1
|
Szűcs D, Monostori T, Miklós V, Páhi ZG, Póliska S, Kemény L, Veréb Z. Licensing effects of inflammatory factors and TLR ligands on the regenerative capacity of adipose-derived mesenchymal stem cells. Front Cell Dev Biol 2024; 12:1367242. [PMID: 38606318 PMCID: PMC11007080 DOI: 10.3389/fcell.2024.1367242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction: Adipose tissue-derived mesenchymal stem cells are promising contributors to regenerative medicine, exhibiting the ability to regenerate tissues and modulate the immune system, which is particularly beneficial for addressing chronic inflammatory ulcers and wounds. Despite their inherent capabilities, research suggests that pretreatment amplifies therapeutic effectiveness. Methods: Our experimental design exposed adipose-derived mesenchymal stem cells to six inflammatory factors for 24 h. We subsequently evaluated gene expression and proteome profile alterations and observed the wound closure rate post-treatment. Results: Specific pretreatments, such as IL-1β, notably demonstrated an accelerated wound-healing process. Analysis of gene and protein expression profiles revealed alterations in pathways associated with tissue regeneration. Discussion: This suggests that licensed cells exhibit potentially higher therapeutic efficiency than untreated cells, shedding light on optimizing regenerative strategies using adipose tissue-derived stem cells.
Collapse
Affiliation(s)
- Diána Szűcs
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Tamás Monostori
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | | | - Zoltán G. Páhi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), University of Szeged, Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Szilárd Póliska
- Genomic Medicine and Bioinformatics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lajos Kemény
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Hungarian Centre of Excellence for Molecular Medicine-USz Skin Research Group, University of Szeged, Szeged, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
- Biobank, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Liu J, Qi L, Bao S, Yan F, Chen J, Yu S, Dong C. The acute spinal cord injury microenvironment and its impact on the homing of mesenchymal stem cells. Exp Neurol 2024; 373:114682. [PMID: 38199509 DOI: 10.1016/j.expneurol.2024.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Spinal cord injury (SCI) is a highly debilitating condition that inflicts devastating harm on the lives of affected individuals, underscoring the urgent need for effective treatments. By activating inflammatory cells and releasing inflammatory factors, the secondary injury response creates an inflammatory microenvironment that ultimately determines whether neurons will undergo necrosis or regeneration. In recent years, mesenchymal stem cells (MSCs) have garnered increasing attention for their therapeutic potential in SCI. MSCs not only possess multipotent differentiation capabilities but also have homing abilities, making them valuable as carriers and mediators of therapeutic agents. The inflammatory microenvironment induced by SCI recruits MSCs to the site of injury through the release of various cytokines, chemokines, adhesion molecules, and enzymes. However, this mechanism has not been previously reported. Thus, a comprehensive exploration of the molecular mechanisms and cellular behaviors underlying the interplay between the inflammatory microenvironment and MSC homing is crucial. Such insights have the potential to provide a better understanding of how to harness the therapeutic potential of MSCs in treating inflammatory diseases and facilitating injury repair. This review aims to delve into the formation of the inflammatory microenvironment and how it influences the homing of MSCs.
Collapse
Affiliation(s)
- Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Longju Qi
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, China
| | - Shengzhe Bao
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
3
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Wang YH, Zhao CZ, Wang RY, Du QX, Liu JY, Pan J. The crosstalk between macrophages and bone marrow mesenchymal stem cells in bone healing. Stem Cell Res Ther 2022; 13:511. [PMID: 36333820 PMCID: PMC9636722 DOI: 10.1186/s13287-022-03199-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Bone injury plagues millions of patients worldwide every year, and it demands a heavy portion of expense from the public medical insurance system. At present, orthopedists think that autologous bone transplantation is the gold standard for treating large-scale bone defects. However, this method has significant limitations, which means that parts of patients cannot obtain a satisfactory prognosis. Therefore, a basic study on new therapeutic methods is urgently needed. The in-depth research on crosstalk between macrophages (Mϕs) and bone marrow mesenchymal stem cells (BMSCs) suggests that there is a close relationship between inflammation and regeneration. The in-depth understanding of the crosstalk between Mϕs and BMSCs is helpful to amplify the efficacy of stem cell-based treatment for bone injury. Only in the suitable inflammatory microenvironment can the damaged tissues containing stem cells obtain satisfactory healing outcomes. The excessive tissue inflammation and lack of stem cells make the transplantation of biomaterials necessary. We can expect that the crosstalk between Mϕs and BMSCs and biomaterials will become the mainstream to explore new methods for bone injury in the future. This review mainly summarizes the research on the crosstalk between Mϕs and BMSCs and also briefly describes the effects of biomaterials and aging on cell transplantation therapy.
Collapse
Affiliation(s)
- Yu-Hao Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Cheng-Zhi Zhao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ren-Yi Wang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Qian-Xin Du
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| | - Ji-Yuan Liu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Jian Pan
- grid.13291.380000 0001 0807 1581State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 People’s Republic of China ,grid.13291.380000 0001 0807 1581Chengdu Advanced Medical Science Center, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan Province People’s Republic of China
| |
Collapse
|
5
|
Bian D, Wu Y, Song G, Azizi R, Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: a comprehensive review. Stem Cell Res Ther 2022; 13:24. [PMID: 35073970 PMCID: PMC8785459 DOI: 10.1186/s13287-021-02697-9] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, mesenchymal stromal cells (MSCs) and also their exosome has become a game-changing tool in the context of tissue engineering and regenerative medicine. MSCs due to their competencies to establish skin cells, such as fibroblast and keratinocyte, and also their unique attribute to suppress inflammation in wound site has attracted increasing attention among scholars. In addition, MSC's other capabilities to induce angiogenesis as a result of secretion of pro-angiogenic factors accompanied with marked anti-fibrotic activities, which mainly mediated by the releases matrix metalloproteinase (MMPs), make them a rational and effective strategy to accelerate wound healing with a small scar. Since the chief healing properties of the MSCs depend on their paracrine effects, it appears that MSCs-derived exosomes also can be an alternative option to support wound healing and skin regeneration as an innovative cell-free approach. Such exosomes convey functional cargos (e.g., growth factor, cytokine, miRNA, etc.) from MSCs to target cells, thereby affecting the recipient skin cells' biological events, such as migration, proliferation, and also secretion of ECM components (e.g., collagen). The main superiorities of exosome therapy over parental MSCs are the diminished risk of tumor formation and also lower immunogenicity. Herein, we deliver an overview of recent in vivo reports rendering the therapeutic benefits of the MSCs-based therapies to ease skin wound healing, and so improving quality of life among patients suffering from such conditions.
Collapse
Affiliation(s)
- Donghui Bian
- Department of Burns and Plastic Surgery, 960 Hospital of the People’s Liberation Army, Jinan, 250031 China
| | - Yan Wu
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Guodong Song
- Department of Burns and Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013 China
| | - Ramyar Azizi
- Department of Immunology, Medicine Faculty, Tabriz University of Medical Science, Tabriz, Iran
| | - Amir Zamani
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Marofi F, Alexandrovna KI, Margiana R, Bahramali M, Suksatan W, Abdelbasset WK, Chupradit S, Nasimi M, Maashi MS. MSCs and their exosomes: a rapidly evolving approach in the context of cutaneous wounds therapy. Stem Cell Res Ther 2021; 12:597. [PMID: 34863308 PMCID: PMC8642895 DOI: 10.1186/s13287-021-02662-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Currently, mesenchymal stem/stromal stem cell (MSC) therapy has become a promising option for accelerating cutaneous wound healing. In vivo reports have outlined the robust competences of MSCs to offer a solid milieu by inhibition of inflammatory reactions, which in turn, enables skin regeneration. Further, due to their great potential to stimulate angiogenesis and also facilitate matrix remodeling, MSCs hold substantial potential as future therapeutic strategies in this context. The MSCs-induced wound healing is thought to mainly rely on the secretion of a myriad of paracrine factors in addition to their direct differentiation to skin-resident cells. Besides, MSCs-derived exosomes as nanoscale and closed membrane vesicles have recently been suggested as an effective and cell-free approach to support skin regeneration, circumventing the concerns respecting direct application of MSCs. The MSCs-derived exosomes comprise molecular components including lipid, proteins, DNA, microRNA, and also mRNA, which target molecular pathways and also biological activities in recipient cells (e.g., endothelial cell, keratinocyte, and fibroblast). The secreted exosome modifies macrophage activation, stimulates angiogenesis, and instigates keratinocytes and dermal fibroblast proliferations as well as migrations concurrently regulate inherent potential of myofibroblast for adjustment of turnover of the ECM. In the present review, we will focus on the recent findings concerning the application of MSCs and their derivative exosome to support wound healing and skin regeneration, with special focus on last decade in vivo reports.
Collapse
Affiliation(s)
- Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Zhu G, Zhang T, Chen M, Yao K, Huang X, Zhang B, Li Y, Liu J, Wang Y, Zhao Z. Bone physiological microenvironment and healing mechanism: Basis for future bone-tissue engineering scaffolds. Bioact Mater 2021; 6:4110-4140. [PMID: 33997497 PMCID: PMC8091181 DOI: 10.1016/j.bioactmat.2021.03.043] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bone-tissue defects affect millions of people worldwide. Despite being common treatment approaches, autologous and allogeneic bone grafting have not achieved the ideal therapeutic effect. This has prompted researchers to explore novel bone-regeneration methods. In recent decades, the development of bone tissue engineering (BTE) scaffolds has been leading the forefront of this field. As researchers have provided deep insights into bone physiology and the bone-healing mechanism, various biomimicking and bioinspired BTE scaffolds have been reported. Now it is necessary to review the progress of natural bone physiology and bone healing mechanism, which will provide more valuable enlightenments for researchers in this field. This work details the physiological microenvironment of the natural bone tissue, bone-healing process, and various biomolecules involved therein. Next, according to the bone physiological microenvironment and the delivery of bioactive factors based on the bone-healing mechanism, it elaborates the biomimetic design of a scaffold, highlighting the designing of BTE scaffolds according to bone biology and providing the rationale for designing next-generation BTE scaffolds that conform to natural bone healing and regeneration.
Collapse
Affiliation(s)
- Guanyin Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ke Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yazhen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610041, PR China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
8
|
TNF-α and IFN-γ Participate in Improving the Immunoregulatory Capacity of Mesenchymal Stem/Stromal Cells: Importance of Cell-Cell Contact and Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179531. [PMID: 34502453 PMCID: PMC8431422 DOI: 10.3390/ijms22179531] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have an immunoregulatory capacity and have been used in different clinical protocols requiring control of the immune response. However, variable results have been obtained, mainly due to the effect of the microenvironment on the induction, increase, and maintenance of MSC immunoregulatory mechanisms. In addition, the importance of cell–cell contact for MSCs to efficiently modulate the immune response has recently been highlighted. Because these interactions would be difficult to achieve in the physiological context, the release of extracellular vesicles (EVs) and their participation as intermediaries of communication between MSCs and immune cells becomes relevant. Therefore, this article focuses on analyzing immunoregulatory mechanisms mediated by cell contact, highlighting the importance of intercellular adhesion molecule-1 (ICAM-1) and the participation of EVs. Moreover, the effects of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), the main cytokines involved in MSC activation, are examined. These cytokines, when used at the appropriate concentrations and times, would promote increases in the expression of immunoregulatory molecules in the cell and allow the acquisition of EVs enriched with these molecules. The establishment of certain in vitro activation guidelines will facilitate the design of conditioning protocols to obtain functional MSCs or EVs in different pathophysiological conditions.
Collapse
|
9
|
Chang CH, Lin YL, Tyan YS, Chiu YH, Liang YH, Chen CP, Wu JC, Wang HS. Interleukin-1β-induced matrix metalloproteinase-3 via ERK1/2 pathway to promote mesenchymal stem cell migration. PLoS One 2021; 16:e0252163. [PMID: 34019587 PMCID: PMC8139494 DOI: 10.1371/journal.pone.0252163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Human umbilical cord Wharton’s jelly derived mesenchymal stem cells (hUCMSCs), a source of cell therapy, have received a great deal of attention due to their homing or migrating ability in response to signals emanating from damaged sites. It has been found that IL-1β possesses the ability to induce the expression of matrix metalloproteinase-3 (MMP-3) in bone marrow MSCs. MMP-3 is involved in cell migration in various types of cells, including glioblastoma, vascular smooth muscle, and adult neural progenitor cells. In this study, we proposed that IL-1β influences hUCMSCs migration involving MMP-3. The expression level of MMP-3 in IL-1β-induced hUCMSCs was verified using cDNA microarray analysis, quantitative real-time PCR, ELISA and Western blot. Wound-healing and trans-well assay were used to investigate the cell migration and invasion ability of IL-1β-treated hUCMSCs. In addition, we pre-treated hUCMSCs with interleukin-1 receptor antagonist, MMP-3 inhibitors (ALX-260-165, UK 356618), or transfected with MMP-3 siRNA to confirm the role of MMP3 in IL-1β-induced cell migration. Our results showed that IL-1β induced MMP-3 expression is related to the migration of hUCMSCs. Moreover, extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126, p38 inhibitor SB205380, JNK inhibitor SP600125 and Akt inhibitor GSK 690693 decreased IL-1β-induced MMP-3 mRNA and protein expression. The migration and invasion ability analyses showed that these inhibitors attenuated the IL-1β-induced migration and invasion ability of hUCMSCs. In conclusion, we have found that IL-1β induces the expression of MMP-3 through ERK1/2, JNK, p38 MAPK and Akt signaling pathways to enhance the migration of hUCMSCs. These results provide further understanding of the mechanisms in IL-1β-induced hUCMSCs migration to injury sites.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yun-Li Lin
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Yeu-Sheng Tyan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
| | - Yun-Hsuan Chiu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ya-Han Liang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Jiahn-Chun Wu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Hwai-Shi Wang
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| |
Collapse
|
10
|
Huang J, Kong Y, Xie C, Zhou L. Stem/progenitor cell in kidney: characteristics, homing, coordination, and maintenance. Stem Cell Res Ther 2021; 12:197. [PMID: 33743826 PMCID: PMC7981824 DOI: 10.1186/s13287-021-02266-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly promote the development of stem cell research and therapy in the kidney field and open a new route to explore new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy. Our review provides important clues to better understand and control the growth of stem cells in kidneys and develop new therapeutic strategies.
Collapse
Affiliation(s)
- Jiewu Huang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Yaozhong Kong
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chao Xie
- Department of Nephrology, the First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
11
|
Human Bone Marrow Mesenchymal Stem/Stromal Cells Exposed to an Inflammatory Environment Increase the Expression of ICAM-1 and Release Microvesicles Enriched in This Adhesive Molecule: Analysis of the Participation of TNF- α and IFN- γ. J Immunol Res 2020; 2020:8839625. [PMID: 33335929 PMCID: PMC7723491 DOI: 10.1155/2020/8839625] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem/stromal cells (BM-MSCs) have immunoregulatory capacity; therefore, they have been used in different clinical protocols in which it is necessary to decrease the immune response. This capacity is mainly regulated by TNF-α and IFN-γ, and it has been observed that cell-cell contact, mainly mediated by ICAM-1, is important for MSCs to carry out efficient immunoregulation. Therefore, in the present work, we analyzed the effect of TNF-α alone or in combination with IFN-γ on the expression of ICAM-1. Besides, given the importance of cell contact in the immunoregulatory function of MSCs, we analyzed whether these cells release ICAM-1+ microvesicles (MVs). Our results show for the first time that TNF-α is capable of increasing the early expression of ICAM-1 in human BM-MSCs. Also, we observed that TNF-α and IFN-γ have a synergistic effect on the increase in the expression of ICAM-1. Furthermore, we found that BM-MSCs exposed to an inflammatory environment release MVs enriched in ICAM-1 (MVs-ICAM-1high). The knowledge generated in this study will contribute to the improvement of in vitro conditioning protocols that favor the therapeutic effect of these cells or their products.
Collapse
|
12
|
Nanospheres Loaded with Curcumin Improve the Bioactivity of Umbilical Cord Blood-Mesenchymal Stem Cells via c-Src Activation During the Skin Wound Healing Process. Cells 2020; 9:cells9061467. [PMID: 32549381 PMCID: PMC7348987 DOI: 10.3390/cells9061467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases, but the clinical application of curcumin is restricted by its poor aqueous solubility and its low permeability and bioavailability levels. In the present study, we investigate the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human mesenchymal stem cells (MSCs) during the skin wound healing process. CN significantly increased the motility of umbilical cord blood (UCB)-MSCs and showed 10,000-fold greater migration efficacy than curcumin. CN stimulated the phosphorylation of c-Src and protein kinase C which are responsible for the distinctive activation of the MAPKs. Interestingly, CN significantly induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhanced wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.
Collapse
|
13
|
Su J, Du Z, Xiao L, Wei F, Yang Y, Li M, Qiu Y, Liu J, Chen J, Xiao Y. Graphene oxide coated Titanium Surfaces with Osteoimmunomodulatory Role to Enhance Osteogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110983. [PMID: 32487397 DOI: 10.1016/j.msec.2020.110983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Graphene oxide (GO) and its derivatives are currently being explored for the modification of bone biomaterials. However, the effect of GO coatings on immunoregulation and subsequent impacts on osteogenesis are not known. In this study, GO was coated on pure titanium using dopamine. GO-coated titanium (Ti-GO) surfaces exhibited good biocompatibility, with the ability to stimulate the expression of osteogenic genes, and extracellular matrix mineralization in human mesenchymal stromal cells (hMSCs). Interestingly, it was found that GO-coated surfaces could manipulate the polarization of macrophages and expression of inflammatory cytokines via the Toll-like receptor pathway. Under physiological conditions, Ti-GO activated macrophages and induced mild inflammation and a pro-osteogenic environment, characterized by a slight increase in the levels of proinflammatory cytokines, as well as increased expression of the TGF-β1 and oncostatin M genes. In an environment mimicking acute inflammatory conditions, Ti-GO attenuated inflammatory responses, as shown by the downregulation of proinflammatory cytokines. Conditioned medium collected from macrophages stimulated by Ti-GO played a significant stimulatory role in the osteogenic differentiation of hMSCs. In summary, GO-coated surfaces displayed beneficial immunomodulatory effects in osteogenesis, indicating that GO could be a potential substance for the modification of bone scaffolds and implants.
Collapse
Affiliation(s)
- Jiehua Su
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhibin Du
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Fei Wei
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ying Yang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia
| | - Mengting Li
- Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Yubei Qiu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Jiali Liu
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China
| | - Jiang Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, China.
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Mead B, Chamling X, Zack DJ, Ahmed Z, Tomarev S. TNFα-Mediated Priming of Mesenchymal Stem Cells Enhances Their Neuroprotective Effect on Retinal Ganglion Cells. Invest Ophthalmol Vis Sci 2020; 61:6. [PMID: 32031578 PMCID: PMC7324256 DOI: 10.1167/iovs.61.2.6] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To determine whether priming of bone marrow mesenchymal stem cells (MSCs) by signals from injured retina, particularly tumor necrosis factor α (TNFα), increase their exosomes’ neuroprotective efficacy on retinal ganglion cells (RGCs). Methods MSCs were primed with retinal cell culture conditioned medium, with or without the TNFα blocker etanercept or TNFα prior to isolation of exosomes. MSC conditioned medium or exosomes were added to rat retinal cultures or human stem cell–derived retinal ganglion cell (hRGC) cultures, and RGC neuroprotective effects were quantified. Luminex assays were used to compare primed versus unprimed exosomes. Results MSC conditioned medium and exosomes exerted a significant neuroprotective effect on injured rat and hRGC. This effect was significantly increased after MSCs were primed with retinal conditioned medium or TNFα. Blocking of TNFα signaling with etanercept prevented priming-induced RGC neuroprotective efficacy. Priming increased Pigment epithelium-derived factor (PEDF) and VEGF-AA exosomal abundance. Conclusions MSC exosomes promote RGC survival not just in rodent retinal cultures but also with hRGC. Their efficacy can be further enhanced through TNFα priming with the mechanism of action potentially mediated, at least in part, through increased levels of PEDF and VEGF-AA.
Collapse
|
15
|
Increased in vitro migration of human umbilical cord mesenchymal stem cells toward acellular foreskin treated with bacterial derivatives of monophosphoryl lipid A or supernatant of Lactobacillus acidophilus. Hum Cell 2019; 33:10-22. [PMID: 31811569 DOI: 10.1007/s13577-019-00308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
Abstract
Migration and homing are known as critical steps toward regeneration of damaged tissues via cell therapies. Among various cellular sources of stem cells, the umbilical cord has been thus recognized as an interesting one endowed with high benefits. Accordingly, the main objective of the present study was to determine whether monophosphoryl lipid A (MPLA) or supernatant of Lactobacillus acidophilus (SLA) could increase migration of human umbilical cord mesenchymal stem cells (hUMSCs) toward acellular foreskin or not. In this study, the hUMSCs were isolated and cultured through acellular MPLA- or SLA-treated foreskin. Expression of some migration genes (i.e., VCAM-1, MMP-2, VLA-4, CXCR-4, and VEGF) was also investigated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Moreover; vimentin, cytokeratin 5 (CK5), and matrix metalloproteinases-2 (MMP-2) were detected via immunohistochemistry (IHC) analysis. The hUMSCs in the presence of MPLA- or SLA-treated foreskin showed more tissue tropism compared with those in the control group. Besides, the scanning electron microscopy (SEM) results established that the hUMSCs had more migratory activity in the presence of MPLA- or SLA-treated foreskin than the untreated one. The IHC analysis results correspondingly indicated that expression of vimentin, CK5, and MMP-2 proteins had augmented in both treatments compared with those in the control group. It was concluded that MPLA had revealed more prominent results than SLA, even though both treatments could be regarded as inducing factors in migration. Ultimately, it was suggested to introduce the use of MPLA and probiotic components as a promising approach to improve therapies in regenerative medicine.
Collapse
|
16
|
Omar O, Elgali I, Dahlin C, Thomsen P. Barrier membranes: More than the barrier effect? J Clin Periodontol 2019; 46 Suppl 21:103-123. [PMID: 30667525 PMCID: PMC6704362 DOI: 10.1111/jcpe.13068] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/21/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022]
Abstract
AIM To review the knowledge on the mechanisms controlling membrane-host interactions in guided bone regeneration (GBR) and investigate the possible role of GBR membranes as bioactive compartments in addition to their established role as barriers. MATERIALS AND METHODS A narrative review was utilized based on in vitro, in vivo and available clinical studies on the cellular and molecular mechanisms underlying GBR and the possible bioactive role of membranes. RESULTS Emerging data demonstrate that the membrane contributes bioactively to the regeneration of underlying defects. The cellular and molecular activities in the membrane are intimately linked to the promoted bone regeneration in the underlying defect. Along with the native bioactivity of GBR membranes, incorporating growth factors and cells in membranes or with graft materials may augment the regenerative processes in underlying defects. CONCLUSION In parallel with its barrier function, the membrane plays an active role in hosting and modulating the molecular activities of the membrane-associated cells during GBR. The biological events in the membrane are linked to the bone regenerative and remodelling processes in the underlying defect. Furthermore, the bone-promoting environments in the two compartments can likely be boosted by strategies targeting both material aspects of the membrane and host tissue responses.
Collapse
Affiliation(s)
- Omar Omar
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ibrahim Elgali
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Christer Dahlin
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Oral Maxillofacial Surgery/ENTNU‐Hospital OrganisationTrollhättanSweden
| | - Peter Thomsen
- Department of BiomaterialsInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
17
|
The Emerging Role of Mesenchymal Stem Cells in Vascular Calcification. Stem Cells Int 2019; 2019:2875189. [PMID: 31065272 PMCID: PMC6466855 DOI: 10.1155/2019/2875189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Vascular calcification (VC), characterized by hydroxyapatite crystal depositing in the vessel wall, is a common pathological condition shared by many chronic diseases and an independent risk factor for cardiovascular events. Recently, VC is regarded as an active, dynamic cell-mediated process, during which calcifying cell transition is critical. Mesenchymal stem cells (MSCs), with a multidirectional differentiation ability and great potential for clinical application, play a duplex role in the VC process. MSCs facilitate VC mainly through osteogenic transformation and apoptosis. Meanwhile, several studies have reported the protective role of MSCs. Anti-inflammation, blockade of the BMP2 signal, downregulation of the Wnt signal, and antiapoptosis through paracrine signaling are possible mechanisms. This review displays the evidence both on the facilitating role and on the protective role of MSCs, then discusses the key factors determining this divergence.
Collapse
|
18
|
Feldman DS. Biomaterial Enhanced Regeneration Design Research for Skin and Load Bearing Applications. J Funct Biomater 2019; 10:E10. [PMID: 30691135 PMCID: PMC6462970 DOI: 10.3390/jfb10010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Biomaterial enhanced regeneration (BER) falls mostly under the broad heading of Tissue Engineering: the use of materials (synthetic and natural) usually in conjunction with cells (both native and genetically modified as well as stem cells) and/or biological response modifiers (growth factors and cytokines as well as other stimuli, which alter cellular activity). Although the emphasis is on the biomaterial as a scaffold it is also the use of additive bioactivity to enhance the healing and regenerative properties of the scaffold. Enhancing regeneration is both moving more toward regeneration but also speeding up the process. The review covers principles of design for BER as well as strategies to select the best designs. This is first general design principles, followed by types of design options, and then specific strategies for applications in skin and load bearing applications. The last section, surveys current clinical practice (for skin and load bearing applications) including limitations of these approaches. This is followed by future directions with an attempt to prioritize strategies. Although the review is geared toward design optimization, prioritization also includes the commercializability of the devices. This means a device must meet both the clinical performance design constraints as well as the commercializability design constraints.
Collapse
Affiliation(s)
- Dale S Feldman
- UAB, Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham 35294, AL, USA.
| |
Collapse
|
19
|
Yin Z, Jiang K, Li R, Dong C, Wang L. Multipotent mesenchymal stromal cells play critical roles in hepatocellular carcinoma initiation, progression and therapy. Mol Cancer 2018; 17:178. [PMID: 30593276 PMCID: PMC6309092 DOI: 10.1186/s12943-018-0926-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/16/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, with high morbidity, relapse and mortality rates. Multipotent mesenchymal stromal cells (MSCs) can be recruited to and become integral components of the HCC microenvironment and can influence tumor progression. This review discusses MSC migration to liver fibrosis and the HCC microenvironment, MSC involvement in HCC initiation and progression and the widespread application of MSCs in HCC-targeted therapy, thus clarifying the critical roles of MSCs in HCC.
Collapse
Affiliation(s)
- Zeli Yin
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Keqiu Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Rui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China
| | - Chengyong Dong
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
- Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, Dalian Medical University, Dalian, 116027, Liaoning, China.
- Engineering Technology Research Center for Translational Medicine, Dalian Medical University, Dalian, 116027, Liaoning, China.
| |
Collapse
|
20
|
Feldman DS, McCauley JF. Mesenchymal Stem Cells and Transforming Growth Factor-β₃ (TGF-β₃) to Enhance the Regenerative Ability of an Albumin Scaffold in Full Thickness Wound Healing. J Funct Biomater 2018; 9:jfb9040065. [PMID: 30441760 PMCID: PMC6306712 DOI: 10.3390/jfb9040065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
Pressure ulcers are one of the most common forms of skin injury, particularly in the spinal cord injured (SCI). Pressure ulcers are difficult to heal in this population requiring at least six months of bed rest. Surgical treatment (grafting) is the fastest recovery time, but it still requires six weeks of bed rest plus significant additional costs and a high recurrence rate. A significant clinical benefit would be obtained by speeding the healing rate of a non-surgical treatment to close to that of surgical treatment (approximately doubling of healing rate). Current non-surgical treatment is mostly inactive wound coverings. The goal of this project was to look at the feasibility of doubling the healing rate of a full-thickness defect using combinations of three treatments, for the first time, each shown to increase healing rate: application of transforming growth factor-β3 (TGF-β3), an albumin based scaffold, and mesenchymal stem cells (MSCs). At one week following surgery, the combined treatment showed the greatest increase in healing rate, particularly for the epithelialization rate. Although the target level of a 100% increase in healing rate over the control was not quite achieved, it is anticipated that the goal would be met with further optimization of the treatment.
Collapse
Affiliation(s)
- Dale S Feldman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, UAB, Birmingham, AL 25294, USA.
| | - John F McCauley
- Department of Biomedical Engineering, The University of Alabama at Birmingham, UAB, Birmingham, AL 25294, USA.
| |
Collapse
|
21
|
Wu T, Shi Z, Song H, Li Y, Li JH. Cytotoxicity of local anesthetics on rabbit adipose-derived mesenchymal stem cells during early chondrogenic differentiation. Exp Ther Med 2018; 16:2843-2850. [PMID: 30214505 PMCID: PMC6125832 DOI: 10.3892/etm.2018.6539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Local anesthetics (LAs) are commonly used to provide peri-operative pain control in the peripheral joints. In the field of regenerative medicine, adipose-derived mesenchymal stem cells (ADMSCs) are gaining attention as a cellular source for repair and regeneration in degenerative diseases. However, previous studies have demonstrated that the commonly used drugs lidocaine, ropivacaine, bupivacaine and mepivacaine may be toxic to human chondrocytes, which has raised concerns over whether they exert similar negative effects on ADMSCs during early chondrogenic differentiation. In the present in vitro study, the cytotoxicity of different LAs to ADMSCs was determined during early chondrogenic differentiation. At concentrations similar to those after physiological dilution once injected into the degenerative tissues, LAs (1% lidocaine, 0.5% bupivacaine, 0.5% ropivacaine or 2% mepivacaine) and PBS (control group) were incubated with rabbit ADMSCs (rADMSCs) for 60 min. Following further culture for 3 or 7 days, the cell viability, apoptosis and morphological alterations of chondrogenic differentiation were measured by determining the mitochondrial activity, by flow cytometric analysis, Safranine Fast Green double staining and reverse transcription-quantitative polymerase chain reaction of chondrogenesis-associated genes. The results indicated that the mitochondrial activity in rADMSC was decreased and the apoptotic rate was increased, following treatment with LAs (P<0.05). Lidocaine (1%) was less cytotoxic to rADMSCs during early chondrogenesis compared with other LAs. The expression levels of chondrogenesis-associated markers, including collagen I, collagen III and sex-determining region Y box 9 were all decreased at day 3 following exposure to LAs compared with the control group (P<0.05). The expression levels of these chondrogenesis-associated genes began to increase on day 7 following exposure but remained lower compared with the control group (P<0.05). Of note, 2% mepivacaine and 1% lidocaine exhibited a less pronounced negative effect on chondrogenesis-associated gene expression compared with other LAs. Therefore, the present study concluded that LAs are cytotoxic to rADMSCs during early chondrogenesis. Attention should be paid to the different types of LA selected in conjunction with ADMSC injection therapy.
Collapse
Affiliation(s)
- Tao Wu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Zhaohong Shi
- Department of Rehabilitation Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang 317500, P.R. China
| | - Haixin Song
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Yangzheng Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Jian-Hua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
22
|
Saxena N, Mogha P, Dash S, Majumder A, Jadhav S, Sen S. Matrix elasticity regulates mesenchymal stem cell chemotaxis. J Cell Sci 2018. [PMID: 29535208 DOI: 10.1242/jcs.211391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Efficient homing of human mesenchymal stem cells (hMSCs) is likely to be dictated by a combination of physical and chemical factors present in the microenvironment. However, crosstalk between the physical and chemical cues remains incompletely understood. Here, we address this question by probing the efficiency of epidermal growth factor (EGF)-induced hMSC chemotaxis on substrates of varying stiffness (3, 30 and 600 kPa) inside a polydimethylsiloxane (PDMS) microfluidic device. Chemotactic speed was found to be the sum of a stiffness-dependent component and a chemokine concentration-dependent component. While the stiffness-dependent component scaled inversely with stiffness, the chemotactic component was independent of stiffness. Faster chemotaxis on the softest 3 kPa substrates is attributed to a combination of weaker adhesions and higher protrusion rate. While chemotaxis was mildly sensitive to contractility inhibitors, suppression of chemotaxis upon actin depolymerization demonstrates the role of actin-mediated protrusions in driving chemotaxis. In addition to highlighting the collective influence of physical and chemical cues in chemotactic migration, our results suggest that hMSC homing is more efficient on softer substrates.
Collapse
Affiliation(s)
- Neha Saxena
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Pankaj Mogha
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Silalipi Dash
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Abhijit Majumder
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Sameer Jadhav
- Department of Chemical Engineering, IIT, Bombay, Maharashtra 400076, India
| | - Shamik Sen
- Department of Bioscience and Bioengineering, IIT, Bombay, Maharashtra 400076, India
| |
Collapse
|
23
|
IL-1 β-Induced Matrix Metalloprotease-1 Promotes Mesenchymal Stem Cell Migration via PAR1 and G-Protein-Coupled Signaling Pathway. Stem Cells Int 2018; 2018:3524759. [PMID: 30026761 PMCID: PMC6031215 DOI: 10.1155/2018/3524759] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/19/2017] [Accepted: 12/28/2017] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are known for homing to sites of injury in response to signals of cellular damage. However, the mechanisms of how cytokines recruit stem cells to target tissue are still unclear. In this study, we found that the proinflammation cytokine interleukin-1β (IL-1β) promotes mesenchymal stem cell migration. The cDNA microarray data show that IL-1β induces matrix metalloproteinase-1 (MMP-1) expression. We then used quantitative real-time PCR and MMP-1 ELISA to verify the results. MMP-1 siRNA transfected MSCs, and MSC pretreatment with IL-1β inhibitor interleukin-1 receptor antagonist (IL-1RA), MMP tissue inhibitor of metalloproteinase 1 (TIMP1), tissue inhibitor of metalloproteinase 2 (TIMP2), MMP-1 inhibitor GM6001, and protease-activated receptor 1 (PAR1) inhibitor SCH79797 confirms that PAR1 protein signaling pathway leads to IL-1β-induced cell migration. In conclusion, IL-1β promotes the secretion of MMP-1, which then activates the PAR1 and G-protein-coupled signal pathways to promote mesenchymal stem cell migration.
Collapse
|
24
|
Parry SM, Peeples ES. The impact of hypoxic-ischemic brain injury on stem cell mobilization, migration, adhesion, and proliferation. Neural Regen Res 2018; 13:1125-1135. [PMID: 30028311 PMCID: PMC6065219 DOI: 10.4103/1673-5374.235012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy continues to be a significant cause of death or neurodevelopmental delays despite standard use of therapeutic hypothermia. The use of stem cell transplantation has recently emerged as a promising supplemental therapy to further improve the outcomes of infants with hypoxic-ischemic encephalopathy. After the injury, the brain releases several chemical mediators, many of which communicate directly with stem cells to encourage mobilization, migration, cell adhesion and differentiation. This manuscript reviews the biomarkers that are released from the injured brain and their interactions with stem cells, providing insight regarding how their upregulation could improve stem cell therapy by maximizing cell delivery to the injured tissue.
Collapse
Affiliation(s)
- Stephanie M Parry
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
25
|
Wu T, Smith J, Nie H, Wang Z, Erwin PJ, van Wijnen AJ, Qu W. Cytotoxicity of Local Anesthetics in Mesenchymal Stem Cells. Am J Phys Med Rehabil 2018; 97:50-55. [DOI: 10.1097/phm.0000000000000837] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Wei F, Xiao Y. Modulation of the Osteoimmune Environment in the Development of Biomaterials for Osteogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:69-86. [DOI: 10.1007/978-981-13-0947-2_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Rameshwar P, Moore CA, Shah NN, Smith CP. An Update on the Therapeutic Potential of Stem Cells. Methods Mol Biol 2018; 1842:3-27. [PMID: 30196398 DOI: 10.1007/978-1-4939-8697-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The seeming setbacks noted for stem cells underscore the need for experimental studies for safe and efficacious application to patients. Both clinical and experimental researchers have gained valuable knowledge on the characteristics of stem cells, and their behavior in different microenvironment. This introductory chapter focuses on adult mesenchymal stem cells (MSCs) based on the predominance in the clinic. MSCs can be influenced by inflammatory mediators to exert immune suppressive properties, commonly referred to as "licensing." Interestingly, while there are questions if other stem cells can be delivered across allogeneic barrier, there is no question on the ability of MSCs to provide this benefit. This property has been a great advantage since MSCs could be available for immediate application as "off-the-shelf" stem cells for several disorders, tissue repair and gene/drug delivery. Despite the benefit of MSCs, it is imperative that research continues with the various types of stem cells. The method needed to isolate these cells is outlined in this book. In parallel, safety studies are needed; particularly links to oncogenic event. In summary, this introductory chapter discusses several potential areas that need to be addressed for safe and efficient delivery of stem cells, and argue for the incorporation of microenvironmental factors in the studies. The method described in this chapter could be extrapolated to the field of chimeric antigen receptor T-cells (CAR-T). This will require application to stem cell hierarchy of memory T-cells.
Collapse
Affiliation(s)
- Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Niloy N Shah
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, NJ, USA
| | - Caroline P Smith
- Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
28
|
Chen Z, Bachhuka A, Wei F, Wang X, Liu G, Vasilev K, Xiao Y. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration. NANOSCALE 2017; 9:18129-18152. [PMID: 29143002 DOI: 10.1039/c7nr05913b] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Immune cells play vital roles in regulating bone dynamics. Successful bone regeneration requires a favourable osteo-immune environment. The high plasticity and diversity of immune cells make it possible to manipulate the osteo-immune response of immune cells, thus modulating the osteoimmune environment and regulating bone regeneration. With the advancement in nanotechnology, nanotopographies with different controlled surface properties can be fabricated. On tuning the surface properties, the osteo-immune response can be precisely modulated. This highly tunable characteristic and immunomodulatory effects make nanotopography a promising strategy to precisely manipulate osteoimmunomdulation for bone tissue engineering applications. This review first summarises the effects of the immune response during bone healing to show the importance of regulating the immune response for the bone response. The plasticity of immune cells is then reviewed to provide rationales for manipulation of the osteoimmune response. Subsequently, we highlight the current types of nanotopographies applied in bone biomaterials and their fabrication techniques, and explain how these nanotopographies modulate the immune response and the possible underlying mechanisms. The effects of immune cells on nanotopography-mediated osteogenesis are emphasized, and we propose the concept of "nano-osteoimmunomodulation" to provide a valuable strategy for the development of nanotopographies with osteoimmunomodulatory properties that can precisely regulate bone dynamics.
Collapse
Affiliation(s)
- Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
29
|
Dai Y, Li X, Wu R, Jin Y, Gao C. Macrophages of Different Phenotypes Influence the Migration of BMSCs in PLGA Scaffolds with Different Pore Size. Biotechnol J 2017; 13. [DOI: 10.1002/biot.201700297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/14/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Yuankun Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Xuguang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ruihan Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Ying Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
- Center for Stem Cell and Regenerative Medicine; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
30
|
Zhao Y, Zhang H. Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy 2017; 18:816-27. [PMID: 27260205 DOI: 10.1016/j.jcyt.2016.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/11/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
Adipose tissue-derived stem cells (ADSCs), which resemble bone marrow mesenchymal stromal cells (BMSCs), have shown great advantages and promise in the field of regenerative medicine. They can be readily harvested in large numbers with low donor-site morbidity. To date, a great number of preclinical and clinical studies have shown ADSCs' safety and efficacy in regenerative medicine. However, a better understanding of the mechanisms of homing of ADSCs is needed to advance the clinical utility of this therapy. In this review, the reports of the homing of ADSCs were searched using Pubmed and Google Scholar to update our knowledge. ADSCs were proved to interact with endothelial cells by expressing the similar integrins with BMSCs. In addition, ADSCs do not possess the dominant ligand for P-selectin, just like BMSCs. Stromal derived factor-1 (SDF-1)/CXCR4 and CXC ligand-5 (CXCL5)/CXCR2 interactions are the two main axes governing ADSCs extravasation from bone marrow vessels. Some more signaling pathways involved in migration of ADSCs have been investigated, including LPA/LPA1 signaling pathway, MAPK/Erk1/2 signaling pathway, RhoA/Rock signaling pathway and PDGF-BB/PDGFR-β signaling pathway. Status quo of a lack of intensive studies on the details of homing of ADSCs should be improved in the near future before clinical application.
Collapse
Affiliation(s)
- Yong Zhao
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Haiyang Zhang
- Minimally Invasive Urology Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China; Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
31
|
Xu XP, He HL, Hu SL, Han JB, Huang LL, Xu JY, Xie JF, Liu AR, Yang Y, Qiu HB. Ang II-AT2R increases mesenchymal stem cell migration by signaling through the FAK and RhoA/Cdc42 pathways in vitro. Stem Cell Res Ther 2017; 8:164. [PMID: 28697804 PMCID: PMC5506621 DOI: 10.1186/s13287-017-0617-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/06/2017] [Accepted: 06/20/2017] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) migrate via the bloodstream to sites of injury and are possibly attracted by inflammatory factors. As a proinflammatory mediator, angiotensin II (Ang II) reportedly enhances the migration of various cell types by signaling via the Ang II receptor in vitro. However, few studies have focused on the effects of Ang II on MSC migration and the underlying mechanisms. Methods Human bone marrow MSCs migration was measured using wound healing and Boyden chamber migration assays after treatments with different concentrations of Ang II, an AT1R antagonist (Losartan), and/or an AT2R antagonist (PD-123319). To exclude the effect of proliferation on MSC migration, we measured MSC proliferation after stimulation with the same concentration of Ang II. Additionally, we employed the focal adhesion kinase (FAK) inhibitor PF-573228, RhoA inhibitor C3 transferase, Rac1 inhibitor NSC23766, or Cdc42 inhibitor ML141 to investigate the role of cell adhesion proteins and the Rho-GTPase protein family (RhoA, Rac1, and Cdc42) in Ang II-mediated MSC migration. Cell adhesion proteins (FAK, Talin, and Vinculin) were detected by western blot analysis. The Rho-GTPase family protein activities were assessed by G-LISA and F-actin levels, which reflect actin cytoskeletal organization, were detected by using immunofluorescence. Results Human bone marrow MSCs constitutively expressed AT1R and AT2R. Additionally, Ang II increased MSC migration in an AT2R-dependent manner. Notably, Ang II-enhanced migration was not mediated by Ang II-mediated cell proliferation. Interestingly, Ang II-enhanced migration was mediated by FAK activation, which was critical for the formation of focal contacts, as evidenced by increased Talin and Vinculin expression. Moreover, RhoA and Cdc42 were activated by FAK to increase cytoskeletal organization, thus promoting cell contraction. Furthermore, FAK, Talin, and Vinculin activation and F-actin reorganization in response to Ang II were prevented by PD-123319 but not Losartan, indicating that FAK activation and F-actin reorganization were downstream of AT2R. Conclusions These data indicate that Ang II-AT2R regulates human bone marrow MSC migration by signaling through the FAK and RhoA/Cdc42 pathways. This study provides insights into the mechanisms by which MSCs home to injury sites and will enable the rational design of targeted therapies to improve MSC engraftment.
Collapse
Affiliation(s)
- Xiu-Ping Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hong-Li He
- Department of Critical Care Medicine, Affiliated Hospital of University of Electronic Science and Technology of China & Sichuan Provincial People's Hospital, Chengdu, 610072, People's Republic of China
| | - Shu-Ling Hu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ji-Bin Han
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Li-Li Huang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jing-Yuan Xu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Jian-Feng Xie
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Ai-Ran Liu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China
| | - Hai-Bo Qiu
- Department of Critical Care Medicine, Nanjing Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
32
|
PGE2 Promotes the Migration of Mesenchymal Stem Cells through the Activation of FAK and ERK1/2 Pathway. Stem Cells Int 2017; 2017:8178643. [PMID: 28740516 PMCID: PMC5504996 DOI: 10.1155/2017/8178643] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/03/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023] Open
Abstract
A critical step of MSCs therapy is dependent on its ability to migrate into the sites of injury, so various approaches have been introduced to boost the migratory ability of MSCs. PGE2 is the major prostaglandin generated by COX enzymes and has been implicated in inflammatory response. Evidence indicates that PGE2 can facilitate MSCs migration. Further exploration of the underlying molecular mechanism participating in the promigratory ability of PGE2 may provide a novel strategy to improve MSC transplantation efficacy. In this study, our findings suggested that EP2 prostanoid receptor promotes MSCs migration through activation of FAK and ERK1/2 pathways. Furthermore, MSCs migration induced by PGE2 was blunted by FAK or ERK1/2 inhibitors. EP2-mediated MSCs migration depends on the activation of FAK and ERK1/2. However, the current study did not investigate the migration of MSCs over a blood vessel endothelial barrier. In conclusion, our findings reveal EP2-mediated FAK and ERK1/2 activation was essential for MSCs migration induced by PGE2, indicating that activation of EP2 receptor and FAK/ERK pathways may be a promising strategy to accelerate homing efficiency of MSCs, which in turn enhances therapeutic potential of MSCs transplantation.
Collapse
|
33
|
Dubon MJ, Yu J, Choi S, Park KS. Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin. J Cell Physiol 2017; 233:201-213. [PMID: 28213973 DOI: 10.1002/jcp.25863] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-beta (TGF-β) induces the migration and mobilization of bone marrow-derived mesenchymal stem cells (BM-MSCs) to maintain bone homeostasis during bone remodeling and facilitate the repair of peripheral tissues. Although many studies have reported the mechanisms through which TGF-β mediates the migration of various types of cells, including cancer cells, the intrinsic cellular mechanisms underlying cellular migration, and mobilization of BM-MSCs mediated by TGF-β are unclear. In this study, we showed that TGF-β activated noncanonical signaling molecules, such as Akt, extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and p38, via TGF-β type I receptor in human BM-MSCs and murine BM-MSC-like ST2 cells. Inhibition of Rac1 by NSC23766 and Src by PP2 resulted in impaired TGF-β-mediated migration. These results suggested that the Smad-independent, noncanonical signals activated by TGF-β were necessary for migration. We also showed that N-cadherin-dependent intercellular interactions were required for TGF-β-mediated migration using functional inhibition of N-cadherin with EDTA treatment and a neutralizing antibody (GC-4 antibody) or siRNA-mediated knockdown of N-cadherin. However, N-cadherin knockdown did not affect the global activation of noncanonical signals in response to TGF-β. Therefore, these results suggested that the migration of BM-MSCs in response to TGF-β was mediated through N-cadherin and noncanonical TGF-β signals.
Collapse
Affiliation(s)
- Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea
| | - Ki-Sook Park
- East-West Medical Research Institute, Kyung Hee University, Seoul, Korea
- College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
34
|
Thurairajah K, Broadhead ML, Balogh ZJ. Trauma and Stem Cells: Biology and Potential Therapeutic Implications. Int J Mol Sci 2017; 18:ijms18030577. [PMID: 28272352 PMCID: PMC5372593 DOI: 10.3390/ijms18030577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Trauma may cause irreversible tissue damage and loss of function despite current best practice. Healing is dependent both on the nature of the injury and the intrinsic biological capacity of those tissues for healing. Preclinical research has highlighted stem cell therapy as a potential avenue for improving outcomes for injuries with poor healing capacity. Additionally, trauma activates the immune system and alters stem cell behaviour. This paper reviews the current literature on stem cells and its relevance to trauma care. Emphasis is placed on understanding how stem cells respond to trauma and pertinent mechanisms that can be utilised to promote tissue healing. Research involving notable difficulties in trauma care such as fracture non-union, cartilage damage and trauma induced inflammation is discussed further.
Collapse
Affiliation(s)
- Kabilan Thurairajah
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Matthew L Broadhead
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| | - Zsolt J Balogh
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia.
- Department of Traumatology, John Hunter Hospital, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
35
|
Lu ZY, Chen WC, Li YH, Li L, Zhang H, Pang Y, Xiao ZF, Xiao HW, Xiao Y. TNF-α enhances vascular cell adhesion molecule-1 expression in human bone marrow mesenchymal stem cells via the NF-κB, ERK and JNK signaling pathways. Mol Med Rep 2016; 14:643-8. [PMID: 27221006 PMCID: PMC4918617 DOI: 10.3892/mmr.2016.5314] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 04/04/2016] [Indexed: 01/03/2023] Open
Abstract
The migration of circulating mesenchymal stem cells (MSCs) to injured tissue is an important step in tissue regeneration and requires adhesion to the microvascular endothelium. The current study investigated the underlying mechanism of MSC adhesion to endothelial cells during inflammation. In in vitro MSC culture, tumor necrosis factor-α (TNF-α) increased the level of vascular cell adhesion molecule-1 (VCAM-1) expression in a dose-dependent manner. The nuclear factor-κB (NF-κB), extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathway inhibitors, pyrrolidine dithiocarbamate (PDTC), U0126 and SP600125, respectively, suppressed VCAM-1 expression induced by TNF-α at the mRNA and protein levels (P<0.05). TNF-α augmented the activation of NF-κB, ERK and JNK, and promoted MSC adhesion to human umbilical vein endothelial cells; however, the inhibitors of NF-κB, ERK and JNK did not affect this process in these cells. The results of the current study indicate that adhesion of circulating MSCs to the endothelium is regulated by TNF-α-induced VCAM-1 expression, which is potentially mediated by the NF-κB, ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Zi-Yuan Lu
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wan-Cheng Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong-Hua Li
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Li Li
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Hang Zhang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yan Pang
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Zhi-Fang Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Hao-Wen Xiao
- Department of Hematology, General Hospital of Guangzhou Military Command of Chinese PLA, Guangzhou, Guangdong 510010, P.R. China
| | - Yang Xiao
- First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
36
|
Rodríguez-Carballo E, Gámez B, Ventura F. p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 2016; 4:40. [PMID: 27200351 PMCID: PMC4858538 DOI: 10.3389/fcell.2016.00040] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/14/2022] Open
Abstract
The skeleton is a highly dynamic tissue whose structure relies on the balance between bone deposition and resorption. This equilibrium, which depends on osteoblast and osteoclast functions, is controlled by multiple factors that can be modulated post-translationally. Some of the modulators are Mitogen-activated kinases (MAPKs), whose role has been studied in vivo and in vitro. p38-MAPK modifies the transactivation ability of some key transcription factors in chondrocytes, osteoblasts and osteoclasts, which affects their differentiation and function. Several commercially available inhibitors have helped to determine p38 action on these processes. Although it is frequently mentioned in the literature, this chemical approach is not always as accurate as it should be. Conditional knockouts are a useful genetic tool that could unravel the role of p38 in shaping the skeleton. In this review, we will summarize the state of the art on p38 activity during osteoblast differentiation and function, and emphasize the triggers of this MAPK.
Collapse
Affiliation(s)
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques II, Universitat de Barcelona and IDIBELL, L'Hospitalet de Llobregat Barcelona, Spain
| |
Collapse
|
37
|
DUBON MARIAJOSE, PARK KISOOK. The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells. Int J Mol Med 2016; 37:1105-11. [DOI: 10.3892/ijmm.2016.2496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
|
38
|
Xu Y, Hong Y, Xu M, Ma K, Fu X, Zhang M, Wang G. Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 5:106-16. [PMID: 26574554 PMCID: PMC4704873 DOI: 10.5966/sctm.2015-0081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022] Open
Abstract
The role of keratinocyte growth factor (KGF) in human umbilical cord-derived mesenchymal stem cell (hUC-MSC) differentiation remains unknown. Building on previous work, the authors found KGF expression in sweat gland-like cells (SGCs) and determined that recombinant human KGF could induce hUC-MSC differentiation into SGCs. These differentiated SGCs were applied to a mouse burn model and sweat glands were regenerated. These cells may have potential therapeutic application for regeneration of destroyed sweat glands and injured skin. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have higher proliferation potency and lower immune resistance than human bone marrow MSCs and can differentiate into various functional cells. Many regulatory factors, including keratinocyte growth factor (KGF), are involved in the development of skin and cutaneous appendages. Although KGF is important in wound healing, the role of KGF in hUC-MSC differentiation remains unknown. In our previous work, we found the mixing medium (nine parts of basic sweat-gland [SG] medium plus one part of conditioned heat-shock SG medium) could induce hUC-MSC differentiation to sweat gland-like cells (SGCs). In this study, we further improved the inducing medium and determined the effects of KGF in hUC-MSC differentiation. We found KGF expression in the SGCs and that recombinant human KGF could induce hUC-MSC differentiation into SGCs, suggesting KGF plays a pivotal role in promoting hUC-MSC differentiation to SGCs. Furthermore, the SGCs differentiated from hUC-MSCs were applied to severely burned skin of the paw of an in vivo severe combined immunodeficiency mouse burn model. Burned paws treated with SGCs could regenerate functional sparse SGs 21 days after treatment; the untreated control paws could not. Collectively, these results demonstrated that KGF is a critical growth factor for SGC differentiation from hUC-MSCs and the differentiated SGCs from hUC-MSCs may have a potential therapeutic application for regeneration of destroyed SGs and injured skin. Significance There is growing evidence demonstrating a potential therapeutic application of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in injured skin. In the current study, conditioned media and chemically defined media with recombinant human keratinocyte growth factor (KGF) could induce hUC-MSC differentiation into sweat gland-like cells (SGCs). Moreover, the differentiated SGCs from hUC-MSCs could regenerate functional sparse sweat glands in a mouse burn model, which provides further insight into the mechanisms of the role of KGF and a potential therapeutic application of differentiated SGCs for regeneration of destroyed sweat glands and injured skin.
Collapse
Affiliation(s)
- Yongan Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Yucai Hong
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Mengyan Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Kui Ma
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Burns Institute, First Affiliated Hospital (304th Hospital), General Hospital of PLA, Beijing, People's Republic of China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China Institute of Emergency Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Guirong Wang
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
39
|
Karnes JM, Daffner SD, Watkins CM. Multiple roles of tumor necrosis factor-alpha in fracture healing. Bone 2015; 78:87-93. [PMID: 25959413 DOI: 10.1016/j.bone.2015.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 01/08/2023]
Abstract
This review presents a summary of basic science evidence examining the influence of tumor necrosis factor-alpha (TNF-α) on secondary fracture healing. Multiple studies suggest that TNF-α, in combination with the host reservoir of peri-fracture mesenchymal stem cells, is a main determinant in the success of bone healing. Disease states associated with poor bone healing commonly have inappropriate TNF-α responses, which likely contributes to the higher incidence of delayed and nonunions in these patient populations. Appreciation of TNF-α in fracture healing may lead to new therapies to augment recovery and reduce the incidence of complications.
Collapse
Affiliation(s)
- Jonathan M Karnes
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Scott D Daffner
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| | - Colleen M Watkins
- Department of Orthopaedics, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
40
|
TNF-α modulates the immunosuppressive effects of MSCs on dendritic cells and T cells. Int Immunopharmacol 2015; 28:1009-17. [PMID: 26303769 DOI: 10.1016/j.intimp.2015.07.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/30/2015] [Indexed: 12/29/2022]
Abstract
Mesenchymal stem cells are progenitor cells that have capabilities to differentiate different cell types. Also, MSCs possess immune suppressive effects on DC differentiation and T cell activation through a wide range of soluble factors and receptors. The properties of MSCs change through activation of cytokines particularly IFN-γ and TNF-α. The DC phenotypes and functions including the expression of co-stimulatory and co-inhibitory molecules and capabilities of DCs to induce allogeneic activation of CFSE-labeled splenocytes as well as cytokine production when they were differentiated in the presence of MSCs, TNF-α activated MSCs, IFN-γ activated MSCs and IFN-γ & TNF-α activated MSCs were analyzed. Treg population and T cell polarization were investigated using flowcytometry and real-time PCR respectively. Here, we showed that IFN-γ slightly enhances immunosuppressive effects of MSCs on immune system through induction tolerogenic DCs with elevated expression of IDO and increasing Treg population. Conversely, TNF-α decreases immunomodulation properties of MSCs on immune cells through the enhancement of co-stimulatory molecules such as ICOSL and HLA-DR, reduction of PDL-1 and PDL-2 expression and decrease of TGF-β and IL-10 in DCs as well as inhibition of T cell polarization into TH2 and Treg. Taken together, these data showed crucial effects of microenvironments on MSC behaviors indicating that functions of MSCs differentially altered in the presence of different cytokines.
Collapse
|
41
|
Miller RR, Eastlack M, Hicks GE, Alley DE, Shardell MD, Orwig DL, Goodpaster BH, Chomentowski PJ, Hawkes WG, Hochberg MC, Ferrucci L, Magaziner J. Asymmetry in CT Scan Measures of Thigh Muscle 2 Months After Hip Fracture: The Baltimore Hip Studies. J Gerontol A Biol Sci Med Sci 2015; 70:753-6. [PMID: 25958401 DOI: 10.1093/gerona/glr188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hip fracture is an important problem for older adults with significant functional consequences. After hip fracture, reduced muscle loading can result in muscle atrophy. METHODS We compared thigh muscle characteristics in the fractured leg with those in the nonfractured leg in participants from the Baltimore Hip Studies 7th cohort using computed tomography (CT) scan imaging. RESULTS At 2 months postfracture, a single 10-mm axial CT scan was obtained at the midthigh level in 47 participants (26 men and 21 women) with a mean age of 80.4 years (range 65-96), and thigh muscle cross-sectional area (CSA), CSA of intermuscular adipose tissue (IMAT), as well as mean radiological attenuation were measured. Total thigh muscle CSA was less on the side of the fracture by 9.2 cm(2) (95% CI: 5.9, 12.4 cm(2)), whereas the CSA of IMAT was greater by 2.8 cm(2) (95% CI: 1.9, 3.8 cm(2)) on the fractured side. Mean muscle attenuation was lower on the side of the fracture by 3.61 HU (95% CI: 2.99, 4.24 HU). CONCLUSIONS The observed asymmetry is consistent with the effect of disuse and inflammation in the affected limb along with training effects in the unaffected limb due to the favoring of this leg with ambulation during the postfracture period.
Collapse
Affiliation(s)
- Ram R Miller
- GlaxoSmithKline, Research Triangle Park, North Carolina Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Marty Eastlack
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania
| | - Gregory E Hicks
- Department of Physical Therapy, University of Delaware, Newark
| | - Dawn E Alley
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Michelle D Shardell
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Denise L Orwig
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Bret H Goodpaster
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - Peter J Chomentowski
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pennsylvania
| | - William G Hawkes
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Marc C Hochberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, Maryland
| | - Jay Magaziner
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
42
|
Yang Z, Dong P, Fu X, Li Q, Ma S, Wu D, Kang N, Liu X, Yan L, Xiao R. CD49f Acts as an Inflammation Sensor to Regulate Differentiation, Adhesion, and Migration of Human Mesenchymal Stem Cells. Stem Cells 2015; 33:2798-810. [PMID: 26013602 DOI: 10.1002/stem.2063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
The advent of mesenchymal stem cell (MSC)-based therapies has been an exciting innovation for the treatment of degenerative and inflammatory diseases. However, the surface markers that accurately reflect the self-renewal and differentiation potential of MSCs and their sensitivity to environmental cues remain poorly defined. Here, we studied the role of CD49f in bone marrow MSCs (BMSCs) and the mechanism by which it regulates the behavior of BMSCs under inflammatory conditions. We found that CD49f is preferentially expressed in fetal cells rather than adult cells, CD49f-positive BMSCs possess higher CFU-F formation ability and differentiation potential than CD49f negative cells, and the CD49f expression of BMSCs gradually decreases during in vitro passaging. CD49f knockdown dramatically decreased the differentiation of BMSCs and isoform A was demonstrated to be the main functional form that enhanced the differentiation ability of BMSCs. The influences of inflammatory cytokines on BMSCs revealed that TNF-α downregulated CD49f in BMSCs with impaired differentiation, decreased adhesion to laminins, and increased migration. Moreover, tissue transglutaminase was found to work together with CD49f to regulate the behavior of BMSCs. Finally, we showed that mTOR signaling rather than NF-κB activation mediated CD49f downregulation induced by TNF-α and maintained CD49f homeostasis in BMSCs. Our findings suggest that CD49f is a stemness marker of BMSCs and is tightly correlated with the behavioral changes of BMSCs under inflammatory conditions. These data demonstrate a novel role for CD49f in sensing inflammation through mTOR pathway to further modulate the behavior of MSCs to fulfill the requirements of the body.
Collapse
Affiliation(s)
- Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Ping Dong
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Shize Ma
- 307-Ivy Translational Medicine Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Dongying Wu
- 307-Ivy Translational Medicine Center, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, People's Republic of China
| | - Ning Kang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, Beijing, People's Republic of China
| |
Collapse
|
43
|
Bar-Or D, Thomas GW, Rael LT, Gersch ED, Rubinstein P, Brody E. Low Molecular Weight Fraction of Commercial Human Serum Albumin Induces Morphologic and Transcriptional Changes of Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells Transl Med 2015; 4:945-55. [PMID: 26041739 DOI: 10.5966/sctm.2014-0293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/13/2015] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic disease of the joint; however, the therapeutic options for severe OA are limited. The low molecular weight fraction of commercial 5% human serum albumin (LMWF5A) has been shown to have anti-inflammatory properties that are mediated, in part, by a diketopiperazine that is present in the albumin preparation and that was demonstrated to be safe and effective in reducing pain and improving function when administered intra-articularly in a phase III clinical trial. In the present study, bone marrow-derived mesenchymal stem cells (BMMSCs) exposed to LMWF5A exhibited an elongated phenotype with diffuse intracellular F-actin, pronounced migratory leading edges, and filopodia-like projections. In addition, LMWF5A promoted chondrogenic condensation in "micromass" culture, concurrent with the upregulation of collagen 2α1 mRNA. Furthermore, the transcription of the CXCR4-CXCL12 axis was significantly regulated in a manner conducive to migration and homing. Several transcription factors involved in stem cell differentiation were also found to bind oligonucleotide response element probes following exposure to LMWF5A. Finally, a rapid increase in PRAS40 phosphorylation was observed following treatment, potentially resulting in the activation mTORC1. Proteomic analysis of synovial fluid taken from a preliminary set of patients indicated that at 12 weeks following administration of LMWF5A, a microenvironment exists in the knee conducive to stem cell infiltration, self-renewal, and differentiation, in addition to indications of remodeling with a reduction in inflammation. Taken together, these findings imply that LMWF5A treatment may prime stem cells for both mobilization and chondrogenic differentiation, potentially explaining some of the beneficial effects achieved in clinical trials.
Collapse
Affiliation(s)
- David Bar-Or
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| | - Gregory W Thomas
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| | - Leonard T Rael
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| | - Elizabeth D Gersch
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| | - Pablo Rubinstein
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| | - Edward Brody
- Swedish Medical Center, Trauma Research Department, Englewood, Colorado, USA; St. Anthony Hospital, Trauma Research Department, Lakewood, Colorado, USA; Medical Center of Plano, Trauma Research Department, Plano, Texas, USA; Ampio Pharmaceuticals Inc., Englewood, Colorado, USA; New York Blood Center, New York, New York, USA; SomaLogic Inc., Boulder, Colorado, USA
| |
Collapse
|
44
|
Miller RR, Eastlack M, Hicks GE, Alley DE, Shardell MD, Orwig DL, Goodpaster BH, Chomentowski PJ, Hawkes WG, Hochberg MC, Ferrucci L, Magaziner J. Asymmetry in CT Scan Measures of Thigh Muscle 2 Months After Hip Fracture: The Baltimore Hip Studies. J Gerontol A Biol Sci Med Sci 2015; 70:1276-80. [PMID: 25969469 DOI: 10.1093/gerona/glv053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/02/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hip fracture is an important problem for older adults with significant functional consequences. After hip fracture, reduced muscle loading can result in muscle atrophy. METHODS We compared thigh muscle characteristics in the fractured leg to those in the nonfractured leg in participants from the Baltimore Hip Studies 7th cohort using computed tomography scan imaging. RESULTS At 2 months postfracture, a single 10mm axial computed tomography scan was obtained at the midthigh level in 43 participants (23 men, 20 women) with a mean age of 79.9 years (range: 65-96 years), and thigh muscle cross-sectional area, cross-sectional area of intermuscular adipose tissue, and mean radiologic attenuation were measured. Total thigh muscle cross-sectional area was less on the side of the fracture by 9.46cm(2) (95% CI: 5.97cm(2), 12.95cm(2)) while the cross-sectional area of intermuscular adipose tissue was greater by 2.97cm(2) (95% CI: 1.94cm(2), 4.01cm(2)) on the fractured side. Mean muscle attenuation was lower on the side of the fracture by 3.66 Hounsfield Units (95% CI: 2.98 Hounsfield Units, 4.34 Hounsfield Units). CONCLUSIONS The observed asymmetry is consistent with the effect of disuse and inflammation in the affected limb along with training effects in the unaffected limb due to the favoring of this leg with ambulation during the postfracture period.
Collapse
Affiliation(s)
- Ram R Miller
- GlaxoSmithKline, Research Triangle Park, North Carolina. Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine.
| | - Marty Eastlack
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania
| | - Gregory E Hicks
- Department of Physical Therapy, University of Delaware, Newark
| | - Dawn E Alley
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine
| | - Michelle D Shardell
- Division of Biostatistics & Bioinformatics, Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Denise L Orwig
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Medical Research Institute, Orlando
| | - Peter J Chomentowski
- Department of Kinesiology and Physical Education, Northern Illinois University, DeKalb
| | - William G Hawkes
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine
| | - Marc C Hochberg
- Department of Medicine, University of Maryland School of Medicine, Baltimore
| | - Luigi Ferrucci
- Longitudinal Studies Section, National Institute on Aging, Baltimore, Maryland
| | - Jay Magaziner
- Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine
| |
Collapse
|
45
|
Lejmi E, Perriraz N, Clément S, Morel P, Baertschiger R, Christofilopoulos P, Meier R, Bosco D, Bühler LH, Gonelle-Gispert C. Inflammatory Chemokines MIP-1δ and MIP-3α Are Involved in the Migration of Multipotent Mesenchymal Stromal Cells Induced by Hepatoma Cells. Stem Cells Dev 2015; 24:1223-35. [PMID: 25579056 DOI: 10.1089/scd.2014.0176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In vivo, bone marrow-derived multipotent mesenchymal stromal cells (MSC) have been identified at sites of tumors, suggesting that specific signals mobilize and activate MSC to migrate to areas surrounding tumors. The signals and migratory mechanisms that guide MSC are not well understood. Here, we investigated the migration of human MSC induced by conditioned medium of Huh-7 hepatoma cells (Huh-7 CM). Using a transwell migration system, we showed that human MSC migration was increased in the presence of Huh-7 CM. Using a human cytokine antibody array, we detected increased levels of MIP-1δ and MIP-3α in Huh-7 CM. Recombinant chemokines MIP-1δ and MIP-3α induced MSC migration. Anti-MIP-1δ and anti-MIP-3α antibodies added to Huh-7 CM decreased MSC migration, further suggesting that MIP-1δ and MIP-3α were implicated in the Huh-7 CM-induced MSC migration. By real-time polymerase chain reaction, we observed an absence of chemokine receptors CCR2 and CXCR2 and low expression of CCR1, CCR5, and CCR6 in MSC. Expression of these chemokine receptors was not regulated by Huh-7 CM. Furthermore, matrix metalloproteinase 1 (MMP-1) expression was strongly increased in MSC after incubation with Huh-7 CM, suggesting that MSC migration depends on MMP-1 activity. The signaling pathway MAPK/ERK was activated by Huh-7 CM but its inhibition by PD98059 did not impair Huh-7 CM-induced MSC migration. Further, long-term incubation of MSC with MIP-1δ increased α-smooth muscle actin expression, suggesting its implication in the Huh-7 CM-induced evolvement of MSC into myofibroblasts. In conclusion, we report that two inflammatory cytokines, MIP-1δ and MIP-3α, are able to increase MSC migration in vitro. These cytokines might be responsible for migration and evolvement of MSC into myofibroblasts around tumors.
Collapse
Affiliation(s)
- Esma Lejmi
- 1 Surgical Research Unit, University Hospitals of Geneva , Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Li L, Yang M, Wang C, Zhao Q, Liu J, Zhan C, Liu Z, Li X, Wang W, Yang X. Effects of cytokines and chemokines on migration of mesenchymal stem cells following spinal cord injury. Neural Regen Res 2015; 7:1106-12. [PMID: 25722702 PMCID: PMC4340025 DOI: 10.3969/j.issn.1673-5374.2012.14.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/20/2012] [Indexed: 01/16/2023] Open
Abstract
We investigated the effects of cytokines and chemokines and their associated signaling pathways on mesenchymal stem cell migration after spinal cord injury, to determine their roles in the curative effects of mesenchymal stem cells. This study reviewed the effects of tumor necrosis factor-α, vascular endothelial growth factor, hepatocyte growth factor, platelet-derived growth factor, basic fibroblast growth factor, insulin like growth factor-1, stromal cell-derived factor and monocyte chemoattractant protein-1, 3 during mesenchymal stem cell migration to damaged sites, and analyzed the signal transduction pathways involved in their effects on mesenchymal stem cell migration. The results confirmed that phosphatidylinositol 3-kinase/serine/threonine protein kinases and nuclear factor-κB play crucial roles in the migration of mesenchymal stem cells induced by cytokines and chemokines.
Collapse
Affiliation(s)
- Longyun Li
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Maoguang Yang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chunxin Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Qiheng Zhao
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Jian Liu
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Chuanguo Zhan
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Zhi Liu
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xuepeng Li
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Weihua Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaoyu Yang
- Department of Orthopedics, China-Japan Friendship Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
47
|
Ti D, Li M, Fu X, Han W. Causes and consequences of epigenetic regulation in wound healing. Wound Repair Regen 2015; 22:305-12. [PMID: 24844330 DOI: 10.1111/wrr.12160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/12/2014] [Indexed: 12/19/2022]
Abstract
Wound healing is a complex and systematic tissue level response to mechanical and chemical injuries that may cause the release of growth factors, cytokines, and chemokines by damaged tissues. For the complex features of these restorative processes, it is a crucial challenge to identify the relevant cell types and biochemical pathways that are involved in wound healing. Epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding regulatory RNA editing, play important roles in many biological processes, including cell proliferation, migration and differentiation, signal pathway activation or inhibition, and cell senescence. Epigenetic regulations can coordinately control a considerable subset of known repair genes and thus serve as master regulators of wound healing. An abundance of evidence has also shown that epigenetic modifications participate in the short- and long-term control of crucial gene expression and cell signal transduction that are involved in the healing process. These data provide a foundation for probable epigenetic-based therapeutic strategies that are aimed at stimulating tissue regeneration. This review describes the epigenetic alterations in different cellular types at injury sites, induced signals, and resulting tissue repair. With the increased interest in the epigenetics of wound and repair processes, this field will soon begin to flourish.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, China
| | | | | | | |
Collapse
|
48
|
Liu D, Ge K, Sun J, Chen S, Jia G, Zhang J. Lanthanum breaks the balance between osteogenesis and adipogenesis of mesenchymal stem cells through phosphorylation of Smad1/5/8. RSC Adv 2015. [DOI: 10.1039/c5ra02311d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
La breaks the balance between osteogenesis and adipogenesis of MSCs through phosphorylating Smad1/5/8 to activate the BMP signaling pathway.
Collapse
Affiliation(s)
- Dandan Liu
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Kun Ge
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Jing Sun
- Affiliated Hospital of Hebei University
- Baoding 071000
- PR China
| | - Shizhu Chen
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Guang Jia
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| | - Jinchao Zhang
- College of Chemistry and Environmental Science
- Chemical Biology Key Laboratory of Hebei Province
- Hebei University
- Baoding 071002
- PR China
| |
Collapse
|
49
|
Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6:552-570. [PMID: 25426252 PMCID: PMC4178255 DOI: 10.4252/wjsc.v6.i5.552] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells (MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.
Collapse
|
50
|
Association of TNF-α with impaired migration capacity of mesenchymal stem cells in patients with systemic lupus erythematosus. J Immunol Res 2014; 2014:169082. [PMID: 25762184 PMCID: PMC4265382 DOI: 10.1155/2014/169082] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/07/2014] [Indexed: 12/19/2022] Open
Abstract
Previous studies indicated that bone marrow mesenchymal stem cells (BMSCs) from patients with systemic lupus erythematosus (SLE) exhibited impaired capacities of proliferation, differentiation, and immune modulation. Considering that migration capacity is important for the exertion of BMSCs functions, the defects in migration might contribute to BMSCs dysfunction in SLE patients. In this study, we showed that the migration capacity of SLE BMSCs was remarkably impaired in comparison with those of healthy controls. Increased tumor necrosis factor α (TNF-α) in SLE serum significantly inhibited the migration capacity and in vivo homing capacity of SLE BMSCs via a specific TNF receptor I (TNFRI) manner, in which decreased HGF mRNA production caused by the activation of I kappa B kinase beta (IKK-β) pathway is partially involved. To our knowledge, this is the first report to discuss the possible mechanisms for impaired migration of BMSCs in SLE patients. Our results suggest that inhibition of TNF-α pathway might be helpful for accelerating BMSCs migration to the inflammatory microenvironment in SLE patients, thereby having a potential role in SLE treatment.
Collapse
|