1
|
Lin TE, Hsu KC, Chou CH, Tsai EY, Wu YW, Sung TY, Hsu JY, Hsieh JH, Yen SC, Chang YW, Pan SL, Huang WJ, Yang CR. Identification of pyrazole scaffold inhibitors targeting cyclin-dependent kinase 8 for potential use in pulmonary fibrosis. Biochem Pharmacol 2025; 237:116959. [PMID: 40280247 DOI: 10.1016/j.bcp.2025.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a disease that includes inflammation and scarring of the lung tissues. Cyclin-dependent kinase 8 (CDK8) is a target of interest due to its role in inflammatory pathways. CDK8 can also modulate the TGF-β/Smad signaling associated with IPF. Herein, a structure-based virtual screening (SBVS) campaign led to the identification of three CDK8 inhibitors. Testing of candidate inhibitors in protein and cellular assays confirmed CDK8 inhibition, with the most potent inhibitor producing an IC50 value of 398.8 nM. Computational analysis identified pharmacological interactions that lead to CDK8 inhibition. No significant cytotoxicity was observed when the inhibitor was treated in vitro. Further results showed that the inhibitor can disrupt proteins associated with the epithelial-mesenchymal transition (EMT) and reduce cell migration. Additionally, the inhibitor can disrupt the TGF- β1/Smad signaling axis in the nucleus, potentially impacting the transcription of IPF related protein expression, when treated in cells at 5 µM. Comparisons to structures of known CDK8 inhibitors showed the identified inhibitor to be structurally novel. When tested against a panel of kinases at 1 µM, the most potent inhibitor demonstrated a favorable CDK8 selectivity profile. The identification of the CDK8 inhibitors in this study can be used in future drug design studies and as CDK8 probes to explore alternative therapeutics for IPF.
Collapse
Affiliation(s)
- Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hsuan Chou
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - En-Yun Tsai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Wen Wu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Ying Sung
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Yi Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jui-Hua Hsieh
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen, Guangdong, China
| | - Yu-Wei Chang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung Medical Center, Keelung, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ongaro L, Bernard DJ. Activin Actions in Adipocytes. J Clin Endocrinol Metab 2025; 110:1803-1810. [PMID: 40208114 DOI: 10.1210/clinem/dgaf233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/11/2025]
Abstract
Obesity is a growing global health problem characterized by excess fat accumulation. Though causes of obesity are multifactorial, glucagon-like peptide 1 receptor agonists have emerged as effective weight loss drugs. Nevertheless, these agents are expensive, not uniformly available, and must be used continuously. Moreover, side effects and low efficacy limit the use of these and related molecules in some individuals. Therefore, there is continued interest in characterizing mechanisms regulating adiposity to aid in the development of novel treatments. In recent years, there has been a growing appreciation for ligands of the TGFβ family, the activins, in adipocyte proliferation, differentiation, and function. Here, we review recent progress in understanding the role of these molecules, with a particular focus on the hepatokine, activin E, in lipolysis and diet-induced obesity.
Collapse
Affiliation(s)
- Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Daniel Jay Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
3
|
Sun C, Ding Z, Li B, Chen S, Li E, Yang Q. New insights into Gremlin-1: A tumour microenvironment landscape re-engineer and potential therapeutic target. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119962. [PMID: 40250712 DOI: 10.1016/j.bbamcr.2025.119962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Gremlin-1 (GREM1), a well-known bone morphogenetic protein (BMP) antagonist, is highly expressed in various malignant tumours. However, the specific role of GREM1 in tumours remains controversial and may be attributed to the heterogeneity and complexity of the tumour microenvironment (TME). It is currently believed that GREM1 regulates the complex landscape of the TME, primarily by antagonising BMP signalling or BMP-independent pathways. Both GREM1 and BMP play dual roles in tumour progression. Therefore, the mutual crosstalk between tumour cells and tumour-associated fibroblasts and the regulation of various secreted factors in the TME affect the secretion level of GREM1, which in turn regulates the amplitude balance between GREM1 and BMP, affecting tumour progression. The inhibition of GREM1 activity in the TME can disrupt this amplitude balance and prevent the formation of a tumour-supportive microenvironment, demonstrating that GREM1 is a potential therapeutic target. In this study, we reviewed the specific signalling pathways via which GREM1 in the TME regulates epithelial-mesenchymal transition, construction of the tumour immune microenvironment, and maintenance of tumour cell stemness via BMP-dependent and BMP-independent regulation, and also summarised the latest clinical progress of GREM1.
Collapse
Affiliation(s)
- Chengpeng Sun
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; HuanKui Academy, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zijun Ding
- School of Ophthalmology and Optometry, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Benjie Li
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Sihong Chen
- Queen Mary School, Jiangxi Medical college, Nanchang University, Nanchang 330031, China
| | - Enliang Li
- Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1 Minde Road, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, China.
| | - Qingping Yang
- Department of Reproductive Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.17, Yongwai zheng Street, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Wang J, Wu L, Tian Z, Chen J. Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 2025; 29:307. [PMID: 40337608 PMCID: PMC12056481 DOI: 10.3892/ol.2025.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/04/2025] [Indexed: 05/09/2025] Open
Abstract
HNSCC includes nasopharyngeal, laryngeal and oral cancers, and its pathogenesis is influenced by various factors. As an essential part of the ubiquitin (Ub)-proteasome system (UPS), deubiquitinating enzymes (DUBs) maintain the homeostasis of Ub molecules and influence the physiological functions of cells and disease processes by removing ubiquitinated proteins. Accumulating evidence has confirmed that the aberrant expression of DUBs is involved in cell proliferation, metastasis, and apoptosis during the development of HNSCC, with some acting as oncogenes and others as tumor-suppressor genes. In this review, the DUBs implicated in HNSCC were summarized and the mechanisms underlying abnormal DUBs expression in signaling pathways were discussed. In addition, given the important role of DUBs in tumorigenesis, recent studies were reviewed and agonists and inhibitors of DUBs were summarized to identify more effective therapeutic strategies.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Zhifeng Tian
- Cancer Center, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
5
|
Tang Y, Feng Z, Ma C, Jang N, Chen X, He Y, Martin FL, Liu H, Pang W. Chronic exposure to B[a]P induces malignant transformation of breast epithelial cells through the mechanism via TGF-β signaling pathway. Food Chem Toxicol 2025:115574. [PMID: 40419235 DOI: 10.1016/j.fct.2025.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/18/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Breast cancer has a high global incidence, and benzo[a]pyrene (B[a]P) is considered a contributing factor that increases carcinogenic risk. This study examined B[a]P's oncogenic mechanisms in mammary epithelial cells. Chronic B[a]P exposure induced morphological changes and enhanced proliferative/clonogenic capacity in MCF-10A cells. Chronic B[a]P exposure altered gene expression in MCF-10A cells, revealing differential levels of circRNAs, lncRNAs, miRNAs, and mRNAs. qRT-PCR validation demonstrated strong alignment with RNA-seq results, ensuring sequencing reliability. Additionally, chronic B[a]P exposure upregulated the protein expression of AhR and ARNT, as well as TGF-β, pSmad2/3, and KRT14, while increasing Vimentin expression and decreasing E-cadherin expression. Notably, treatment with the TGF-β inhibitor SB431542 reversed these protein expression changes in transformed cells. These results show that exposure to Chronic B[a]P induces MCF-10A cell transformation. The underlying mechanisms involve significant transcriptional alterations, AhR/ARNT expression regulation, TGF-β signaling pathway activation, KRT14 protein modulation, and EMT. Furthermore, Chronic B[a]P exposure may drive transformation through TGF-β modulation. Chronic B[a]P exposure promotes breast carcinogenesis, revealing mechanistic insights and potential preventive biomarkers.
Collapse
Affiliation(s)
- Yongjun Tang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Zhengning Feng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Chenlu Ma
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Nian Jang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Xiaolong Chen
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Yingxu He
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Francis L Martin
- Biocel UK Ltd,Hull HU10 6TS, UK; Clinical Research Centre, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK
| | - Hui Liu
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China
| | - Weiyi Pang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin 541199, Gyangxi, China; School of Public Health, Guilin Medical University, Guilin 541199, Guangxi, China; School of Humanities and Management, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
6
|
Cheah K, Chu P, Schmidt G, Scarlata S. Imaging methods to monitor and quantify cell differentiation. Front Cell Dev Biol 2025; 13:1584858. [PMID: 40433548 PMCID: PMC12106324 DOI: 10.3389/fcell.2025.1584858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 05/29/2025] Open
Abstract
The transition of a cell from a stem to a differentiated state involves an interrelated and complex series of events. These events include dynamic changes in cellular nucleic acid and protein content that are mediated by both intrinsic and extrinsic factors which ultimately lead to differentiation into specific lineage. Quantifying the parameters associated with differentiation and their changes under different conditions would not only allow for a better understanding of this process but also would enable the development of approaches that control differentiation. Here, we describe processes associated with the differentiation of two types of cultured cells, neurons and fibroblasts, and the tools to follow changes in real time. Specifically, we discuss methods to the identify cell lineage, changes in morphology, shifts in specific mRNA and miRNA levels as well as the changes in protein localization, interactions and assemblies that accompany differentiation.
Collapse
Affiliation(s)
| | | | | | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
7
|
Torregrossa M, Davies L, Hans-Günther M, Simon JC, Franz S, Rinkevich Y. Effects of embryonic origin, tissue cues and pathological signals on fibroblast diversity in humans. Nat Cell Biol 2025; 27:720-735. [PMID: 40263573 DOI: 10.1038/s41556-025-01638-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025]
Abstract
Fibroblasts, once perceived as a uniform cell type, are now recognized as a mosaic of distinct populations with specialized roles in tissue homeostasis and pathology. Here we provide a global overview of the expanding compendium of fibroblast cell types and states, their diverse lineage origins and multifaceted functions across various human organs. By integrating insights from developmental biology, lineage tracing and single-cell technologies, we highlight the complex nature of fibroblasts. We delve into their origination from embryonic mesenchyme and tissue-resident populations, elucidating lineage-specific behaviours in response to physiological cues. Furthermore, we highlight the pivotal role of fibroblasts in orchestrating tissue repair, connective tissue remodelling and immune modulation across diverse pathologies. This knowledge is essential to develop novel fibroblast-targeted therapies to restore steady-state fibroblast function and advance regenerative medicine strategies across multiple diseases.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Lindsay Davies
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Machens Hans-Günther
- Department for Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jan C Simon
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, Leipzig University Medical Faculty, Leipzig, Germany.
| | - Yuval Rinkevich
- Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Jiang J, Wu Q, Rajasekaran S, Wu R. MMP3 at the crossroads: Linking molecular pathways to disease diagnosis and therapy. Pharmacol Res 2025; 216:107750. [PMID: 40311957 DOI: 10.1016/j.phrs.2025.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
Matrix metalloproteinase 3 (MMP-3) is a multifaceted enzyme that plays a critical role in the regulation of extracellular matrix (ECM) dynamics, influencing both normal physiological and pathological processes. In addition to its established role in ECM degradation, MMP-3 is gaining recognition for modulating cellular behaviors such as inflammation, migration, and proliferation. Recent research has uncovered its capacity to activate latent signaling molecules, release growth factors from the ECM and interact with various cell surface receptors, linking MMP-3 to the progression of various diseases, including inflammatory diseases, infection diseases, cardiovascular diseases, neurodegenerative disorders, and cancer. The review provides an overview of MMP-3's molecular regulation, emphasizing the mechanisms controlling its expression and activity. We discuss MMP3's involvement in both ECM-dependent and independent pathways, and its potential as a diagnostic, prognostic biomarker in various diseases. Additionally, we explore therapeutic strategies targeting MMP-3, summarizing ongoing efforts to develop specific inhibitors and modulate its activity in different pathologic conditions. Through this review, we aim to consolidate the diverse functions of MMP-3 and provide new insights into future research directions, particularly in translating these findings into clinical applications.
Collapse
Affiliation(s)
- Jing Jiang
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States; Binzhou Medical University, Yantai, China
| | - Qiong Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Snekha Rajasekaran
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States
| | - Rongxue Wu
- Section of Cardiology, Department of Medicine, Biological Sciences Division, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
9
|
Jing H, Gao Y, Jing L, Yang H, Liu S. Recent advances in therapeutic use of transforming growth factor-beta inhibitors in cancer and fibrosis. Front Oncol 2025; 15:1489701. [PMID: 40352593 PMCID: PMC12061708 DOI: 10.3389/fonc.2025.1489701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 04/03/2025] [Indexed: 05/14/2025] Open
Abstract
Transforming growth factor-beta (TGF-β) has long been known to be associated with early embryonic development and organogenesis, immune supervision, and tissue repair and homeostasis in adults. TGF-β has complex roles in fibrosis and cancer that may be opposing at different stages of these diseases. Under pathological conditions, overexpression of TGF-β causes epithelial-mesenchymal transition, deposition of extracellular matrix, and formation of cancer-associated fibroblasts, leading to fibrotic disease or cancer. Fibroblasts, epithelial cells, and immune cells are the most common targets of TGF-β, while fibrosis and cancer are the most common TGF-β-associated diseases. Given the critical role of TGF-β and its downstream molecules in fibrosis and progression of cancer, therapies targeting TGF-β signaling appear to be a promising strategy. Preclinical and clinical studies have investigated therapies targeting TGF-β, including antisense oligonucleotides, monoclonal antibodies, and ligand traps. However, development of targeted TGF-β therapy has been hindered by systemic cytotoxicity. This review discusses the molecular mechanisms of TGF-β signaling and highlights targeted TGF-β therapy for cancer and fibrosis as a therapeutic strategy for related diseases.
Collapse
Affiliation(s)
- Hanhui Jing
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Gao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Linyuan Jing
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Hanyu Yang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
David AP, Biswas S, Soltis MP, Eltawil Y, Zhou R, Easow SA, Cheng AG, Heller S, Jan TA. Crosstalk Signaling Between the Epithelial and Non-Epithelial Compartments of the Mouse Inner Ear. J Assoc Res Otolaryngol 2025; 26:127-145. [PMID: 40080263 PMCID: PMC11996748 DOI: 10.1007/s10162-025-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
PURPOSE The otolith organs of the inner ear consist of the utricle and saccule that detect linear acceleration. These organs rely on mechanosensitive hair cells for transduction of signals to the central nervous system. In the murine utricle, about half of the hair cells are born during the first postnatal week. Here, we wanted to explore the role and interaction of the non-epithelial mesenchymal cells with the sensory epithelium and provide a resource for the auditory neurosciences community. METHODS We utilized full-length Smart-seq2 single-cell RNA sequencing at postnatal days 4 and 6 along with a host of computational methods to infer interactions between the epithelial and non-epithelial compartments of the mouse utricle. We validated these findings using a combination of immunohistochemistry and quantitative multiplex in situ hybridization. RESULTS We report diverse cell-cell crosstalk among the 12 annotated cell populations (n = 955 cells) in the developing neonatal mouse utricle, including epithelial and non-epithelial cellular signaling. The mesenchymal cells are the dominant signal senders during the postnatal period. Epithelial to mesenchymal signaling, as well as mesenchymal to epithelial signaling, are quantitatively shown through the TGFβ and pleiotrophin pathways. CONCLUSION This study highlights the dynamic process of postnatal vestibular organ development that relies not only on epithelial cells, but also on crosstalk between spatial compartments and among different cell groups. We further provide a data-rich resource for the inner ear community.
Collapse
Affiliation(s)
- Abel P David
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
- Department of Otolaryngology - Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sushobhan Biswas
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Macey P Soltis
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Yasmin Eltawil
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Sarah A Easow
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Troulé K, Petryszak R, Cakir B, Cranley J, Harasty A, Prete M, Tuong ZK, Teichmann SA, Garcia-Alonso L, Vento-Tormo R. CellPhoneDB v5: inferring cell-cell communication from single-cell multiomics data. Nat Protoc 2025:10.1038/s41596-024-01137-1. [PMID: 40133495 DOI: 10.1038/s41596-024-01137-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2024] [Indexed: 03/27/2025]
Abstract
Cell-cell communication is essential for tissue development, function and regeneration. The revolution of single-cell genomics technologies offers an unprecedented opportunity to uncover how cells communicate in vivo within their tissue niches and how disruption of these niches can lead to diseases and developmental abnormalities. CellPhoneDB is a bioinformatics toolkit designed to infer cell-cell communication by combining a curated repository of bona fide ligand-receptor interactions with methods to integrate these interactions with single-cell genomics data. Here we present a protocol for the latest version of CellPhoneDB (v5), offering several new features. First, the repository has been expanded by one-third with the addition of new interactions, including ~1,000 interactions mediated by nonpeptidic ligands such as steroidogenic hormones, neurotransmitters and small G-protein-coupled receptor (GPCR)-binding ligands. Second, we outline a new way of using the database that allows users to tailor queries to their experimental designs. Third, the update incorporates novel strategies to prioritize specific cell-cell interactions, leveraging information from other modalities such as tissue microenvironments derived from spatial transcriptomics technologies or transcription factor activities derived from a single-cell assay for transposase accessible chromatin assays. Finally, we describe the new CellPhoneDBViz module to interactively visualize and share results. Altogether, CellPhoneDB v5 enhances the precision of cell-cell communication inference, offering new insights into tissue biology in physiological microenvironments. This protocol typically takes ~15 min and requires basic knowledge of python.
Collapse
Affiliation(s)
| | | | | | | | - Alicia Harasty
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | | | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Cambridge, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Medicine and Cambridge Stem Cell Institute Clinical School, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
12
|
Zheng D, Qin L, Lv J, Che M, He B, Zheng Y, Lin S, Qi Y, Li M, Tang Z, Wang BC, Wu YL, Weinkove R, Carson G, Yao Y, Wong N, Lau J, Thiery JP, Qin D, Pan B, Xu K, Zhang Z, Li P. CD4 + anti-TGF-β CAR T cells and CD8 + conventional CAR T cells exhibit synergistic antitumor effects. Cell Rep Med 2025; 6:102020. [PMID: 40107245 PMCID: PMC11970399 DOI: 10.1016/j.xcrm.2025.102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/02/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Transforming growth factor (TGF)-β1 restricts the expansion, survival, and function of CD4+ T cells. Here, we demonstrate that CD4+ but not CD8+ anti-TGF-β CAR T cells (T28zT2 T cells) can suppress tumor growth partly through secreting Granzyme B and interferon (IFN)-γ. TGF-β1-treated CD4+ T28zT2 T cells persist well in peripheral blood and tumors, maintain their mitochondrial form and function, and do not cause in vivo toxicity. They also improve the expansion and persistence of untransduced CD8+ T cells in vivo. Tumor-infiltrating CD4+ T28zT2 T cells are enriched with TCF-1+IL7R+ memory-like T cells, express NKG2D, and downregulate T cell exhaustion markers, including PD-1 and LAG3. Importantly, a combination of CD4+ T28zT2 T cells and CD8+ anti-glypican-3 (GPC3) or anti-mesothelin (MSLN) CAR T cells exhibits augmented antitumor effects in xenografts. These findings suggest that rewiring TGF-β signaling with T28zT2 in CD4+ T cells is a promising strategy for eradicating solid tumors.
Collapse
Affiliation(s)
- Diwei Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Le Qin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiang Lv
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihui Che
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Bingjia He
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongfang Zheng
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shouheng Lin
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yuekun Qi
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ming Li
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaoyang Tang
- Guangdong Zhaotai Cell Biology Technology Ltd., Foshan, China
| | - Bin-Chao Wang
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Georgia Carson
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Yao Yao
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nathalie Wong
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Lau
- Department of Surgery of the Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Pan
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Blood Disease Institution, Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Li
- China-New Zealand Joint Laboratory on Biomedicine and Health, National Key Laboratory of Immune Response and Immunotherapy, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
13
|
Jarosz A, Wrona J, Balcerzyk-Matić A, Szyluk K, Nowak T, Iwanicki T, Iwanicka J, Kalita M, Kania W, Gawron K, Niemiec P. Association of the TGFB1 Gene Polymorphisms with Pain Symptoms and the Effectiveness of Platelet-Rich Plasma in the Treatment of Lateral Elbow Tendinopathy: A Prospective Cohort Study. Int J Mol Sci 2025; 26:2431. [PMID: 40141076 PMCID: PMC11942043 DOI: 10.3390/ijms26062431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
The regenerative properties of platelet-rich plasma (PRP) result from the high concentration of growth factors, including transforming growth factor beta 1 (TGF-β1). Nevertheless, this form of therapy may not always be effective due to the variability in genetic factors. In this study, the association of TGFB1 gene polymorphisms with the effectiveness of lateral elbow tendinopathy (LET) treatment with PRP was investigated. The effectiveness of therapy was assessed using minimal clinically important difference (MCID) and patient-reported outcome measures (PROM), specifically visual analog scale (VAS), quick version of disabilities of the arm, shoulder, and hand score (QDASH), and patient-rated tennis elbow evaluation (PRTEE) for two years (in weeks 2, 4, 8, 12, 24, 52, and 104). The most effective therapy was noticed in CC rs2278422 genotype carriers, whereas carriers of AA, CC, and CC genotypes (rs12461895, rs4803455, rs2241717) showed more severe pain before therapy. Moreover, the analyses revealed an association of studied polymorphisms with such parameters of blood morphology as eosinophils (EOS), neutrophils (NEU), and monocytes (MONO). In conclusion, genotyping of rs2278422 variant may be a valuable diagnostic method for patient selection for PRP therapy, while genotyping of rs12461895, rs4803455, and rs2241717 polymorphisms may be used for prediction of increased risk of pain sensation.
Collapse
Affiliation(s)
- Alicja Jarosz
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Justyna Wrona
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Karol Szyluk
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland; (K.S.); (M.K.)
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 12 Str., 40-752 Katowice, Poland
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| | - Marcin Kalita
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Slaskie, Poland; (K.S.); (M.K.)
| | - Wojciech Kania
- Department of Trauma and Orthopedic Surgery, Multidisciplinary Hospital in Jaworzno, Chelmonskiego 28 Str., 43-600 Jaworzno, Poland;
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medykow 18, 40-752 Katowice, Poland;
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow 18 Str., 40-752 Katowice, Poland; (A.J.); (J.W.); (A.B.-M.); (T.N.); (T.I.); (J.I.)
| |
Collapse
|
14
|
Li X, Shen Y, Lang J, Wu J, Qian Z, Shen G, Shen Y. CD39 Contributes to the Ability of Cell Invasion in Heterogeneity of Colorectal Cancer. J Cell Mol Med 2025; 29:e70486. [PMID: 40052646 PMCID: PMC11886887 DOI: 10.1111/jcmm.70486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/21/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
Tumour heterogeneity will accumulate and amplify during cell culture and passage, even if derived from the same strain. In the current study, multiple batches of colorectal cancer HCT116 and HT29 cell lines were obtained using different conditions of trypsin digestion and processed for RNA sequencing. CD39 was identified as a biomarker highly expressed in easily trypsin-digested cells compared to the undigestible ones. Furthermore, CD39 was determined to enhance cell invasion and suppress cell apoptosis but not affect cell proliferation. Moreover, CD39 could activate the TGF-β/SMAD3 signalling pathway, whereas the expression of CD39 was negatively regulated by SMAD3 via recruitment of SETDB1 and adding H3K9me3 to the CD39 promoter in HCT116 cells. Overall, our study uncovered distinct gene signatures amongst different heterogeneities of colorectal cells and revealed the effect of CD39 on cell invasion and apoptosis, as well as determined the epigenetic role in regulating CD39 transcription.
Collapse
Affiliation(s)
- Xiaosong Li
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yifen Shen
- Central Laboratory, Suzhou Bay Clinical CollegeSuzhou Ninth People's Hospital, Xuzhou Medical UniversitySuzhouJiangsuChina
| | - Jianhua Lang
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Jianzhong Wu
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Zhenhai Qian
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Genhai Shen
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
| | - Yihang Shen
- Department of General SurgerySuzhou Ninth People's HospitalSuzhouJiangsuChina
- Central Laboratory, Suzhou Bay Clinical CollegeSuzhou Ninth People's Hospital, Xuzhou Medical UniversitySuzhouJiangsuChina
| |
Collapse
|
15
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Xu X, Miao M, Zhu W, Zhang L, Jin Q, Li Y, Xu M, Jia Z, Zhang A, Wu M. Interferon regulatory factor 5 attenuates kidney fibrosis through transcriptional suppression of Tgfbr1. Int Immunopharmacol 2025; 148:114031. [PMID: 39827667 DOI: 10.1016/j.intimp.2025.114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/28/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Tubulointerstitial fibrosis is a common pathway of the progressive development of chronic kidney diseases (CKD) with different etiologies. The transcription factor interferon regulatory factor 5 (IRF5) can induce anti-type I interferons and proinflammatory cytokine genes and has been implicated as a therapeutic target for various inflammatory and autoimmune diseases. Currently, no experimental evidence has confirmed the role of IRF5 in CKD. Our results showed that IRF5 was aberrantly upregulated in fibrotic kidneys of CKD patients and was colocalized with tubular epithelial cells, peritubular endothelial cells and kidney interstitial fibroblasts. Up-regulation of IRF5 was also seen in unilateral ureteral obstruction (UUO), unilateral ischemia reperfusion and repeated low-dose cisplatin induced mice models, as well as TGF-β1-stimulated tubular epithelial cells and interstitial fibroblasts. Knockdown of Irf5 aggravated the degree of renal fibrosis in UUO mice. Consistently, overexpression of Irf5 attenuated TGF-β1-induced partial epithelial-to-mesenchymal transition and endothelial mesenchymal transition, as well as renal interstitial fibroblast activation and proliferation. Mechanistically, IRF5 can bind to the promoter region of Tgfbr1 and inhibit its transcription, thus inhibiting pro-fibrosis TGF-β1/Smad3 signal transduction. In summary, this research revealed an anti-fibrotic effect of exogenous IRF5 in tubular epithelial cells, endothelial cells and intestinal fibroblasts via transcriptionally repressing Tgfbr1. Activating IRF5 could therefore be a novel therapeutic strategy in the prevention of renal fibrosis.
Collapse
Affiliation(s)
- Xinyue Xu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China
| | - Mengqiu Miao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China
| | - Wenping Zhu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China
| | - Lingge Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China
| | - Qianqian Jin
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China; Department of Pediatrics, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000 China
| | - Yuting Li
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China
| | - Man Xu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China
| | - Zhanjun Jia
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China.
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China.
| | - Mengqiu Wu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008 China; Jiangsu Key Laboratory of Early Development and Chronic Diseases Prevention in Children, Nanjing Medical University, Nanjing 210029 China.
| |
Collapse
|
17
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
18
|
Chen W, Wang X, Yu C, Yu G. Association between SMAD3 and SMAD7 gene polymorphisms and susceptibility to stress urinary incontinence in Chinese women. Am J Transl Res 2025; 17:1097-1105. [PMID: 40092110 PMCID: PMC11909551 DOI: 10.62347/lxzt1726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE This study aimed to investigate the correlation between single nucleotide polymorphisms (SNPs) in SMAD3 and SMAD7 genes and the genetic risk of stress urinary incontinence (SUI) in Chinese women. METHODS A case-control study was conducted with 117 women diagnosed with SUI and 103 healthy controls. SNPs in SMAD3 (rs28683050, rs12901499) and SMAD7 (rs12953717, rs4939827) were analyzed using polymerase chain reaction-restricted fragment length polymorphism (PCR-RFLP). Allele and genotype frequencies were assessed using the SHEsis online platform. Epidemiological, clinical, and laboratory data were collected retrospectively. SUI patients underwent pelvic floor muscle training (PFMT), and treatment outcomes were evaluated after 3 months. RESULTS The G allele and GG genotype of rs12901499 in SMAD3 were significantly more common in the SUI case group (p_allele < 0.001, p_genotype = 0.002). Similarly, the T allele and TT genotype at rs12953717 in SMAD7 were more frequent in the SUI case group (p_allele = 0.002, p_genotype = 0.007). Multivariate logistic regression revealed that body mass index (BMI), family history, and the rs12901499 and rs12953717 polymorphisms were significant risk factors for SUI (P < 0.05). Furthermore, the TT genotype at rs12953717 was associated with poorer PFMT treatment outcomes. CONCLUSION Our findings suggest that the rs12901499 and rs12953717 polymorphisms are potential risk factors for SUI in women. Additionally, the rs12953717 polymorphism may influence the effectiveness of PFMT in SUI treatment.
Collapse
Affiliation(s)
- Wenpu Chen
- Department of Urology Surgery, Jinshan Branch of Shanghai Sixth People's Hospital Shanghai, China
| | - Xingqiong Wang
- School of Statistics, Renmin University of China Beijing, China
| | - Chengshuai Yu
- Department of Urology Surgery, Jinshan Branch of Shanghai Sixth People's Hospital Shanghai, China
| | - Guofeng Yu
- Department of Urology Surgery, Jinshan Branch of Shanghai Sixth People's Hospital Shanghai, China
| |
Collapse
|
19
|
Lin S, Liu D, Liang T, Zhuang Y, Wang X, Ma S, Li Q, Hu K. Cryoablation-induced modulation of Treg cells and the TGF-β pathway in lung adenocarcinoma: implications for increased antitumor immunity. BMC Med 2025; 23:89. [PMID: 39948553 PMCID: PMC11827211 DOI: 10.1186/s12916-025-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cryoablation plays a key role in the comprehensive management of lung adenocarcinoma, characterized by its ability to activate antitumor immunity. This study aimed to explore the impact of cryoablation on the local immune microenvironment, focusing on regulatory T cells (Tregs) and the TGF-β pathway. METHODS Single-cell sequencing was employed to identify differences in immune cell populations and related pathway expression between lung adenocarcinoma tissues and adjacent noncancerous tissues. Prospective observations of changes in Tregs in the peripheral blood pre- and post-cryoablation for lung adenocarcinoma were conducted at Dongfang Hospital, Beijing University of Chinese Medicine. Bulk RNA-seq analysis of mouse tumor tissues was performed to predict the potential mechanisms underlying cryoablation-induced antitumor immunity. Finally, these predictions were validated through in vitro and in vivo experiments employing cell cryoablation and mouse subcutaneous tumor transplantation models. RESULTS Single-cell RNA sequencing analysis revealed intricate interactions between Tregs subpopulations and the regulation of the immune response in lung adenocarcinoma, highlighting the involvement of the TGF-β pathway. A significant decrease in the level of Tregs was noted at 30 days post-cryoablation compared to pre-surgical and 3-day post-surgery levels. The cellular and murine cryoablation models validated the inhibitory effect of cryoablation on Tregs and its potential to stimulate antitumor immunity. Additionally, the results of bulk RNA-seq demonstrated the role of cryoablation in regulating postoperative immunity via the TGF-β pathway. Cryoablation decreased the expression levels of TGF-β1, suppressed the phosphorylation of Smad2 and Smad3, and downregulated the expression of FOXP3, thereby inhibiting the conversion of CD4 + T cell precursors into Tregs. Moreover, cryoablation enhanced the expression of interferon-gamma (IFN-γ), thereby promoting its antitumor activity. CONCLUSIONS This study revealed the effective modification of the lung adenocarcinoma microenvironment by cryoablation through the suppression of Tregs and activation of antitumor immunity via the TGF-β pathway. These findings hold implications for optimizing cryoablation-based therapies and guiding future clinical trials on lung adenocarcinoma treatment. TRIAL REGISTRATION This trial was registered with the Chinese Clinical Trial Registry (Chictr.org.cn, ChiCTR2000038580, Sep 24, 2020).
Collapse
Affiliation(s)
- Shicheng Lin
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Dianna Liu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Tianyu Liang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- Geriatric Department, Miyun Campus of the Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yaoxue Zhuang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- Intensive Care Department, Tongxiang Hospital of Traditional Chinese Medicine, Zhejiang, People's Republic of China
| | - Xiaofan Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Shengmao Ma
- Department of Thoracic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China
| | - Quanwang Li
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| | - Kaiwen Hu
- Oncology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, People's Republic of China.
| |
Collapse
|
20
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
21
|
Wang J, Guan L, Yu J, Ma B, Shen H, Xing G, Xu Y, Li Q, Liu J, Xu Q, Shi W, He J, Huang Y, Yin D, Li W, Wang R. Halofuginone prevents inflammation and proliferation of high-altitude pulmonary hypertension by inhibiting the TGF-β1/Smad signaling pathway. Sci Rep 2025; 15:3619. [PMID: 39880976 PMCID: PMC11779860 DOI: 10.1038/s41598-025-88258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
The inflammatory response of lung tissue and abnormal proliferation of pulmonary artery smooth muscle cells are involved in the pathogenesis of high-altitude pulmonary hypertension (HAPH). Halofuginone (HF), an active ingredient derivative of Chang Shan (Dichroa febrifuga Lour. [Hydrangeaceae]), has antiproliferative, antihypertrophic, antifibrotic, and other effects, but its protective effects on HAPH remains unclear. In the present study, we evaluated the efficacy of HF on HAPH by establishing a 6000 m HAPH rat model. Male Sprague-Dawley rats were divided into normoxia, normoxia + halofuginone (1 mg/kg), hypoxia, and hypoxia + halofuginone (1 mg/kg) groups. The results showed that HF (1 mg/kg) could prevent hypoxia-induced hemodynamic abnormalities, right ventricular hypertrophy, and pulmonary vascular remodeling in rats. We further detected the expression levels of inflammatory factors interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α) and proliferative/antiproliferative indicators proliferating cell nuclear antigen (PCNA), cyclin-dependent kinase 6 (CDK6), Cyclin D1, p21 in lung tissue, and found that HF could attenuate the lung tissue inflammatory response and proliferative response in HAPH rats. In addition, we also examined the expression levels of transforming growth factor-β1 (TGF-β1), Smad2/3 and p-Smad2/3 in lung tissue, and found that HF exerted therapeutic effects by inhibiting the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Jiangtao Wang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
- School of Medicine, Shihezi University, Shihezi, 832000, China
| | - Lina Guan
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Jian Yu
- Tumor Hospital of Xinjiang Medical University, Ürümqi, 830000, China
| | - Bohua Ma
- Department of Pharmacy, Qingyang People's Hospital, Qingyang, 745000, China
| | - Huihua Shen
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Guozhu Xing
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Yawei Xu
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Qiufang Li
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Juan Liu
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Qin Xu
- Xinjiang Key Laboratory of Special Environmental Medicine, Ürümqi, 830000, China
| | - Wenhui Shi
- Xinjiang Key Laboratory of Special Environmental Medicine, Ürümqi, 830000, China
| | - Jia He
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Yixuan Huang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China
| | - Dongfeng Yin
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
| | - Wu Li
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
- School of Medicine, Shihezi University, Shihezi, 832000, China.
| | - Rui Wang
- General Hospital of Xinjiang Military Command, 359 North Friendship Road, Sayibak, Ürümqi, 830000, Xinjiang, China.
| |
Collapse
|
22
|
Dong A, Yu X, Zhang Y, Liu L, Liu F, Song W, Zheng J. Anti-Müllerian hormone regulates ovarian granulosa cell growth in PCOS rats through SMAD4. Int J Gynaecol Obstet 2025. [PMID: 39865361 DOI: 10.1002/ijgo.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS. METHODS A DHEA-induced PCOS rat model was established, and ovarian granulosa cells were extracted and identified. Anti-Müllerian hormone (AMH) and SMAD family member 4 (SMAD4) expression was detected in the serum, ovarian tissue and ovarian granulosa cells of each group, and proliferating cell nuclear antigen (PCNA), BCL2-associated 2 (BAX), cleaved caspase-3 and BCL-2 protein expression was detected by Western blot in ovarian granulosa cells. Recombinant anti-Müllerian hormone (rAMH) was administered at different concentrations to act on normal rat ovarian granulosa cells, cell proliferation was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SMAD4, caspase-3, BCL-2 and cyclin A proteins were detected by Western blot. SMAD4-siRNA was transfected into rat ovarian granulosa cells of the PCOS group, and PCNA and BAX were detected by Western blot. RESULTS Compared with those in the control group, the expression of AMH and SMAD4 was increased in the ovarian tissues and granulosa cells of rats in the PCOS group, the expression of PCNA and BCL-2 proteins was decreased in the ovarian granulosa cells of the PCOS group, the expression of BAX proteins was increased, and the expression of cleaved caspase-3 was increased. Western blot results indicated that rAMH upregulated SMAD4 and caspase-3 protein expression in granulosa cells and downregulated cyclin A and BCL-2 protein expression. CCK-8 and flow cytometry results indicated that AMH decreased granulosa cells proliferation and increased apoptosis. SiRNA knockdown of SMAD4 gene increased PCNA and BCL-2 protein expression in the granulosa cells of PCOS rats and decreased BAX and cleaved caspase-3 protein expression. CONCLUSION AMH may be involved in regulating impaired ovarian granulosa cells development in PCOS rats via SMAD4.
Collapse
Affiliation(s)
- Anqi Dong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiaomeng Yu
- Department of Obstetrics, Women and Children's Hospital of Jinzhou, Jinzhou, Liaoning, China
| | - Yun Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lili Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fanglin Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Song
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jindan Zheng
- Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
23
|
Ortega MA, Boaru DL, De Leon-Oliva D, De Castro-Martinez P, Minaya-Bravo AM, Casanova-Martín C, Barrena-Blázquez S, Garcia-Montero C, Fraile-Martinez O, Lopez-Gonzalez L, Saez MA, Alvarez-Mon M, Diaz-Pedrero R. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel) 2025; 16:128. [PMID: 40004457 PMCID: PMC11854833 DOI: 10.3390/genes16020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Klotho, initially identified as an anti-aging gene, has been shown to play significant roles in cancer biology. Alongside α-Klotho, the β-Klotho and γ-Klotho isoforms have also been studied; these studies showed that Klotho functions as a potential tumor suppressor in many different cancers by inhibiting cancer cell proliferation, inducing apoptosis and modulating critical signaling pathways such as the Wnt/β-catenin and PI3K/Akt pathways. In cancers such as breast cancer, colorectal cancer, hepatocellular carcinoma, ovarian cancer, and renal cell carcinoma, reduced Klotho expression often correlates with a poor prognosis. In addition, Klotho's role in enhancing chemotherapy sensitivity and its epigenetic regulation further underscores its potential as a target for cancer treatments. This review details Klotho's multifaceted contributions to cancer suppression and its potential as a therapeutic target, enhancing the understanding of its significance in cancer treatment and prognoses.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
24
|
Zeng Y, Buonfiglio F, Li J, Pfeiffer N, Gericke A. Mechanisms Underlying Vascular Inflammaging: Current Insights and Potential Treatment Approaches. Aging Dis 2025:AD.2024.0922. [PMID: 39812546 DOI: 10.14336/ad.2024.0922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammaging refers to chronic, low-grade inflammation that becomes more common with age and plays a central role in the pathophysiology of various vascular diseases. Key inflammatory mediators involved in inflammaging contribute to endothelial dysfunction and accelerate the progression of atherosclerosis. In addition, specific pathological mechanisms and the role of inflammasomes have emerged as critical drivers of immune responses within the vasculature. A comprehensive understanding of these processes may lead to innovative treatment strategies that could significantly improve the management of age-related vascular diseases. Emerging therapeutic approaches, including cytokine inhibitors, senolytics, and specialized pro-resolving mediators, aim to counteract inflammaging and restore vascular health. This review seeks to provide an in-depth exploration of the molecular pathways underlying vascular inflammaging and highlight potential therapeutic interventions.
Collapse
|
25
|
Li S, Yan L, Li C, Lou L, Cui F, Yang X, He F, Jiang Y. NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression. Nat Commun 2025; 16:439. [PMID: 39762312 PMCID: PMC11704005 DOI: 10.1038/s41467-024-55788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl4 induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport. We identify that the 692-854 amino acid region of NPC1's transmembrane domain is critical for its interaction with TGF-β receptor type-1 (TGFBR1). This interaction prevents the binding of SMAD7 and SMAD ubiquitylation regulatory factors (SMURFs) to TGFBR1, reducing TGFBR1 ubiquitylation and degradation, thus enhancing its stability. Notably, the NPC1 (P691S) mutant, which is defective in cholesterol transport, still binds TGFBR1, underscoring a cholesterol-independent mechanism. These findings highlight a cholesterol transport-independent mechanism by which NPC1 contributes to the stability of TGFBR1 in HCC and suggest potential therapeutic strategies targeting NPC1 for HCC treatment.
Collapse
Affiliation(s)
- Shuangyan Li
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lishan Yan
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chaoying Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fengjiao Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
26
|
Deng X, Chen Y, Duan Q, Ding J, Wang Z, Wang J, Chen X, Zhou L, Zhao L. Genetic and molecular mechanisms of hydrocephalus. Front Mol Neurosci 2025; 17:1512455. [PMID: 39839745 PMCID: PMC11746911 DOI: 10.3389/fnmol.2024.1512455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies. Various genetic and molecular abnormalities contribute to the mechanisms of hydrocephalus, including gene deletions or mutations, the activation of cellular inflammatory signaling pathways, alterations in water channel proteins, and disruptions in iron metabolism. Several studies have demonstrated that modulating the expression of key proteins, including TGF-β, VEGF, Wnt, AQP, NF-κB, and NKCC, can significantly influence the onset and progression of hydrocephalus. This review summarizes and discusses key mechanisms that may be involved in the pathogenesis of hydrocephalus at both the genetic and molecular levels. While obstructive hydrocephalus can often be addressed by removing the obstruction, most cases require treatment strategies that involve merely slowing disease progression by correcting CSF circulation patterns. There have been few new research breakthroughs in the prevention and treatment of hydrocephalus.
Collapse
Affiliation(s)
- Xuehai Deng
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Yiqian Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Qiyue Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Jianlin Ding
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Zhong Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, China
| | - Junchi Wang
- School of Dentistry, North Sichuan Medical College, Nanchong, China
| | - Xinlong Chen
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
27
|
Yin C, Zhang C, Wang Y, Liu G, Wang N, Liang N, Zhang L, Tu Q, Lv J, Jiang H, Ma H, Du C, Li M, He X, Chen S, Guo J, Li S, Qin J, Li N, Tao Y, Yin H. ALDOB/KAT2A interactions epigenetically modulate TGF-β expression and T cell functions in hepatocellular carcinogenesis. Hepatology 2025; 81:77-93. [PMID: 38051951 DOI: 10.1097/hep.0000000000000704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND AND AIMS Cross talk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor HCC. However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC. APPROACH AND RESULTS We found that ALDOB downregulation was negatively correlated with CD8 + T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-β expression, thereby increasing the number of Treg cells and impairing the activity of CD8 + T cells. Consistently, a combination of low ALDOB and high TGF-β expression exhibited the worst overall survival for patients with HCC. More importantly, the simultaneous blocking of TGF-β and programmed cell death (PD) 1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A, leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of lysine acetyltransferase 2A activity by small molecule inhibitors suppressed TGF-β and HCC. CONCLUSIONS Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-β signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.
Collapse
Affiliation(s)
- Chunzhao Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Cunzhen Zhang
- Department of Hepatic Surgery I (Ward l), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yongqiang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guijun Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qiaochu Tu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huimin Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haoran Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chenxi Du
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Min Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuxiao He
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shengxian Li
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward l), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Research, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Marine Pollution (SKLMP), City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
28
|
Li G, Gao J, Ding P, Gao Y. The role of endothelial cell-pericyte interactions in vascularization and diseases. J Adv Res 2025; 67:269-288. [PMID: 38246244 PMCID: PMC11725166 DOI: 10.1016/j.jare.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Endothelial cells (ECs) and pericytes (PCs) are crucial components of the vascular system, with ECs lining the inner layer of blood vessels and PCs surrounding capillaries to regulate blood flow and angiogenesis. Intercellular communication between ECs and PCs is vital for the formation, stability, and function of blood vessels. Various signaling pathways, such as the vascular endothelial growth factor/vascular endothelial growth factor receptor pathway and the platelet-derived growth factor-B/platelet-derived growth factor receptor-β pathway, play roles in communication between ECs and PCs. Dysfunctional communication between these cells is associated with various diseases, including vascular diseases, central nervous system disorders, and certain types of cancers. AIM OF REVIEW This review aimed to explore the diverse roles of ECs and PCs in the formation and reshaping of blood vessels. This review focused on the essential signaling pathways that facilitate communication between these cells and investigated how disruptions in these pathways may contribute to disease. Additionally, the review explored potential therapeutic targets, future research directions, and innovative approaches, such as investigating the impact of EC-PCs in novel systemic diseases, addressing resistance to antiangiogenic drugs, and developing novel antiangiogenic medications to enhance therapeutic efficacy. KEY SCIENTIFIC CONCEPTS OF REVIEW Disordered EC-PC intercellular signaling plays a role in abnormal blood vessel formation, thus contributing to the progression of various diseases and the development of resistance to antiangiogenic drugs. Therefore, studies on EC-PC intercellular interactions have high clinical relevance.
Collapse
Affiliation(s)
- Gan Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Peng Ding
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Youshui Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
29
|
Cui X, Zhang L, Lin L, Hu Y, Zhang M, Sun B, Zhang Z, Lu M, Guan X, Hao J, Li Y, Li C. Notoginsenoside R1-Protocatechuic aldehyde reduces vascular inflammation and calcification through increasing the release of nitric oxide to inhibit TGFβR1-YAP/TAZ pathway in vascular smooth muscle cells. Int Immunopharmacol 2024; 143:113574. [PMID: 39520961 DOI: 10.1016/j.intimp.2024.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Vascular calcification is a significant factor contributing to the rupture of vulnerable atherosclerotic plaques, ultimately leading to cardiovascular disease. However, no effective treatments are currently available to slow the progression of vascular calcification. Notoginsenoside R1 (R1) and protocatechuic aldehyde (PCAD), primary active components extracted from Panax notoginseng and Salvia miltiorrhiza Burge, have shown potential in mitigating endothelial injury and atherosclerosis. This study investigated the effects of R1-PCAD on nitric oxide (NO) production in endothelial cells (ECs) and its role in counteracting vascular calcification and inflammation. Additionally, it explored the mechanisms underlying these effects. To simulate atherosclerotic calcification, apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat diet and given intraperitoneal injections of vitamin D3. Treatment with the R1-PCAD combination improved endothelial function, reduced inflammation in the aorta, and lowered calcium deposition. Mechanistically, R1-PCAD enhanced eNOS-Ser1177 phosphorylation by activating the AMPKα/Akt pathway, which stimulated NO production and eNOS activation in ECs. In an in vitro co-culture model involving vascular smooth muscle cells (VSMCs) and ECs, R1-PCAD similarly reduced inflammation and calcification in VSMCs triggered by β-glycerophosphate, with these effects partially dependent on NO levels and EC functionality. Further investigation revealed that R1-PCAD facilitated NO release from ECs, which subsequently inhibited TGFβR1 activation in VSMCs. This inhibition reduced Smad2/3 activation and nuclear translocation of YAP/TAZ, thereby diminishing inflammation and calcification in VSMCs. These findings suggest that R1-PCAD alleviates vascular inflammation and calcification primarily via the NO-TGFβR1-YAP/TAZ signaling pathway. This study presents a promising new approach for treating vascular calcification by targeting intercellular signaling pathways.
Collapse
MESH Headings
- Animals
- Nitric Oxide/metabolism
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Mice
- Signal Transduction/drug effects
- Catechols/pharmacology
- Catechols/therapeutic use
- Benzaldehydes/pharmacology
- Benzaldehydes/therapeutic use
- Vascular Calcification/drug therapy
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Mice, Inbred C57BL
- Male
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Humans
- Transcription Factors/metabolism
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Cells, Cultured
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Xinhai Cui
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Lin Lin
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bowen Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
30
|
Ayub S, Shafi T, Rasool R, Dangroo MA, Bindroo MA, Gull A, Al-Keridis LA, Alshammari N, Saeed M, Shah ZA. Evaluating the role of active TGF-β1 as inflammatory biomarker in Kashmiri (North-Indian) patients with systemic sclerosis: a case-control study. Adv Rheumatol 2024; 64:91. [PMID: 39716300 DOI: 10.1186/s42358-024-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND As a master immune system regulator, transforming growth factor β1 (TGF-β1) is closely linked to the complicated pathophysiology and development of systemic sclerosis (SSc), a multisystem fibrotic disease. OBJECTIVE We aim to evaluate the transcriptional levels of TGF-β1 mRNA in PBMCs, assess the TGF-β1 serum levels of SSc patients, and compare them with those of healthy subjects. METHODS PBMCs were isolated from whole blood of 50 SSc patients and in 30 healthy controls. After total RNA was extracted from isolated PBMCs, complementary DNA (cDNA) synthesis was performed. Afterward, the expression of TGF-β1 mRNA was assessed using quantitative real-time PCR using the SYBR Green, GAPDH, and TGF-β1 specific primers. The serum levels of TGF-β1 were determined using a commercially available ELISA kit. RESULTS There was a significant upregulation of TGF-β1 relative expression (p < 0.0001), when SSc patients were compared to the control group. The diffuse subgroup was more common in patients with elevated TGF-β1 mRNA expression (p < 0.0001). However, an insignificant difference was observed between the disease subsets of SSc. Serum TGF- β1 levels were upregulated in SSc patients (78.35 ± 23.16) compared to healthy subjects (61.06 ± 15.90), and were considerably higher in SSc patients with ILD (p < 0.01) and positive anti-topo-Isomerase antibody (p < 0.0001). CONCLUSION In patients with SSc, elevated levels of TGF-β1 in serum and their correlation with clinical symptoms imply that this cytokine may serve as a marker for fibrotic and vascular involvement in SSc.
Collapse
Affiliation(s)
- Sakeena Ayub
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India
| | - Tabasum Shafi
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India
| | - Roohi Rasool
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India
| | - Mushtaq A Dangroo
- Division of Rheumatology, Department of Internal Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, 190011, India
| | - Muzaffar A Bindroo
- Division of Rheumatology, Department of Internal Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, 190011, India
| | - Ayaz Gull
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India
| | - Lamya Ahmad Al-Keridis
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Zafar Amin Shah
- Department of Immunology & Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, Jammu and Kashmir, 190011, India.
| |
Collapse
|
31
|
Hung YS, Lin WM, Wang YC, Kuo WC, Chen YY, Fann MJ, Yu JY, Wong YH. Protogenin facilitates trunk-to-tail HOX code transition via modulating GDF11/SMAD2 signaling in mammalian embryos. Commun Biol 2024; 7:1669. [PMID: 39702818 DOI: 10.1038/s42003-024-07342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
During embryogenesis, vertebral axial patterning is intricately regulated by multiple signaling networks. This study elucidates the role of protogenin (Prtg), an immunoglobulin superfamily member, in vertebral patterning control. Prtg knockout (Prtg-/-) mice manifest anterior homeotic transformations in their vertebral columns and significant alterations in homeobox (Hox) gene expression. Transcriptomic profiling of Prtg-/- mouse embryos highlights Prtg-regulated genes involved in axial development, particularly within the transforming growth factor beta (TGFβ) signaling pathway. Reduced TGFβ signaling in Prtg-/- mouse embryos is evidenced by decreased phosphorylated Smad2 (pSmad2) levels and its downstream target genes in the developing tail. We further show that Prtg interacts with growth differentiation factor 11 (GDF11) to enhance GDF11/pSmad2 signaling activity. Using human-induced pluripotent stem cell-derived presomitic mesoderm-like (hiPSC-PSM) cells, we demonstrate delayed posterior HOX gene expression upon PRTG knockout, which is rescued by GDF11 supplementation. These findings provide compelling evidence that PRTG regulates HOX genes through the GDF11/SMAD2 signaling pathway.
Collapse
Affiliation(s)
- Yu-Sheng Hung
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Wei-Mi Lin
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Yu-Chiuan Wang
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Wei-Chih Kuo
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Yu-Yang Chen
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Ming-Ji Fann
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC)
| | - Jenn-Yah Yu
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Interdisciplinary Master Program in Molecular Medicine, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Institute of Neuroscience, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan (ROC).
| |
Collapse
|
32
|
Reed EB, Sitikov A, Shin KWD, Hamanaka RB, Cetin-Atalay R, Mutlu GM, Mongin AA, Dulin NO. Gα12 and Gα13 proteins are required for transforming growth factor-β-induced myofibroblast differentiation. Biochem J 2024; 481:1937-1948. [PMID: 39621448 DOI: 10.1042/bcj20240317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Myofibroblast differentiation, characterized by accumulation of cytoskeletal and extracellular matrix proteins by fibroblasts, is a key process in wound healing and pathogenesis of tissue fibrosis. Transforming growth factor-β (TGF-β) is the most powerful known driver of myofibroblast differentiation. TGF-β signals through transmembrane receptor serine/threonine kinases that phosphorylate Smad transcription factors (Smad2/3) leading to activation of transcription of target genes. Heterotrimeric G proteins mediate distinct signaling from seven-transmembrane G protein coupled receptors, which are not known to be linked to Smad activation. We tested whether G protein signaling plays any role in TGF-β-induced myofibroblast differentiation, using primary cultured human lung fibroblasts. Activation of Gαs by cholera toxin blocked TGF-β-induced myofibroblast differentiation without affecting Smad2/3 phosphorylation. Neither inhibition of Gαi by pertussis toxin nor siRNA-mediated combined knockdown of Gαq and Gα11 had a significant effect on TGF-β-induced myofibroblast differentiation. In contrast, combined knockdown of Gα12 and Gα13 significantly inhibited TGF-β-stimulated expression of myofibroblast marker proteins (collagen-1, fibronectin, smooth-muscle α-actin), with siGα12 being significantly more potent than siGα13. Mechanistically, combined knockdown of Gα12 and Gα13 resulted in substantially reduced phosphorylation of Smad2 and Smad3 in response to TGF-β, which was accompanied by a significant decrease in the expression of TGF-β receptors (TGFBR1, TGFBR2) and of Smad3. Thus, our study uncovers a novel role of Gα12/13 proteins in the control of TGF-β signaling and myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, U.S.A
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, U.S.A
| |
Collapse
|
33
|
Yan T, Shi J. Angiogenesis and EMT regulators in the tumor microenvironment in lung cancer and immunotherapy. Front Immunol 2024; 15:1509195. [PMID: 39737184 PMCID: PMC11682976 DOI: 10.3389/fimmu.2024.1509195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Lung cancer remains the primary cause of cancer-related mortality, with factors such as postoperative tumor recurrence, metastasis, and therapeutic drug resistance exacerbating patient outcomes. Immunotherapy has emerged as a transformative approach, challenging conventional treatment paradigms for lung cancer. Consequently, advancing research in lung cancer immunotherapy is imperative. Recent studies indicate that numerous regulators within the tumor microenvironment (TME) drive tumor angiogenesis and epithelial-mesenchymal transition (EMT); these processes are interdependent, reciprocal, and collectively contribute to tumor progression. Tumor angiogenesis not only supplies adequate oxygen and nutrients for cellular proliferation but also establishes pathways facilitating tumor metastasis and creating hypoxic regions that foster drug resistance. Concurrently, EMT enhances metastatic potential and reinforces drug-resistance genes within tumor cells, creating a reciprocal relationship with angiogenesis. This interplay ultimately results in tumor invasion, metastasis, and therapeutic resistance. This paper reviews key regulators of angiogenesis and EMT, examining their impact on lung cancer immunotherapy and progression, and investigates whether newly identified regulators could influence lung cancer treatment, thus offering valuable insights for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Taotao Yan
- Medical School of Nantong University, Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
Bi R, Pan LN, Dai H, Sun C, Li C, Lin HJ, Xie LP, Ma HX, Li L, Xie H, Guo K, Hou CH, Yao YG, Chen LN, Zheng P. Epigenetic characterization of adult rhesus monkey spermatogonial stem cells identifies key regulators of stem cell homeostasis. Nucleic Acids Res 2024; 52:13644-13664. [PMID: 39535033 DOI: 10.1093/nar/gkae1013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play crucial roles in the preservation of male fertility. However, successful ex vivo expansion of authentic human SSCs remains elusive due to the inadequate understanding of SSC homeostasis regulation. Using rhesus monkeys (Macaca mulatta) as a representative model, we characterized SSCs and progenitor subsets through single-cell RNA sequencing using a cell-specific network approach. We also profiled chromatin status and major histone modifications (H3K4me1, H3K4me3, H3K27ac, H3K27me3 and H3K9me3), and subsequently mapped promoters and active enhancers in TSPAN33+ putative SSCs. Comparing the epigenetic changes between fresh TSPAN33+ cells and cultured TSPAN33+ cells (resembling progenitors), we identified the regulatory elements with higher activity in SSCs, and the potential transcription factors and signaling pathways implicated in SSC regulation. Specifically, TGF-β signaling is activated in monkey putative SSCs. We provided evidence supporting its role in promoting self-renewal of monkey SSCs in culture. Overall, this study outlines the epigenetic landscapes of monkey SSCs and provides clues for optimization of the culture condition for primate SSCs expansion.
Collapse
Affiliation(s)
- Rui Bi
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin-Nuo Pan
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Hao Dai
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
| | - Chunli Sun
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Cong Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Hui-Juan Lin
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lan-Ping Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Huai-Xiao Ma
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
| | - Lin Li
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Heng Xie
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Kun Guo
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Chun-Hui Hou
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Yong-Gang Yao
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| | - Luo-Nan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, No. 320 Yue Yang Road, Shanghai 200031, China
- Key Laboratory of Systems Biology, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, No. 1 Xiangshan Branch Lane, Xihu District, Hangzhou 310024, China
| | - Ping Zheng
- State Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Baohua Road, Kunming 650107, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650204, China
| |
Collapse
|
35
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
36
|
Du K, Umbaugh DS, Dutta RK, Diehl AM. A systemic effect for liver senescence. Nat Cell Biol 2024; 26:2016-2017. [PMID: 39537754 DOI: 10.1038/s41556-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA
| | | | | | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Bednarczyk A, Kowalski G, Gawrychowska A, Gawrychowski J. Transforming Growth Factor-Beta (TGF-β) Dynamics in Thyroid Pathologies: A Comprehensive Analysis of Pre- and Post-Surgery Levels in Differentiated Thyroid Cancer and Nodular Goiter. POLISH JOURNAL OF SURGERY 2024; 97:1-4. [PMID: 40247786 DOI: 10.5604/01.3001.0054.8492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
<b>Introduction:</b> In various pathological conditions, including cancer, transforming growth factor-beta (TGF-β) emerges as a pivotal cytokine.<b>Aim:</b> This study sought to evaluate TGF-β concentrations in blood serum samples and explore potential associations between pre- and post-surgery TGF-β levels in patients with differentiated thyroid cancer and forms of nodular goiter.<b>Material and methods:</b> A total of 70 patients were included, aged 26 to 79, undergoing thyroidectomy for: differentiated thyroid cancer (11), neutral nodular goiter (46), and hyperactive nodular goiter (13). Serum TGF-β1 values were assessed using the Bio-Plex Pro™ Human Cytokine Assay from Bio-Rad Laboratories, and data were analyzed with Bio-Plex Manager™ software.<b>Conclusions:</b> This investigation aimed to provide insights into the dynamics of TGF-β concentrations in the context of thyroid pathologies, utilizing a comparative approach before and after surgical intervention.
Collapse
Affiliation(s)
- Adam Bednarczyk
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Grzegorz Kowalski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Agata Gawrychowska
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| | - Jacek Gawrychowski
- Chair and Clinical Department of General and Endocrine Surgery, Faculty of Health Sciences, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
38
|
Yu EJ, Bell DW. The endometrial cancer A230V-ALK5 (TGFBR1) mutant attenuates TGF-β signaling and exhibits reduced in vitro sensitivity to ALK5 inhibitors. PLoS One 2024; 19:e0312806. [PMID: 39576826 PMCID: PMC11584080 DOI: 10.1371/journal.pone.0312806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024] Open
Abstract
The ALK5 (TGFBR1) receptor serine/threonine kinase transduces TGF-β (Transforming Growth Factor beta) signaling to activate SMAD2/3-dependent and -independent pathways. Here, we aimed to determine the functional consequences of ALK5 mutations in human endometrial cancer (EC). Somatic mutation data were retrieved from publicly available databases. Using seven in silico algorithms, 78.5% (11 of 14) of ALK5 kinase domain mutations in EC, including A230V-ALK5, were predicted to impact protein function. For in vitro studies, we focused on A230V-ALK5 because it was the only mutated residue located within the ATP-binding pocket, which is an important region for both ATP-binding and binding of ATP-competitive inhibitors. Constructs expressing wildtype-, constitutively-active-, kinase-dead-, or mutant A230V-ALK5, were transfected into NIH/3T3 cells. Following TGF-β1 stimulation, transient exogenous expression of A230V-ALK5 resulted in attenuated SMAD2/3 signal transduction and reduced AKT activation. We further showed that the A230V-ALK5 mutant had reduced stability resulting from increased ubiquitin-dependent protein degradation. Our structural modeling predicted that SB-431542, a small molecule ATP-competitive inhibitor of ALK5, binds to the A230V-ALK5 mutant with reduced affinity compared to wildtype-ALK5. We therefore examined the inhibitory effect of SB-431542 and galunisertib on wildtype- and mutant-ALK5 activity using a Smad-binding element (SBE) luciferase reporter assay combined with TGF-β1 stimulation, in NIH/3T3 cells and HEC-265 EC cells. SBE luciferase activity in A230V-ALK5 transfected cells was inhibited less by SB-431542 and galunisertib than in wildtype-ALK5 transfected cells indicating that A230V-ALK5 is less sensitive to inhibition by these agents than wildtype-ALK5, potentially due to changes in SB-431542/A230V-ALK5 binding affinity. Our findings are novel and show that A230V-ALK5 is a partial loss-of-function mutant that attenuates TGF-β1 signal transduction and has reduced sensitivity to ALK5 small molecule inhibitors.
Collapse
Affiliation(s)
- Eun-Jeong Yu
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daphne W Bell
- Reproductive Cancer Genetics Section, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
39
|
Gill HK, Yin S, Nerurkar NL, Lawlor JC, Lee C, Huycke TR, Mahadevan L, Tabin CJ. Hox gene activity directs physical forces to differentially shape chick small and large intestinal epithelia. Dev Cell 2024; 59:2834-2849.e9. [PMID: 39116876 PMCID: PMC11537829 DOI: 10.1016/j.devcel.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/15/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Hox transcription factors play crucial roles in organizing developmental patterning across metazoa, but how these factors trigger regional morphogenesis has largely remained a mystery. In the developing gut, Hox genes help demarcate identities of intestinal subregions early in embryogenesis, which ultimately leads to their specialization in both form and function. Although the midgut forms villi, the hindgut develops sulci that resolve into heterogeneous outgrowths. Combining mechanical measurements of the embryonic chick intestine and mathematical modeling, we demonstrate that the posterior Hox gene HOXD13 regulates biophysical phenomena that shape the hindgut lumen. We further show that HOXD13 acts through the transforming growth factor β (TGF-β) pathway to thicken, stiffen, and promote isotropic growth of the subepithelial mesenchyme-together, these features lead to hindgut-specific surface buckling. TGF-β, in turn, promotes collagen deposition to affect mesenchymal geometry and growth. We thus identify a cascade of events downstream of positional identity that direct posterior intestinal morphogenesis.
Collapse
Affiliation(s)
- Hasreet K Gill
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sifan Yin
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Nandan L Nerurkar
- The Fu Foundation School of Engineering and Applied Science, Columbia University, New York, NY 10027, USA
| | - John C Lawlor
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - ChangHee Lee
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler R Huycke
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - L Mahadevan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Clifford J Tabin
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Voicu G, Mocanu CA, Safciuc F, Rebleanu D, Anghelache M, Cecoltan S, Droc I, Simionescu M, Manduteanu I, Calin M. VCAM-1 targeted nanocarriers of shRNA-Smad3 mitigate endothelial-to-mesenchymal transition triggered by high glucose concentrations and osteogenic factors in valvular endothelial cells. Int J Biol Macromol 2024; 281:136355. [PMID: 39374726 DOI: 10.1016/j.ijbiomac.2024.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Endothelial to mesenchymal transition (EndMT) of valvular endothelial cells (VEC) is a key process in the development and progression of calcific aortic valve disease (CAVD). High expression of the Smad3 transcription factor is crucial in the transition process. We hypothesize that silencing Smad3 could hinder EndMT and provide a novel treatment for CAVD. We aimed at developing nanoparticles encapsulating short-hairpin (sh)RNA sequences specific for Smad3 targeted to the aortic valve. We synthesized VCAM-1-targeted lipopolyplexes encapsulating shRNA-Smad3 plasmid (V-LPP/shSmad3) and investigated their potential to reduce the EndMT of human VEC. VEC incubation in a medium containing high glucose concentrations and osteogenic factors (HGOM) triggers EndMT and increased expression of Smad3. Exposed to lipopolyplexes, VEC took up efficiently the V-LPP/shSmad3. The latter reduced the EndMT process in VEC exposed to HGOM by downregulating the expression of αSMA and S100A4 mesenchymal markers and increasing the expression of the CD31 endothelial marker. In vivo, V-LPP/shSmad3 accumulated in the aortic root and aorta of a murine model of atherosclerosis complicated with diabetes, without affecting the liver and kidney function. The results suggest that targeting activated VEC with lipopolyplexes to silence Smad3 could be an effective, novel treatment for CAVD mediated by the EndMT process.
Collapse
Affiliation(s)
- Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Sergiu Cecoltan
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ionel Droc
- Central Military Hospital "Dr. Carol Davila", Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
41
|
Zhang X, Yi K, Wang B, Chu K, Liu J, Zhang J, Fang J, Zhao T. EZH2 Activates HTLV-1 bZIP Factor-Mediated TGF-β Signaling in Adult T-Cell Leukemia. J Med Virol 2024; 96:e70025. [PMID: 39530290 DOI: 10.1002/jmv.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Adult T-cell leukemia (ATL) is an aggressive malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. Enhancer of zeste homolog 2 (EZH2) has been implicated in the development and progression of multiple cancers, including virus-induced malignancies. However, the potential function of EZH2 in HTLV-1-induced oncogenesis has not been clearly elucidated. In the present study, we showed that EZH2 was overexpressed and activated in HTLV-1-infected cell lines, potentially due to the activation of EZH2 promoter by HTLV-1 Tax and NF-κB p65 subunit. In addition, we found that EZH2 enhanced the HBZ-induced activation of TGF-β signaling in a histone methyltransferase-independent manner. As a mechanism for these actions, we found that EZH2 targeted Smad3/Smad4 to form a ternary complex, and the association between Smad3 and Smad4 was markedly enhanced in the presence of EZH2. Knockdown of EZH2 in ATL cells indeed repressed the expressions of the TGF-β target genes. In particular, EZH2 synergistically enhanced the HBZ/TGF-β-induced Foxp3 expression. Treatment of 3-Deazaneplanocin A, a specific inhibitor of EZH2 significantly inhibited the Foxp3 expression. Taken together, our results suggest that EZH2 may be involved in the differentiation of regulatory T cells through activating the HBZ-Smad3-TGF-β signaling axis, which is considered to be a key strategy for viral persistence.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaining Yi
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bingbing Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Kaifei Chu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Liu
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Zhang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jiaqi Fang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Tiejun Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
42
|
Stump B, Waxman AB. Pulmonary Arterial Hypertension and TGF-β Superfamily Signaling: Focus on Sotatercept. BioDrugs 2024; 38:743-753. [PMID: 39292393 DOI: 10.1007/s40259-024-00680-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease that continues to remain highly morbid despite multiple advances in medical therapies. There remains a persistent and desperate need to identify novel methods of treating and, ideally, reversing the pathologic vasculopathy that results in PAH development and progression. Sotatercept is a first-in-class fusion protein that is believed to primarily inhibit activin signaling resulting in decreased cell proliferation and differentiation, though the exact mechanism remains uncertain. Here, we review the currently available PAH therapies, data highlighting the importance of transforming growth factor-β (TGF-β) superfamily signaling in the development of PAH, and the published and on-going clinical trials evaluating sotatercept in the treatment of PAH. We will also discuss preclinical data supporting the potential use of the fusion protein KER-012 in the inhibition of aberrant TGF-β superfamily signaling to ameliorate the obstructive vasculopathy of PAH.
Collapse
|
43
|
Qian J, Liu KJ, Zhong CH, Xian LN, Hu ZH. Sivelestat sodium alleviated sepsis-induced acute lung injury by inhibiting TGF-β/Smad signaling pathways through upregulating microRNA-744-5p. J Thorac Dis 2024; 16:6616-6633. [PMID: 39552870 PMCID: PMC11565364 DOI: 10.21037/jtd-24-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Background Acute lung injury (ALI) is one of the most common critical illnesses in clinical practice, with sepsis being the most common cause of ALI. Sivelestat sodium (SV) hydrate is a highly effective inhibitor of neutrophil elastase, specifically targeting ALI related to systemic inflammatory response syndrome. The aim of this study is to examine the mechanisms by which SV can reduce the severity of ALI resulting from sepsis. Methods Cecum ligation and puncture (CLP) was employed for creating an animal model of ALI caused by sepsis. Primary human pulmonary microvascular endothelial cells (HPMECs) were treated with lipopolysaccharide (LPS) to develop an in vitro model of infection-induced ALI. Lung tissue damage was assessed by employing hematoxylin-eosin (H&E) and Masson staining. Lung edema was determined by calculating the lung wet-to-dry weight ratio. Lung tissue and cell samples were analyzed using Enzyme-linked immunosorbent assay (ELISA) to detect levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. The 5-ethynyl-2'-deoxyuridine (EdU) and wound-healing assay were used to determine the cell proliferation and migration, while flow cytometry was used for detecting cell apoptosis. The association between microRNA (miR)-744 and transforming growth factor (TGF)-β1 was discovered and confirmed through the utilization of bioinformatics analyses and dual-luciferase gene reporter assay. The analysis of TGF-β1, p-Smad3, and Smad3 was carried out through western blotting and immunohistochemistry in both in vitro and in vivo scenarios. Results In both in vivo and in vitro settings of ALI models of sepsis, there was a significant decrease in the level of miR-744-5p, a significant elevation in the expression of inflammatory factors, and a significant intensification of lung tissue damage. Administration of SV resulted in a significant increase in the level of miR-744-5p, suppressed the inflammatory response, and ultimately improved lung injury. Cell proliferation was significantly enhanced by SV and cell apoptosis was inhibited. The protection of SV was significantly reversed by inhibiting the effect of miR-744-5p. The double-luciferase reporter gene assay revealed substantial interactions occurring between miR-744-5p and TGF-β1. The TGF-β/Smad signaling pathway was significantly inhibited by SV, however, the inhibitory effect can be counteracted by utilizing the miR-744-5p inhibitor. Conclusions The upregulation of miR-744-5p by SV inhibits the TGF-β/Smad signaling pathway, thereby reducing sepsis-induced ALI.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke-Jun Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Chang-Hui Zhong
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Na Xian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhi-Hua Hu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
44
|
Janus P, Kuś P, Jaksik R, Vydra N, Toma-Jonik A, Gramatyka M, Kurpas M, Kimmel M, Widłak W. Transcriptional responses to direct and indirect TGFB1 stimulation in cancerous and noncancerous mammary epithelial cells. Cell Commun Signal 2024; 22:522. [PMID: 39468555 PMCID: PMC11514872 DOI: 10.1186/s12964-024-01821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/07/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Transforming growth factor beta (TGFβ) is important for the morphogenesis and secretory function of the mammary gland. It is one of the main activators of the epithelial-mesenchymal transition (EMT), a process important for tissue remodeling and regeneration. It also provides cells with the plasticity to form metastases during tumor progression. Noncancerous and cancer cells respond differently to TGFβ. However, knowledge of the cellular signaling cascades triggered by TGFβ in various cell types is still limited. METHODS MCF10A (noncancerous, originating from fibrotic breast tissue) and MCF7 (cancer, estrogen receptor-positive) breast epithelial cells were treated with TGFB1 directly or through conditioned media from stimulated cells. Transcriptional changes (via RNA-seq) were assessed in untreated cells and after 1-6 days of treatment. Differentially expressed genes were detected with DESeq2 and the hallmark collection was selected for gene set enrichment analysis. RESULTS TGFB1 induces EMT in both the MCF10A and MCF7 cell lines but via slightly different mechanisms (signaling through SMAD3 is more active in MCF7 cells). Many EMT-related genes are expressed in MCF10A cells at baseline. Both cell lines respond to TGFB1 by decreasing the expression of genes involved in cell proliferation: through the repression of MYC (and the protein targets) in MCF10A cells and the activation of p63-dependent signaling in MCF7 cells (CDKN1A and CDKN2B, which are responsible for the inhibition of cyclin-dependent kinases, are upregulated). In addition, estrogen receptor signaling is inhibited and caspase-dependent cell death is induced only in MCF7 cells. Direct incubation with TGFB1 and treatment of cells with conditioned media similarly affected transcriptional profiles. However, TGFB1-induced protein secretion is more pronounced in MCF10A cells; therefore, the signaling is propagated through conditioned media (bystander effect) more effectively in MCF10A cells than in MCF7 cells. CONCLUSIONS Estrogen receptor-positive breast cancer patients may benefit from high levels of TGFB1 expression due to the repression of estrogen receptor signaling, inhibition of proliferation, and induction of apoptosis in cancer cells. However, some TGFB1-stimulated cells may undergo EMT, which increases the risk of metastasis.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Paweł Kuś
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Natalia Vydra
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Agnieszka Toma-Jonik
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Michalina Gramatyka
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland
| | - Monika Kurpas
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland
| | - Marek Kimmel
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, 44-100, Poland.
- Departments of Statistics and Bioengineering, Rice University, Houston, TX, USA.
| | - Wiesława Widłak
- Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-102, Poland.
| |
Collapse
|
45
|
Bakalenko N, Kuznetsova E, Malashicheva A. The Complex Interplay of TGF-β and Notch Signaling in the Pathogenesis of Fibrosis. Int J Mol Sci 2024; 25:10803. [PMID: 39409132 PMCID: PMC11477142 DOI: 10.3390/ijms251910803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Fibrosis is a major medical challenge, as it leads to irreversible tissue remodeling and organ dysfunction. Its progression contributes significantly to morbidity and mortality worldwide, with limited therapeutic options available. Extensive research on the molecular mechanisms of fibrosis has revealed numerous factors and signaling pathways involved. However, the interactions between these pathways remain unclear. A comprehensive understanding of the entire signaling network that drives fibrosis is still missing. The TGF-β and Notch signaling pathways play a key role in fibrogenesis, and this review focuses on their functional interplay and molecular mechanisms. Studies have shown synergy between TGF-β and Notch cascades in fibrosis, but antagonistic interactions can also occur, especially in cardiac fibrosis. The molecular mechanisms of these interactions vary depending on the cell context. Understanding these complex and context-dependent interactions is crucial for developing effective strategies for treating fibrosis.
Collapse
Affiliation(s)
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia; (N.B.); (E.K.)
| |
Collapse
|
46
|
Petersen AG, Korntner SH, Bousamaki J, Oró D, Arraut AM, Pors SE, Salinas CG, Andersen MW, Madsen MR, Nie Y, Butts J, Roqueta‐Rivera M, Simonsen U, Hansen HH, Feigh M. Reproducible lung protective effects of a TGFβR1/ALK5 inhibitor in a bleomycin-induced and spirometry-confirmed model of IPF in male mice. Physiol Rep 2024; 12:e70077. [PMID: 39394052 PMCID: PMC11469938 DOI: 10.14814/phy2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
This study comprehensively validated the bleomycin (BLEO) induced mouse model of IPF for utility in preclinical drug discovery. To this end, the model was rigorously evaluated for reproducible phenotype and TGFβ-directed treatment outcomes. Lung disease was profiled longitudinally in male C57BL6/JRJ mice receiving a single intratracheal instillation of BLEO (n = 10-12 per group). A TGFβR1/ALK5 inhibitor (ALK5i) was profiled in six independent studies in BLEO-IPF mice, randomized/stratified to treatment according to baseline body weight and non-invasive whole-body plethysmography. ALK5i (60 mg/kg/day) or vehicle (n = 10-16 per study) was administered orally for 21 days, starting 7 days after intratracheal BLEO installation. BLEO-IPF mice recapitulated functional, histological and biochemical hallmarks of IPF, including declining expiratory/inspiratory capacity and inflammatory and fibrotic lung injury accompanied by markedly elevated TGFβ levels in bronchoalveolar lavage fluid and lung tissue. Pulmonary transcriptome signatures of inflammation and fibrosis in BLEO-IPF mice were comparable to reported data in IPF patients. ALK5i promoted reproducible and robust therapeutic outcomes on lung functional, biochemical and histological endpoints in BLEO-IPF mice. The robust lung fibrotic disease phenotype, along with the consistent and reproducible lung protective effects of ALK5i treatment, makes the spirometry-confirmed BLEO-IPF mouse model highly applicable for profiling novel drug candidates for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Nie
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
47
|
Bai H, Liu T, Wang H, Li Y, Wang Z. Metabolic reprogramming of corn oligopeptide in regulating sodium nitrite-induced canine hepatocyte injury via TGF/NF-κB signaling pathways and aminoacyl-tRNA biosynthesis. Food Chem Toxicol 2024; 192:114935. [PMID: 39151875 DOI: 10.1016/j.fct.2024.114935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Sodium nitrite (SN), a prevalent food preservative, is known to precipitate hepatotoxicity upon exposure. This study elucidates the hepatoprotective effects of corn oligopeptide (COP) and vitamin E (VE) against SN-induced hepatic injury in canine hepatocytes. Canine liver cells were subjected to SN to induce hepatotoxicity, followed by treatment with COP and VE. Evaluations included assays for cell viability, oxidative stress markers, apoptosis, and inflammatory cytokines. Additionally, transcriptomic and metabolomic analyses were performed to delineate the underlying molecular mechanisms. The findings demonstrated that COP and VE significantly ameliorated SN-induced cytotoxicity, oxidative stress, and apoptosis. It was evidenced by restored cell viability, enhanced antioxidant enzyme activity, reduced cytoplasmic enzyme leakage, and decreased levels of malondialdehyde and inflammatory cytokines, with COP showing superior efficacy. The RNA sequencing revealed that COP treatment suppressed the SN-activated aminoacyl-tRNA biosynthesis pathway and TGF-β/NF-κB signaling pathways, thereby mitigating amino acid depletion, apoptosis, and inflammation. Moreover, COP treatment upregulated genes associated with protein folding, bile acid synthesis, and DNA repair. Metabolomic analysis corroborated these results, showing that COP restored amino acid levels and enhanced bile acid metabolism, alleviating SN-induced metabolic disruptions. These findings offered significant insights into the protective mechanisms of COP underscoring its prospective application in treating liver injuries.
Collapse
Affiliation(s)
- Huasong Bai
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, PR China
| | - Tong Liu
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, PR China
| | - Hengyan Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, PR China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Zhanzhong Wang
- Nourse Science Centre for Pet Nutrition, Wuhu, 241200, PR China.
| |
Collapse
|
48
|
Le Pennec J, Makshakova O, Nevola P, Fouladkar F, Gout E, Machillot P, Friedel-Arboleas M, Picart C, Perez S, Vortkamp A, Vivès RR, Migliorini E. Glycosaminoglycans exhibit distinct interactions and signaling with BMP2 according to their nature and localization. Carbohydr Polym 2024; 341:122294. [PMID: 38876708 DOI: 10.1016/j.carbpol.2024.122294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.
Collapse
Affiliation(s)
- Jean Le Pennec
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Olga Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Synthetic Biology of Signalling Processes Lab, University of Freiburg, 79104 Freiburg, Germany
| | - Paola Nevola
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France; Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, University of Naples Federico II, Napoli, Italy
| | - Farah Fouladkar
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Evelyne Gout
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | | | - Catherine Picart
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France
| | - Serge Perez
- Univ. Grenoble Alpes, CNRS, Centre de Recherche sur les Macromolécules Végétales, Grenoble, France
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | | | - Elisa Migliorini
- Univ. Grenoble Alpes, INSERM, CEA, CNRS, U1292 Biosanté, EMR 5000, Grenoble, France.
| |
Collapse
|
49
|
Liu L, Yi P, Jiang C, Hu B. Cloning and Expression Analysis of TGF-β Type I Receptor Gene in Hyriopsis cumingii. Zoolog Sci 2024; 41:436-447. [PMID: 39436005 DOI: 10.2108/zs240031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 10/23/2024]
Abstract
The TGF-β signaling pathway plays an important role in wound healing and immune response. In this study, a TGF-β type I receptor (TGF-βRI) homolog was cloned and characterized from freshwater mussel Hyriopsis cumingii. The full-length cDNA of the TGF-β RI gene was 2017 bp, with a 1554 bp open reading frame (ORF), and encoded 517 amino acids. The predictive analysis further identified distinct regions within the TGF-βRI protein: a signal peptide, a membrane outer region, a transmembrane region, and an intracellular region. Real-time quantitative PCR results showed that the TGF-β RI gene was expressed in all tissues of healthy mussels. The transcripts of TGF-β RI in hemocytes and hepatopancreas were significantly up-regulated at different periods after stimulation with Aeromonas hydrophila and peptidoglycan (PGN) (P < 0.05). The mRNA expression of TGF-β RI progressively increased from day 1 to day 10 after trauma (P < 0.05), and it returned to the initial level by day 15. The expression levels of TGF-β , Smad5, MMP1/19, and TIMP1/2, but not Smad3/4, were significantly up-regulated at different time points after trauma. However, the expression levels of TGF-β , MMP1/19, and TIMP2 were decreased after treatment with the inhibitor SB431542. Furthermore, the recombinant TGF-βRI proteins were expressed in vitro and existed in the form of inclusion bodies. Western blotting results showed that TGF-βRI proteins were expressed constitutively in various tissues of mussels, and their expression was up-regulated after trauma, which was consistent with the mRNA expression trend. These results indicate that TGF-β RI is involved in the process of wound repair and immune response.
Collapse
Affiliation(s)
- Linying Liu
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Peipei Yi
- Jiangxi Aquatic Biological Conservation and Rescue Center, Nanchang 330000, China
| | - Chengyi Jiang
- Life Science College, Nanchang University, Nanchang 330031, China
| | - Baoqing Hu
- Life Science College, Nanchang University, Nanchang 330031, China,
| |
Collapse
|
50
|
Ye L, Huang J, Liang X, Guo W, Sun X, Shao C, He Y, Zhang J. Jiawei Taohe Chengqi Decoction attenuates CCl 4 induced hepatic fibrosis by inhibiting HSCs activation via TGF-β1/CUGBP1 and IFN-γ/Smad7 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155916. [PMID: 39094440 DOI: 10.1016/j.phymed.2024.155916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Hepatic fibrosis (HF) is an essential stage in the progression of different chronic liver conditions to cirrhosis and even hepatocellular carcinoma. The activation of hepatic stellate cells (HSCs) plays a crucial role in the progression of HF. IFN- γ/Smad7 pathway can inhibit HSCs activation, while TGF-β1/CUGBP1 pathway can inhibit IFN-γ/Smad7 pathway transduction and promote HSCs activation. Thus, inhibiting the TGF-β1/CUGBP1 pathway and activating the IFN-γ/Smad7 pathway reverses HSCs activation and inhibits HF. Jiawei Taohe Chengqi Decoction (JTCD) was derived from the Taohe Chengqi Tang in the ancient Chinese medical text titled "Treatise on Febrile Diseases". We found several anti-HF components in JTCD including ginsenoside Rb1 and others, but the specific mechanism of anti-HF in JTCD is not clear. PURPOSE To elucidate the specific mechanism by which JTCD reverses HF by inhibiting the activation of HSCs, and to establish a scientific foundation for treating HF with Traditional Chinese medicine (TCM). METHODS We constructed a CCl4-induced mice HF model in vivo and activated human hepatic stellate cell line (LX-2) with TGF-β1 in vitro, after which they were treated with JTCD and the corresponding inhibitors. We examined the expression of pivotal molecules in the two pathways mentioned above by immunofluorescence staining, Western blotting and RT-PCR. RESULTS JTCD attenuated liver injury and reduced serum ALT and AST levels in mice. In addition, JTCD attenuated CCl4-induced HF by decreasing the expression of α-SMA, COL1A1 and other markers of HSCs activation in mice liver tissue. Moreover, JTCD effectively suppressed the levels of TGF-β1, p-Smad3, p-p38MAPK, p-ATF2, and CUGBP1 in vivo and in vitro and upregulated the levels of IFN-γ, p-STAT1, and Smad7. Mechanically, after using the inhibitors of both pathways in vitro, we found that JTCD inhibited the activation of HSCs by restoring the balance of the TGF-β1/CUGBP1 and IFN-γ/Smad7 pathways. CONCLUSION We demonstrated that JTCD inhibited HSCs activation and reversed HF by inhibiting the TGF-β1/CUGBP1 signalling pathway and upregulating the IFN-γ/Smad7 signalling pathway. Moreover, we have identified specific links where JTCD interferes with both pathways to inhibit HSCs activation. JTCD is an effective candidate for the clinical treatment of HF.
Collapse
Affiliation(s)
- Linmao Ye
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Jiaxin Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiaofan Liang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Wenqin Guo
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Xiguang Sun
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Chang Shao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Yi He
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Junjie Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| |
Collapse
|