1
|
Suarez-Henriques P, Miranda E Silva-Chaves CD, Cardoso-Leite R, Guilermo-Ferreira R, Katiki LM, Louvandini H. Exploring AMH levels, homeostasis parameters, and ovarian primordial follicle activation in pubertal infected sheep on a high-protein diet. Res Vet Sci 2024; 169:105158. [PMID: 38295629 DOI: 10.1016/j.rvsc.2024.105158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
"Exploring AMH Levels, Homeostasis and Primordial Follicle Activation in Pubertal Infected Sheep on a High Protein Diet ". The first activation wave of ovarian primordial follicles is part of the onset of puberty and fertility. Abomasal helminth infection may cause an undesirable delay in puberty manifestation. Helminth-infected animals demand a higher amount of protein in their diet to repair the damage caused by the parasite in sheep's tissues, replenish the blood losses, and build the host's immune response. Helminths become resistant to drug therapy shortly after being exposed to a new treatment. Besides, there is the possibility of contamination by anthelmintic drugs in ovine products, possibly affecting human health and the environment. This study's objective was to evaluate if ovarian and clinical parameters can be improved by supplementing their diet with protein, offering a more sustainable management approach than relying on anthelmintic usage. We used a 2 × 2 factorial model where eighteen ewe lambs (Ovis aries) between 6 and 7 months old - born to the same ram - were fed one of two diet protein levels (12% or 19%). After 35 days on this diet, they were infected or left uninfected with 10,000 Haemonchus contortus L3 larvae. We evaluated Anti-Mullerian Hormone serum levels, blood cells and biochemical parameters at four different time points. Following 42 days of infection and 77 days on the diet, the lambs had their left ovaries removed, and we examined ovarian morphometrics through histological analysis. The groups Supplemented Protein-Infected(n = 5), Control Protein- Infected(n = 5), Supplemented Protein-Not Infected (n = 4) and Control Protein-Not Infected (n = 4) did not differ in their bodyweight gain. In the factorial ANOVA analysis examining the relationship between plasma protein, diet, and infection, the protein level of the diet showed significance (p = 0.02). Primordial follicle size varied with the interaction between diet and infection (p < 0.05), and oocyte size was affected by the level of protein in the diet (p = 0.047). Additionally, to understand how all homeostasis parameters relate to the primordial follicle and oocyte size, we applied an explanatory linear mixed model. In conclusion, serum AMH levels remained stable despite the infection and variations in diet protein levels, indicating its reliability as a marker for ovarian reserve in pubertal sheep. The number of blood cells, biochemical parameters, and primordial follicle activation were affected by both diet and infection.
Collapse
Affiliation(s)
- Paula Suarez-Henriques
- Animal Science Department, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil.
| | - Camila De Miranda E Silva-Chaves
- Laboratory of Animal Nutrition - Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Rhainer Guilermo-Ferreira
- Biological Science Department, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | | | - Hélder Louvandini
- Laboratory of Animal Nutrition - Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
2
|
Habel A, Weili X, Hadj Ahmed M, Stayoussef M, Bouaziz H, Ayadi M, Mezlini A, Larbi A, Yaacoubi-Loueslati B. Immune checkpoints as potential theragnostic biomarkers for epithelial ovarian cancer. Int J Biol Markers 2023; 38:203-213. [PMID: 37518940 DOI: 10.1177/03936155231186163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is the leading cause of death associated with gynecologic tumors. EOC is asymptomatic in early stages, so most patients are not diagnosed until late stages, highlighting the need to develop new diagnostic biomarkers. Mediators of the tumoral microenvironment may influence EOC progression and resistance to treatment. AIM To analyze immune checkpoints to evaluate them as theranostic biomarkers for EOC. PATIENTS AND METHODS Serum levels of 16 immune checkpoints were determined in EOC patients and healthy controls using the MILLIPLEX MAP® Human Immuno-Oncology Checkpoint Protein Magnetic Bead Panel. RESULTS Seven receptors: BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2 are differentially expressed between EOC and healthy controls. Serum levels of immune checkpoints in EOC patients are positively significantly correlated with levels of their ligands, with a higher significant correlation between CD80 and CTLA4 than between CD28 and CD80. Four receptors, CD40, HVEM, PD-1, and PD-L1, are positively associated with the development of resistance to Taxol-platinum-based chemotherapy. All of them have an acceptable area under the curve (>0.7). CONCLUSION This study has yielded a first panel of seven immune checkpoints (BTLA, CD40, CD80/B7-1, GITRL, LAG-3, TIM-3, TLR-2) associated with a higher risk of EOC and a second panel of four immune checkpoints (CD40, HVEM, PD-1, PD-L1) that may help physicians to identify EOC patients who are at high risk of developing resistance to EOC chemotherapy.
Collapse
Affiliation(s)
- Azza Habel
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Xu Weili
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Mariem Hadj Ahmed
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Stayoussef
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | | - Mouna Ayadi
- Salah Azaiez Oncology Institute, Tunis, Tunisia
| | | | - Anis Larbi
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Beckman Coulter Life Sciences, Villepinte, France
| | - Basma Yaacoubi-Loueslati
- Laboratory of Mycology, Pathologies, and Biomarkers (LR16ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
3
|
Suarez-Henriques P, de Miranda E Silva Chaves C, Cardoso-Leite R, Gomes-Caldas DG, Morita-Katiki L, Tsai SM, Louvandini H. Ovarian activation delays in peripubertal ewe lambs infected with Haemonchus contortus can be avoided by supplementing protein in their diets. BMC Vet Res 2021; 17:344. [PMID: 34732186 PMCID: PMC8565066 DOI: 10.1186/s12917-021-03020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ewe lamb nutritional and physiological state interfere with the ovarian environment and fertility. The lack or excess of circulating nutrients reaching the ovary can change its gene expression. A protein deficiency in the blood caused by an Haemonchus contortus abomasal infection is detrimental to the organism's development during puberty. The peripubertal period is a time of intensive growth that requires a high level of nutrients. An essential feature controlling pubertal arousal and female reproductive potential is ovarian follicle growth activation. Protein supplementation improves the sheep's immune response to helminthic infections. We aimed to determine if supplementing protein in infected ewe lambs' diet would impact the ovarian environment leading to earlier ovarian follicle activation than in infected not supplemented animals. METHODS We fed 18 Santa Ines ewe lambs (Ovis aries) - bred by the same ram - with either 12% protein (Control groups) or 19% protein (Supplemented groups) in their diets. After 35 days of the diet, they were each artificially infected or not with 10,000 Haemonchus contortus L3 larvae. Following 77 days of the diet and 42 days of infection, we surgically collected their left ovaries and examined their genes expression through RNA sequencing. RESULTS We found that protein supplementation in infected animals led to an up-regulation of genes (FDR p-values < 0.05) and biological processes (p-value cut-off = 0.01) linked to meiotic activation in pre-ovulatory follicles and primordial follicle activation, among others. The supplemented not infected animals also up-regulated genes and processes linked to meiosis and others, such as circadian behaviour. The not supplemented animals had these same processes down-regulated while up-regulated processes related to tissue morphogenesis, inflammation and immune response. CONCLUSION Diet's protein supplementation of peripubertal infected animals allowed them to express genes related to a more mature ovarian follicle stage than their half-sisters that were not supplemented. These results could be modelling potential effects of the interaction between environmental factors, nutrition and infection on reproductive health. When ovarian activation is achieved in a timely fashion, the ewe may generate more lambs during its reproductive life, increasing sheep breeders' productivity.
Collapse
Affiliation(s)
- Paula Suarez-Henriques
- Department of Animal Science, ESALQ - University of São Paulo, Piracicaba, São Paulo, Brazil.
| | | | - Ricardo Cardoso-Leite
- Science, Technology and Education Federal Institute of São Paulo, Piracicaba, São Paulo, Brazil
| | - Danielle G Gomes-Caldas
- Cell and Molecular Biology Laboratory, CENA -University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, CENA -University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, CENA - University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
4
|
Bukovsky A. Immunology of tissue homeostasis, ovarian cancer growth and regression, and long lasting cancer immune prophylaxis - review of literature. Histol Histopathol 2020; 36:31-46. [PMID: 32896865 DOI: 10.14670/hh-18-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Data on the substantial physiological role of the immune system in the organism's ability to manage proper differentiation and function of normal tissues (tissue homeostasis), and detailed causes of the immune system's essential role for the in-vivo stimulation of cancer growth, are severely lacking. This results in a lack of effective cancer immunotherapy without adverse events, and in the lack of long-lasting cancer immune prophylaxes, particularly in ovarian cancers. Elimination of blood auto-antibodies blocking anti-cancer T cell effectors by intermittent moderate doses of cyclophosphamide, facilitation of the immune system reactivity against alloantigens of cancer cells by two subsequent blood transfusions, and augmentation of anticancer immunity by weekly intradermal injections of bacterial toxins, caused during the subsequent treatment-free period, lasting for two to four weeks, regression of inoperable epithelial ovarian cancers and regeneration of the tremendously metastatically altered abdominal tissues into normal healthy conditions without multivisceral cytoreductive surgery, which can result in life-threatening consequences. An otherwise untreated rectal cancer, progressing over 3 years, regressed after severe toxic dermatitis lasting over one week. This was caused by an accidental consumption of a large raw shiitake mushroom. Subsequent daily consumptions of 2 g Metformin ER and honeybee propolis ethanol extract, and weekly single larger raw shiitake mushroom, which all stimulate immune system reactivity against cancer stem cells, prevented malignant recurrence over the next 29 years without recurring dermatitis, and maintained healthy organism's conditions. These observations indicate that regression of advanced inoperable cancers and long-lasting cancer immune prophylaxis can be reached by simple approaches.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, Vestec, Czech Republic.
| |
Collapse
|
5
|
Effects of VEGF
+
Mesenchymal Stem Cells and Platelet-Rich Plasma on Inbred Rat Ovarian Functions in Cyclophosphamide-Induced Premature Ovarian Insufficiency Model. Stem Cell Rev Rep 2019; 15:558-573. [DOI: 10.1007/s12015-019-09892-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Bukovsky A. Novel Immunological Aspects for the Treatment of Age-induced Ovarian and Testicular Infertility, Other Functional Diseases, and Early and Advanced Cancer Immunotherapy. Hum Reprod 2016. [DOI: 10.1002/9781118849613.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Antonin Bukovsky
- The Laboratory of Reproductive Biology BIOCEV, Institute of Biotechnology; Academy of Sciences of the Czech Republic; Prague Czech Republic
| |
Collapse
|
7
|
Bukovsky A. Involvement of blood mononuclear cells in the infertility, age-associated diseases and cancer treatment. World J Stem Cells 2016; 8:399-427. [PMID: 28074124 PMCID: PMC5183987 DOI: 10.4252/wjsc.v8.i12.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/19/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Blood mononuclear cells consist of T cells and monocyte derived cells. Beside immunity, the blood mononuclear cells belong to the complex tissue control system (TCS), where they exhibit morphostatic function by stimulating proliferation of tissue stem cells followed by cellular differentiation, that is stopped after attaining the proper functional stage, which differs among various tissue types. Therefore, the term immune and morphostatic system (IMS) should be implied. The TCS-mediated morphostasis also consists of vascular pericytes controlled by autonomic innervation, which is regulating the quantity of distinct tissues in vivo. Lack of proper differentiation of tissue cells by TCS causes either tissue underdevelopment, e.g., muscular dystrophy, or degenerative functional failures, e.g., type 1 diabetes and age-associated diseases. With the gradual IMS regression after 35 years of age the gonadal infertility develops, followed by a growing incidence of age-associated diseases and cancers. Without restoring an altered TCS function in a degenerative disease, the implantation of tissue-specific stem cells alone by regenerative medicine can not be successful. Transfused young blood could temporarily restore fertility to enable parenthood. The young blood could also temporarily alleviate aging diseases, and this can be extended by substances inducing IMS regeneration, like the honey bee propolis. The local and/or systemic use of honey bee propolis stopped hair and teeth loss, regressed varicose veins, improved altered hearing, and lowered high blood pressure and sugar levels. Complete regression of stage IV ovarian cancer with liver metastases after a simple elaborated immunotherapy is also reported.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Antonin Bukovsky, Laboratory of Reproductive Biology BIOCEV, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
8
|
Ye H, Li X, Zheng T, Liang X, Li J, Huang J, Pan Z, Zheng Y. The effect of the immune system on ovarian function and features of ovarian germline stem cells. SPRINGERPLUS 2016; 5:990. [PMID: 27398269 PMCID: PMC4937004 DOI: 10.1186/s40064-016-2390-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 01/30/2023]
Abstract
In addition to its role in maintaining organism homeostasis, the immune system also plays a crucial role in the modulation of ovarian function, as it regulates ovarian development, follicular maturation, ovulation and the formation of the corpus luteum. Ovarian germline stem cells are pluripotent stem cells derived from the ovarian cortex that can differentiate into ovarian germ cells and primary granulosa cells. Recent work has demonstrated that the proliferation and differentiation of ovarian germline stem cells is regulated in part by immune cells and their secreted factors. This paper reviews the role of the immune system in the regulation of ovarian function, the relationship between immune components and ovarian germline stem cells and current research efforts in this field.
Collapse
Affiliation(s)
- Haifeng Ye
- Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China ; The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Xiaoyan Li
- Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China ; The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Tuochen Zheng
- School of the 1st Clinical Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xia Liang
- Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China ; The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Jia Li
- School of Life Science, Nanchang University, Nanchang, China ; Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jian Huang
- Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China ; The Key Laboratory of Reproductive Physiology and Pathology of Jiangxi Province, Nanchang, China
| | - Zezheng Pan
- Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China ; Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuehui Zheng
- School of Life Science, Nanchang University, Nanchang, China ; Medical Teaching Laboratory Center, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Bukovsky A. From cellular to chemical approach for acute neural and alternative options for age-induced functional diseases. World J Stem Cells 2015; 7:1109-1117. [PMID: 26435770 PMCID: PMC4591787 DOI: 10.4252/wjsc.v7.i8.1109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 05/22/2015] [Accepted: 08/14/2015] [Indexed: 02/06/2023] Open
Abstract
Endogenous “stem cell niche” (SCN) accompanying vessels contains immune system components which in vivo determine differentiation of multi potent stem cells toward proper cell types in given tissue. Combinations of sex steroids may represent novel chemical approach for neuronal areas of regenerative medicine, since they cause transformation of vascular smooth muscle stem cells into differentiating neuronal cells. Circulating sex steroids are present during pregnancy and can be utilized where needed, when various embryonic/fetal tissues develop from their stem cells. Utilization of induced regeneration of tissues (regenerative medicine) is expected being more effective in sudden failures of younger individuals carrying intact SCN, as compared to established chronic disorders caused by SCN alteration. An essential component of SCN are monocyte-derived cells exhibiting tissue-specific “stop effect” (SE) preventing, for instance, an aging of neuronal cells. Its alteration causes that implantation of neuronal stem cells will also result in their differentiation toward aging cells. When we repair the SE by supply of circulating mononuclear cells from young healthy individuals, we may be able to provide novel regenerative treatments of age-induced neural diseases by sex steroid combinations. Questions regarding some age-induced body alterations are also addressed.
Collapse
|
10
|
Bukovsky A. Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. Reprod Biol Endocrinol 2015; 13:10. [PMID: 25889983 PMCID: PMC4414002 DOI: 10.1186/s12958-015-0001-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/28/2015] [Indexed: 12/11/2022] Open
Abstract
In vitro maturation (IVM) and in vitro fertilization (IVF) technologies are facing with growing demands of older women to conceive. Although ovarian stem cells (OSCs) of older women are capable of producing in vitro fresh oocyte-like cells (OLCs), such cells cannot respond to IVM and IVF due to the lack of granulosa cells required for their maturation. Follicular renewal is also dependent on support of circulating blood mononuclear cells. They induce intermediary stages of meiosis (metaphase I chromosomal duplication and crossover, anaphase, telophase, and cytokinesis) in newly emerging ovarian germ cells, as for the first time demonstrated here, induce formation of granulosa cells, and stimulate follicular growth and development. A pretreatment of OSC culture with mononuclear cells collected from blood of a young healthy fertile woman may cause differentiation of bipotential OSCs into both developing germ and granulosa cells. A small blood volume replacement may enable treatment of ovarian infertility in vivo. The transferred mononuclear cells may temporarily rejuvenate virtually all tissues, including improvement of the function of endocrine tissues. Formation of new follicles and their development may be sufficient for IVM and IVF. The novel proposed in vitro approaches may be used as a second possibility. Infertility of human males affects almost a half of the infertility cases worldwide. Small blood volume replacement from young healthy fertile men may also be easy approach for the improvement of sperm quality in older or other affected men. In addition, body rejuvenation by small blood volume replacement from young healthy individuals of the same sex could represent a decline of in vitro methodology in favor of in vivo treatment for human functional diseases. Here we propose for the first time that blood mononuclear cells are essential for rejuvenation of those tissues, where immune system components participate in an appropriate division and differentiation of tissue stem cells. If needed, small blood volume replacement from distinct young healthy individuals could be utilized in six month intervals for repair of young altered or aged reproductive and other tissue functions. Systemic and local use of honey bee propolis tincture is an alternative option for functional rejuvenation of some tissues.
Collapse
Affiliation(s)
- Antonin Bukovsky
- The Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
11
|
Abstract
SummaryFor decades, scientists have considered that female mammals are born with a lifetime reserve of oocytes in the ovary, irrevocably fated to decline after birth. However, controversy in the matter of the possible presence of oocytes and granulosa cells that originate from stem cells in the adult mammalian ovaries has been expanded. The restricted supply of oocytes in adult female mammals has been disputed in recent years by supporters of neo-oogenesis, who claim that germline stem cells (GSCs) exist in the ovarian surface epithelium (OSE) or the bone marrow (BM). Differentiation of ovarian stem cells (OSCs) into oocytes, fibroblast-like cells, granulosa phenotype, neural and mesenchymal type cells and generation of germ cells from OSCs under the contribution of an OSC niche that consists of immune system-related cells and hormonal signalling has been claimed. Although these arguments have met with intense suspicion, their confirmation would necessitate the revision of the current classic knowledge of female reproductive biology.
Collapse
|
12
|
Mielczarek-Palacz A, Sikora J, Kondera-Anasz Z, Hauza G. Imbalance in serum soluble CD30/CD30L and CD40/CD40L systems are associated with ovarian tumors. Hum Immunol 2013; 74:70-4. [DOI: 10.1016/j.humimm.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/04/2012] [Accepted: 10/03/2012] [Indexed: 01/12/2023]
|
13
|
Bukovsky A, Caudle MR. Immunoregulation of follicular renewal, selection, POF, and menopause in vivo, vs. neo-oogenesis in vitro, POF and ovarian infertility treatment, and a clinical trial. Reprod Biol Endocrinol 2012; 10:97. [PMID: 23176151 PMCID: PMC3551781 DOI: 10.1186/1477-7827-10-97] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 11/11/2012] [Indexed: 12/13/2022] Open
Abstract
The immune system plays an important role in the regulation of tissue homeostasis ("tissue immune physiology"). Function of distinct tissues during adulthood, including the ovary, requires (1) Renewal from stem cells, (2) Preservation of tissue-specific cells in a proper differentiated state, which differs among distinct tissues, and (3) Regulation of tissue quantity. Such morphostasis can be executed by the tissue control system, consisting of immune system-related components, vascular pericytes, and autonomic innervation. Morphostasis is established epigenetically, during morphogenetic (developmental) immune adaptation, i.e., during the critical developmental period. Subsequently, the tissues are maintained in a state of differentiation reached during the adaptation by a "stop effect" of resident and self renewing monocyte-derived cells. The later normal tissue is programmed to emerge (e.g., late emergence of ovarian granulosa cells), the earlier its function ceases. Alteration of certain tissue differentiation during the critical developmental period causes persistent alteration of that tissue function, including premature ovarian failure (POF) and primary amenorrhea. In fetal and adult human ovaries the ovarian surface epithelium cells called ovarian stem cells (OSC) are bipotent stem cells for the formation of ovarian germ and granulosa cells. Recently termed oogonial stem cells are, in reality, not stem but already germ cells which have the ability to divide. Immune system-related cells and molecules accompany asymmetric division of OSC resulting in the emergence of secondary germ cells, symmetric division, and migration of secondary germ cells, formation of new granulosa cells and fetal and adult primordial follicles (follicular renewal), and selection and growth of primary/preantral, and dominant follicles. The number of selected follicles during each ovarian cycle is determined by autonomic innervation. Morphostasis is altered with advancing age, due to degenerative changes of the immune system. This causes cessation of oocyte and follicular renewal at 38 +/-2 years of age due to the lack of formation of new granulosa cells. Oocytes in primordial follicles persisting after the end of the prime reproductive period accumulate genetic alterations resulting in an exponentially growing incidence of fetal trisomies and other genetic abnormalities with advanced maternal age. The secondary germ cells also develop in the OSC cultures derived from POF and aging ovaries. In vitro conditions are free of immune mechanisms, which prevent neo-oogenesis in vivo. Such germ cells are capable of differentiating in vitro into functional oocytes. This may provide fresh oocytes and genetically related children to women lacking the ability to produce their own follicular oocytes. Further study of "immune physiology" may help us to better understand ovarian physiology and pathology, including ovarian infertility caused by POF or by a lack of ovarian follicles with functional oocytes in aging ovaries. The observations indicating involvement of immunoregulation in physiological neo-oogenesis and follicular renewal from OSC during the fetal and prime reproductive periods are reviewed as well as immune system and age-independent neo-oogenesis and oocyte maturation in OSC cultures, perimenopausal alteration of homeostasis causing disorders of many tissues, and the first OSC culture clinical trial.
Collapse
Affiliation(s)
- Antonin Bukovsky
- The Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
14
|
Macchiarelli G, Palmerini MG, Nottola SA, Cecconi S, Tanemura K, Sato E. Restoration of corpus luteum angiogenesis in immature hypothyroid rdw rats after thyroxine treatment: morphologic and molecular evidence. Theriogenology 2012; 79:116-26. [PMID: 23122683 DOI: 10.1016/j.theriogenology.2012.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 09/16/2012] [Accepted: 09/17/2012] [Indexed: 01/23/2023]
Abstract
Thyroxine (T4) plus gonadotropins might stimulate ovarian follicular angiogenesis in immature infertile hypothyroid rdw rats by upregulating mRNA expression of major angiogenic factors. Development of growing corpus luteum (CL) is strongly related to angiogenesis and to morphofunctional development of microcirculation. Our aim was to investigate if T4 is involved in CL angiogenesis and in the activation of capillary cells and angiogenic factors after ovulation in a spontaneous model of hypothyroidism, the rdw rat. Rdw rats were treated with T4 plus gonadotropins (equine chorionic gonadotropin plus human chorionic gonadotropin; eCG+hCG) or gonadotropins alone in order to evaluate the effects of T4 on early luteal angiogenesis, on microvascular cells and on expression of major growth factors which are involved in the regulation of angiogenesis. Wistar-Imamichi rats treated with gonadotropins were used as controls. The ovaries were collected 4 days after hCG administration and analyzed using morphologic and molecular approaches. Thyroxine plus gonadotropins stimulated the growth of CLs and follicles as in controls, differently from rdw rats treated only with gonadotropins, in which CLs were not found and only small follicles, often atretic, could be recognized. In T4 plus gonadotropin-treated rdw rats CLs showed increased microvasculature, numerous activated capillaries characterized by sprouting and other angiogenic figures, and associated pericytes. Quantitative analysis revealed that the number of pericytes in T4 plus gonadotropin-treated rdw rats was comparable with that found in control rats and was significantly higher than that found in gonadotropin-treated rdw rats. The mRNA expression of vascular endothelial growth factor and basic fibroblast growth factor was significantly higher in control rats and in T4 plus gonadotropin-treated rdw rats than in gonadotropin-treated rdw rats. mRNA expression of tumor necrosis factor α, transforming growth factor β, and epidermal growth factor did not show significant changes. Our data originally demonstrated that T4 promoted the growth of an active microcirculation in developing CLs of gonadotropin-primed hypothyroid rdw rats, mainly by inducing sprouting angiogenesis, pericyte recruitment, and upregulation of mRNA expression of vascular endothelial growth factor and basic fibroblast growth factor. In conclusion, we suggest that T4 plays a key role in restoring luteal angiogenesis in ovaries of immature hypothyroid rdw rats.
Collapse
Affiliation(s)
- Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec (Hoboken) 2011; 294:1284-306. [PMID: 21714105 DOI: 10.1002/ar.21422] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 04/28/2011] [Indexed: 12/24/2022]
Abstract
Stem cell niche consists of perivascular compartment, which connects the stem cells to the immune and vascular systems. During embryonic period, extragonadal primordial germ cells colonize coelomic epithelium of developing gonads. Subsequently, ovarian stem cells (OSC) produce secondary germ cells under the influence of OSC niche, including immune system-related cells and hormonal signaling. The OSC in fetal and adult human ovaries serve as a source of germ and granulosa cells. Lack of either granulosa or germ cell niche will result in premature ovarian failure in spite of the presence of OSC. During perinatal period, the OSC transdifferentiate into fibroblast-like cells forming the ovarian tunica albuginea resistant to environmental threats. They represent mesenchymal precursors of epithelial OSC during adulthood. The follicular renewal during the prime reproductive period (PRP) ensures that there are fresh eggs available for a healthy progeny. End of PRP is followed by exponentially growing fetal genetic abnormalities. The OSC are present in adult, aging, and postmenopausal ovaries, and differentiate in vitro into new oocytes. During in vitro development of large isolated oocytes reaching 200 μm in diameter, an ancestral mechanism of premeiotic nurse cells, which operates during oogenesis in developing ovaries from invertebrates to mammalian species, is utilized. In vitro developed eggs could be used for autologous IVF treatment of premature ovarian failure. Such eggs are also capable to produce parthenogenetic embryos like some cultured follicular oocytes. The parthenotes produce embryonic stem cells derived from inner cell mass, and these cells can serve as autologous pluripotent stem cells.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|