado-García J, Bosch-Molist L, Romero EL, Cervera L, Gòdia F. Extracellular vesicle depletion and UGCG overexpression mitigate the cell density effect in HEK293 cell culture transfection. Mol Ther Methods Clin Dev 2024; 32:101190. [PMID: 38327808 PMCID: PMC10847930 DOI: 10.1016/j.omtm.2024.101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024]
Abstract
The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Lavado-García
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laia Bosch-Molist
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Elianet Lorenzo Romero
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Laura Cervera
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
8
|
Azparren‐Angulo M, Mleczko J, Alboniga OE, Kruglik S, Guigner J, Gonzalez E, Garcia‐Vallicrosa C, Llop J, Simó C, Alonso C, Iruarrizaga M, Royo F, Falcon‐Perez JM. Lipidomics and biodistribution of extracellular vesicles-secreted by hepatocytes from Zucker lean and fatty rats. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e140. [PMID: 38939902 PMCID: PMC11080883 DOI: 10.1002/jex2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been involved in metabolic syndrome, although their specific role in the development of the pathology is still unknown. To further study the role of EVs, we have analysed by Raman tweezers microspectroscopy and mass spectrometry-based lipidomics the small EVs population secreted by fatty (ZF) and lean (ZL) hepatocytes obtained from Zucker rats. We have also explored in vivo and ex vivo biodistribution of these EVs through fluorine-18-radiolabelling using a positron emission tomography imaging. Based on the proportion of proteins to lipids and the types of lipids, our results indicate that within the range of small EVs, primary hepatocytes secrete different subpopulations of particles. These differences were observed in the enrichment of triglyceride species in EVs secreted by ZF hepatocytes. Biodistribution experiments showed accumulation in the brain, heart, lungs, kidney and specially in bladder after intravenous administration. In summary, we show that EVs released by a fatty hepatocytes carry a different lipid signature compared to their lean counterpart. Biodistribution experiment has shown no difference in the distribution of EVs secreted by ZF and ZL hepatocytes but has given us a first view of possible target organs for these particles. Our results might open a door to both pathology studies and therapeutic interventions.
Collapse
Affiliation(s)
- Maria Azparren‐Angulo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Justyna Mleczko
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Oihane E. Alboniga
- Metabolomics Platform, CICbioGUNE‐BRTA, CIBERehdBizkaia Technology Park, DerioBizkaiaSpain
| | - Sergei Kruglik
- Laboratoire Jean PerrinSorbonne Université, CNRS UMR 8237, 4 place JussieuParisFrance
| | - Jean‐Michel Guigner
- L'Institut de Minéralogie, de Physique des Matériaux et de CosmochimieSorbonne Université, CNRS, IRD, MNHNParisFrance
| | - Esperanza Gonzalez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Clara Garcia‐Vallicrosa
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
| | - Jordi Llop
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | - Cristina Simó
- CIC biomaGUNEBasque Research and Technology Alliance (BRTA), Paseo Miramón 182, San SebastianGuipúzcoaSpain
| | | | | | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA), DerioBizkaiaSpain
- Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd)Instituto de Salud Carlos IIIMadridSpain
- IKERBASQUEBasque Foundation for Science, BilbaoBizkaiaSpain
| |
Collapse
|
9
|
Schiera G, Di Liegro CM, Schirò G, Sorbello G, Di Liegro I. Involvement of Astrocytes in the Formation, Maintenance, and Function of the Blood-Brain Barrier. Cells 2024; 13:150. [PMID: 38247841 PMCID: PMC10813980 DOI: 10.3390/cells13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The blood-brain barrier (BBB) is a fundamental structure that protects the composition of the brain by determining which ions, metabolites, and nutrients are allowed to enter the brain from the blood or to leave it towards the circulation. The BBB is structurally composed of a layer of brain capillary endothelial cells (BCECs) bound to each other through tight junctions (TJs). However, its development as well as maintenance and properties are controlled by the other brain cells that contact the BCECs: pericytes, glial cells, and even neurons themselves. Astrocytes seem, in particular, to have a very important role in determining and controlling most properties of the BBB. Here, we will focus on these latter cells, since the comprehension of their roles in brain physiology has been continuously expanding, even including the ability to participate in neurotransmission and in complex functions such as learning and memory. Accordingly, pathological conditions that alter astrocytic functions can alter the BBB's integrity, thus compromising many brain activities. In this review, we will also refer to different kinds of in vitro BBB models used to study the BBB's properties, evidencing its modifications under pathological conditions.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienzee Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
- Neurology and Multiple Sclerosis Center, Unità Operativa Complessa (UOC), Foundation Institute “G. Giglio”, 90015 Cefalù, Italy
| | - Gabriele Sorbello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (G.S.); (G.S.)
| |
Collapse
|
10
|
Sakamoto Y, Ochiya T, Yoshioka Y. Extracellular vesicles in the breast cancer brain metastasis: physiological functions and clinical applications. Front Hum Neurosci 2023; 17:1278501. [PMID: 38111675 PMCID: PMC10725966 DOI: 10.3389/fnhum.2023.1278501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Breast cancer, which exhibits an increasing incidence and high mortality rate among cancers, is predominantly attributed to metastatic malignancies. Brain metastasis, in particular, significantly contributes to the elevated mortality in breast cancer patients. Extracellular vesicles (EVs) are small lipid bilayer vesicles secreted by various cells that contain biomolecules such as nucleic acids and proteins. They deliver these bioactive molecules to recipient cells, thereby regulating signal transduction and protein expression levels. The relationship between breast cancer metastasis and EVs has been extensively investigated. In this review, we focus on the molecular mechanisms by which EVs promote brain metastasis in breast cancer. Additionally, we discuss the potential of EV-associated molecules as therapeutic targets and their relevance as early diagnostic markers for breast cancer brain metastasis.
Collapse
Affiliation(s)
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
11
|
Liao Y, Yi Q, He J, Huang D, Xiong J, Sun W, Sun W. Extracellular vesicles in tumorigenesis, metastasis, chemotherapy resistance and intercellular communication in osteosarcoma. Bioengineered 2023; 14:113-128. [PMID: 37377390 DOI: 10.1080/21655979.2022.2161711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/29/2023] Open
Abstract
HIGHLIGHTS Extracellular vehicles play crucial function in osteosarcoma tumorigenesis.Extracellular vehicles mediated the intercellular communication of osteosarcoma cells with other types cells in tumor microenvironment.Extracellular vehicles have potential utility in osteosarcoma diagnosis and treatment.
Collapse
Affiliation(s)
- Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, Chongqing, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
- The Central Laboratory, Affiliated Hospital of Putian University, Putian, Fujian, China
| | - Jinglong He
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, China
| | - Jianyi Xiong
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Weichao Sun
- Department of Orthopaedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| |
Collapse
|
12
|
Hoshimaru T, Nonoguchi N, Kosaka T, Furuse M, Kawabata S, Yagi R, Kurisu Y, Kashiwagi H, Kameda M, Takami T, Kataoka-Sasaki Y, Sasaki M, Honmou O, Hiramatsu R, Wanibuchi M. Actin Alpha 2, Smooth Muscle (ACTA2) Is Involved in the Migratory Potential of Malignant Gliomas, and Its Increased Expression at Recurrence Is a Significant Adverse Prognostic Factor. Brain Sci 2023; 13:1477. [PMID: 37891844 PMCID: PMC10605410 DOI: 10.3390/brainsci13101477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant glioma is a highly invasive tumor, and elucidating the glioma invasion mechanism is essential for developing novel therapies. We aimed to highlight actin alpha 2, smooth muscle (ACTA2) as potential biomarkers of brain invasion and distant recurrence in malignant gliomas. Using the human malignant glioma cell line, U251MG, we generated ACTA2 knockdown (KD) cells treated with small interfering RNA, and the cell motility and proliferation of the ACTA2 KD group were analyzed. Furthermore, tumor samples from 12 glioma patients who underwent reoperation at the time of tumor recurrence were utilized to measure ACTA2 expression in the tumors before and after recurrence. Thereafter, we examined how ACTA2 expression correlates with the time to tumor recurrence and the mode of recurrence. The results showed that the ACTA2 KD group demonstrated a decline in the mean motion distance and proliferative capacity compared to the control group. In the clinical glioma samples, ACTA2 expression was remarkably increased in recurrent samples compared to the primary samples from the same patients, and the higher the change in ACTCA2 expression from the start to relapse, the shorter the progression-free survival. In conclusion, ACTA2 may be involved in distant recurrence in clinical gliomas.
Collapse
Affiliation(s)
- Takumi Hoshimaru
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Takuya Kosaka
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Motomasa Furuse
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Ryokichi Yagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Yoshitaka Kurisu
- Department of Pathology, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Masahiro Kameda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Toshihiro Takami
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Hokkaido 060-8556, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Osaka 569-8686, Japan
| |
Collapse
|
13
|
Conti M, Minniti M, Tiné M, De Francesco M, Gaeta R, Nieri D, Semenzato U, Biondini D, Camera M, Cosio MG, Saetta M, Celi A, Bazzan E, Neri T. Extracellular Vesicles in Pulmonary Hypertension: A Dangerous Liaison? BIOLOGY 2023; 12:1099. [PMID: 37626985 PMCID: PMC10451884 DOI: 10.3390/biology12081099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023]
Abstract
The term pulmonary hypertension (PH) refers to different conditions, all characterized by increased pressure and resistance in the pulmonary arterial bed. PH has a wide range of causes (essentially, cardiovascular, pulmonary, or connective tissue disorders); however, idiopathic (i.e., without a clear cause) PH exists. This chronic, progressive, and sometimes devastating disease can finally lead to right heart failure and eventually death, through pulmonary vascular remodeling and dysfunction. The exact nature of PH pathophysiology is sometimes still unclear. Extracellular vesicles (EVs), previously known as apoptotic bodies, microvesicles, and exosomes, are small membrane-bound vesicles that are generated by almost all cell types and can be detected in a variety of physiological fluids. EVs are involved in intercellular communication, thus influencing immunological response, inflammation, embryogenesis, aging, and regenerative processes. Indeed, they transport chemokines, cytokines, lipids, RNA and miRNA, and other biologically active molecules. Although the precise functions of EVs are still not fully known, there is mounting evidence that they can play a significant role in the pathophysiology of PH. In this review, after briefly recapping the key stages of PH pathogenesis, we discuss the current evidence on the functions of EVs both as PH biomarkers and potential participants in the distinct pathways of disease progression.
Collapse
Affiliation(s)
- Maria Conti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Marianna Minniti
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Mariaenrica Tiné
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Miriam De Francesco
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Roberta Gaeta
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Dario Nieri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Umberto Semenzato
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Davide Biondini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Marina Camera
- Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
- Department of Pharmaceutical Sciences, Università Degli Studi di Milano, 20138 Milan, Italy
| | - Manuel G. Cosio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
- Meakins-Christie Laboratories, Respiratory Division, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Alessandro Celi
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (M.C.); (M.T.); (U.S.); (D.B.); (M.G.C.); (M.S.); (E.B.)
| | - Tommaso Neri
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, Università Degli Studi di Pisa, 56124 Pisa, Italy; (M.M.); (M.D.F.); (R.G.); (D.N.); (A.C.)
| |
Collapse
|
14
|
Schiera G, Cancemi P, Di Liegro CM, Naselli F, Volpes S, Cruciata I, Cardinale PS, Vaglica F, Calligaris M, Carreca AP, Chiarelli R, Scilabra SD, Leone O, Caradonna F, Di Liegro I. An In Vitro Model of Glioma Development. Genes (Basel) 2023; 14:genes14050990. [PMID: 37239349 DOI: 10.3390/genes14050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Gliomas are the prevalent forms of brain cancer and derive from glial cells. Among them, astrocytomas are the most frequent. Astrocytes are fundamental for most brain functions, as they contribute to neuronal metabolism and neurotransmission. When they acquire cancer properties, their functions are altered, and, in addition, they start invading the brain parenchyma. Thus, a better knowledge of transformed astrocyte molecular properties is essential. With this aim, we previously developed rat astrocyte clones with increasing cancer properties. In this study, we used proteomic analysis to compare the most transformed clone (A-FC6) with normal primary astrocytes. We found that 154 proteins are downregulated and 101 upregulated in the clone. Moreover, 46 proteins are only expressed in the clone and 82 only in the normal cells. Notably, only 11 upregulated/unique proteins are encoded in the duplicated q arm of isochromosome 8 (i(8q)), which cytogenetically characterizes the clone. Since both normal and transformed brain cells release extracellular vesicles (EVs), which might induce epigenetic modifications in the neighboring cells, we also compared EVs released from transformed and normal astrocytes. Interestingly, we found that the clone releases EVs containing proteins, such as matrix metalloproteinase 3 (MMP3), that can modify the extracellular matrix, thus allowing invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Patrizia Cancemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Sara Volpes
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Ilenia Cruciata
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Paola Sofia Cardinale
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Fabiola Vaglica
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Matteo Calligaris
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Anna Paola Carreca
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Simone Dario Scilabra
- Proteomics Group, Department of Research, ISMETT-IRCCS, Ri.MED Foundation, 90127 Palermo, Italy
| | - Olga Leone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palerm, Via del Vespro, 129, 90127 Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Edificio 16, 90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palerm, Via del Vespro, 129, 90127 Palermo, Italy
| |
Collapse
|
15
|
Dave KM, Stolz DB, Venna VR, Quaicoe VA, Maniskas ME, Reynolds MJ, Babidhan R, Dobbins DX, Farinelli MN, Sullivan A, Bhatia TN, Yankello H, Reddy R, Bae Y, Leak RK, Shiva SS, McCullough LD, Manickam DS. Mitochondria-containing extracellular vesicles (EV) reduce mouse brain infarct sizes and EV/HSP27 protect ischemic brain endothelial cultures. J Control Release 2023; 354:368-393. [PMID: 36642252 PMCID: PMC9974867 DOI: 10.1016/j.jconrel.2023.01.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
Ischemic stroke causes brain endothelial cell (BEC) death and damages tight junction integrity of the blood-brain barrier (BBB). We harnessed the innate mitochondrial load of BEC-derived extracellular vesicles (EVs) and utilized mixtures of EV/exogenous 27 kDa heat shock protein (HSP27) as a one-two punch strategy to increase BEC survival (via EV mitochondria) and preserve their tight junction integrity (via HSP27 effects). We demonstrated that the medium-to-large (m/lEV) but not small EVs (sEV) transferred their mitochondrial load, that subsequently colocalized with the mitochondrial network of the recipient primary human BECs. Recipient BECs treated with m/lEVs showed increased relative ATP levels and mitochondrial function. To determine if the m/lEV-meditated increase in recipient BEC ATP levels was associated with m/lEV mitochondria, we isolated m/lEVs from donor BECs pre-treated with oligomycin A (OGM, mitochondria electron transport complex V inhibitor), referred to as OGM-m/lEVs. BECs treated with naïve m/lEVs showed a significant increase in ATP levels compared to untreated OGD cells, OGM-m/lEVs treated BECs showed a loss of ATP levels suggesting that the m/lEV-mediated increase in ATP levels is likely a function of their innate mitochondrial load. In contrast, sEV-mediated ATP increases were not affected by inhibition of mitochondrial function in the donor BECs. Intravenously administered m/lEVs showed a reduction in brain infarct sizes compared to vehicle-injected mice in a mouse middle cerebral artery occlusion model of ischemic stroke. We formulated binary mixtures of human recombinant HSP27 protein with EVs: EV/HSP27 and ternary mixtures of HSP27 and EVs with a cationic polymer, poly (ethylene glycol)-b-poly (diethyltriamine): (PEG-DET/HSP27)/EV. (PEG-DET/HSP27)/EV and EV/HSP27 mixtures decreased the paracellular permeability of small and large molecular mass fluorescent tracers in oxygen glucose-deprived primary human BECs. This one-two punch approach to increase BEC metabolic function and tight junction integrity may be a promising strategy for BBB protection and prevention of long-term neurological dysfunction post-ischemic stroke.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Venugopal R Venna
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Victoria A Quaicoe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Michael E Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Michael John Reynolds
- Pittsburgh Heart Lung Blood Vascular Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Riyan Babidhan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Duncan X Dobbins
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Maura N Farinelli
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA; Department of Biochemistry and Molecular Biology, Gettysburg College, Gettysburg, PA, USA
| | - Abigail Sullivan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA; Psychological and Brain Sciences, Villanova University, Villanova, PA, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hannah Yankello
- Departments of Chemical and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rohan Reddy
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Younsoo Bae
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Kentucky, Lexington, KY, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Sruti S Shiva
- Pittsburgh Heart Lung Blood Vascular Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
17
|
Simone L, Pisani F, Binda E, Frigeri A, Vescovi AL, Svelto M, Nicchia GP. AQP4-dependent glioma cell features affect the phenotype of surrounding cells via extracellular vesicles. Cell Biosci 2022; 12:150. [PMID: 36071478 PMCID: PMC9450326 DOI: 10.1186/s13578-022-00888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Extracellular vesicles (EVs) are membrane-enclosed particles released systemically by all cells, including tumours. Tumour EVs have been shown to manipulate their local environments as well as distal targets to sustain the tumour in a variety of tumours, including glioblastoma (GBM). We have previously demonstrated the dual role of the glial water channel aquaporin-4 (AQP4) protein in glioma progression or suppression depending on its aggregation state. However, its possible role in communication mechanisms in the microenvironment of malignant gliomas remains to be unveiled. Results Here we show that in GBM cells AQP4 is released via EVs that are able to affect the GBM microenvironment. To explore this role, EVs derived from invasive GBM cells expressing AQP4-tetramers or apoptotic GBM cells expressing orthogonal arrays of particles (AQP4-OAPs) were isolated, using a differential ultracentrifugation method, and were added to pre-seeded GBM cells. Confocal microscopy analysis was used to visualize the interaction and uptake of AQP4-containing EVs by recipient cells. Chemoinvasion and Caspase3/7 activation assay, performed on recipient cells after EVs uptake, revealed that EVs produced by AQP4-tetramers expressing cells were able to drive surrounding tumour cells toward the migratory phenotype, whereas EVs produced by AQP4-OAPs expressing cells drive them toward the apoptosis pathway. Conclusion This study demonstrates that the different GBM cell phenotypes can be transferred by AQP4-containing EVs able to influence tumour cell fate toward invasiveness or apoptosis. This study opens a new perspective on the role of AQP4 in the brain tumour microenvironment associated with the EV-dependent communication mechanism. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00888-2.
Collapse
|
18
|
Rajkumar AP. Progressing Towards Blood Based Diagnostic RNA Biomarkers for Dementia With Lewy Bodies. Am J Geriatr Psychiatry 2022; 30:976-978. [PMID: 35370081 DOI: 10.1016/j.jagp.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Anto P Rajkumar
- Institute of Mental Health, Mental health and clinical neurosciences academic unit, Jubilee Campus, University of Nottingham, Triumph Road, Nottingham, NG7 2TU, UK; Mental health services of older people, Nottinghamshire healthcare NHS foundation trust, Nottingham, NG3 6AA, UK.
| |
Collapse
|
19
|
Nguyen NP, Helmbrecht H, Ye Z, Adebayo T, Hashi N, Doan MA, Nance E. Brain Tissue-Derived Extracellular Vesicle Mediated Therapy in the Neonatal Ischemic Brain. Int J Mol Sci 2022; 23:620. [PMID: 35054800 PMCID: PMC8775954 DOI: 10.3390/ijms23020620] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 μg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.
Collapse
Affiliation(s)
- Nam Phuong Nguyen
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
| | - Hawley Helmbrecht
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - Ziming Ye
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Tolulope Adebayo
- Department of Biology, University of Washington, Seattle, WA 98195, USA;
| | - Najma Hashi
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
| | - My-Anh Doan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| | - Elizabeth Nance
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA 98195, USA;
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA; (H.H.); (Z.Y.); (N.H.)
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA;
| |
Collapse
|
20
|
Santos A, Domingues C, Jarak I, Veiga F, Figueiras A. Osteosarcoma from the unknown to the use of exosomes as a versatile and dynamic therapeutic approach. Eur J Pharm Biopharm 2021; 170:91-111. [PMID: 34896571 DOI: 10.1016/j.ejpb.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
The most common primary malignant tumor of bone in children is osteosarcoma (OS). Nowadays, the prognosis and the introduction of chemotherapy in OS have improved survival rates of patients. Nevertheless, the results are still unsatisfactory, especially, in patients with recurrent disease or metastatic. OS chemotherapy has two main challenges related to treatment toxicity and multiple drug resistance. In this way, nanotechnology has developed nanosystems capable of releasing the drug directly at the OS cells and decreasing the drug's toxicity. Exosomes (Exo), a cell-derived nano-sized and a phospholipid vehicle, have been recognized as important drug delivery systems in several cancers. They are involved in a variety of biological processes and are an important mediator of long-distance intercellular communication. Exo can reduce inflammation and show low toxicity in healthy cells. Furthermore, the incorporation of specific proteins or peptides on the Exo surface improves their targeting capability in several clinical applications. Due to their unique structure and relevant characteristics, Exo is a promising nanocarrier for OS treatment. This review intends to describe the properties that turn Exo into an efficient, as well as safe nanovesicle for drug delivery and treatment of OS.
Collapse
Affiliation(s)
- Ana Santos
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Cátia Domingues
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal; Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Coimbra, Portugal
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Coimbra, Portugal; Univ Coimbra, LAQV, REQUIMTE, Faculty of Pharmacy, Portugal.
| |
Collapse
|
21
|
Luo X, Jean-Toussaint R, Sacan A, Ajit SK. Differential RNA packaging into small extracellular vesicles by neurons and astrocytes. Cell Commun Signal 2021; 19:75. [PMID: 34246289 PMCID: PMC8272329 DOI: 10.1186/s12964-021-00757-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Small extracellular vesicles (sEVs) mediate intercellular communication by transferring RNA, proteins, and lipids to recipient cells. These cargo molecules are selectively loaded into sEVs and mirror the physiological state of the donor cells. Given that sEVs can cross the blood-brain barrier and their composition can change in neurological disorders, the molecular signatures of sEVs in circulation can be potential disease biomarkers. Characterizing the molecular composition of sEVs from different cell types is an important first step in determining which donor cells contribute to the circulating sEVs. METHODS Cell culture supernatants from primary mouse cortical neurons and astrocytes were used to purify sEVs by differential ultracentrifugation and sEVs were characterized using nanoparticle tracking analysis, transmission electron microscopy and western blot. RNA sequencing was used to determine differential expression and loading patterns of miRNAs in sEVs released by primary neurons and astrocytes. Motif analysis was conducted on enriched miRNAs in sEVs and their respective donor cells. RESULTS Sequencing total cellular RNA, and miRNAs from sEVs isolated from culture media of postnatal mouse cortical neurons and astrocytes revealed a distinct profile between sEVs and their corresponding cells. Though the total number of detected miRNAs in astrocytes was greater than neurons, neurons expressed more sEV-associated miRNAs than astrocytes. Only 20.7% of astrocytic miRNAs were loaded into sEVs, while 41.0% of neuronal miRNAs were loaded into sEVs, suggesting differences in the cellular sorting mechanisms. We identified short RNA sequence motifs, or EXOmotifs, on the miRNAs that were differentially loaded or excluded from sEVs. A sequence motif GUAC was enriched in astrocytic sEVs. miRNAs preferably retained in neurons or astrocytes had a similar RNA motif CACACA, suggesting a cell-type-independent mechanism to maintain cellular miRNAs. mRNAs of five RNA-binding proteins associated with passive or active RNA sorting into sEVs were differentially expressed between neurons and astrocytes, one of which, major vault protein was higher in astrocytes than in neurons and detected in astrocytic sEVs. CONCLUSIONS Our studies suggest differences in RNA sorting into sEVs. These differences in miRNA signatures can be used for determining the cellular sources of sEVs altered in neurological disorders. Video abstract.
Collapse
Affiliation(s)
- Xuan Luo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| | - Renée Jean-Toussaint
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| | - Ahmet Sacan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 USA
| | - Seena K. Ajit
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA 19102 USA
| |
Collapse
|
22
|
Schiera G, Di Liegro CM, Di Liegro I. Involvement of Thyroid Hormones in Brain Development and Cancer. Cancers (Basel) 2021; 13:2693. [PMID: 34070729 PMCID: PMC8197921 DOI: 10.3390/cancers13112693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.
Collapse
Affiliation(s)
- Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
23
|
Mallach A, Gobom J, Zetterberg H, Hardy J, Piers TM, Wray S, Pocock JM. The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles. Brain Commun 2021; 3:fcab009. [PMID: 34704019 PMCID: PMC8244649 DOI: 10.1093/braincomms/fcab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47Hhet triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimer's disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47Hhet variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47Hhet microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1β and triggering receptor expressed on myeloid cells 2 between common variant and R47Hhet derived exosomes. Furthermore unlike common variant-derived exosomes, R47Hhet exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47Hhet-derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimer's disease and may point to further targets for therapeutic intervention.
Collapse
Affiliation(s)
- Anna Mallach
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, S-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute University College London, London WC1E 6BT, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute University College London, London WC1E 6BT, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Thomas M Piers
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK
| |
Collapse
|
24
|
Elliott RO, He M. Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13010122. [PMID: 33477972 PMCID: PMC7835896 DOI: 10.3390/pharmaceutics13010122] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/25/2022] Open
Abstract
Since the 2013 Nobel Prize was awarded for the discovery of vesicle trafficking, a subgroup of nanovesicles called exosomes has been driving the research field to a new regime for understanding cellular communication. This exosome-dominated traffic control system has increased understanding of many diseases, including cancer metastasis, diabetes, and HIV. In addition to the important diagnostic role, exosomes are particularly attractive for drug delivery, due to their distinctive properties in cellular information transfer and uptake. Compared to viral and non-viral synthetic systems, the natural, cell-derived exosomes exhibit intrinsic payload and bioavailability. Most importantly, exosomes easily cross biological barriers, obstacles that continue to challenge other drug delivery nanoparticle systems. Recent emerging studies have shown numerous critical roles of exosomes in many biological barriers, including the blood–brain barrier (BBB), blood–cerebrospinal fluid barrier (BCSFB), blood–lymph barrier (BlyB), blood–air barrier (BAB), stromal barrier (SB), blood–labyrinth barrier (BLaB), blood–retinal barrier (BRB), and placental barrier (PB), which opens exciting new possibilities for using exosomes as the delivery platform. However, the systematic reviews summarizing such discoveries are still limited. This review covers state-of-the-art exosome research on crossing several important biological barriers with a focus on the current, accepted models used to explain the mechanisms of barrier crossing, including tight junctions. The potential to design and engineer exosomes to enhance delivery efficacy, leading to future applications in precision medicine and immunotherapy, is discussed.
Collapse
Affiliation(s)
- Rebekah Omarkhail Elliott
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
| | - Mei He
- Department of Chemical and Petroleum Engineering, Bioengineering Program, University of Kansas, Lawrence, KS 66045, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
25
|
Ha BG, Heo JY, Jang YJ, Park TS, Choi JY, Jang WY, Jeong SJ. Depletion of Mitochondrial Components from Extracellular Vesicles Secreted from Astrocytes in a Mouse Model of Fragile X Syndrome. Int J Mol Sci 2021; 22:E410. [PMID: 33401721 PMCID: PMC7794859 DOI: 10.3390/ijms22010410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial dysfunction contributes to neurodegenerative diseases and developmental disorders such as Fragile X syndrome (FXS). The cross-talk between mitochondria and extracellular vesicles (EVs) suggests that EVs may transfer mitochondrial components as intermediators for intracellular communication under physiological and pathological conditions. In the present study, the ability of EVs to transfer mitochondrial components and their role in mitochondrial dysfunction in astrocytes were examined in the brains of Fmr1 knockout (KO) mice, a model of FXS. The amounts of mitochondrial transcription factor NRF-1, ATP synthases ATP5A and ATPB, and the mitochondrial membrane protein VDAC1 in EVs were reduced in cerebral cortex samples and astrocytes from Fmr1 KO mice. These reductions correspond to decreased mitochondrial biogenesis and transcriptional activities in Fmr1 KO brain, along with decreased mitochondrial membrane potential (MMP) with abnormal localization of vimentin intermediate filament (VIF) in Fmr1 KO astrocytes. Our results suggest that mitochondrial dysfunction in astrocytes is associated with the pathogenesis of FXS and can be monitored by depletion of components in EVs. These findings may improve the ability to diagnose developmental diseases associated with mitochondrial dysfunction, such as FXS and autism spectrum disorders (ASD).
Collapse
Affiliation(s)
- Byung Geun Ha
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Jung-Yoon Heo
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Yu-Jin Jang
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Tae-Shin Park
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Ju-Yeon Choi
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Woo Young Jang
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
| | - Sung-Jin Jeong
- Research Group of Developmental Disorders and Rare Diseases, Korea Brain Research Institute (KBRI), Daegu 41062, Korea; (B.G.H.); (J.-Y.H.); (Y.-J.J.); (T.-S.P.); (J.-Y.C.); (W.Y.J.)
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
26
|
Genetic Exchange of Lung-Derived Exosome to Brain Causing Neuronal Changes on COVID-19 Infection. Mol Neurobiol 2021; 58:5356-5368. [PMID: 34312772 PMCID: PMC8313419 DOI: 10.1007/s12035-021-02485-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The pandemic of novel coronavirus 2 (SARS-CoV-2) has made global chaos for normal human living. Despite common COVID-19 symptoms, variability in clinical phenotypes was reported worldwide. Reports on SARS-CoV-2 suggest causing neurological manifestation. In addition, the susceptibility of SARS-CoV-2 in patients with neurodegenerative diseases and its complexity are largely unclear. Here, we aimed to demonstrate the possible transport of exosome from SARS-CoV-2-infected lungs to the brain regions associated with neurodegenerative diseases using multiple transcriptome datasets of SARS-CoV-2-infected lungs, RNA profiles from lung exosome, and gene expression profiles of the human brain. Upon transport, the transcription factors localized in the exosome regulate genes at lateral substantia nigra, medial substantia nigra, and superior frontal gyrus regions of Parkinson's disease (PD) and frontal cortex, hippocampus, and temporal cortex of Alzheimer's disease (AD). On SARS-CoV-2 infection, BCL3, JUND, MXD1, IRF2, IRF9, and STAT1 transcription factors in the exosomes influence the neuronal gene regulatory network and accelerate neurodegeneration. STAT1 transcription factor regulates 64 PD genes at lateral substantia nigra, 65 at superior frontal gyrus, and 19 at medial substantia nigra. Similarly, in AD, STAT1 regulates 74 AD genes at the temporal cortex, 40 genes at the hippocampus, and 16 genes at the frontal cortex. We further demonstrate that dysregulated neuronal genes showed involvement in immune response, signal transduction, apoptosis, and stress response process. In conclusion, SARS-CoV-2 may dysregulate neuronal gene regulatory network through exosomes that attenuate disease severity of neurodegeneration.
Collapse
|
27
|
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. The biological pathways of Alzheimer disease: a review. AIMS Neurosci 2020; 8:86-132. [PMID: 33490374 PMCID: PMC7815481 DOI: 10.3934/neuroscience.2021005] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease is a progressive neurodegenerative disorder, mainly affecting older people, which severely impairs patients' quality of life. In the recent years, the number of affected individuals has seen a rapid increase. It is estimated that up to 107 million subjects will be affected by 2050 worldwide. Research in this area has revealed a lot about the biological and environmental underpinnings of Alzheimer, especially its correlation with β-Amyloid and Tau related mechanics; however, the precise molecular events and biological pathways behind the disease are yet to be discovered. In this review, we focus our attention on the biological mechanics that may lie behind Alzheimer development. In particular, we briefly describe the genetic elements and discuss about specific biological processes potentially associated with the disease.
Collapse
Affiliation(s)
| | | | | | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Italy
| |
Collapse
|
28
|
Tsujimaru K, Takanashi M, Sudo K, Ishikawa A, Mineo S, Ueda S, Kumagai K, Kuroda M. Extracellular microvesicles that originated adipose tissue derived mesenchymal stem cells have the potential ability to improve rheumatoid arthritis on mice. Regen Ther 2020; 15:305-311. [PMID: 33426233 PMCID: PMC7770341 DOI: 10.1016/j.reth.2020.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are promising therapeutic tools in regenerative medicine. In particularly adipose tissue derived MSC (AMSC) has powerful potential for the therapeutics of rheumatoid arthritis (RA) because these cells can control immune balance. RA systemically occurs autoimmune disease. Interestingly, IL-1 receptor antagonist deficient (IL-1ra-/-) mice induce inflammation in joints like RA. In RA therapy, although AMSC improves the inflammation activity, it is little known to play roles of extracellular microvesicles (EV) for improvement of RA. To clarify the MSC-derived EVs are involved amelioration mechanisms for RA by themselves, we examined the functional effects of development for RA by AMSC-EVs. Methods We isolated AMSCs derived mice adipose tissue and purified EVs from the culture supernatant of AMSCs. To examine whether EVs can improve RA, we administrated EVs or AMSCs to IL-1ra knockout mice as RA model mice. We analyzed EVs-included factor by western blot methods and RA improvement effect by ELISA. Results In this study, we showed that the swellings of joints on mice in wild type AMSC and that in AMSC-EVs decreased than that in IL-1ra-/- mice-AMSC-EVs and in none-treated. We detected IL-1ra expression in AMSC-EVs in wild type mice but not that in IL-1ra-/- mice. Proinflammatory cytokine expression changes in mice showed in AMSCs and AMSC-EVs, but no apparent differences cytokine expressions were detected in IL-1ra-/- mice. Conclusions In this study, we concluded that MSCs might improve RA by the transferring of factors such as IL-1ra, which are included their MSC derived- EVs.
Collapse
Affiliation(s)
| | | | - Katsuko Sudo
- Preclinical Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Shoichiro Mineo
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Shinobu Ueda
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Katsuyoshi Kumagai
- Preclinical Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Japan
| |
Collapse
|
29
|
Abstract
OBJECTIVES Lewy body dementia (LBD) is the second most prevalent neurodegenerative dementia and it causes more morbidity and mortality than Alzheimer's disease. Several genetic associations of LBD have been reported and their functional implications remain uncertain. Hence, we aimed to do a systematic review of all gene expression studies that investigated people with LBD for improving our understanding of LBD molecular pathology and for facilitating discovery of novel biomarkers and therapeutic targets for LBD. METHODS We systematically reviewed five online databases (PROSPERO protocol: CRD42017080647) and assessed the functional implications of all reported differentially expressed genes (DEGs) using Ingenuity Pathway Analyses. RESULTS We screened 3,809 articles and identified 31 eligible studies. In that, 1,242 statistically significant (p < 0.05) DEGs including 70 microRNAs have been reported in people with LBD. Expression levels of alternatively spliced transcripts of SNCA, SNCB, PRKN, APP, RELA, and ATXN2 significantly differ in LBD. Several mitochondrial genes and genes involved in ubiquitin proteasome system and autophagy-lysosomal pathway were significantly downregulated in LBD. Evidence supporting chronic neuroinflammation in LBD was inconsistent. Our functional analyses highlighted the importance of ribonucleic acid (RNA)-mediated gene silencing, neuregulin signalling, and neurotrophic factors in the molecular pathology of LBD. CONCLUSIONS α-synuclein aggregation, mitochondrial dysfunction, defects in molecular networks clearing misfolded proteins, and RNA-mediated gene silencing contribute to neurodegeneration in LBD. Larger longitudinal transcriptomic studies investigating biological fluids of people living with LBD are needed for molecular subtyping and staging of LBD. Diagnostic biomarker potential and therapeutic promise of identified DEGs warrant further research.
Collapse
|
30
|
Aharon A, Spector P, Ahmad RS, Horrany N, Sabbach A, Brenner B, Aharon-Peretz J. Extracellular Vesicles of Alzheimer's Disease Patients as a Biomarker for Disease Progression. Mol Neurobiol 2020; 57:4156-4169. [PMID: 32676990 DOI: 10.1007/s12035-020-02013-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain pathology and the most common form of dementia. Evidence suggests that extracellular vesicles (EVs) containing cytokines and microRNA are involved in inflammation regulation. The current study aimed to explore a potential impact of AD patients' EVs on disease progression. Blood samples were collected after obtaining signed informed consent (No. 0462-14-RMB) from 42 AD patients at three stages of disease severity and from 19 healthy controls (HC). EV size and concentration were studied by nanotracking analysis. EV membrane antigens were defined by flow cytometry and Western blot; EV protein contents were screened by protein array; the miRNA content was screened by nanostring technology and validated by RT-PCR. HC and AD patients' EVs consisted of a mixture of small (< 100 nm) and larger vesicles. The myelin oligodendrocyte glycoprotein (MOG) expression on EVs correlated with disease severity. EVs of patients with moderate and severe AD had significantly higher levels of MOG, compared with mild AD patients. Levels of EVs expressing the axonal glycoprotein CD171 were significantly higher in severe AD patients than in HC. Increase in endothelial EVs was observed in AD patients. An above twofold increase was found in the content of inflammatory cytokines and > 50% decrease in growth factors in AD patients' EVs compared with HC-EVs. Levels of let-7g-5p, miR126-3p, miR142-3p, miR-146a-5p, and mir223-3p correlated with disease severity. Neural damage, specific miRNA downregulation, and inflammatory cytokine upregulation, found in patients' EVs, might be used as a biomarker reflecting AD severity.
Collapse
Affiliation(s)
- Anat Aharon
- Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel. .,Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel. .,Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Polina Spector
- Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| | | | - Nizar Horrany
- Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Annie Sabbach
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Benjamin Brenner
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Judith Aharon-Peretz
- Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Cognitive Neurology Unit, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
31
|
Upadhya R, Zingg W, Shetty S, Shetty AK. Astrocyte-derived extracellular vesicles: Neuroreparative properties and role in the pathogenesis of neurodegenerative disorders. J Control Release 2020; 323:225-239. [PMID: 32289328 DOI: 10.1016/j.jconrel.2020.04.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) released by neural cells play an essential role in brain homeostasis and the crosstalk between neural cells and the periphery. EVs are diverse, nano-sized vesicles, which transport proteins, nucleic acids, and lipids between cells over short and long expanses and hence are proficient for modulating the target cells. EVs released from neural cells are implicated in synaptic plasticity, neuron-glia interface, neuroprotection, neuroregeneration, and the dissemination of neuropathological molecules. This review confers the various properties of EVs secreted by astrocytes and their potential role in health and disease with a focus on evolving concepts. Naïve astrocytes shed EVs containing a host of neuroprotective compounds, which include fibroblast growth factor-2, vascular endothelial growth factor, and apolipoprotein-D. Stimulated astrocytes secrete EVs with neuroprotective molecules including heat shock proteins, synapsin 1, unique microRNAs, and glutamate transporters. Well-characterized astrocyte-derived EVs (ADEVs) generated in specific culture conditions and ADEVs that are engineered to carry the desired miRNAs or proteins are likely useful for treating brain injury and neurogenerative diseases. On the other hand, in conditions such as Alzheimer's disease (AD), stroke, Parkinson's disease, Amyotrophic lateral sclerosis (ALS), and other neuroinflammatory conditions, EVs released by activated astrocytes appear to mediate or exacerbate the pathological processes. The examples include ADEVs spreading the dysregulated complement system in AD, mediating motoneuron toxicity in ALS, and stimulating peripheral leukocyte migration into the brain in inflammatory conditions. Strategies restraining the release of EVs by activated astrocytes or modulating the composition of ADEVs are likely beneficial for treating neurodegenerative diseases. Also, periodic analyses of ADEVs in the blood is useful for detecting astrocyte-specific biomarkers in different neurological conditions and for monitoring disease progression and remission with distinct therapeutic approaches.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Winston Zingg
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Siddhant Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|
32
|
Extracellular Vesicles as Signaling Mediators and Disease Biomarkers across Biological Barriers. Int J Mol Sci 2020; 21:ijms21072514. [PMID: 32260425 PMCID: PMC7178048 DOI: 10.3390/ijms21072514] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles act as shuttle vectors or signal transducers that can deliver specific biological information and have progressively emerged as key regulators of organized communities of cells within multicellular organisms in health and disease. Here, we survey the evolutionary origin, general characteristics, and biological significance of extracellular vesicles as mediators of intercellular signaling, discuss the various subtypes of extracellular vesicles thus far described and the principal methodological approaches to their study, and review the role of extracellular vesicles in tumorigenesis, immunity, non-synaptic neural communication, vascular-neural communication through the blood-brain barrier, renal pathophysiology, and embryo-fetal/maternal communication through the placenta.
Collapse
|
33
|
Notarangelo M, Ferrara D, Potrich C, Lunelli L, Vanzetti L, Provenzani A, Basso M, Quattrone A, D’Agostino VG. Rapid Nickel-based Isolation of Extracellular Vesicles from Different Biological Fluids. Bio Protoc 2020; 10:e3512. [PMID: 33654737 PMCID: PMC7842538 DOI: 10.21769/bioprotoc.3512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous structures that cells massively release in extracellular fluids. EVs are cargo of cellular components such as lipids, proteins, and nucleic acids that can work as a formidable source in liquid biopsy studies searching for disease biomarkers. We recently demonstrated that nickel-based isolation (NBI) is a valuable method for fast, efficient, and easy recovery of heterogeneous EVs from biological fluids. NBI exploits nickel cations to capture negatively charged vesicles. Then, a mix of balanced chelating agents elutes EVs while preserving their integrity and stability in solution. Here, we describe steps and quality controls to functionalize a matrix of agarose beads, obtain an efficient elution of EVs, and extract nucleic acids carried by them. We demonstrate the versatility of NBI method in isolating EVs from media of primary mouse astrocytes, from human blood, urine, and saliva processed in parallel, as well as outer membrane vesicles (OMVs) from cultured Gram-negative bacteria.
Collapse
Affiliation(s)
- Michela Notarangelo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Deborah Ferrara
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Cristina Potrich
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, and CNR-Institute of Biophysics, Trento, Italy
| | - Lorenzo Lunelli
- Fondazione Bruno Kessler (FBK), Laboratory of Biomolecular Sequence and Structure Analysis for Health, and CNR-Institute of Biophysics, Trento, Italy
| | - Lia Vanzetti
- Fondazione Bruno Kessler (FBK), Center for Materials and Microsystems, Trento, Italy
| | - Alessandro Provenzani
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Vito G. D’Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
34
|
Chen J, Xu Q, Zhang Y, Zhang H. RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Chronic Hepatitis and Acute-on-chronic Liver Failure Caused By HBV. Sci Rep 2020; 10:1528. [PMID: 32001731 PMCID: PMC6992791 DOI: 10.1038/s41598-020-58233-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
Hepatitis B virus (HBV) is the main causative viral agent for liver diseases in China. In liver injury, exosomes may impede the interaction with chromatin in the target cell and transmit inflammatory, apoptosis, or regeneration signals through RNAs. Therefore, we attempted to determine the potential functions of exosomal RNAs using bioinformatics technology. We performed RNA sequencing analysis in exosomes derived from clinical specimens of healthy control (HC) individuals and patients with chronic hepatitis B (CHB) and acute-on-chronic liver failure caused by HBV (HBV-ACLF). This analysis resulted in the identification of different types and proportions of RNAs in exosomes from the HC individuals and patients. Exosomes from the CHB and HBV-ACLF patients showed distinct upregulation and downregulation patterns of differentially expressed genes compared with those from the HC subjects. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway analysis further confirmed different patterns of biological functions and signalling pathways in CHB and HBV-ACLF. Then we chose two upregulated RNAs both in CHB and HBV-ACLF for further qPCR validation. It confirmed the significantly different expression levels in CHB and HBV-ACLF compared with HC. Our findings indicate selective packaging of the RNA cargo into exosomes under different HBV attacks; these may represent potential targets for the diagnosis and treatment of HBV-caused liver injury.
Collapse
Affiliation(s)
- Jiajia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Qingsheng Xu
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| |
Collapse
|
35
|
Cell-to-Cell Communication in Learning and Memory: From Neuro- and Glio-Transmission to Information Exchange Mediated by Extracellular Vesicles. Int J Mol Sci 2019; 21:ijms21010266. [PMID: 31906013 PMCID: PMC6982255 DOI: 10.3390/ijms21010266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 02/06/2023] Open
Abstract
Most aspects of nervous system development and function rely on the continuous crosstalk between neurons and the variegated universe of non-neuronal cells surrounding them. The most extraordinary property of this cellular community is its ability to undergo adaptive modifications in response to environmental cues originating from inside or outside the body. Such ability, known as neuronal plasticity, allows long-lasting modifications of the strength, composition and efficacy of the connections between neurons, which constitutes the biochemical base for learning and memory. Nerve cells communicate with each other through both wiring (synaptic) and volume transmission of signals. It is by now clear that glial cells, and in particular astrocytes, also play critical roles in both modes by releasing different kinds of molecules (e.g., D-serine secreted by astrocytes). On the other hand, neurons produce factors that can regulate the activity of glial cells, including their ability to release regulatory molecules. In the last fifteen years it has been demonstrated that both neurons and glial cells release extracellular vesicles (EVs) of different kinds, both in physiologic and pathological conditions. Here we discuss the possible involvement of EVs in the events underlying learning and memory, in both physiologic and pathological conditions.
Collapse
|
36
|
Dagur RS, Liao K, Sil S, Niu F, Sun Z, Lyubchenko YL, Peeples ES, Hu G, Buch S. Neuronal-derived extracellular vesicles are enriched in the brain and serum of HIV-1 transgenic rats. J Extracell Vesicles 2019; 9:1703249. [PMID: 32002168 PMCID: PMC6968593 DOI: 10.1080/20013078.2019.1703249] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/06/2019] [Accepted: 12/05/2019] [Indexed: 01/14/2023] Open
Abstract
Despite the efficacy of combination antiretroviral therapy (ART) in controlling human immunodeficiency virus (HIV-1) replication, cytotoxic viral proteins such as HIV-1 transactivator of transcription (Tat) persist in tissues such as the brain. Although HIV-1 does not infect neuronal cells, it is susceptible to viral Tat protein-mediated toxicity, leading to neuroinflammation that underlies HIV-associated neurocognitive disorders (HAND). Given the role of extracellular vesicles (EVs) in both cellular homoeostasis and under pathological conditions, we sought to investigate the alterations in the quantity of neuronal-derived EVs in the brain - as defined by the presence of cell adhesion molecule L1 (L1CAM) and to evaluate the presence of L1CAM+ EVs in the peripheral circulation of HIV-1 transgenic (HIV-1 Tg) rats. The primary goal of this study was to investigate the effect of long-term exposure of HIV-1 viral proteins on the release of neuronal EVs in the brain and their transfer in the systemic compartment. Brain and serum EVs were isolated from both wild type and HIV-1 Tg rats using differential ultracentrifugation with further purification using the Optiprep gradient method. The subpopulation of neuronal EVs was further enriched using immunoprecipitation. The current findings demonstrated increased presence of L1CAM+ neuronal-derived EVs both in the brain and serum of HIV-1 Tg rats.
Collapse
Affiliation(s)
- Raghubendra Singh Dagur
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
37
|
Guha D, Lorenz DR, Misra V, Chettimada S, Morgello S, Gabuzda D. Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J Neuroinflammation 2019; 16:254. [PMID: 31805958 PMCID: PMC6896665 DOI: 10.1186/s12974-019-1617-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are nano-sized particles present in most body fluids including cerebrospinal fluid (CSF). Little is known about CSF EV proteins in HIV+ individuals. Here, we characterize the CSF EV proteome in HIV+ subjects and its relationship to neuroinflammation, stress responses, and HIV-associated neurocognitive disorders (HAND). METHODS CSF EVs isolated from 20 HIV+ subjects with (n = 10) or without (n = 10) cognitive impairment were characterized by electron microscopy, nanoparticle tracking analysis, immunoblotting, and untargeted LC/MS/MS mass spectrometry. Functional annotation was performed by gene ontology (GO) mapping and expression annotation using Biobase Transfac and PANTHER software. Cultured astrocytic U87 cells were treated with hydrogen peroxide for 4 h to induce oxidative stress and EVs isolated by ultracentrifugation. Selected markers of astrocytes (GFAP, GLUL), inflammation (CRP), and stress responses (PRDX2, PARK7, HSP70) were evaluated in EVs released by U87 cells following induction of oxidative stress and in CSF EVs from HIV+ patients by immunoblotting. RESULTS Mass spectrometry identified 2727 and 1626 proteins in EV fractions and EV-depleted CSF samples, respectively. CSF EV fractions were enriched with exosomal markers including Alix, syntenin, tetraspanins, and heat-shock proteins and a subset of neuronal, astrocyte, oligodendrocyte, and choroid plexus markers, in comparison to EV-depleted CSF. Proteins related to synapses, immune/inflammatory responses, stress responses, metabolic processes, mitochondrial functions, and blood-brain barrier were also identified in CSF EV fractions by GO mapping. HAND subjects had higher abundance of CSF EVs and proteins mapping to GO terms for synapses, glial cells, inflammation, and stress responses compared to those without HAND. GFAP, GLUL, CRP, PRDX2, PARK7, and HSP70 were confirmed by immunoblotting of CSF EVs from subjects with HAND and were also detected in EVs released by U87 cells under oxidative stress. CONCLUSIONS These findings suggest that CSF EVs derived from neurons, glial cells, and choroid plexus carry synaptic, immune/inflammation-related, and stress response proteins in HIV+ individuals with cognitive impairment, representing a valuable source for biomarker discovery.
Collapse
Affiliation(s)
- Debjani Guha
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - David R Lorenz
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Vikas Misra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Sukrutha Chettimada
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience and Pathology, Mount Sinai Medical Center, New York, NY, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, CLS 1010, 450 Brookline Ave, Boston, MA, 02215, USA. .,Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Ma Y, Li C, Huang Y, Wang Y, Xia X, Zheng JC. Exosomes released from neural progenitor cells and induced neural progenitor cells regulate neurogenesis through miR-21a. Cell Commun Signal 2019; 17:96. [PMID: 31419975 PMCID: PMC6698014 DOI: 10.1186/s12964-019-0418-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Neural stem/progenitor cells (NPCs) are known to have potent therapeutic effects in neurological disorders through secreting exosomes. The limited numbers of NPCs in adult brain and the decline of NPC pool in many neurological disorders restrain the further use of exosomes in treating these diseases. The direct conversion of somatic cells into induced NPCs (iNPCs) provides abundant NPC-like cells to study the therapeutic effects of NPCs-originated exosomes (EXOs). Our recent study demonstrated that iNPCs-derived exosomes (iEXOs) exhibit distinct potential in facilitating the proliferation of NPCs, compared to EXOs, indicating the importance to investigate the effects of EXOs and iEXOs on the differentiation of NPCs, which remains unknown. Here, our results suggest that EXOs, but not iEXOs, promoted neuronal differentiation and neither of them had effect on glial generation. Microarray analysis revealed different miRNA signatures in EXOs and iEXOs, in which miR-21a was highly enriched in EXOs. Perturbation of function assay demonstrated the key roles of miR-21a in the generation of neurons and mediating the neurogenic potential of exosomes. Our data suggest that EXOs and iEXOs may achieve their therapeutic effects in promoting neurogenesis through transferring key miRNAs, which sheds light on the development of highly efficient cell-free therapeutic strategies for treating neurological diseases.
Collapse
Affiliation(s)
- Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China.,Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072, China. .,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092, China. .,Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA. .,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198-5930, USA.
| |
Collapse
|
39
|
Pavia FC, Di Bella MA, Brucato V, Blanda V, Zummo F, Vitrano I, Di Liegro CM, Ghersi G, Di Liegro I, Schiera G. A 3D‑scaffold of PLLA induces the morphological differentiation and migration of primary astrocytes and promotes the production of extracellular vesicles. Mol Med Rep 2019; 20:1288-1296. [PMID: 31173248 PMCID: PMC6625454 DOI: 10.3892/mmr.2019.10351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/16/2019] [Indexed: 12/24/2022] Open
Abstract
The present study analyzed the ability of primary rat astrocytes to colonize a porous scaffold, mimicking the reticular structure of the brain parenchyma extracellular matrix, as well as their ability to grow, survive and differentiate on the scaffold. Scaffolds were prepared using poly‑L‑lactic acid (PLLA) via thermally‑induced phase separation. Firstly, the present study studied the effects of scaffold morphology on the growth of astrocytes, evaluating their capability to colonize. Specifically, two different morphologies were tested, which were obtained by changing the polymer concentration in the starting solution. The structures were characterized by scanning electron microscopy, and a pore size of 20 µm (defined as the average distance between the pore walls) was detected. For comparison, astrocytes were also cultured in the traditional 2D culture system that we have been using since 2003. Then the effects of different substrates, such as collagen I and IV, and fibronectin were analyzed. The results revealed that the PLLA scaffolds, coated with collagen IV, served as very good matrices for astrocytes, which were observed to adhere, grow and colonize the matrix, acquiring their typical morphology. In addition, under these conditions, they secreted extracellular vesicles (EVs) that were compatible in size with exosomes. Their ability to produce exosomes was also suggested by transmission electron microscopy pictures which revealed both EVs and intracellular structures that could be interpreted as multivesicular bodies. The fact that these cells were able to adapt to the PLLA scaffold, together with our previous results, which demonstrated that brain capillary endothelial cells can grow and differentiate on the same scaffold, could support the future use of 3D brain cell co‑culture systems.
Collapse
Affiliation(s)
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I-90133 Palermo, Italy
| | - Valerio Brucato
- Department of Engineering, University of Palermo, I-90128 Palermo, Italy
| | - Valeria Blanda
- Department of Engineering, University of Palermo, I-90128 Palermo, Italy
| | - Francesca Zummo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, I-90128 Palermo, Italy
| | - Ilenia Vitrano
- Department of Engineering, University of Palermo, I-90128 Palermo, Italy
| | - Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, I-90128 Palermo, Italy
| | - Giulio Ghersi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, I-90128 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, I-90133 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, I-90128 Palermo, Italy
| |
Collapse
|
40
|
Malloci M, Perdomo L, Veerasamy M, Andriantsitohaina R, Simard G, Martínez MC. Extracellular Vesicles: Mechanisms in Human Health and Disease. Antioxid Redox Signal 2019; 30:813-856. [PMID: 29634347 DOI: 10.1089/ars.2017.7265] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Secreted extracellular vesicles (EVs) are now considered veritable entities for diagnosis, prognosis, and therapeutics. These structures are able to interact with target cells and modify their phenotype and function. Recent Advances: Since composition of EVs depends on the cell type of origin and the stimulation that leads to their release, the analysis of EV content remains an important input to understand the potential effects of EVs on target cells. CRITICAL ISSUES Here, we review recent data related to the mechanisms involved in the formation of EVs and the methods allowing specific EV isolation and identification. Also, we analyze the potential use of EVs as biomarkers in different pathologies such as diabetes, obesity, atherosclerosis, neurodegenerative diseases, and cancer. Besides, their role in these diseases is discussed. Finally, we consider EVs enriched in microRNA or drugs as potential therapeutic cargo able to deliver desirable information to target cells/tissues. FUTURE DIRECTIONS We underline the importance of the homogenization of the parameters of isolation of EVs and their characterization, which allow considering EVs as excellent biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Marine Malloci
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Liliana Perdomo
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maëva Veerasamy
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Ramaroson Andriantsitohaina
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - Gilles Simard
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| | - M Carmen Martínez
- 1 INSERM UMR 1063, Stress Oxydant et Pathologies Métaboliques, UNIV Angers, Université Bretagne Loire, Angers, France.,2 Centre Hospitalo-Universitaire d'Angers, Angers, France
| |
Collapse
|
41
|
Royo F, Cossío U, Ruiz de Angulo A, Llop J, Falcon-Perez JM. Modification of the glycosylation of extracellular vesicles alters their biodistribution in mice. NANOSCALE 2019; 11:1531-1537. [PMID: 30623961 DOI: 10.1039/c8nr03900c] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) are considered sophisticated vehicles for cell-to-cell communication, thanks to the possibility of handling a variable cargo in a shell with multiple types of decoders. Surface glycosylation of EVs is a method that could be used to control their interaction with different cells and, consequently, the biodistribution of the vesicles in the body. Herein, we produced EVs derived from mouse liver proliferative cells, and we treated them with neuraminidase, an enzyme that digests the terminal sialic acid residues from glycoproteins. Afterwards, we labeled the EVs directly with [124I]Na and injected them in mice intravenously or into the hock. The amount of radioactivity in major organs was measured at different time points after administration both in vivo using positron emission tomography and ex vivo (after animal sacrifice) using dissection and gamma counting. The results showed that intravenous injection leads to the rapid accumulation of EVs in the liver. Moreover, after some hours the distribution led to the presence of EVs in different organs including the brain. Glycosidase treatment induced an accumulation in the lungs, compared with the intact EVs. Furthermore, when the EVs were injected through the hock, the neuraminidase-treated vesicles distributed better at the axillary lymph nodes than the untreated EVs. This result shows that modification of the glycosylated complexes on the EV surface can affect the distribution of these vesicles, and specifically removing the sialic acid residues allows more EVs to reach and accumulate at the lungs.
Collapse
Affiliation(s)
- Felix Royo
- Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, 48160, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
42
|
Ma Y, Wang K, Pan J, Fan Z, Tian C, Deng X, Ma K, Xia X, Huang Y, Zheng JC. Induced neural progenitor cells abundantly secrete extracellular vesicles and promote the proliferation of neural progenitors via extracellular signal-regulated kinase pathways. Neurobiol Dis 2018; 124:322-334. [PMID: 30528256 DOI: 10.1016/j.nbd.2018.12.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022] Open
Abstract
Neural stem/progenitor cells (NPCs) are known to have potent therapeutic effects in neurological disorders through the secretion of extracellular vesicles (EVs). Despite the therapeutic potentials, the numbers of NPCs are limited in the brain, curbing the further use of EVs in the disease treatment. To overcome the limitation of NPC numbers, we used a three transcription factor (Brn2, Sox2, and Foxg1) somatic reprogramming approach to generate induced NPCs (iNPCs) from mouse fibroblasts and astrocytes. The resulting iNPCs released significantly higher numbers of EVs compared with wild-type NPCs (WT-NPCs). Furthermore, iNPCs-derived EVs (iNPC-EVs) promoted NPC function by increasing the proliferative potentials of WT-NPCs. Characterizations of EV contents through proteomics analysis revealed that iNPC-EVs contained higher levels of growth factor-associated proteins that were predicted to activate the down-stream extracellular signal-regulated kinase (ERK) pathways. As expected, the proliferative effects of iNPC-derived EVs on WT-NPCs can be blocked by an ERK pathway inhibitor. Our data suggest potent therapeutic effects of iNPC-derived EVs through the promotion of NPC proliferation, release of growth factors, and activation of ERK pathways. These studies will help develop highly efficient cell-free therapeutic strategies for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Kaizhe Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Jiabin Pan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Zhaohuan Fan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Changhai Tian
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA
| | - Xiaobei Deng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China
| | - Kangmu Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China.
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital affiliated to Tongji University School of Medicine, Shanghai 200072, China; Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China; Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5930, USA.
| |
Collapse
|
43
|
Chiriacò MS, Bianco M, Nigro A, Primiceri E, Ferrara F, Romano A, Quattrini A, Furlan R, Arima V, Maruccio G. Lab-on-Chip for Exosomes and Microvesicles Detection and Characterization. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3175. [PMID: 30241303 PMCID: PMC6210978 DOI: 10.3390/s18103175] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/05/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022]
Abstract
Interest in extracellular vesicles and in particular microvesicles and exosomes, which are constitutively produced by cells, is on the rise for their huge potential as biomarkers in a high number of disorders and pathologies as they are considered as carriers of information among cells, as well as being responsible for the spreading of diseases. Current methods of analysis of microvesicles and exosomes do not fulfill the requirements for their in-depth investigation and the complete exploitation of their diagnostic and prognostic value. Lab-on-chip methods have the potential and capabilities to bridge this gap and the technology is mature enough to provide all the necessary steps for a completely automated analysis of extracellular vesicles in body fluids. In this paper we provide an overview of the biological role of extracellular vesicles, standard biochemical methods of analysis and their limits, and a survey of lab-on-chip methods that are able to meet the needs of a deeper exploitation of these biological entities to drive their use in common clinical practice.
Collapse
Affiliation(s)
| | - Monica Bianco
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Annamaria Nigro
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | | | - Francesco Ferrara
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- STMicroelectronics, Via Monteroni, I-73100 Lecce, Italy.
| | - Alessandro Romano
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Angelo Quattrini
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy.
| | - Valentina Arima
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
| | - Giuseppe Maruccio
- CNR NANOTEC Institute of Nanotechnology, via Monteroni, 73100 Lecce, Italy.
- Department of Mathematics and Physics, University of Salento, via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
44
|
Ramirez SH, Andrews AM, Paul D, Pachter JS. Extracellular vesicles: mediators and biomarkers of pathology along CNS barriers. Fluids Barriers CNS 2018; 15:19. [PMID: 29960602 PMCID: PMC6026502 DOI: 10.1186/s12987-018-0104-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/28/2018] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous, nano-sized vesicles that are shed into the blood and other body fluids, which disperse a variety of bioactive molecules (e.g., protein, mRNA, miRNA, DNA and lipids) to cellular targets over long and short distances. EVs are thought to be produced by nearly every cell type, however this review will focus specifically on EVs that originate from cells at the interface of CNS barriers. Highlighted topics include, EV biogenesis, the production of EVs in response to neuroinflammation, role in intercellular communication and their utility as a therapeutic platform. In this review, novel concepts regarding the use of EVs as biomarkers for BBB status and as facilitators for immune neuroinvasion are also discussed. Future directions and prospective are covered along with important unanswered questions in the field of CNS endothelial EV biology.
Collapse
Affiliation(s)
- Servio H Ramirez
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA. .,Shriners Hospital Pediatric Research Center, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| | - Allison M Andrews
- Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, 3500 N Broad St, Philadelphia, PA, 19140, USA.,Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Debayon Paul
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA
| | - Joel S Pachter
- Department of Immunology, Blood-Brain Barrier Laboratory & Laser Capture Microdissection Core, UConn Health, 263 Farmington Ave., Farmington, CT, 06070, USA.
| |
Collapse
|
45
|
H1.0 Linker Histone as an Epigenetic Regulator of Cell Proliferation and Differentiation. Genes (Basel) 2018; 9:genes9060310. [PMID: 29925815 PMCID: PMC6027317 DOI: 10.3390/genes9060310] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022] Open
Abstract
H1 linker histones are a class of DNA-binding proteins involved in the formation of supra-nucleosomal chromatin higher order structures. Eleven non-allelic subtypes of H1 are known in mammals, seven of which are expressed in somatic cells, while four are germ cell-specific. Besides having a general structural role, H1 histones also have additional epigenetic functions related to DNA replication and repair, genome stability, and gene-specific expression regulation. Synthesis of the H1 subtypes is differentially regulated both in development and adult cells, thus suggesting that each protein has a more or less specific function. The somatic variant H1.0 is a linker histone that was recognized since long ago to be involved in cell differentiation. Moreover, it has been recently found to affect generation of epigenetic and functional intra-tumor heterogeneity. Interestingly, H1.0 or post-translational forms of it have been also found in extracellular vesicles (EVs) released from cancer cells in culture, thus suggesting that these cells may escape differentiation at least in part by discarding H1.0 through the EV route. In this review we will discuss the role of H1.0 in development, differentiation, and stem cell maintenance, also in relation with tumorigenesis, and EV production.
Collapse
|
46
|
Williams C, Royo F, Aizpurua-Olaizola O, Pazos R, Boons GJ, Reichardt NC, Falcon-Perez JM. Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. J Extracell Vesicles 2018. [PMID: 29535851 PMCID: PMC5844028 DOI: 10.1080/20013078.2018.1442985] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It is now acknowledged that extracellular vesicles (EVs) are important effectors in a vast number of biological processes through intercellular transfer of biomolecules. Increasing research efforts in the EV field have yielded an appreciation for the potential role of glycans in EV function. Indeed, recent reports show that the presence of glycoconjugates is involved in EV biogenesis, in cellular recognition and in the efficient uptake of EVs by recipient cells. It is clear that a full understanding of EV biology will require researchers to focus also on EV glycosylation through glycomics approaches. This review outlines the major glycomics techniques that have been applied to EVs in the context of the recent findings. Beyond understanding the mechanisms by which EVs mediate their physiological functions, glycosylation also provides opportunities by which to engineer EVs for therapeutic and diagnostic purposes. Studies characterising the glycan composition of EVs have highlighted glycome changes in various disease states, thus indicating potential for EV glycans as diagnostic markers. Meanwhile, glycans have been targeted as molecular handles for affinity-based isolation in both research and clinical contexts. An overview of current strategies to exploit EV glycosylation and a discussion of the implications of recent findings for the burgeoning EV industry follows the below review of glycomics and its application to EV biology.
Collapse
Affiliation(s)
- Charles Williams
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Felix Royo
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain
| | - Oier Aizpurua-Olaizola
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Raquel Pazos
- Glycotechnology Laboratory, CIC BiomaGUNE, San Sebastian, Spain
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | - Juan M Falcon-Perez
- Exosomes Laboratory. CIC bioGUNE, CIBER, Bizkaia, Spain.,CIBER-BBN, San Sebastian, Spain.,IKERBASQUE Basque Foundation for science, Bilbao, Spain
| |
Collapse
|
47
|
Zhou J, Benito-Martin A, Mighty J, Chang L, Ghoroghi S, Wu H, Wong M, Guariglia S, Baranov P, Young M, Gharbaran R, Emerson M, Mark MT, Molina H, Canto-Soler MV, Selgas HP, Redenti S. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Sci Rep 2018; 8:2823. [PMID: 29434302 PMCID: PMC5809580 DOI: 10.1038/s41598-018-20421-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
A range of cell types, including embryonic stem cells, neurons and astrocytes have been shown to release extracellular vesicles (EVs) containing molecular cargo. Across cell types, EVs facilitate transfer of mRNA, microRNA and proteins between cells. Here we describe the release kinetics and content of EVs from mouse retinal progenitor cells (mRPCs). Interestingly, mRPC derived EVs contain mRNA, miRNA and proteins associated with multipotency and retinal development. Transcripts enclosed in mRPC EVs, include the transcription factors Pax6, Hes1, and Sox2, a mitotic chromosome stabilizer Ki67, and the neural intermediate filaments Nestin and GFAP. Proteomic analysis of EV content revealed retinogenic growth factors and morphogen proteins. mRPC EVs were shown to transfer GFP mRNA between cell populations. Finally, analysis of EV mediated functional cargo delivery, using the Cre-loxP recombination system, revealed transfer and uptake of Cre+ EVs, which were then internalized by target mRPCs activating responder loxP GFP expression. In summary, the data supports a paradigm of EV genetic material encapsulation and transfer within RPC populations. RPC EV transfer may influence recipient RPC transcriptional and post-transcriptional regulation, representing a novel mechanism of differentiation and fate determination during retinal development.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Alberto Benito-Martin
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA
| | - Jason Mighty
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Lynne Chang
- Nikon Instruments Inc, 1300 Walt Whitman Road, Melville, NY, 11747, USA
| | - Shima Ghoroghi
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Hao Wu
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA.,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA
| | - Madeline Wong
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Sara Guariglia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY, 10032, USA
| | - Petr Baranov
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Michael Young
- The Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | - Rajendra Gharbaran
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA
| | - Mark Emerson
- Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.,Department of Biology, The City College of New York, City University of New York, New York, NY, 10031, USA
| | - Milica Tesic Mark
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - M Valeria Canto-Soler
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Hector Peinado Selgas
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medical College, New York, New York, 10021, USA.,Microenvironment and Metastasis Laboratory, Department of Molecular Oncology, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, Madrid, E28029, Spain
| | - Stephen Redenti
- Department of Biological Sciences, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY, 10468, USA. .,Biology Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA. .,Biochemistry Doctoral Program, The Graduate School and University Center, City University of New York, 365 5th Avenue, New York, NY, 10016, USA.
| |
Collapse
|
48
|
Molecular Determinants of Malignant Brain Cancers: From Intracellular Alterations to Invasion Mediated by Extracellular Vesicles. Int J Mol Sci 2017; 18:ijms18122774. [PMID: 29261132 PMCID: PMC5751372 DOI: 10.3390/ijms18122774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma cells invade the surrounding brain parenchyma, by migrating along the blood vessels, thus promoting cancer growth. The biological bases of these activities are grounded in profound alterations of the metabolism and the structural organization of the cells, which consequently acquire the ability to modify the surrounding microenvironment, by altering the extracellular matrix and affecting the properties of the other cells present in the brain, such as normal glial-, endothelial- and immune-cells. Most of the effects on the surrounding environment are probably exerted through the release of a variety of extracellular vesicles (EVs), which contain many different classes of molecules, from genetic material to defined species of lipids and enzymes. EV-associated molecules can be either released into the extracellular matrix (ECM) and/or transferred to neighboring cells: as a consequence, both deep modifications of the recipient cell phenotype and digestion of ECM components are obtained, thus causing cancer propagation, as well as a general brain dysfunction. In this review, we first analyze the main intracellular and extracellular transformations required for glioma cell invasion into the brain parenchyma; then we discuss how these events may be attributed, at least in part, to EVs that, like the pawns of a dramatic chess game with cancer, open the way to the tumor cells themselves.
Collapse
|
49
|
|
50
|
Di Liegro CM, Schiera G, Di Liegro I. Extracellular Vesicle-Associated RNA as a Carrier of Epigenetic Information. Genes (Basel) 2017; 8:genes8100240. [PMID: 28937658 PMCID: PMC5664090 DOI: 10.3390/genes8100240] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/08/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Post-transcriptional regulation of messenger RNA (mRNA) metabolism and subcellular localization is of the utmost importance both during development and in cell differentiation. Besides carrying genetic information, mRNAs contain cis-acting signals (zip codes), usually present in their 5'- and 3'-untranslated regions (UTRs). By binding to these signals, trans-acting factors, such as RNA-binding proteins (RBPs), and/or non-coding RNAs (ncRNAs), control mRNA localization, translation and stability. RBPs can also form complexes with non-coding RNAs of different sizes. The release of extracellular vesicles (EVs) is a conserved process that allows both normal and cancer cells to horizontally transfer molecules, and hence properties, to neighboring cells. By interacting with proteins that are specifically sorted to EVs, mRNAs as well as ncRNAs can be transferred from cell to cell. In this review, we discuss the mechanisms underlying the sorting to EVs of different classes of molecules, as well as the role of extracellular RNAs and the associated proteins in altering gene expression in the recipient cells. Importantly, if, on the one hand, RBPs play a critical role in transferring RNAs through EVs, RNA itself could, on the other hand, function as a carrier to transfer proteins (i.e., chromatin modifiers, and transcription factors) that, once transferred, can alter the cell's epigenome.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo (UNIPA), I-90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC), University of Palermo,I-90127 Palermo,Italy.
| |
Collapse
|