1
|
Vania R, Sanjaya IGPH, Hamid ARRH, Sudarsa SD, Dewi IGASM, Niryana IW, Martadiani ED. Early activation of macrophage-2 with IL-4 in stromal vascular fraction increases VEGF levels and adipocyte count and maintains volume of fat graft in Wistar rats ( Rattus norvegicus). NARRA J 2024; 4:e1080. [PMID: 39816080 PMCID: PMC11731649 DOI: 10.52225/narra.v4i3.1080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/04/2024] [Indexed: 01/18/2025]
Abstract
Several previous studies have demonstrated the benefits of early macrophage 2 activation fat grafts supplemented with macrophage culture. However, this approach is considered impractical in clinical settings because of intraperitoneal induction use. The aim of this study was to investigate the effect of early stromal vascular fraction (SVF) macrophage-2 activation with IL-4 on fat graft survival compared to SVF alone using an animal model for better fat graft viability. This experimental study included inguinal fat harvesting, isolated with collagenases to retrieve the SVF, and then injected with a combination of fat graft and SVF (0.3 mL) into the scalp region. The intervention group received an IL-4 intralesional injection on the third day, and the fat grafts were biopsied on days 7, 14, and The primary outcomes were the final volume of the fat graft, vascular endothelial growth factor (VEGF) expression, and the adipocyte cell count using perilipin staining on immunohistochemistry examination. The group receiving IL-4 exhibited significantly higher VEGF on days 7, 14, and 30 (p = 0.009, 0.009, and 0.021, respectively). Similarly, the IL-4 treatment significantly increased the perilipin concentration on days 7, 14, and 30 (p = 0.008, 0.008, and 0.029, respectively). In this group, VEGF concentration was significantly increased on day 14 as compared to day 7 (p = 0.009), while no significant difference was observed in the control group (p = 0.090). Additionally, the IL-4 group displayed significantly less reduction of fat graft volume than the control group, as observed on days 7, 14, and 30 (p = 0.009, 0.009, and 0.021, respectively). Overall, the study underscores the potential benefits of early M2 polarization in fat grafting, as well as providing practical advantages for improving fat graft volume retention.
Collapse
Affiliation(s)
- Rachel Vania
- Division of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - I GPH. Sanjaya
- Division of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - Agus RRH. Hamid
- Division of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - Shita D. Sudarsa
- Division of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - I GASM. Dewi
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | - I W. Niryana
- Department of Neurosurgery, Faculty of Medicine, Universitas Udayana, Denpasar, Indonesia
| | | |
Collapse
|
2
|
Luo G, Zhou Z, Cao Z, Huang C, Li C, Li X, Deng C, Wu P, Yang Z, Tang J, Qing L. M2 macrophage-derived exosomes induce angiogenesis and increase skin flap survival through HIF1AN/HIF-1α/VEGFA control. Arch Biochem Biophys 2024; 751:109822. [PMID: 38030054 DOI: 10.1016/j.abb.2023.109822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Skin flap transplantation is a routine strategy in plastic and reconstructive surgery for skin-soft tissue defects. Recent research has shown that M2 macrophages have the potential for pro-angiogenesis during tissue healing. METHODS In our research, we extracted the exosomes from M2 macrophages(M2-exo) and applied the exosomes in the model of skin flap transplantation. The flap survival area was measured, and the choke vessels were assessed by morphological observation. Hematoxylin and eosin (H&E) staining and Immunohistochemistry were applied to assess the neovascularization. The effect of M2-exo on the function of Human umbilical vein endothelial cells (HUVECs) was also investigated. We also administrated 2-methoxyestradiol (2-ME2, an inhibitor of HIF-1α) to explore the underlying mechanism. We tested the effects of M2-Exo on the proliferation of HUVECs through CCK8 assay and EdU staining assay. RESULTS The survival area and number of micro-vessels in the skin flaps were increased in the M2-exo group. Besides, the dilation rate of choke vessels was also enhanced in the M2-exo group. Additionally, compared with the control group, M2-exo could accelerate the proliferation, migration and tube formation of HUVECs in vitro. Furthermore, the expression of the pro-angiogenesis factors, HIF-1α and VEGFA, were overexpressed with the treatment of the M2-exo. The expression of HIF1AN protein level was decreased in the M2-exo group. Finally, treatment with HIF-1α inhibitor reverses the pro-survival effect of M2-exo on skin flaps by interfering with the HIF1AN/HIF-1α/VEGFA signaling pathway. CONCLUSION This study showed that M2-exosomes promote skin flap survival by enhancing angiogenesis, with HIF1AN/HIF-1α/VEGFA playing a crucial role in this process.
Collapse
Affiliation(s)
- Gaojie Luo
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zekun Zhou
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zheming Cao
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chengxiong Huang
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Cheng Li
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxiao Li
- Department of Pathology, Changsha Medical University, Changsha, China
| | - Chao Deng
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Yang
- Hunan University of Medicine, Huaihua, China
| | - Juyu Tang
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
| | - Liming Qing
- Department of Orthopedics, Hand and Microsurgery, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Salvianolic Acid B Alleviates Limb Ischemia in Mice via Promoting SIRT1/PI3K/AKT Pathway-Mediated M2 Macrophage Polarization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1112394. [PMID: 35656466 PMCID: PMC9155924 DOI: 10.1155/2022/1112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
Salvianolic acid B (Sal B) is an effective treatment agent for ischemic disease in China. However, Sal B's effects on peripheral arterial disease (PAD) and its mechanism remains poorly understood. Macrophage polarization plays a crucial role in PAD. Nevertheless, treatment modalities that increase the population of anti-inflammatory (M2) macrophages are limited. This study aimed to explore the protective effects of Sal B on limb perfusion and investigate the mechanism of Sal B-induced macrophage polarization. C57BL/6 male mice (6 weeks) were randomized into control, Model + NS, and Model + Sal B groups (n = 5). Then, we established a hind limb ischemia mouse model to assess the Sal B's role (15 mg/kg/d) in PAD. We quantified the blood perfusion via laser speckle contrast imaging (LSCI) and measured the capillary density and muscle edema with CD31 and H&E staining. The Sal B-induced macrophage polarization was confirmed by qPCR and ELISA. The results showed that the Sal B group exhibited a significant improvement in the blood perfusion, capillary density, muscle edema, and M2 markers gene expressions. Cell migration and tube formation were promoted in the endothelial cells stimulated with a culture supernatant from Sal B-treated macrophages. In contrast, endothelial functions improved by Sal B-treated macrophages were impaired in groups treated with SIRT1 and PI3K inhibitors. These findings provide evidence for Sal B's protective role in PAD and demonstrate the enhancement of macrophage polarization via the SIRT1/PI3K/AKT pathway.
Collapse
|
4
|
Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14:200-213. [PMID: 35432731 PMCID: PMC8963379 DOI: 10.4252/wjsc.v14.i2.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sustained injury, through radiotherapy, burns or surgical trauma, can result in fibrosis, displaying an excessive deposition of extracellular matrix (ECM), persisting inflammatory reaction, and reduced vascularization. The increasing recognition of fibrosis as a cause for disease and mortality, and increasing use of radiotherapy causing fibrosis, stresses the importance of a decent anti-fibrotic treatment.
AIM To obtain an in-depth understanding of the complex mechanisms underlying fibrosis, and more specifically, the potential mechanisms-of-action of adipose-derived stomal cells (ADSCs) in realizing their anti-fibrotic effect.
METHODS A systematic review of the literature using PubMed, Embase and Web of Science was performed by two independent reviewers.
RESULTS The injection of fat grafts into fibrotic tissue, releases ADSC into the environment. ADSCs’ capacity to directly differentiate into key cell types (e.g., ECs, fibroblasts), as well as to secrete multiple paracrine factors (e.g., hepatocyte growth factor, basis fibroblast growth factor, IL-10), allows them to alter different mechanisms underlying fibrosis in a combined approach. ADSCs favor ECM degradation by impacting the fibroblast-to-myofibroblast differentiation, favoring matrix metalloproteinases over tissue inhibitors of metalloproteinases, positively influencing collagen organization, and inhibiting the pro-fibrotic effects of transforming growth factor-β1. Furthermore, they impact elements of both the innate and adaptive immune response system, and stimulate angiogenesis on the site of injury (through secretion of pro-angiogenic cytokines like stromal cell-derived factor-1 and vascular endothelial growth factor).
CONCLUSION This review shows that understanding the complex interactions of ECM accumulation, immune response and vascularization, is vital to fibrosis treatments’ effectiveness like fat grafting. It details how ADSCs intelligently steer this complex system in an anti-fibrotic or pro-angiogenic direction, without falling into extreme dilation or stimulation of a single aspect. Detailing this combined approach, has brought fat grafting one step closer to unlocking its full potential as a non-anecdotal treatment for fibrosis.
Collapse
Affiliation(s)
| | - Jan Jeroen Vranckx
- Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
| |
Collapse
|
5
|
Wu R, Kang R, Tang D. Mitochondrial ACOD1/IRG1 in infection and sterile inflammation. JOURNAL OF INTENSIVE MEDICINE 2022; 2:78-88. [PMID: 36789185 PMCID: PMC9924012 DOI: 10.1016/j.jointm.2022.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Immunometabolism is a dynamic process involving the interplay of metabolism and immune response in health and diseases. Increasing evidence suggests that impaired immunometabolism contributes to infectious and inflammatory diseases. In particular, the mitochondrial enzyme aconitate decarboxylase 1 (ACOD1, best known as immunoresponsive gene 1 [IRG1]) is upregulated under various inflammatory conditions and serves as a pivotal regulator of immunometabolism involved in itaconate production, macrophage polarization, inflammasome activation, and oxidative stress. Consequently, the activation of the ACOD1 pathway is implicated in regulating the pathogenic process of sepsis and septic shock, which are part of a clinical syndrome of life-threatening organ failure caused by a dysregulated host response to pathogen infection. In this review, we discuss the latest research advances in ACOD1 expression and function, with particular attention to how the ACOD1-itaconate pathway affects infection and sterile inflammation diseases. These new insights may give us a deeper understanding of the role of immunometabolism in innate immunity.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA,Corresponding author: Daolin Tang, Department of Surgery, UT Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
6
|
Bi X, Li Y, Dong Z, Zhao J, Wu W, Zou J, Guo L, Lu F, Gao J. Recent Developments in Extracellular Matrix Remodeling for Fat Grafting. Front Cell Dev Biol 2021; 9:767362. [PMID: 34977018 PMCID: PMC8716396 DOI: 10.3389/fcell.2021.767362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022] Open
Abstract
Remodeling of the extracellular matrix (ECM), which provides structural and biochemical support for surrounding cells, is vital for adipose tissue regeneration after autologous fat grafting. Rapid and high-quality ECM remodeling can improve the retention rate after fat grafting by promoting neovascularization, regulating stem cells differentiation, and suppressing chronic inflammation. The degradation and deposition of ECM are regulated by various factors, including hypoxia, blood supply, inflammation, and stem cells. By contrast, ECM remodeling alters these regulatory factors, resulting in a dynamic relationship between them. Although researchers have attempted to identify the cellular sources of factors associated with tissue regeneration and regulation of the microenvironment, the factors and mechanisms that affect adipose tissue ECM remodeling remain incompletely understood. This review describes the process of adipose ECM remodeling after grafting and summarizes the factors that affect ECM reconstruction. Also, this review provides an overview of the clinical methods to avoid poor ECM remodeling. These findings may provide new ideas for improving the retention of adipose tissue after fat transplantation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Olmsted-Davis E, Mejia J, Salisbury E, Gugala Z, Davis AR. A Population of M2 Macrophages Associated With Bone Formation. Front Immunol 2021; 12:686769. [PMID: 34712222 PMCID: PMC8547272 DOI: 10.3389/fimmu.2021.686769] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
We previously identified transient brown adipocyte-like cells associated with heterotopic ossification (HO). These ancillary cells support new vessel synthesis essential to bone formation. Recent studies have shown that the M2 macrophage contributes to tissue regeneration in a similar way. To further define the phenotype of these brown adipocyte-like cells they were isolated and characterized by single-cell RNAseq (scRNAseq). Analysis of the transcriptome and the presence of surface markers specific for macrophages suggest that these cells are M2 macrophages. To validate these findings, clodronate liposomes were delivered to the tissues during HO, and the results showed both a significant reduction in these macrophages as well as bone formation. These cells were isolated and shown in culture to polarize towards either M1 or M2 similar to other macrophages. To confirm that these are M2 macrophages, mice received lipopolysacheride (LPS), which induces proinflammation and M1 macrophages. The results showed a significant decrease in this specific population and bone formation, suggesting an essential role for M2 macrophages in the production of bone. To determine if these macrophages are specific to HO, we isolated these cells using fluorescence-activated cell sorting (FACS) from a bone defect model and subjected them to scRNAseq. Surprisingly, the macrophage populations overlapped between the two groups (HO-derived versus callus) suggesting that they may be essential ancillary cells for bone formation in general and not selective to HO. Of further note, their unique metabolism and lipogenic properties suggest the potential for unique cross talk between these cells and the newly forming bone.
Collapse
Affiliation(s)
- Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Julio Mejia
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States
| | - Elizabeth Salisbury
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Zbigniew Gugala
- Department of Orthopedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children’s Hospital and Houston Methodist Hospital, Houston, TX, United States,Department of Pediatrics – Section Hematology/Oncology, Baylor College of Medicine, Houston, TX, United States,Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Alan R. Davis,
| |
Collapse
|
8
|
Chen Q, Liu S, Cao L, Yu M, Wang H. Effects of macrophage regulation on fat grafting survival: Improvement, mechanisms, and potential application-A review. J Cosmet Dermatol 2021; 21:54-61. [PMID: 34129721 DOI: 10.1111/jocd.14295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Autologous fat grafting has become a popular tool in plastic surgery to solve soft tissue defects and achieve skin rejuvenation, but the volume loss after transplantation remains a disturbing problem. In recent years, some new strategies have improved the outcome to some extent, but the fat graft retention is still far from ideal, so there remains a wide development prospect in this field. Macrophages are closely related to the local microenvironment and tissue regeneration, and their role in fat grafting has been increasingly highlighted. AIMS This article was aimed to review the efficacy, possible mechanisms, and potential application of macrophage regulation on fat grafting, as well as concerns and future perspectives of this filed. METHODS A retrospective review of the published data was conducted. RESULTS Most studies indicated that up-regulating M2 macrophages during fat grafting would improve fat retention via promoting neovascularization. M2 macrophages could secrete several pro-angiogenic factors, accelerate extracellular matrix (ECM) remodeling, and directly function on endothelial cells to encourage vascular expansion. In addition, macrophages could influence the proliferation, apoptosis, and adipogenic differentiation of preadipocytes. CONCLUSIONS During autologous fat grafting, appropriately regulating macrophages may become a promising method to increase fat retention. Nevertheless, the M2 macrophage polarizing agents, treatment opportunity, and contraindications require further discussion. We hope our work could promote more in-depth studies in this field, and we are looking forward to a standard procedure for the macrophage therapy in clinical practice.
Collapse
Affiliation(s)
- Qiuyu Chen
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuo Liu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, Department of Cosmetic and Plastic Surgery, Oral and Maxillofacial Surgery, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Rationale for the design of 3D-printable bioresorbable tissue-engineering chambers to promote the growth of adipose tissue. Sci Rep 2020; 10:11779. [PMID: 32678237 PMCID: PMC7367309 DOI: 10.1038/s41598-020-68776-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering chambers (TECs) bring great hope in regenerative medicine as they allow the growth of adipose tissue for soft tissue reconstruction. To date, a wide range of TEC prototypes are available with different conceptions and volumes. Here, we addressed the influence of TEC design on fat flap growth in vivo as well as the possibility of using bioresorbable polymers for optimum TEC conception. In rats, adipose tissue growth is quicker under perforated TEC printed in polylactic acid than non-perforated ones (growth difference 3 to 5 times greater within 90 days). Histological analysis reveals the presence of viable adipocytes under a moderate (less than 15% of the flap volume) fibrous capsule infiltrated with CD68+ inflammatory cells. CD31-positive vascular cells are more abundant at the peripheral zone than in the central part of the fat flap. Cells in the TEC exhibit a specific metabolic profile of functional adipocytes identified by 1H-NMR. Regardless of the percentage of TEC porosity, the presence of a flat base allowed the growth of a larger fat volume (p < 0.05) as evidenced by MRI images. In pigs, bioresorbable TEC in poly[1,4-dioxane-2,5-dione] (polyglycolic acid) PURASORB PGS allows fat flap growth up to 75 000 mm3 at day 90, (corresponding to more than a 140% volume increase) while at the same time the TEC is largely resorbed. No systemic inflammatory response was observed. Histologically, the expansion of adipose tissue resulted mainly from an increase in the number of adipocytes rather than cell hypertrophy. Adipose tissue is surrounded by perfused blood vessels and encased in a thin fibrous connective tissue containing patches of CD163+ inflammatory cells. Our large preclinical evaluation defined the appropriate design for 3D-printable bioresorbable TECs and thus opens perspectives for further clinical applications.
Collapse
|
10
|
Abstract
Fat grafting has been shown to improve diseased soft issue. Although the mechanism behind fat grafting’s regenerative properties is currently debated, published studies agree that there is an associated vasculogenic effect. A systematic literature review was conducted to elucidate the biochemical pathways responsible for establishing neo-vasculature to grafted fat.
Collapse
|
11
|
Sun N, Ning B, Bruce AC, Cao R, Seaman SA, Wang T, Fritsche-Danielson R, Carlsson LG, Peirce SM, Hu S. In vivo imaging of hemodynamic redistribution and arteriogenesis across microvascular network. Microcirculation 2019; 27:e12598. [PMID: 31660674 DOI: 10.1111/micc.12598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Arteriogenesis is an important mechanism that contributes to restoration of oxygen supply in chronically ischemic tissues, but remains incompletely understood due to technical limitations. This study presents a novel approach for comprehensive assessment of the remodeling pattern in a complex microvascular network containing multiple collateral microvessels. METHODS We have developed a hardware-software integrated platform for quantitative, longitudinal, and label-free imaging of network-wide hemodynamic changes and arteriogenesis at the single-vessel level. By ligating feeding arteries in the mouse ear, we induced network-wide hemodynamic redistribution and localized arteriogenesis. The utility of this technology was demonstrated by studying the influence of obesity on microvascular arteriogenesis. RESULTS Simultaneously monitoring the remodeling of competing collateral arterioles revealed a new, inverse relationship between initial vascular resistance and extent of arteriogenesis. Obese mice exhibited similar remodeling responses to lean mice through the first week, including diameter increase and flow upregulation in collateral arterioles. However, these gains were subsequently lost in obese mice. CONCLUSIONS Capable of label-free, comprehensive, and dynamic quantification of structural and functional changes in the microvascular network in vivo, this platform opens up new opportunities to study the mechanisms of microvascular arteriogenesis, its implications in diseases, and approaches to pharmacologically rectify microvascular dysfunction.
Collapse
Affiliation(s)
- Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Scott A Seaman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Tianxiong Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | | | - Leif G Carlsson
- Bioscience Heart Failure, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Du Cheyne C, Tay H, De Spiegelaere W. The complex TIE between macrophages and angiogenesis. Anat Histol Embryol 2019; 49:585-596. [PMID: 31774212 DOI: 10.1111/ahe.12518] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
Abstract
Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway.
Collapse
Affiliation(s)
- Charis Du Cheyne
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
14
|
Imaging VEGF Receptors and α vβ 3 Integrins in a Mouse Hindlimb Ischemia Model of Peripheral Arterial Disease. Mol Imaging Biol 2019; 20:963-972. [PMID: 29687324 DOI: 10.1007/s11307-018-1191-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare targeted imaging of vascular endothelial growth factor (VEGF) receptors vs. αvβ3 integrins in a mouse hindlimb ischemia model of peripheral artery disease. PROCEDURES Male wild-type (WT) C57BL/6 mice (8- to 10-week old) (n = 24) underwent left femoral artery ligation. The right leg served as control. Five days later, mice were injected with either VEGF receptor targeting [99mTc]DOTA-PEG-scVEGF ([99mTc]scV) (n = 8) or with αvβ3-targeting tracer [99mTc]HYNIC-cycloRGD ([99mTc]RGD) (n = 8) and underwent single photon emission computed tomography (SPECT) x-ray computed tomography imaging. To assess non-specific [99mTc]scV uptake, six additional mice received a mixture of [99mTc]scV and 30-fold excess of targeting protein, scVEGF. Tracer uptake as %ID was measured using volumetric regions encompassing the hindlimb muscles and as %ID/g from harvested limb muscles. Double and triple immunofluorescent analysis on tissue sections established localization of αvβ3, VEGFR-1, VEGFR-2, as well as certain cell lineage markers. RESULTS Tracer uptake, as %ID/g, was higher in ligated limbs of mice injected with [99mTc]scV compared to ligated hindlimbs in mice injected with [99mTc]RGD (p = 0.02). The ratio of tracer uptake for ligated/control hindlimb was borderline higher for [99mTc]scV than for [99mTc]RGD (p = 0.06). Immunofluorescent analysis showed higher prevalence of VEGFR-1, VEGFR-2, and αvβ3, in damaged vs. undamaged hindlimb tissue, but with little co-localization of these markers. Double immunofluorescent staining showed partial co-localization of VEGFR-1, VEGFR-2, and αvβ3, with endothelial cell marker FVIII, but not with CD31. Immunostaining for VEGFR-1 and VEGFR-2 additionally co-localized with lineage markers for endothelial progenitor cell and monocytes/macrophages, with a more diverse pattern of co-localization for VEGFR-2. CONCLUSION In a mouse hindlimb ischemia model of peripheral artery disease, [99mTc]scV SPECT tracer-targeting VEGF receptors showed a more robust signal than [99mTc]RGD tracer-targeting αvβ3. Immunofluorescent analysis suggests that uptake of [99mTc]scV and [99mTc]RGD in damaged tissue is due to non-overlapping cell populations and reflects different dynamic processes and that enhanced uptake of [99mTc]scV may be due to the presence of VEGF receptors on additional cell types.
Collapse
|
15
|
Liao L, Bai Y. The dynamics of monocytes in the process of collateralization. Aging Med (Milton) 2019; 2:50-55. [PMID: 31942512 PMCID: PMC6880710 DOI: 10.1002/agm2.12054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/17/2019] [Indexed: 12/16/2022] Open
Abstract
Collateralization is an important way for patients with coronary heart disease to supply blood flow to the ischemic area. At present, research on the mechanism of collateral circulation mainly focuses on the inflammatory response. Monocytes are the kernel of inflammatory response during arteriogenesis. Therefore, we reviewed the recent developments in this field in terms of the dynamic changes of monocytes during collateralization. We searched and scanned PubMed for the following terms until November 2018: collateral, collateralization, monocyte, macrophage, and arteriogenesis. Articles were obtained and examined to figure out the dynamics of monocytes in the progress of collateralization. Substantial research shows that recruitment, infiltration, and phenotypic transformation of monocytes can affect function in various ways, respectively. Mechanical or chemical factors that can produce effects on collateral development may be due partly to impact on dynamics of monocytes. Although mechanisms of dynamics of monocytes during arteriogenesis are not elucidated clearly, there is no doubt that deeper exploration of the underlying mechanisms will contribute to pharmaceutical development aiming for promoting collateral development.
Collapse
Affiliation(s)
- Long‐Sheng Liao
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Yong‐Ping Bai
- Department of Geriatric MedicineXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
16
|
Ganta VC, Choi M, Farber CR, Annex BH. Antiangiogenic VEGF 165b Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease. Circulation 2019; 139:226-242. [PMID: 30586702 PMCID: PMC6322929 DOI: 10.1161/circulationaha.118.034165] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful. Alternate splicing in the exon-8 of VEGF-A results in the formation of VEGFxxxa (VEGF165a) and VEGFxxxb (VEGF165b) isoforms with existing literature focusing on VEGF165b's role in inhibiting vascular endothelial growth factor receptor 2-dependent angiogenesis. However, we have recently shown that VEGF165b blocks VEGF-A-induced endothelial vascular endothelial growth factor receptor 1 (VEGFR1) activation in ischemic muscle to impair perfusion recovery. Because macrophage-secreted VEGF165b has been shown to decrease angiogenesis in peripheral artery disease, and macrophages were well known to play important roles in regulating ischemic muscle vascular remodeling, we examined the role of VEGF165b in regulating macrophage function in PAD. METHODS Femoral artery ligation and resection were used as an in vivo preclinical PAD model, and hypoxia serum starvation was used as an in vitro model for PAD. Experiments including laser-Doppler perfusion imaging, adoptive cell transfer to ischemic muscle, immunoblot analysis, ELISAs, immunostainings, flow cytometry, quantitative polymerase chain reaction analysis, and RNA sequencing were performed to determine a role of VEGF165b in regulating macrophage phenotype and function in PAD. RESULTS First, we found increased VEGF165b expression with increased M1-like macrophages in PAD versus non-PAD (controls) muscle biopsies. Next, using in vitro hypoxia serum starvation, in vivo pre clinical PAD models, and adoptive transfer of VEGF165b-expressing bone marrow-derived macrophages or VEGFR1+/- bone marrow-derived macrophages (M1-like phenotype), we demonstrate that VEGF165b inhibits VEGFR1 activation to induce an M1-like phenotype that impairs ischemic muscle neovascularization. Subsequently, we found S100A8/S100A9 as VEGFR1 downstream regulators of macrophage polarization by RNA-Seq analysis of hypoxia serum starvation-VEGFR1+/+ versus hypoxia serum starvation-VEGFR1+/- bone marrow-derived macrophages. CONCLUSIONS In our current study, we demonstrate that increased VEGF165b expression in macrophages induces an antiangiogenic M1-like phenotype that directly impairs angiogenesis. VEGFR1 inhibition by VEGF165b results in S100A8/S100A9-mediated calcium influx to induce an M1-like phenotype that impairs ischemic muscle revascularization and perfusion recovery.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
- Division Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Min Choi
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Charles R. Farber
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Brian H. Annex
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
- Division Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Chang Q, Cai J, Wang Y, Yang R, Xing M, Lu F. Large adipose tissue generation in a mussel-inspired bioreactor of elastic-mimetic cryogel and platelets. J Tissue Eng 2018; 9:2041731418808633. [PMID: 30505425 PMCID: PMC6259050 DOI: 10.1177/2041731418808633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/26/2018] [Indexed: 12/16/2022] Open
Abstract
Soft tissue generation, especially in large tissue, is a major challenge in reconstructive surgery to treat congenital deformities, posttraumatic repair, and cancer rehabilitation. The concern is along with the donor site morbidity, donor tissue shortage, and flap necrosis. Here, we report a dissection-free adipose tissue chamber-based novel guided adipose tissue regeneration strategy in a bioreactor of elastic gelatin cryogel and polydopamine-assisted platelet immobilization intended to improve angiogenesis and generate large adipose tissue in situ. In order to have matched tissue mechanics, we used 5% gelatin cryogel as growth substrate of bioreactor. Platelets from the platelet-rich plasma were then immobilized onto the gelatin cryogel with the aid of polydopamine to form a biomimetic bioreactor (polydopamine/gelatin cryogel/platelet). Platelets on the substrate led to a sustained high release in both platelet-derived growth factor and vascular endothelial growth factor compared with non-polydopamine-assisted group. The formed bioreactor was then transferred to a tissue engineering chamber and then inserted above inguinal fat pad of rats without flap dissection. This integrate strategy significantly boomed the vessel density, stimulated cellular proliferation, and upregulated macrophage infiltration. There was a noticeable rise in the expression of dual-angiogenic growth factors (platelet-derived growth factor and vascular endothelial growth factor) in chamber fluid; host cell migration and host fibrous protein secretion coordinated with gelatin cryogel degradation. The regenerated adipose tissue volume gained threefold larger than control group (p < 0.05) with less fibrosis tissue. These results indicate that a big well-vascularized three-dimensional mature adipose tissue can be regenerated using elastic gel, polydopamine, platelets, and small fat tissue.
Collapse
Affiliation(s)
- Qiang Chang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Junrong Cai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ruijia Yang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Malcolm Xing
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada.,State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Zhu X, Tu Y, Chen H, Jackson AO, Patel V, Yin K. Micro-environment and intracellular metabolism modulation of adipose tissue macrophage polarization in relation to chronic inflammatory diseases. Diabetes Metab Res Rev 2018; 34:e2993. [PMID: 29475214 DOI: 10.1002/dmrr.2993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 02/08/2018] [Accepted: 02/11/2018] [Indexed: 12/13/2022]
Abstract
The accumulation and pro-inflammatory polarization of immune cells, mainly macrophages, in adipose tissue (AT) are considered crucial factors for obesity-induced chronic inflammatory diseases. In this review, we highlighted the role of adipose tissue macrophage (ATM) polarization on AT function in the obese state and the effect of the micro-environment and intracellular metabolism on the dynamic switch of ATMs into their pro-inflammatory or anti-inflammatory phenotypes, which may have distinct influences on obesity-related chronic inflammatory diseases. Obesity-associated metabolic dysfunctions, including those of glucose, fatty acid, cholesterol, and other nutrient substrates such as vitamin D and iron in AT, promote the pro-inflammatory polarization of ATMs and AT inflammation via regulating the interaction between ATMs and adipocytes and intracellular metabolic pathways, including glycolysis, fatty acid oxidation, and reverse cholesterol transportation. Focusing on the regulation of ATM metabolism will provide a novel target for the treatment of obesity-related chronic inflammatory diseases, including insulin resistance, cardiovascular diseases, and cancers.
Collapse
Affiliation(s)
- Xiao Zhu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yixuan Tu
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Hainan Chen
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| | - Ampadu O Jackson
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
| | - Vaibhav Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - Kai Yin
- Research Laboratory of Translational Medicine, Medical School, University of South China, Hengyang, China
- Institute of Cardiovascular Disease, Key Laboratory for Atherosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
19
|
Ganta VC, Choi MH, Kutateladze A, Fox TE, Farber CR, Annex BH. A MicroRNA93-Interferon Regulatory Factor-9-Immunoresponsive Gene-1-Itaconic Acid Pathway Modulates M2-Like Macrophage Polarization to Revascularize Ischemic Muscle. Circulation 2017; 135:2403-2425. [PMID: 28356443 PMCID: PMC5503157 DOI: 10.1161/circulationaha.116.025490] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently, no therapies exist for treating and improving outcomes in patients with severe peripheral artery disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and to reduce tissue loss in genetic PAD models. However, the cell-specific function, downstream mechanisms, or signaling involved in miR93-mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD, and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1 activation/polarization state. In the present study, we identified a novel mechanism by which miR93 regulates macrophage polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental PAD. METHODS In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation conditions) and in vivo experiments in preclinical PAD models (unilateral femoral artery ligation and resection) were conducted to examine the role of miR93-interferon regulatory factor-9-immunoresponsive gene-1 (IRG1)-itaconic acid pathway in macrophage polarization, angiogenesis, arteriogenesis, and perfusion recovery. RESULTS In vivo, compared with wild-type controls, miR106b-93-25 cluster-deficient mice (miR106b-93-25-/-) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like macrophages after experimental PAD. Intramuscular delivery of miR93 in miR106b-93-25-/- PAD mice increased angiogenesis, arteriogenesis, and the extent of perfusion, which correlated with more M2-like macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like polarization even under M1-like polarizing conditions (hypoxia serum starvation). Delivery of bone marrow-derived macrophages from miR106b-93-25-/- to wild-type ischemic muscle decreased angiogenesis, arteriogenesis, and perfusion, whereas transfer of wild-type macrophages to miR106b-93-25-/- had the opposite effect. Systematic analysis of top differentially upregulated genes from RNA sequencing between miR106b-93-25-/- and wild-type ischemic muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage polarization. The 3' untranslated region luciferase assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not an miR93 target but that interferon regulatory factor-9, which can regulate IRG1 expression, is an miR93 target. In vitro, increased expression of interferon regulatory factor-9 and IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. CONCLUSIONS miR93 inhibits interferon regulatory factor-9 to decrease IRG1-itaconic acid production to induce M2-like polarization in ischemic muscle to enhance angiogenesis, arteriogenesis, and perfusion recovery in experimental PAD.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Min Hyub Choi
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Anna Kutateladze
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Todd E Fox
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Charles R Farber
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville
| | - Brian H Annex
- From Cardiovascular Research Center (V.C.G., M.H.C., B.H.A.), Department of Biology (A.K.), Department of Pharmacology (T.E.F.), Department of Public Health Sciences (C.R.F.), and Department of Cardiology (B.H.A.), University of Virginia, Charlottesville.
| |
Collapse
|
20
|
Seaman SA, Cao Y, Campbell CA, Peirce SM. Arteriogenesis in murine adipose tissue is contingent on CD68 + /CD206 + macrophages. Microcirculation 2017; 24:10.1111/micc.12341. [PMID: 27976451 PMCID: PMC5432396 DOI: 10.1111/micc.12341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The surgical transfer of skin, fat, and/or muscle from a donor site to a recipient site within the same patient is a widely performed procedure in reconstructive surgeries. A surgical pretreatment strategy that is intended to increase perfusion in the flap, termed "flap delay," is a commonly employed technique by plastic surgeons prior to flap transplantation. Here, we explored whether CD68+ /CD206+ macrophages are required for arteriogenesis within the flap by performing gain-of-function and loss-of-function studies in a previously published flap delay murine model. METHODS AND RESULTS Local injection of M2-polarized macrophages into the flap resulted in an increase in collateral vessel diameter. Application of a thin biomaterial film loaded with a pharmacological agent (FTY720), which has been previously shown to recruit CD68+ /CD206+ macrophages to remodeling tissue, increased CD68+ /CD206+ cell recruitment and collateral vessel enlargement. Conversely, when local macrophage populations were depleted within the inguinal fat pad via clodronate liposome delivery, we observed fewer CD68+ cells accompanied by diminished collateral vessel enlargement. CONCLUSIONS Our study underscores the importance of macrophages during microvascular adaptations that are induced by flap delay. These studies suggest a mechanism for a translatable therapeutic target that may be used to enhance the clinical flap delay procedure.
Collapse
Affiliation(s)
- Scott A. Seaman
- Department of Biomedical Engineering, University of Virginia
| | - Yiqi Cao
- Department of Biomedical Engineering, University of Virginia
| | | | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia
- Department of Plastic Surgery, University of Virginia
| |
Collapse
|