1
|
Pop-Crisan A, Pirlog R, Pruteanu LL, Busuioc C, Pop OL, Pandey DP, Braicu C, Berindan-Neagoe I. ATRX, OLIG2, MGMT, and IDH2 in Glioblastoma: Essential Molecular Mechanisms and Therapeutic Significance. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:697. [PMID: 40282990 PMCID: PMC12028847 DOI: 10.3390/medicina61040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Glioblastoma (GBM) is among the most aggressive and lethal primary brain tumors, characterized by high heterogeneity, invasive growth, and resistance to conventional therapies. The 2021 WHO classification highlights the importance of molecular diagnostics, integrating genetic, transcriptomic, and epigenetic alterations alongside histological and immunohistochemical criteria. Materials and methods: Key molecular regulators, including ATRX, OLIG2, MGMT, and IDH2, play critical roles in chromatin remodeling, transcriptional reprogramming, DNA repair, and metabolic adaptation. However, their specific expression patterns and functional roles in GBM remain incompletely understood. This study utilizes publicly available data from The Cancer Genome Atlas (TCGA) to assess the transcriptional profiles of ATRX, OLIG2, MGMT, and IDH2 in GBM, aiming to identify potential biomarkers and therapeutic targets. Results: The expression analysis revealed that ATRX is downregulated at the gene level but overexpressed at the protein level, while OLIG2 is consistently overexpressed at both levels. MGMT showed no statistically significant changes in either gene or protein expression, whereas IDH2 was not significantly altered at the gene level but was downregulated at the protein level (p < 0.05). These discrepancies suggest potential post-transcriptional regulatory mechanisms influencing GBM molecular profiles. Notably, OLIG2 and MGMT expression correlated significantly with patient survival (p < 0.05), whereas ATRX and IDH2 did not reach statistical significance. Conclusions: Understanding these molecular relationships provides valuable insights into potential therapeutic strategies, paving the way for precision oncology approaches and combination therapies targeting multiple pathways simultaneously.
Collapse
Affiliation(s)
- Andrea Pop-Crisan
- Department of Surgical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.P.-C.); (O.-L.P.)
| | - Radu Pirlog
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.P.); (L.-L.P.)
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, 94010 Créteil, France
- INSERM U955, Université Paris Est Créteil, 94010 Créteil, France
| | - Lavinia-Lorena Pruteanu
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.P.); (L.-L.P.)
- Department of Chemistry and Biology, North University Center, Technical University of Cluj-Napoca, 430122 Baia Mare, Romania
| | - Constantin Busuioc
- Department of Pathology, Spitalul Clinic Sfanta Maria, Bulevardul Ion Mihalache 37-39, 011172 București, Romania;
- Department of Pathology, Onco Team Diagnostic, 010719 Bucharest, Romania
| | - Ovidiu-Laurean Pop
- Department of Surgical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.P.-C.); (O.-L.P.)
| | - Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Cornelia Braicu
- Department of Genomics, MEDFUTURE Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania; (R.P.); (L.-L.P.)
| | - Ioana Berindan-Neagoe
- Doctoral School Iuliu Haţieganu, University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
- Biomedical Sciences Sections, Romanian Academy of Medical Sciences, 030167 București, Romania
| |
Collapse
|
2
|
Singh K, Sethi P, Gupta JK, Dubey A, Sharma MC, Jain D, Bhatt A, Kumar S. Exploring the Dual Roles of Neural Stem Cells in Glioblastoma: Therapeutic Implications and Opportunities. Curr Stem Cell Res Ther 2025; 20:494-508. [PMID: 40525422 DOI: 10.2174/011574888x341526250113064851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 06/19/2025]
Abstract
Glioblastoma (GBM) is recognized as the most aggressive and lethal form of primary brain tumor, characterized by rapid proliferation and significant resistance to conventional therapies. Recent studies have illuminated the complex role of Neural Stem Cells (NSCs) in both the progression and treatment of GBM. This review examines the specific molecular pathways influenced by NSCs, focusing on critical signaling cascades such as Notch, P13K, and SHH, which are implicated in tumor development and maintenance. Furthermore, we explore the dual role of NSCs in glioblastoma, where they can act as both facilitators of tumorigenesis and potential agents of tumor suppression, depending on the microenvironmental context. Understanding these intricate interactions is essential for developing innovative therapeutic strategies that target NSCs in GBM. This review aims to provide a comprehensive overview of current knowledge and to identify future research directions in this promising field, ultimately contributing to the advancement of personalized treatment approaches for patients with glioblastoma.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, Uttar Pradesh, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anubhav Dubey
- Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh, India
| | | | - Divya Jain
- Department of Microbiology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Shivendra Kumar
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Solomou G, Young AMH, Bulstrode HJCJ. Microglia and macrophages in glioblastoma: landscapes and treatment directions. Mol Oncol 2024; 18:2906-2926. [PMID: 38712663 PMCID: PMC11619806 DOI: 10.1002/1878-0261.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Glioblastoma is the most common primary malignant tumour of the central nervous system and remains uniformly and rapidly fatal. The tumour-associated macrophage (TAM) compartment comprises brain-resident microglia and bone marrow-derived macrophages (BMDMs) recruited from the periphery. Immune-suppressive and tumour-supportive TAM cell states predominate in glioblastoma, and immunotherapies, which have achieved striking success in other solid tumours have consistently failed to improve survival in this 'immune-cold' niche context. Hypoxic and necrotic regions in the tumour core are found to enrich, especially in anti-inflammatory and immune-suppressive TAM cell states. Microglia predominate at the invasive tumour margin and express pro-inflammatory and interferon TAM cell signatures. Depletion of TAMs, or repolarisation towards a pro-inflammatory state, are appealing therapeutic strategies and will depend on effective understanding and classification of TAM cell ontogeny and state based on new single-cell and spatial multi-omic in situ profiling. Here, we explore the application of these datasets to expand and refine TAM characterisation, to inform improved modelling approaches, and ultimately underpin the effective manipulation of function.
Collapse
Affiliation(s)
- Georgios Solomou
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Adam M. H. Young
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| | - Harry J. C. J. Bulstrode
- Wellcome MRC Cambridge Stem Cell InstituteUniversity of CambridgeUK
- Department of NeurosurgeryAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
4
|
Ferguson KM, Blin C, Garcia-Diaz C, Bulstrode H, Bardini Bressan R, McCarten K, Pollard SM. Modelling quiescence exit of neural stem cells reveals a FOXG1-FOXO6 axis. Dis Model Mech 2024; 17:dmm052005. [PMID: 39499086 PMCID: PMC11625887 DOI: 10.1242/dmm.052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The molecular mechanisms controlling the balance of quiescence and proliferation in adult neural stem cells (NSCs) are often deregulated in brain cancers such as glioblastoma multiforme (GBM). Previously, we reported that FOXG1, a forebrain-restricted neurodevelopmental transcription factor, is frequently upregulated in glioblastoma stem cells (GSCs) and limits the effects of cytostatic pathways, in part by repression of the tumour suppressor Foxo3. Here, we show that increased FOXG1 upregulates Foxo6, a more recently discovered FOXO family member with potential oncogenic functions. Although genetic ablation of Foxo6 in proliferating NSCs had no effect on the cell cycle or entry into quiescence, we found that Foxo6-null NSCs could no longer efficiently exit quiescence following FOXG1 elevation. Increased Foxo6 resulted in the formation of large acidic vacuoles, reminiscent of Pak1-regulated macropinocytosis. Consistently, Pak1 expression was upregulated by FOXG1 overexpression and downregulated upon FOXO6 loss in proliferative NSCs. These data suggest a pro-oncogenic role for FOXO6, downstream of GBM-associated elevated FOXG1, in controlling quiescence exit, and shed light on the potential functions of this underexplored FOXO family member.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Claudia Garcia-Diaz
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Katrina McCarten
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M. Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
5
|
Dave B, Tailor J. Human stem cell models to unravel brain cancer. BMC Cancer 2024; 24:1465. [PMID: 39609728 PMCID: PMC11603633 DOI: 10.1186/s12885-024-13187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Pre-clinical animal models of human brain tumors have been invaluable tools for studying cancer pathogenesis and exploring novel treatment modalities. Such models recapitulate important aspects of the human disease such as the stem-progenitor-differentiated cell hierarchy. Although powerful, we argue that animal models are inherently limited in their ability to phenocopy certain important aspects of human brain tumor biology. We specifically highlight the inability of mouse models to generate certain forms aggressive pediatric medulloblastoma likely owing to cellular, anatomic, and genetic differences between the human and mouse brains. Additionally, we review some limitations of human brain tumor derived cell lines and outline why they are a sub-optimal system for purposes of pre-clinical modeling. Below, we present the case for human stem cell-based models of brain tumors, focusing mainly on glioblastoma and medulloblastoma. Drawing on several recently published studies, we review the exciting progress that has been made towards modeling human brain tumors using two-dimensional adherent stem cell cultures and three-dimensional organoids. We identify the important advances arrived at using these human stem cell-based models and suggest opportunities for future work in this direction. In this review article, we aim to highlight the utility and promises of human stem cell-based models of brain tumors as a complementary system to traditional transgenic animal and cell line systems.
Collapse
Affiliation(s)
- Biren Dave
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jignesh Tailor
- Division of Pediatric Neurosurgery, Riley Hospital for Children, Indianapolis, IN, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
6
|
Mikolajewicz N, Tatari N, Wei J, Savage N, Granda Farias A, Dimitrov V, Chen D, Zador Z, Dasgupta K, Aguilera-Uribe M, Xiao YX, Lee SY, Mero P, McKenna D, Venugopal C, Brown KR, Han H, Singh S, Moffat J. Functional profiling of murine glioma models highlights targetable immune evasion phenotypes. Acta Neuropathol 2024; 148:74. [PMID: 39592459 PMCID: PMC11599368 DOI: 10.1007/s00401-024-02831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Cancer-intrinsic immune evasion mechanisms and pleiotropy are a barrier to cancer immunotherapy. This is apparent in certain highly fatal cancers, including high-grade gliomas and glioblastomas (GBM). In this study, we evaluated two murine syngeneic glioma models (GL261 and CT2A) as preclinical models for human GBM using functional genetic screens, single-cell transcriptomics and machine learning approaches. Through CRISPR genome-wide co-culture killing screens with various immune cells (cytotoxic T cells, natural killer cells, and macrophages), we identified three key cancer-intrinsic evasion mechanisms: NFκB signaling, autophagy/endosome machinery, and chromatin remodeling. Additional fitness screens identified dependencies in murine gliomas that partially recapitulated those seen in human GBM (e.g., UFMylation). Our single-cell analyses showed that different glioma models exhibited distinct immune infiltration patterns and recapitulated key immune gene programs observed in human GBM, including hypoxia, interferon, and TNF signaling. Moreover, in vivo orthotopic tumor engraftment was associated with phenotypic shifts and changes in proliferative capacity, with murine tumors recapitulating the intratumoral heterogeneity observed in human GBM, exhibiting propensities for developmental- and mesenchymal-like phenotypes. Notably, we observed common transcription factors and cofactors shared with human GBM, including developmental (Nfia and Tcf4), mesenchymal (Prrx1 and Wwtr1), as well as cycling-associated genes (Bub3, Cenpa, Bard1, Brca1, and Mis18bp1). Perturbation of these genes led to reciprocal phenotypic shifts suggesting intrinsic feedback mechanisms that balance in vivo cellular states. Finally, we used a machine-learning approach to identify two distinct immune evasion gene programs, one of which represents a clinically-relevant phenotype and delineates a subpopulation of stem-like glioma cells that predict response to immune checkpoint inhibition in human patients. This comprehensive characterization helps bridge the gap between murine glioma models and human GBM, providing valuable insights for future therapeutic development.
Collapse
Affiliation(s)
- Nicholas Mikolajewicz
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Vassil Dimitrov
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - David Chen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Zsolt Zador
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kuheli Dasgupta
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Hong Han
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada
| | - Sheila Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
7
|
Zhang HY, Zhou XQ, Jiang WD, Wu P, Liu Y, Ren HM, Jin XW, Zhang RN, Li H, Mi HF, Zhang L, Feng L. Reversing Zearalenone Toxicity: The Role of Hydroxytyrosol in Zebrafish. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25905-25918. [PMID: 39530315 DOI: 10.1021/acs.jafc.4c05615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Zearalenone (ZEA) is a widely distributed mycotoxin that presents a substantial worldwide health risk to animals. Several natural compounds have shown promise in mitigating the detrimental impacts of ZEA. This study examined the detoxification potential of previously identified compounds by utilizing zebrafish embryos as a model organism. Hydroxytyrosol stands out among these natural compounds. Our findings indicate that hydroxytyrosol effectively mitigated mortality, hatching delay, and phenotypic abnormalities induced by ZEA in the assessed embryos. Furthermore, hydroxytyrosol restored the frequency and intensity of tail coiling (TC) while decreasing the expression of heat shock proteins (HSPs) in the zebrafish embryos. Extended incubation with hydroxytyrosol demonstrated protective effects on zebrafish growth and morphology, muscle birefringence, and touch-evoked escape behavior. Subsequent investigations indicated that hydroxytyrosol reversed the expression of proapoptotic targets (e.g., bax and caspase8) and cell cycle regulators (e.g., p21, gadd45a, and rbl2), thereby mitigating apoptosis and G2 cell cycle arrest induced by ZEA in zebrafish embryos. Additionally, hydroxytyrosol decreased staining for senescence associated-β-galactosidase (SA-β-Gal). Notably, p53/FoxO pathway plays an important role in detoxification mechanisms. Overall, these novel findings highlight the potential of hydroxytyrosol to reverse ZEA-induced toxicity in multiple aspects. The mitigating effect of hydroxytyrosol on ZEA toxicity may have been underestimated.
Collapse
Affiliation(s)
- Hong-Yun Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Ministry of Education, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui-Nan Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hai-Feng Mi
- Tongwei Research Institute, Chengdu 600438, China
| | - Lu Zhang
- Tongwei Research Institute, Chengdu 600438, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Chengdu 611130, China
| |
Collapse
|
8
|
Constantinou M, Nicholson J, Zhang X, Maniati E, Lucchini S, Rosser G, Vinel C, Wang J, Lim YM, Brandner S, Nelander S, Badodi S, Marino S. Lineage specification in glioblastoma is regulated by METTL7B. Cell Rep 2024; 43:114309. [PMID: 38848215 PMCID: PMC11220825 DOI: 10.1016/j.celrep.2024.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
Glioblastomas are the most common malignant brain tumors in adults; they are highly aggressive and heterogeneous and show a high degree of plasticity. Here, we show that methyltransferase-like 7B (METTL7B) is an essential regulator of lineage specification in glioblastoma, with an impact on both tumor size and invasiveness. Single-cell transcriptomic analysis of these tumors and of cerebral organoids derived from expanded potential stem cells overexpressing METTL7B reveal a regulatory role for the gene in the neural stem cell-to-astrocyte differentiation trajectory. Mechanistically, METTL7B downregulates the expression of key neuronal differentiation players, including SALL2, via post-translational modifications of histone marks.
Collapse
Affiliation(s)
- Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James Nicholson
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Eleni Maniati
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS, UK
| | - Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Gabriel Rosser
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Claire Vinel
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jun Wang
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6AS, UK
| | - Yau Mun Lim
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Sven Nelander
- Department of Immunology Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Sara Badodi
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
9
|
Li K, Li H, He A, Zhang G, Jin Y, Cai J, Ye C, Qi L, Liu Y. Deciphering the role of transcription factors in glioblastoma cancer stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1245-1255. [PMID: 38716541 PMCID: PMC11543521 DOI: 10.3724/abbs.2024061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/07/2024] [Indexed: 10/17/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive and fatal brain malignancy, is largely driven by a subset of tumor cells known as cancer stem cells (CSCs). CSCs possess stem cell-like properties, including self-renewal, proliferation, and differentiation, making them pivotal for tumor initiation, invasion, metastasis, and overall tumor progression. The regulation of CSCs is primarily controlled by transcription factors (TFs) which regulate the expressions of genes involved in maintaining stemness and directing differentiation. This review aims to provide a comprehensive overview of the role of TFs in regulating CSCs in GBM. The discussion encompasses the definitions of CSCs and TFs, the significance of glioma stem cells (GSCs) in GBM, and how TFs regulate GSC self-renewal, proliferation, differentiation, and transformation. The potential for developing TF-targeted GSC therapies is also explored, along with future research directions. By understanding the regulation of GSCs by TFs, we may uncover novel diagnostic and therapeutic strategies against this devastating disease of GBM.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
- Department of NeurosurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Haichao Li
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Aonan He
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Gengqiang Zhang
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yuyao Jin
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Junbin Cai
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Chenle Ye
- Department of NeurosurgeryAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Ling Qi
- Institute of Digestive DiseaseAffiliated Qingyuan HospitalGuangzhou Medical UniversityQingyuan People’s HospitalQingyuan511518China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research
CenterShunde HospitalSouthern Medical University (The First People’s
Hospital of Shunde Foshan)Foshan528300China
| |
Collapse
|
10
|
Fu RZ, Cottrell O, Cutillo L, Rowntree A, Zador Z, Wurdak H, Papalopulu N, Marinopoulou E. Identification of genes with oscillatory expression in glioblastoma: the paradigm of SOX2. Sci Rep 2024; 14:2123. [PMID: 38267500 PMCID: PMC10808450 DOI: 10.1038/s41598-024-51340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Quiescence, a reversible state of cell-cycle arrest, is an important state during both normal development and cancer progression. For example, in glioblastoma (GBM) quiescent glioblastoma stem cells (GSCs) play an important role in re-establishing the tumour, leading to relapse. While most studies have focused on identifying differentially expressed genes between proliferative and quiescent cells as potential drivers of this transition, recent studies have shown the importance of protein oscillations in controlling the exit from quiescence of neural stem cells. Here, we have undertaken a genome-wide bioinformatic inference approach to identify genes whose expression oscillates and which may be good candidates for controlling the transition to and from the quiescent cell state in GBM. Our analysis identified, among others, a list of important transcription regulators as potential oscillators, including the stemness gene SOX2, which we verified to oscillate in quiescent GSCs. These findings expand on the way we think about gene regulation and introduce new candidate genes as key regulators of quiescence.
Collapse
Affiliation(s)
- Richard Zhiming Fu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, University of Manchester, Manchester, M13 9PL, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust, Salford Royal, Stott Lane, Salford, M6 8HD, UK
| | - Oliver Cottrell
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Luisa Cutillo
- School of Mathematics, University of Leeds, Woodhouse, Leeds, LS2 9JT, UK
| | - Andrew Rowntree
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Zsolt Zador
- Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, 36 Queen St E, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, McMaster University, 1280 Mains St W, Hamilton, ON, L8S 4L8, Canada
- Center for Discovery in Cancer Research (CDCR), McMaster University, 1280 Main St W, Hamilton, ON, L8S 4L8, Canada
| | - Heiko Wurdak
- Stem Cell and Brain Tumour Group, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, LS9 7TF, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
11
|
Begagić E, Bečulić H, Đuzić N, Džidić-Krivić A, Pugonja R, Muharemović A, Jaganjac B, Salković N, Sefo H, Pojskić M. CRISPR/Cas9-Mediated Gene Therapy for Glioblastoma: A Scoping Review. Biomedicines 2024; 12:238. [PMID: 38275409 PMCID: PMC10813360 DOI: 10.3390/biomedicines12010238] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
This scoping review examines the use of CRISPR/Cas9 gene editing in glioblastoma (GBM), a predominant and aggressive brain tumor. Categorizing gene targets into distinct groups, this review explores their roles in cell cycle regulation, microenvironmental dynamics, interphase processes, and therapy resistance reduction. The complexity of CRISPR-Cas9 applications in GBM research is highlighted, providing unique insights into apoptosis, cell proliferation, and immune responses within the tumor microenvironment. The studies challenge conventional perspectives on specific genes, emphasizing the potential therapeutic implications of manipulating key molecular players in cell cycle dynamics. Exploring CRISPR/Cas9 gene therapy in GBMs yields significant insights into the regulation of cellular processes, spanning cell interphase, renewal, and migration. Researchers, by precisely targeting specific genes, uncover the molecular orchestration governing cell proliferation, growth, and differentiation during critical phases of the cell cycle. The findings underscore the potential of CRISPR/Cas9 technology in unraveling the complex dynamics of the GBM microenvironment, offering promising avenues for targeted therapies to curb GBM growth. This review also outlines studies addressing therapy resistance in GBM, employing CRISPR/Cas9 to target genes associated with chemotherapy resistance, showcasing its transformative potential in effective GBM treatments.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Nermin Đuzić
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Ragib Pugonja
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Asja Muharemović
- Department of Genetics and Bioengineering, International Burch University Sarajevo, Francuske revolucije BB, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Jaganjac
- Department of Histology, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Haso Sefo
- Clinic of Neurosurgery, University Clinical Center Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany;
| |
Collapse
|
12
|
Pilcher L, Solomon L, Dragon JA, Gupta D, Spees JL. The Neural Progenitor Cell-Associated Transcription Factor FoxG1 Regulates Cardiac Epicardial Cell Proliferation. Stem Cells Int 2024; 2024:8601360. [PMID: 38239823 PMCID: PMC10796189 DOI: 10.1155/2024/8601360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
The epicardium is a layer of mesothelial cells that covers the surface of the heart. During development, epicardial cells undergo epithelial-to-mesenchymal transition (EMT) to form multipotent precursors that migrate into the heart and contribute to the coronary vasculature by differentiating into adventitial fibroblasts, smooth muscle cells, and endothelial cells. Epicardial cells also provide paracrine signals to cardiac myocytes that are required for appropriate heart growth. In adult hearts, a similar process of epicardial cell EMT, migration, and differentiation occurs after myocardial infarction (MI, heart attack). Pathological cardiac hypertrophy is associated with fibrosis, negative remodeling, and reduced cardiac function. In contrast, aerobic exercises such as swimming and running promote physiological (i.e., beneficial) hypertrophy, which is associated with angiogenesis and improved cardiac function. As epicardial cell function(s) during physiological hypertrophy are poorly understood, we analyzed and compared the native epicardial cells isolated directly from the hearts of running-exercised mice and age-matched, nonrunning littermates. To obtain epicardial cells, we enzymatically digested the surfaces of whole hearts and performed magnetic-activated cell sorting (MACS) with antibodies against CD104 (integrin β4). By cDNA microarray assays, we identified genes with increased transcription in epicardial cells after running exercise; these included FoxG1, a transcription factor that controls neural progenitor cell proliferation during brain development and Snord116, a small noncoding RNA that coordinates expression of genes with epigenetic, circadian, and metabolic functions. In cultured epicardial cells, shRNA-mediated FoxG1 knockdown significantly decreased cell proliferation, as well as Snord116 expression. Our results demonstrate that FoxG1 regulates epicardial proliferation, and suggest it may affect cardiac remodeling.
Collapse
Affiliation(s)
- Lucy Pilcher
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Lara Solomon
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| | - Julie A. Dragon
- Vermont Integrative Genomics Resource, University of Vermont Larner College of Medicine, Burlington, VT 05405, USA
| | - Dhananjay Gupta
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT 05446, USA
| | - Jeffrey L. Spees
- Department of Medicine, Cardiovascular Research Institute, University of Vermont, Colchester, VT 05446, USA
- Cellular and Molecular Biomedical Sciences Program, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
13
|
Chen T, Liu J, Liu Y, Chen Y, Wang X. Specific downregulation of microRNA-186 induces neural stem cell self-renewal by upregulating Bmi-1/FoxG1 expression. Hum Cell 2023; 36:2016-2026. [PMID: 37700157 DOI: 10.1007/s13577-023-00981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023]
Abstract
Self-renewal and differentiation in neural stem cells (NSCs) are modulated by microRNAs (miRNAs). However, the recent evidence available is not enough to elucidate the role of miRNA in the self-renewal and differentiation of NSCs from developing brain. In this study, we isolated primary NSCs from the forebrain of fetal rat for in vitro analysis. Downregulation of miRNA-186 in response to a specific miRNA inhibitor resulted in upregulation of Bmi-1 and FoxG1, while maintaining NCS self-renewal. Bmi-1 overexpression restored the maintenance of NSCs in vitro. FoxG1 was found to promote the methylation of Foxo3 promoter and inhibited Foxo3 expression. miR-186 upregulation increased the expression of Foxo3 and inhibited NSC self-renewal in the absence of Foxo3. Therefore, we propose that downregulation of miR-186 maintained NSC self-renewal in the postnatal brain by upregulating the Bmi1/FoxG1 expression via FoxO3 elevation.
Collapse
Affiliation(s)
- Tuantuan Chen
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Tiefeng District, Qiqihar City, 161000, Heilongjiang Province, China.
| | - Jing Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Tiefeng District, Qiqihar City, 161000, Heilongjiang Province, China
| | - Yang Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Tiefeng District, Qiqihar City, 161000, Heilongjiang Province, China
| | - Yang Chen
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Tiefeng District, Qiqihar City, 161000, Heilongjiang Province, China
| | - Xue Wang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, 27 Taishun Street, Tiefeng District, Qiqihar City, 161000, Heilongjiang Province, China
| |
Collapse
|
14
|
Abatti LE, Lado-Fernández P, Huynh L, Collado M, Hoffman M, Mitchell J. Epigenetic reprogramming of a distal developmental enhancer cluster drives SOX2 overexpression in breast and lung adenocarcinoma. Nucleic Acids Res 2023; 51:10109-10131. [PMID: 37738673 PMCID: PMC10602899 DOI: 10.1093/nar/gkad734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
Enhancer reprogramming has been proposed as a key source of transcriptional dysregulation during tumorigenesis, but the molecular mechanisms underlying this process remain unclear. Here, we identify an enhancer cluster required for normal development that is aberrantly activated in breast and lung adenocarcinoma. Deletion of the SRR124-134 cluster disrupts expression of the SOX2 oncogene, dysregulates genome-wide transcription and chromatin accessibility and reduces the ability of cancer cells to form colonies in vitro. Analysis of primary tumors reveals a correlation between chromatin accessibility at this cluster and SOX2 overexpression in breast and lung cancer patients. We demonstrate that FOXA1 is an activator and NFIB is a repressor of SRR124-134 activity and SOX2 transcription in cancer cells, revealing a co-opting of the regulatory mechanisms involved in early development. Notably, we show that the conserved SRR124 and SRR134 regions are essential during mouse development, where homozygous deletion results in the lethal failure of esophageal-tracheal separation. These findings provide insights into how developmental enhancers can be reprogrammed during tumorigenesis and underscore the importance of understanding enhancer dynamics during development and disease.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Linh Huynh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Tabnak P, Hasanzade Bashkandi A, Ebrahimnezhad M, Soleimani M. Forkhead box transcription factors (FOXOs and FOXM1) in glioma: from molecular mechanisms to therapeutics. Cancer Cell Int 2023; 23:238. [PMID: 37821870 PMCID: PMC10568859 DOI: 10.1186/s12935-023-03090-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023] Open
Abstract
Glioma is the most aggressive and malignant type of primary brain tumor, comprises the majority of central nervous system deaths, and is categorized into different subgroups according to its histological characteristics, including astrocytomas, oligodendrogliomas, glioblastoma multiforme (GBM), and mixed tumors. The forkhead box (FOX) transcription factors comprise a collection of proteins that play various roles in numerous complex molecular cascades and have been discovered to be differentially expressed in distinct glioma subtypes. FOXM1 and FOXOs have been recognized as crucial transcription factors in tumor cells, including glioma cells. Accumulating data indicates that FOXM1 acts as an oncogene in various types of cancers, and a significant part of studies has investigated its function in glioma. Although recent studies considered FOXO subgroups as tumor suppressors, there are pieces of evidence that they may have an oncogenic role. This review will discuss the subtle functions of FOXOs and FOXM1 in gliomas, dissecting their regulatory network with other proteins, microRNAs and their role in glioma progression, including stem cell differentiation and therapy resistance/sensitivity, alongside highlighting recent pharmacological progress for modulating their expression.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mohammad Ebrahimnezhad
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Soleimani
- Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Castillo SP, Galvez-Cancino F, Liu J, Pollard SM, Quezada SA, Yuan Y. The tumour ecology of quiescence: Niches across scales of complexity. Semin Cancer Biol 2023; 92:139-149. [PMID: 37037400 DOI: 10.1016/j.semcancer.2023.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 04/12/2023]
Abstract
Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Simon P Castillo
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Felipe Galvez-Cancino
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Jiali Liu
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Scotland Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sergio A Quezada
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer & Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
17
|
Robertson FL, O'Duibhir E, Gangoso E, Bressan RB, Bulstrode H, Marqués-Torrejón MÁ, Ferguson KM, Blin C, Grant V, Alfazema N, Morrison GM, Pollard SM. Elevated FOXG1 in glioblastoma stem cells cooperates with Wnt/β-catenin to induce exit from quiescence. Cell Rep 2023; 42:112561. [PMID: 37243590 DOI: 10.1016/j.celrep.2023.112561] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/30/2022] [Accepted: 05/08/2023] [Indexed: 05/29/2023] Open
Abstract
Glioblastoma (GBM) stem cells (GSCs) display phenotypic and molecular features reminiscent of normal neural stem cells and exhibit a spectrum of cell cycle states (dormant, quiescent, proliferative). However, mechanisms controlling the transition from quiescence to proliferation in both neural stem cells (NSCs) and GSCs are poorly understood. Elevated expression of the forebrain transcription factor FOXG1 is often observed in GBMs. Here, using small-molecule modulators and genetic perturbations, we identify a synergistic interaction between FOXG1 and Wnt/β-catenin signaling. Increased FOXG1 enhances Wnt-driven transcriptional targets, enabling highly efficient cell cycle re-entry from quiescence; however, neither FOXG1 nor Wnt is essential in rapidly proliferating cells. We demonstrate that FOXG1 overexpression supports gliomagenesis in vivo and that additional β-catenin induction drives accelerated tumor growth. These data indicate that elevated FOXG1 cooperates with Wnt signaling to support the transition from quiescence to proliferation in GSCs.
Collapse
Affiliation(s)
- Faye L Robertson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Eoghan O'Duibhir
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ester Gangoso
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Maria-Ángeles Marqués-Torrejón
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine & Edinburgh Cancer Research UK Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
18
|
Santo M, Rigoldi L, Falcone C, Tuccillo M, Calabrese M, Martínez-Cerdeño V, Mallamaci A. Spatial control of astrogenesis progression by cortical arealization genes. Cereb Cortex 2023; 33:3107-3123. [PMID: 35818636 DOI: 10.1093/cercor/bhac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sizes of neuronal, astroglial and oligodendroglial complements forming the neonatal cerebral cortex largely depend on rates at which pallial stem cells give rise to lineage-committed progenitors and the latter ones progress to mature cell types. Here, we investigated the spatial articulation of pallial stem cells' (SCs) commitment to astrogenesis as well as the progression of committed astroglial progenitors (APs) to differentiated astrocytes, by clonal and kinetic profiling of pallial precursors. We found that caudal-medial (CM) SCs are more prone to astrogenesis than rostro-lateral (RL) ones, while RL-committed APs are more keen to proliferate than CM ones. Next, we assessed the control of these phenomena by 2 key transcription factor genes mastering regionalization of the early cortical primordium, Emx2 and Foxg1, via lentiviral somatic transgenesis, epistasis assays, and ad hoc rescue assays. We demonstrated that preferential CM SCs progression to astrogenesis is promoted by Emx2, mainly via Couptf1, Nfia, and Sox9 upregulation, while Foxg1 antagonizes such progression to some extent, likely via repression of Zbtb20. Finally, we showed that Foxg1 and Emx2 may be implicated-asymmetrically and antithetically-in shaping distinctive proliferative/differentiative behaviors displayed by APs in hippocampus and neocortex.
Collapse
Affiliation(s)
- Manuela Santo
- Laboratory of Cerebral Cortex Development, Department of Neuroscience, SISSA, via Bonomea 265, I-34136 Trieste, Italy
| | - Laura Rigoldi
- Laboratory of Cerebral Cortex Development, Department of Neuroscience, SISSA, via Bonomea 265, I-34136 Trieste, Italy
| | - Carmen Falcone
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, 4400 V St, CA-95817 Sacramento, USA
| | - Mariacarmine Tuccillo
- Laboratory of Cerebral Cortex Development, Department of Neuroscience, SISSA, via Bonomea 265, I-34136 Trieste, Italy
| | - Michela Calabrese
- Laboratory of Cerebral Cortex Development, Department of Neuroscience, SISSA, via Bonomea 265, I-34136 Trieste, Italy
| | - Verónica Martínez-Cerdeño
- Department of Pathology and Laboratory Medicine & MIND Institute, UC Davis School of Medicine, 4400 V St, CA-95817 Sacramento, USA
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Department of Neuroscience, SISSA, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
19
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
20
|
Appiah CO, Singh M, May L, Bakshi I, Vaidyanathan A, Dent P, Ginder G, Grant S, Bear H, Landry J. The epigenetic regulation of cancer cell recovery from therapy exposure and its implications as a novel therapeutic strategy for preventing disease recurrence. Adv Cancer Res 2023; 158:337-385. [PMID: 36990536 DOI: 10.1016/bs.acr.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of cancer therapy is the elimination of disease from patients. Most directly, this occurs through therapy-induced cell death. Therapy-induced growth arrest can also be a desirable outcome, if prolonged. Unfortunately, therapy-induced growth arrest is rarely durable and the recovering cell population can contribute to cancer recurrence. Consequently, therapeutic strategies that eliminate residual cancer cells reduce opportunities for recurrence. Recovery can occur through diverse mechanisms including quiescence or diapause, exit from senescence, suppression of apoptosis, cytoprotective autophagy, and reductive divisions resulting from polyploidy. Epigenetic regulation of the genome represents a fundamental regulatory mechanism integral to cancer-specific biology, including the recovery from therapy. Epigenetic pathways are particularly attractive therapeutic targets because they are reversible, without changes in DNA, and are catalyzed by druggable enzymes. Previous use of epigenetic-targeting therapies in combination with cancer therapeutics has not been widely successful because of either unacceptable toxicity or limited efficacy. The use of epigenetic-targeting therapies after a significant interval following initial cancer therapy could potentially reduce the toxicity of combination strategies, and possibly exploit essential epigenetic states following therapy exposure. This review examines the feasibility of targeting epigenetic mechanisms using a sequential approach to eliminate residual therapy-arrested populations, that might possibly prevent recovery and disease recurrence.
Collapse
Affiliation(s)
- Christiana O Appiah
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Manjulata Singh
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Lauren May
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ishita Bakshi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ashish Vaidyanathan
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Gordon Ginder
- Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Grant
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States; Department of Internal Medicine, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Harry Bear
- Department of Surgery, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, VA, United States; Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Massey Cancer Center, Richmond, Richmond, VA, United States
| | - Joseph Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
21
|
Yang W, Chen H, Ma L, Dong J, Wei M, Xue X, Li Y, Jin Z, Xu W, Ji Z. A comprehensive analysis of the FOX family for predicting kidney renal clear cell carcinoma prognosis and the oncogenic role of FOXG1. Aging (Albany NY) 2022; 14:10107-10124. [PMID: 36585925 PMCID: PMC9831721 DOI: 10.18632/aging.204448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022]
Abstract
Previous studies have confirmed that the forkhead box (FOX) superfamily of transcription factors regulates tumor progression and metastasis in multiple cancer. The purpose of this study was to develop a model based on FOX family genes for predicting kidney renal clear cell carcinom (KIRC) prognosis. We downloaded the transcriptional profiles and clinical data of KIRC patients from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) datasets. To build a new prognosis model, we screened prognosis-related FOX family genes using Lasso regression and Multivariate Cox regression analyses. Receiver operating characteristic (ROC) curves were used to evaluate model performance. Additionally, a prognostic nomogram was developed using clinical information and selected genes to improve the accuracy of prognostic prediction. We also investigated whether prognosis-related FOX family genes are related to the immune response in KIRC. Finally, we validated the oncogenic role of FOXG1 in KIRC using an in vitro tumor function assay. Six prognosis-related FOX family genes were screened: FOXO1, FOXM1, FOXK2, FOXG1, FOXA1, and FOXD1. The ROC curves indicated that our model was capable of making accurate predictions for 1-, 3-, and 5-year overall survival (OS). The nomogram further improved the accuracy of prognostic predictions. In addition, compared to those in patients with low-risk scores, high-risk scores predicted a decreased level of immune cell infiltration and a lower immune response rate. Moreover, the results of in vitro studies confirmed that FOXG1 supports the proliferation and invasion of KIRC.
Collapse
Affiliation(s)
- Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Lin Ma
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Jie Dong
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Mengchao Wei
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Xiaoqiang Xue
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhaoheng Jin
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Weifeng Xu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing 100000, China
| |
Collapse
|
22
|
Bulstrode H, Girdler GC, Gracia T, Aivazidis A, Moutsopoulos I, Young AMH, Hancock J, He X, Ridley K, Xu Z, Stockley JH, Finlay J, Hallou C, Fajardo T, Fountain DM, van Dongen S, Joannides A, Morris R, Mair R, Watts C, Santarius T, Price SJ, Hutchinson PJA, Hodson EJ, Pollard SM, Mohorianu I, Barker RA, Sweeney TR, Bayraktar O, Gergely F, Rowitch DH. Myeloid cell interferon secretion restricts Zika flavivirus infection of developing and malignant human neural progenitor cells. Neuron 2022; 110:3936-3951.e10. [PMID: 36174572 PMCID: PMC7615581 DOI: 10.1016/j.neuron.2022.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 09/01/2022] [Indexed: 02/02/2023]
Abstract
Zika virus (ZIKV) can infect human developing brain (HDB) progenitors resulting in epidemic microcephaly, whereas analogous cellular tropism offers treatment potential for the adult brain cancer, glioblastoma (GBM). We compared productive ZIKV infection in HDB and GBM primary tissue explants that both contain SOX2+ neural progenitors. Strikingly, although the HDB proved uniformly vulnerable to ZIKV infection, GBM was more refractory, and this correlated with an innate immune expression signature. Indeed, GBM-derived CD11b+ microglia/macrophages were necessary and sufficient to protect progenitors against ZIKV infection in a non-cell autonomous manner. Using SOX2+ GBM cell lines, we found that CD11b+-conditioned medium containing type 1 interferon beta (IFNβ) promoted progenitor resistance to ZIKV, whereas inhibition of JAK1/2 signaling restored productive infection. Additionally, CD11b+ conditioned medium, and IFNβ treatment rendered HDB progenitor lines and explants refractory to ZIKV. These findings provide insight into neuroprotection for HDB progenitors as well as enhanced GBM oncolytic therapies.
Collapse
Affiliation(s)
- Harry Bulstrode
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK.
| | - Gemma C Girdler
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Tannia Gracia
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Ilias Moutsopoulos
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Adam M H Young
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Hancock
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Xiaoling He
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Katherine Ridley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zhaoyang Xu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John H Stockley
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - John Finlay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Clement Hallou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Teodoro Fajardo
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; Department of Virology, Royal London Hospital, Barts Health NHS Trust, London E1 2ES, UK
| | | | | | - Alexis Joannides
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Robert Morris
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Richard Mair
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| | - Thomas Santarius
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stephen J Price
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter J A Hutchinson
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Emma J Hodson
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Roger A Barker
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
| | - Trevor R Sweeney
- Department of Virology, University of Cambridge, Cambridge CB2 0QQ, UK; The Pirbright Institute, Guildford, Surrey GU24 0NF, UK
| | | | - Fanni Gergely
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - David H Rowitch
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK; Wellcome Sanger Institute, Hinxton CB10 1SA, UK; Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
23
|
Purshouse K, Friman ET, Boyle S, Dewari PS, Grant V, Hamdan A, Morrison GM, Brennan PM, Beentjes SV, Pollard SM, Bickmore WA. Oncogene expression from extrachromosomal DNA is driven by copy number amplification and does not require spatial clustering in glioblastoma stem cells. eLife 2022; 11:e80207. [PMID: 36476408 PMCID: PMC9728993 DOI: 10.7554/elife.80207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extrachromosomal DNA (ecDNA) are frequently observed in human cancers and are responsible for high levels of oncogene expression. In glioblastoma (GBM), ecDNA copy number correlates with poor prognosis. It is hypothesized that their copy number, size, and chromatin accessibility facilitate clustering of ecDNA and colocalization with transcriptional hubs, and that this underpins their elevated transcriptional activity. Here, we use super-resolution imaging and quantitative image analysis to evaluate GBM stem cells harbouring distinct ecDNA species (EGFR, CDK4, PDGFRA). We find no evidence that ecDNA routinely cluster with one another or closely interact with transcriptional hubs. Cells with EGFR-containing ecDNA have increased EGFR transcriptional output, but transcription per gene copy is similar in ecDNA compared to the endogenous chromosomal locus. These data suggest that it is the increased copy number of oncogene-harbouring ecDNA that primarily drives high levels of oncogene transcription, rather than specific interactions of ecDNA with each other or with high concentrations of the transcriptional machinery.
Collapse
Affiliation(s)
- Karin Purshouse
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| | - Pooran Singh Dewari
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Vivien Grant
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Alhafidz Hamdan
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Gillian M Morrison
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Paul M Brennan
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
- Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Sjoerd V Beentjes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
- School of Mathematics, University of EdinburghEdinburghUnited Kingdom
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
24
|
Berg TJ, Pietras A. Radiotherapy-induced remodeling of the tumor microenvironment by stromal cells. Semin Cancer Biol 2022; 86:846-856. [PMID: 35143991 DOI: 10.1016/j.semcancer.2022.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/08/2023]
Abstract
Cancer cells reside amongst a complex milieu of stromal cells and structural features known as the tumor microenvironment. Often cancer cells divert and co-opt functions of stromal cells of the microenvironment to support tumor progression and treatment resistance. During therapy targeting cancer cells, the stromal cells of the microenvironment receive therapy to the same extent as cancer cells. Stromal cells therefore activate a variety of responses to the damage induced by these therapies, and some of those responses may support tumor progression and resistance. We review here the response of stromal cells to cancer therapy with a focus on radiotherapy in glioblastoma. We highlight the response of endothelial cells and the vasculature, macrophages and microglia, and astrocytes, as well as describing resulting changes in the extracellular matrix. We emphasize the complex interplay of these cellular factors in their dynamic responses. Finally, we discuss their resulting support of cancer cells in tumor progression and therapy resistance. Understanding the stromal cell response to therapy provides insight into complementary therapeutic targets to enhance tumor response to existing treatment options.
Collapse
Affiliation(s)
- Tracy J Berg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
25
|
Chen HM, Nikolic A, Singhal D, Gallo M. Roles of Chromatin Remodelling and Molecular Heterogeneity in Therapy Resistance in Glioblastoma. Cancers (Basel) 2022; 14:4942. [PMID: 36230865 PMCID: PMC9563350 DOI: 10.3390/cancers14194942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) represent a therapy-resistant reservoir in glioblastoma (GBM). It is now becoming clear that epigenetic and chromatin remodelling programs link the stemlike behaviour of CSCs to their treatment resistance. New evidence indicates that the epigenome of GBM cells is shaped by intrinsic and extrinsic factors, including their genetic makeup, their interactions and communication with other neoplastic and non-neoplastic cells, including immune cells, and their metabolic niche. In this review, we explore how all these factors contribute to epigenomic heterogeneity in a tumour and the selection of therapy-resistant cells. Lastly, we discuss current and emerging experimental platforms aimed at precisely understanding the epigenetic mechanisms of therapy resistance that ultimately lead to tumour relapse. Given the growing arsenal of drugs that target epigenetic enzymes, our review addresses promising preclinical and clinical applications of epidrugs to treat GBM, and possible mechanisms of resistance that need to be overcome.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Divya Singhal
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
26
|
Yanchus C, Drucker KL, Kollmeyer TM, Tsai R, Winick-Ng W, Liang M, Malik A, Pawling J, De Lorenzo SB, Ali A, Decker PA, Kosel ML, Panda A, Al-Zahrani KN, Jiang L, Browning JWL, Lowden C, Geuenich M, Hernandez JJ, Gosio JT, Ahmed M, Loganathan SK, Berman J, Trcka D, Michealraj KA, Fortin J, Carson B, Hollingsworth EW, Jacinto S, Mazrooei P, Zhou L, Elia A, Lupien M, He HH, Murphy DJ, Wang L, Abyzov A, Dennis JW, Maass PG, Campbell K, Wilson MD, Lachance DH, Wrensch M, Wiencke J, Mak T, Pennacchio LA, Dickel DE, Visel A, Wrana J, Taylor MD, Zadeh G, Dirks P, Eckel-Passow JE, Attisano L, Pombo A, Ida CM, Kvon EZ, Jenkins RB, Schramek D. A noncoding single-nucleotide polymorphism at 8q24 drives IDH1-mutant glioma formation. Science 2022; 378:68-78. [PMID: 36201590 PMCID: PMC9926876 DOI: 10.1126/science.abj2890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.
Collapse
Affiliation(s)
- Connor Yanchus
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kristen L. Drucker
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas M. Kollmeyer
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ricky Tsai
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 13092 Berlin, Germany
| | - Minggao Liang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Ahmad Malik
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Judy Pawling
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Silvana B. De Lorenzo
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Asma Ali
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Paul A. Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Matt L. Kosel
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Arijit Panda
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Khalid N. Al-Zahrani
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Lingyan Jiang
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jared W. L. Browning
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Chris Lowden
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Michael Geuenich
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - J. Javier Hernandez
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica T. Gosio
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | | | - Sampath Kumar Loganathan
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jacob Berman
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Daniel Trcka
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | - Jerome Fortin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Brittany Carson
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Parisa Mazrooei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Lily Zhou
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Andrew Elia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Daniel J. Murphy
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, Scotland, UK
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, Scotland, UK
| | - Liguo Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - James W. Dennis
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Philipp G. Maass
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kieran Campbell
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Wilson
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Daniel H. Lachance
- Departments of Neurology and Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Margaret Wrensch
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - John Wiencke
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Tak Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94710, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Jeffrey Wrana
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michael D. Taylor
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Gelareh Zadeh
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Peter Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
- Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | | | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, 13092 Berlin, Germany
- Institute of Biology, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Cristiane M. Ida
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92617, USA
| | - Robert B. Jenkins
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
27
|
Manuel M, Tan KB, Kozic Z, Molinek M, Marcos TS, Razak MFA, Dobolyi D, Dobie R, Henderson BEP, Henderson NC, Chan WK, Daw MI, Mason JO, Price DJ. Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biol 2022; 20:e3001563. [PMID: 36067211 PMCID: PMC9481180 DOI: 10.1371/journal.pbio.3001563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 09/16/2022] [Accepted: 07/08/2022] [Indexed: 12/13/2022] Open
Abstract
The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6. We used bulk and single-cell RNAseq to show that conditional cortex-specific Pax6 deletion from the onset of cortical neurogenesis allowed some progenitors to generate abnormal lineages resembling those normally found outside the cortex. Analysis of selected gene expression showed that the changes occurred in specific spatiotemporal patterns. We then compared the responses of control and Pax6-deleted cortical cells to in vivo and in vitro manipulations of extracellular signals. We found that Pax6 loss increased cortical progenitors' competence to generate inappropriate lineages in response to extracellular factors normally present in developing cortex, including the morphogens Shh and Bmp4. Regional variation in the levels of these factors could explain spatiotemporal patterns of fate change following Pax6 deletion in vivo. We propose that Pax6's main role in developing cortical cells is to minimize the risk of their development being derailed by the potential side effects of morphogens engaged contemporaneously in other essential functions.
Collapse
Affiliation(s)
- Martine Manuel
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Kai Boon Tan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Zrinko Kozic
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael Molinek
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Tiago Sena Marcos
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Maizatul Fazilah Abd Razak
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Dániel Dobolyi
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Beth E. P. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Neil C. Henderson
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Wai Kit Chan
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael I. Daw
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, Zhejiang, People’s Republic of China
| | - John O. Mason
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Simons Initiative for the Developing Brain, Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Yuan E, Liu K, Lee J, Tsung K, Chow F, Attenello FJ. Modulating glioblastoma chemotherapy response: Evaluating long non-coding RNA effects on DNA damage response, glioma stem cell function, and hypoxic processes. Neurooncol Adv 2022; 4:vdac119. [PMID: 36105389 PMCID: PMC9466271 DOI: 10.1093/noajnl/vdac119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary adult brain tumor, with an estimated annual incidence of 17 000 new cases in the United States. Current treatments for GBM include chemotherapy, surgical resection, radiation therapy, and antiangiogenic therapy. However, despite the various therapeutic options, the 5-year survival rate remains at a dismal 5%. Temozolomide (TMZ) is the first-line chemotherapy drug for GBM; however, poor TMZ response is one of the main contributors to the dismal prognosis. Long non-coding RNAs (lncRNAs) are nonprotein coding transcripts greater than 200 nucleotides that have been implicated to mediate various GBM pathologies, including chemoresistance. In this review, we aim to frame the TMZ response in GBM via exploration of the lncRNAs mediating three major mechanisms of TMZ resistance: (1) regulation of the DNA damage response, (2) maintenance of glioma stem cell identity, and (3) exploitation of hypoxia-associated responses.
Collapse
Affiliation(s)
- Edith Yuan
- Corresponding Author: Edith Yuan, BA, Keck School of Medicine, University of Southern California, 1200 North State St. Suite 3300, Los Angeles, CA 90033, USA ()
| | - Kristie Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Justin Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kathleen Tsung
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frances Chow
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Frank J Attenello
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Aleksandrova MA, Sukhinich KK. Astrocytes of the Brain: Retinue Plays the King. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Lottini G, Baggiani M, Chesi G, D'Orsi B, Quaranta P, Lai M, Pancrazi L, Onorati M, Pistello M, Freer G, Costa M. Zika virus induces FOXG1 nuclear displacement and downregulation in human neural progenitors. Stem Cell Reports 2022; 17:1683-1698. [PMID: 35714598 PMCID: PMC9287670 DOI: 10.1016/j.stemcr.2022.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Congenital alterations in the levels of the transcription factor Forkhead box g1 (FOXG1) coding gene trigger "FOXG1 syndrome," a spectrum that recapitulates birth defects found in the "congenital Zika syndrome," such as microcephaly and other neurodevelopmental conditions. Here, we report that Zika virus (ZIKV) infection alters FOXG1 nuclear localization and causes its downregulation, thus impairing expression of genes involved in cell replication and apoptosis in several cell models, including human neural progenitor cells. Growth factors, such as EGF and FGF2, and Thr271 residue located in FOXG1 AKT domain, take part in the nuclear displacement and apoptosis protection, respectively. Finally, by progressive deletion of FOXG1 sequence, we identify the C-terminus and the residues 428-481 as critical domains. Collectively, our data suggest a causal mechanism by which ZIKV affects FOXG1, its target genes, cell cycle progression, and survival of human neural progenitors, thus contributing to microcephaly.
Collapse
Affiliation(s)
- Giulia Lottini
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Matteo Baggiani
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa 56127, Italy
| | - Giulia Chesi
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy
| | - Beatrice D'Orsi
- Institute of Neuroscience, Italian National Research Council (CNR), Via Moruzzi, 1, Pisa 56124, Italy; Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Presidio S. Chiara, ed.18 via Roma, 67, Pisa 56126, Italy
| | - Paola Quaranta
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy
| | - Michele Lai
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy
| | - Laura Pancrazi
- Institute of Neuroscience, Italian National Research Council (CNR), Via Moruzzi, 1, Pisa 56124, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa 56127, Italy
| | - Mauro Pistello
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy
| | - Giulia Freer
- Centro Retrovirus, Department of Translational Research, University of Pisa, Pisa 56127, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Via Moruzzi, 1, Pisa 56124, Italy; Centro Pisano ricerca e implementazione clinica Flash Radiotherapy (CPFR@CISUP), Presidio S. Chiara, ed.18 via Roma, 67, Pisa 56126, Italy; Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Piazza dei Cavalieri, Pisa 56124, Italy.
| |
Collapse
|
31
|
Algorithmic reconstruction of glioblastoma network complexity. iScience 2022; 25:104179. [PMID: 35479408 PMCID: PMC9036113 DOI: 10.1016/j.isci.2022.104179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a complex disease that is difficult to treat. Network and data science offer alternative approaches to classical bioinformatics pipelines to study gene expression patterns from single-cell datasets, helping to distinguish genes associated with the control of differentiation and aggression. To identify the key molecular regulators of the networks driving glioblastoma/GSC and predict their cell fate dynamics, we applied a host of data theoretic techniques to gene expression patterns from pediatric and adult glioblastoma, and adult glioma-derived stem cells (GSCs). We identified eight transcription factors (OLIG1/2, TAZ, GATA2, FOXG1, SOX6, SATB2, and YY1) and four signaling genes (ATL3, MTSS1, EMP1, and TPT1) as coordinators of cell state transitions and, thus, clinically targetable putative factors differentiating pediatric and adult glioblastomas from adult GSCs. Our study provides strong evidence of complex systems approaches for inferring complex dynamics from reverse-engineering gene networks, bolstering the search for new clinically relevant targets in glioblastoma.
Complex cell fate attractors capture glioblastoma differentiation dynamics Graph theoretic approaches decode master regulators of GBM glioblastoma cell fate decisions Network dynamics of pediatric glioblastoma resemble adult GSCs Transcriptional networks may help reprogram glioblastoma behavioral patterns
Collapse
|
32
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Frisari S, Santo M, Hosseini A, Manzati M, Giugliano M, Mallamaci A. Multidimensional Functional Profiling of Human Neuropathogenic FOXG1 Alleles in Primary Cultures of Murine Pallial Precursors. Int J Mol Sci 2022; 23:ijms23031343. [PMID: 35163265 PMCID: PMC8835715 DOI: 10.3390/ijms23031343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
FOXG1 is an ancient transcription factor gene mastering telencephalic development. A number of distinct structural FOXG1 mutations lead to the “FOXG1 syndrome”, a complex and heterogeneous neuropathological entity, for which no cure is presently available. Reconstruction of primary neurodevelopmental/physiological anomalies evoked by these mutations is an obvious pre-requisite for future, precision therapy of such syndrome. Here, as a proof-of-principle, we functionally scored three FOXG1 neuropathogenic alleles, FOXG1G224S, FOXG1W308X, and FOXG1N232S, against their healthy counterpart. Specifically, we delivered transgenes encoding for them to dedicated preparations of murine pallial precursors and quantified their impact on selected neurodevelopmental and physiological processes mastered by Foxg1: pallial stem cell fate choice, proliferation of neural committed progenitors, neuronal architecture, neuronal activity, and their molecular correlates. Briefly, we found that FOXG1G224S and FOXG1W308X generally performed as a gain- and a loss-of-function-allele, respectively, while FOXG1N232S acted as a mild loss-of-function-allele or phenocopied FOXG1WT. These results provide valuable hints about processes misregulated in patients heterozygous for these mutations, to be re-addressed more stringently in patient iPSC-derivative neuro-organoids. Moreover, they suggest that murine pallial cultures may be employed for fast multidimensional profiling of novel, human neuropathogenic FOXG1 alleles, namely a step propedeutic to timely delivery of therapeutic precision treatments.
Collapse
Affiliation(s)
- Simone Frisari
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
| | - Manuela Santo
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
| | - Ali Hosseini
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Matteo Manzati
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Michele Giugliano
- Neuronal Dynamics Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (A.H.); (M.M.); (M.G.)
| | - Antonello Mallamaci
- Cerebral Cortex Development Laboratory, Department of Neuroscience, SISSA, Via Bonomea 265, 34136 Trieste, Italy; (S.F.); (M.S.)
- Correspondence:
| |
Collapse
|
34
|
Audesse AJ, Karashchuk G, Gardell ZA, Lakis NS, Maybury-Lewis SY, Brown AK, Leeman DS, Teo YV, Neretti N, Anthony DC, Brodsky AS, Webb AE. FOXO3 regulates a common genomic program in aging and glioblastoma stem cells. AGING AND CANCER 2021; 2:137-159. [PMID: 36303712 PMCID: PMC9601604 DOI: 10.1002/aac2.12043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/14/2021] [Indexed: 01/14/2023]
Abstract
Background Glioblastoma (GBM) is an aggressive, age-associated malignant glioma that contains populations of cancer stem cells. These glioma stem cells (GSCs) evade therapeutic interventions and repopulate tumors due to their existence in a slowly cycling quiescent state. Although aging is well known to increase cancer initiation, the extent to which the mechanisms supporting GSC tumorigenicity are related to physiological aging remains unknown. Aims Here, we investigate the transcriptional mechanisms by which Forkhead Box O3 (FOXO3), a transcriptional regulator that promotes healthy aging, affects GSC function and the extent to which FOXO3 transcriptional networks are dysregulated in aging and GBM. Methods and results We performed transcriptome analysis of clinical GBM tumors and observed that high FOXO3 activity is associated with gene expression signatures of stem cell quiescence, reduced oxidative metabolism, and improved patient outcomes. Consistent with these findings, we show that elevated FOXO3 activity significantly reduces the proliferation of GBM-derived GSCs. Using RNA-seq, we find that functional ablation of FOXO3 in GSCs rewires the transcriptional circuitry associated with metabolism, epigenetic stability, quiescence, and differentiation. Since FOXO3 has been implicated in healthy aging, we then investigated the extent to which it regulates common transcriptional programs in aging neural stem cells (NSCs) and GSCs. We uncover a shared transcriptional program and, most strikingly, find that FOXO3-regulated pathways are associated with altered mitochondrial functions in both aging and GBM. Conclusions This work identifies a FOXO-associated transcriptional program that correlates between GSCs and aging NSCs and is enriched for metabolic and stemness pathways connected with GBM and aging.
Collapse
Affiliation(s)
- Amanda J. Audesse
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Galina Karashchuk
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Zachary A. Gardell
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Nelli S. Lakis
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sun Y. Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Abigail K. Brown
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Dena S. Leeman
- Department of Discovery Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Yee Voan Teo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
| | - Douglas C. Anthony
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Alexander S. Brodsky
- Department of Pathology and Laboratory Medicine, Lifespan Academic Medical Center and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ashley E. Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center on the Biology of Aging, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
35
|
Jedynak P, Tost J, Calafat AM, Bourova-Flin E, Busato F, Forhan A, Heude B, Jakobi M, Rousseaux S, Schwartz J, Slama R, Vaiman D, Philippat C, Lepeule J. Pregnancy exposure to synthetic phenols and placental DNA methylation - An epigenome-wide association study in male infants from the EDEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118024. [PMID: 34523531 PMCID: PMC8590835 DOI: 10.1016/j.envpol.2021.118024] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 05/14/2023]
Abstract
In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ekaterina Bourova-Flin
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, F-75004, Paris, France
| | - Milan Jakobi
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Sophie Rousseaux
- University Grenoble Alpes, Inserm, CNRS, EpiMed Group, Institute for Advanced Biosciences, Grenoble, France
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rémy Slama
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
36
|
Gatti G, Vilardo L, Musa C, Di Pietro C, Bonaventura F, Scavizzi F, Torcinaro A, Bucci B, Saporito R, Arisi I, De Santa F, Raspa M, Guglielmi L, D’Agnano I. Role of Lamin A/C as Candidate Biomarker of Aggressiveness and Tumorigenicity in Glioblastoma Multiforme. Biomedicines 2021; 9:biomedicines9101343. [PMID: 34680461 PMCID: PMC8533312 DOI: 10.3390/biomedicines9101343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear lamina components have long been regarded as scaffolding proteins, forming a dense fibrillar structure necessary for the maintenance of the nucleus shape in all the animal kingdom. More recently, mutations, aberrant localisation and deregulation of these proteins have been linked to several diseases, including cancer. Using publicly available data we found that the increased expression levels of the nuclear protein Lamin A/C correlate with a reduced overall survival in The Cancer Genome Atlas Research Network (TCGA) patients affected by glioblastoma multiforme (GBM). We show that the expression of the LMNA gene is linked to the enrichment of cancer-related pathways, particularly pathways related to cell adhesion and cell migration. Mimicking the modulation of LMNA in a GBM preclinical cancer model, we confirmed both in vitro and in vivo that the increased expression of LMNA is associated with an increased aggressiveness and tumorigenicity. In addition, delving into the possible mechanism behind LMNA-induced GBM aggressiveness and tumorigenicity, we found that the mTORC2 component, Rictor, plays a central role in mediating these effects.
Collapse
Affiliation(s)
- Giuliana Gatti
- Department of Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
| | - Laura Vilardo
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Carla Musa
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
| | - Chiara Di Pietro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Fabrizio Bonaventura
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Ferdinando Scavizzi
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Barbara Bucci
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Raffaele Saporito
- UOC Clinical Pathology, San Pietro Hospital FBF, 00189 Rome, Italy; (B.B.); (R.S.)
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi Montalcini”, 00161 Rome, Italy;
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology (IBBC), CNR, 00015 Monterotondo, Italy; (C.D.P.); (F.B.); (F.S.); (A.T.); (F.D.S.); (M.R.)
| | - Loredana Guglielmi
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| | - Igea D’Agnano
- Institute for Biomedical Technologies (ITB), CNR, 20054 Segrate, Italy; (L.V.); (C.M.)
- Correspondence: (L.G.); (I.D.)
| |
Collapse
|
37
|
Applications of CRISPR-Cas9 Technology to Genome Editing in Glioblastoma Multiforme. Cells 2021; 10:cells10092342. [PMID: 34571991 PMCID: PMC8468137 DOI: 10.3390/cells10092342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is an aggressive malignancy of the brain and spinal cord with a poor life expectancy. The low survivability of GBM patients can be attributed, in part, to its heterogeneity and the presence of multiple genetic alterations causing rapid tumor growth and resistance to conventional therapy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated (Cas) nuclease 9 (CRISPR-Cas9) system is a cost-effective and reliable gene editing technology, which is widely used in cancer research. It leads to novel discoveries of various oncogenes that regulate autophagy, angiogenesis, and invasion and play important role in pathogenesis of various malignancies, including GBM. In this review article, we first describe the principle and methods of delivery of CRISPR-Cas9 genome editing. Second, we summarize the current knowledge and major applications of CRISPR-Cas9 to identifying and modifying the genetic regulators of the hallmark of GBM. Lastly, we elucidate the major limitations of current CRISPR-Cas9 technology in the GBM field and the future perspectives. CRISPR-Cas9 genome editing aids in identifying novel coding and non-coding transcriptional regulators of the hallmarks of GBM particularly in vitro, while work using in vivo systems requires further investigation.
Collapse
|
38
|
Zhang GL, Wang CF, Qian C, Ji YX, Wang YZ. Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells 2021; 13:877-893. [PMID: 34367482 PMCID: PMC8316865 DOI: 10.4252/wjsc.v13.i7.877] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Gui-Long Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Chuan-Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Cheng Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Yun-Xiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| | - Ye-Zhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, Guangdong Province, China
| |
Collapse
|
39
|
Terrié E, Déliot N, Benzidane Y, Harnois T, Cousin L, Bois P, Oliver L, Arnault P, Vallette F, Constantin B, Coronas V. Store-Operated Calcium Channels Control Proliferation and Self-Renewal of Cancer Stem Cells from Glioblastoma. Cancers (Basel) 2021; 13:cancers13143428. [PMID: 34298643 PMCID: PMC8307764 DOI: 10.3390/cancers13143428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Glioblastoma is a high-grade primary brain tumor that contains a subpopulation of cells called glioblastoma stem cells, which are responsible for tumor initiation, growth and recurrence after treatment. Recent transcriptomic studies have highlighted that calcium pathways predominate in glioblastoma stem cells. Calcium channels have the ability to transduce signals from the microenvironment and are therefore ideally placed to control cellular behavior. Using multiple approaches, we demonstrate in five different primary cultures, previously derived from surgical specimens, that glioblastoma stem cells express store-operated channels (SOC) that support calcium entry into these cells. Pharmacological inhibition of SOC dramatically reduces cell proliferation and stem cell self-renewal in these cultures. By identifying SOC as a critical mechanism involved in the maintenance of the stem cell population in glioblastoma, our study will contribute to the framework for the identification of new therapies against this deadly tumor. Abstract Glioblastoma is the most frequent and deadly form of primary brain tumors. Despite multimodal treatment, more than 90% of patients experience tumor recurrence. Glioblastoma contains a small population of cells, called glioblastoma stem cells (GSC) that are highly resistant to treatment and endowed with the ability to regenerate the tumor, which accounts for tumor recurrence. Transcriptomic studies disclosed an enrichment of calcium (Ca2+) signaling transcripts in GSC. In non-excitable cells, store-operated channels (SOC) represent a major route of Ca2+ influx. As SOC regulate the self-renewal of adult neural stem cells that are possible cells of origin of GSC, we analyzed the roles of SOC in cultures of GSC previously derived from five different glioblastoma surgical specimens. Immunoblotting and immunocytochemistry experiments showed that GSC express Orai1 and TRPC1, two core SOC proteins, along with their activator STIM1. Ca2+ imaging demonstrated that SOC support Ca2+ entries in GSC. Pharmacological inhibition of SOC-dependent Ca2+ entries decreased proliferation, impaired self-renewal, and reduced expression of the stem cell marker SOX2 in GSC. Our data showing the ability of SOC inhibitors to impede GSC self-renewal paves the way for a strategy to target the cells considered responsible for conveying resistance to treatment and tumor relapse.
Collapse
Affiliation(s)
- Elodie Terrié
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Nadine Déliot
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Yassine Benzidane
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Thomas Harnois
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Laëtitia Cousin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - Patrick Bois
- EA 4379, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France;
| | - Lisa Oliver
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
| | - Patricia Arnault
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
| | - François Vallette
- CRCINA-UMR 1232 INSERM, Université de Nantes, CEDEX 01, 44007 Nantes, France; (L.O.); (F.V.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Bruno Constantin
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
| | - Valérie Coronas
- CNRS ERL 7003, Signalisation et Transports Ioniques Membranaires, University of Poitiers, CEDEX 09, 86073 Poitiers, France; (E.T.); (N.D.); (Y.B.); (T.H.); (L.C.); (P.A.); (B.C.)
- CNRS GDR3697, Micronit “Microenvironment of Tumor Niches”, 37000 Tours, France
- Correspondence: ; Tel.: +33-(0)5-49-45-36-55
| |
Collapse
|
40
|
Keyvani-Ghamsari S, Khorsandi K, Rasul A, Zaman MK. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics 2021; 13:120. [PMID: 34051847 PMCID: PMC8164819 DOI: 10.1186/s13148-021-01107-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
At present, after extensive studies in the field of cancer, cancer stem cells (CSCs) have been proposed as a major factor in tumor initiation, progression, metastasis, and recurrence. CSCs are a subpopulation of bulk tumors, with stem cell-like properties and tumorigenic capabilities, having the abilities of self-renewal and differentiation, thereby being able to generate heterogeneous lineages of cancer cells and lead to resistance toward anti-tumor treatments. Highly resistant to conventional chemo- and radiotherapy, CSCs have heterogeneity and can migrate to different organs and metastasize. Recent studies have demonstrated that the population of CSCs and the progression of cancer are increased by the deregulation of different epigenetic pathways having effects on gene expression patterns and key pathways connected with cell proliferation and survival. Further, epigenetic modifications (DNA methylation, histone modifications, and RNA methylations) have been revealed to be key drivers in the formation and maintenance of CSCs. Hence, identifying CSCs and targeting epigenetic pathways therein can offer new insights into the treatment of cancer. In the present review, recent studies are addressed in terms of the characteristics of CSCs, the resistance thereof, and the factors influencing the development thereof, with an emphasis on different types of epigenetic changes in genes and main signaling pathways involved therein. Finally, targeted therapy for CSCs by epigenetic drugs is referred to, which is a new approach in overcoming resistance and recurrence of cancer.
Collapse
Affiliation(s)
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.
| | - Azhar Rasul
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Khatir Zaman
- Department of Biotechnology, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| |
Collapse
|
41
|
Chai ZT, Zhang XP, Ao JY, Zhu XD, Wu MC, Lau WY, Sun HC, Cheng SQ. AXL Overexpression in Tumor-Derived Endothelial Cells Promotes Vessel Metastasis in Patients With Hepatocellular Carcinoma. Front Oncol 2021; 11:650963. [PMID: 34123800 PMCID: PMC8191462 DOI: 10.3389/fonc.2021.650963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Portal vein tumor thrombus (PVTT) is one of the most serious forms of hepatocellular carcinoma (HCC) vessel metastasis and has a poor survival rate. However, the molecular mechanism of PVTT has not yet been elucidated. In this study, the molecular mechanism of AXL expressed in tumor-derived endothelial cells (TECs) in vessel metastasis was investigated. High AXL expression was observed in TECs, but not in the tumor cells of HCC patients with PVTT and this was associated with poor overall survival (OS) and disease-free survival (DFS). AXL overexpression was positively associated with CD 31 expression both in vitro and in vivo. AXL promoted the cell proliferation, tube formation, and migration of both TECs and normal endothelial cells (NECs). High expression of AXL in TECs promoted the cell migration, but not the proliferation of HCC cells. Further studies demonstrated that AXL promoted cell migration and tube formation through activation of the PI3K/AKT/SOX2/DKK-1 axis. AXL overexpression in HUVECs promoted tumor growth and liver or vessel metastasis of HCC in xenograft nude mice, which could be counteracted by treatment with R428, an AXL inhibitor. R428 reduced tumor growth and CD 31 expression in HCC in PDX xenograft nude mice. Therefore, AXL over-expression in TECs promotes vessel metastasis of HCC, which indicates that AXL in TECs could be a potential therapeutic target in HCC patients with PVTT.
Collapse
Affiliation(s)
- Zong-Tao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiu-Ping Zhang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian-Yang Ao
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan Yee Lau
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Marqués-Torrejón MÁ, Williams CAC, Southgate B, Alfazema N, Clements MP, Garcia-Diaz C, Blin C, Arranz-Emparan N, Fraser J, Gammoh N, Parrinello S, Pollard SM. LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nat Commun 2021; 12:2594. [PMID: 33972529 PMCID: PMC8110534 DOI: 10.1038/s41467-021-22813-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/26/2021] [Indexed: 01/17/2023] Open
Abstract
Adult neural stem cells (NSCs) must tightly regulate quiescence and proliferation. Single-cell analysis has suggested a continuum of cell states as NSCs exit quiescence. Here we capture and characterize in vitro primed quiescent NSCs and identify LRIG1 as an important regulator. We show that BMP-4 signaling induces a dormant non-cycling quiescent state (d-qNSCs), whereas combined BMP-4/FGF-2 signaling induces a distinct primed quiescent state poised for cell cycle re-entry. Primed quiescent NSCs (p-qNSCs) are defined by high levels of LRIG1 and CD9, as well as an interferon response signature, and can efficiently engraft into the adult subventricular zone (SVZ) niche. Genetic disruption of Lrig1 in vivo within the SVZ NSCs leads an enhanced proliferation. Mechanistically, LRIG1 primes quiescent NSCs for cell cycle re-entry and EGFR responsiveness by enabling EGFR protein levels to increase but limiting signaling activation. LRIG1 is therefore an important functional regulator of NSC exit from quiescence.
Collapse
Affiliation(s)
| | - Charles A C Williams
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Benjamin Southgate
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Neza Alfazema
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Claudia Garcia-Diaz
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Carla Blin
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Nerea Arranz-Emparan
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK
| | - Jane Fraser
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Noor Gammoh
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, University College London, London, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine & Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
43
|
Bressan RB, Southgate B, Ferguson KM, Blin C, Grant V, Alfazema N, Wills JC, Marques-Torrejon MA, Morrison GM, Ashmore J, Robertson F, Williams CAC, Bradley L, von Kriegsheim A, Anderson RA, Tomlinson SR, Pollard SM. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell 2021; 28:877-893.e9. [PMID: 33631116 PMCID: PMC8110245 DOI: 10.1016/j.stem.2021.01.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023]
Abstract
Point mutations within the histone H3.3 are frequent in aggressive childhood brain tumors known as pediatric high-grade gliomas (pHGGs). Intriguingly, distinct mutations arise in discrete anatomical regions: H3.3-G34R within the forebrain and H3.3-K27M preferentially within the hindbrain. The reasons for this contrasting etiology are unknown. By engineering human fetal neural stem cell cultures from distinct brain regions, we demonstrate here that cell-intrinsic regional identity provides differential responsiveness to each mutant that mirrors the origins of pHGGs. Focusing on H3.3-G34R, we find that the oncohistone supports proliferation of forebrain cells while inducing a cytostatic response in the hindbrain. Mechanistically, H3.3-G34R does not impose widespread transcriptional or epigenetic changes but instead impairs recruitment of ZMYND11, a transcriptional repressor of highly expressed genes. We therefore propose that H3.3-G34R promotes tumorigenesis by focally stabilizing the expression of key progenitor genes, thereby locking initiating forebrain cells into their pre-existing immature state.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen 2200, Denmark
| | - Benjamin Southgate
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Kirsty M Ferguson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Carla Blin
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Vivien Grant
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neza Alfazema
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jimi C Wills
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Maria Angeles Marques-Torrejon
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Gillian M Morrison
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - James Ashmore
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Faye Robertson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Charles A C Williams
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Leanne Bradley
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Tomlinson
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute for Stem Cell Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M Pollard
- Centre for Regenerative Medicine and Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Cancer Research UK Edinburgh Centre, University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
44
|
Chen B, McCuaig-Walton D, Tan S, Montgomery AP, Day BW, Kassiou M, Munoz L, Recasens A. DYRK1A Negatively Regulates CDK5-SOX2 Pathway and Self-Renewal of Glioblastoma Stem Cells. Int J Mol Sci 2021; 22:4011. [PMID: 33924599 PMCID: PMC8069695 DOI: 10.3390/ijms22084011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma display vast cellular heterogeneity, with glioblastoma stem cells (GSCs) at the apex. The critical role of GSCs in tumour growth and resistance to therapy highlights the need to delineate mechanisms that control stemness and differentiation potential of GSC. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) regulates neural progenitor cell differentiation, but its role in cancer stem cell differentiation is largely unknown. Herein, we demonstrate that DYRK1A kinase is crucial for the differentiation commitment of glioblastoma stem cells. DYRK1A inhibition insulates the self-renewing population of GSCs from potent differentiation-inducing signals. Mechanistically, we show that DYRK1A promotes differentiation and limits stemness acquisition via deactivation of CDK5, an unconventional kinase recently described as an oncogene. DYRK1A-dependent inactivation of CDK5 results in decreased expression of the stemness gene SOX2 and promotes the commitment of GSC to differentiate. Our investigations of the novel DYRK1A-CDK5-SOX2 pathway provide further insights into the mechanisms underlying glioblastoma stem cell maintenance.
Collapse
Affiliation(s)
- Brianna Chen
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Dylan McCuaig-Walton
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Sean Tan
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Andrew P. Montgomery
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (A.P.M.); (M.K.)
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia;
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; (A.P.M.); (M.K.)
| | - Lenka Munoz
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| | - Ariadna Recasens
- Charles Perkins Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.C.); (D.M.-W.); (S.T.)
| |
Collapse
|
45
|
Saenz-Antoñanzas A, Moncho-Amor V, Auzmendi-Iriarte J, Elua-Pinin A, Rizzoti K, Lovell-Badge R, Matheu A. CRISPR/Cas9 Deletion of SOX2 Regulatory Region 2 ( SRR2) Decreases SOX2 Malignant Activity in Glioblastoma. Cancers (Basel) 2021; 13:cancers13071574. [PMID: 33805518 PMCID: PMC8037847 DOI: 10.3390/cancers13071574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding how SOX2, a major driver of cancer stem cells, is regulated in cancer cells is relevant to tackle tumorigenesis. In this study, we deleted the SRR2 regulatory region in glioblastoma cells. Our data confirm that the SRR2 enhancer regulates SOX2 expression in cancer and reveal that SRR2 deletion halts malignant activity of SOX2. Abstract SOX2 is a transcription factor associated with stem cell activity in several tissues. In cancer, SOX2 expression is increased in samples from several malignancies, including glioblastoma, and high SOX2 levels are associated with the population of tumor-initiating cells and with poor patient outcome. Therefore, understanding how SOX2 is regulated in cancer cells is relevant to tackle tumorigenesis. The SOX2 regulatory region 2(SRR2) is located downstream of the SOX2 coding region and mediates SOX2 expression in embryonic and adult stem cells. In this study, we deleted SRR2 using CRISPR/Cas9 in glioblastoma cells. Importantly, SRR2-deleted glioblastoma cells presented reduced SOX2 expression and decreased proliferative activity and self-renewal capacity in vitro. In line with these results, SRR2-deleted glioblastoma cells displayed decreased tumor initiation and growth in vivo. These effects correlated with an elevation of p21CIP1 cell cycle and p27KIP1 quiescence regulators. In conclusion, our data reveal that SRR2 deletion halts malignant activity of SOX2 and confirms that the SRR2 enhancer regulates SOX2 expression in cancer.
Collapse
Affiliation(s)
- Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
| | - Veronica Moncho-Amor
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Jaione Auzmendi-Iriarte
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
| | - Alejandro Elua-Pinin
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
- Donostia Hospital, 20014 San Sebastian, Spain
| | - Karine Rizzoti
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Robin Lovell-Badge
- Stem Cell Biology and Developmental Genetics Lab, The Francis Crick Institute, London NW1 1AT, UK; (V.M.-A.); (K.R.); (R.L.-B.)
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain; (A.S.-A.); (J.A.-I.); (A.E.-P.)
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Correspondence:
| |
Collapse
|
46
|
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, Zhong J, Zhao Z, Zhao K, Liu D, Xiao F, Xu Q, Jiang T, Li B, Cheng SY, Zhang N. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nat Cell Biol 2021; 23:278-291. [PMID: 33664496 DOI: 10.1038/s41556-021-00639-4] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Activated EGFR signalling drives tumorigenicity in 50% of glioblastoma (GBM). However, EGFR-targeting therapy has proven ineffective in treating patients with GBM, indicating that there is redundant EGFR activation. Circular RNAs are covalently closed RNA transcripts that are involved in various physiological and pathological processes. Herein, we report an additional activation mechanism of EGFR signalling in GBM by an undescribed secretory E-cadherin protein variant (C-E-Cad) encoded by a circular E-cadherin (circ-E-Cad) RNA through multiple-round open reading frame translation. C-E-Cad is overexpressed in GBM and promotes glioma stem cell tumorigenicity. C-E-Cad activates EGFR independent of EGF through association with the EGFR CR2 domain using a unique 14-amino-acid carboxy terminus, thereby maintaining glioma stem cell tumorigenicity. Notably, inhibition of C-E-Cad markedly enhances the antitumour activity of therapeutic anti-EGFR strategies in GBM. Our results uncover a critical role of C-E-Cad in stimulating EGFR signalling and provide a promising approach for treating EGFR-driven GBM.
Collapse
Affiliation(s)
- Xinya Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xin Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Fanying Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Maolei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Huangkai Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
- Gene Denovo Biotechnology (Guangzhou), Guangzhou, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Dawei Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Feizhe Xiao
- Department of Scientific Research Section, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiang Xu
- GenomiCare Biotechnology (Shanghai), Shanghai, China
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shi-Yuan Cheng
- The Ken and Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China.
| |
Collapse
|
47
|
Mamun MA, Mannoor K, Cao J, Qadri F, Song X. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. J Mol Cell Biol 2021; 12:85-98. [PMID: 30517668 PMCID: PMC7109607 DOI: 10.1093/jmcb/mjy080] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs), a minor subpopulation of tumor bulks with self-renewal and seeding capacity to generate new tumors, posit a significant challenge to develop effective and long-lasting anti-cancer therapies. The emergence of drug resistance appears upon failure of chemo-/radiation therapy to eradicate the CSCs, thereby leading to CSC-mediated clinical relapse. Accumulating evidence suggests that transcription factor SOX2, a master regulator of embryonic and induced pluripotent stem cells, drives cancer stemness, fuels tumor initiation, and contributes to tumor aggressiveness through major drug resistance mechanisms like epithelial-to-mesenchymal transition, ATP-binding cassette drug transporters, anti-apoptotic and/or pro-survival signaling, lineage plasticity, and evasion of immune surveillance. Gaining a better insight and comprehensive interrogation into the mechanistic basis of SOX2-mediated generation of CSCs and treatment failure might therefore lead to new therapeutic targets involving CSC-specific anti-cancer strategies.
Collapse
Affiliation(s)
- Mahfuz Al Mamun
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Kaiissar Mannoor
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Jun Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Firdausi Qadri
- Oncology Laboratory, Institute for Developing Science & Health Initiatives (ideSHi), Dhaka, Bangladesh
| | - Xiaoyuan Song
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Brain Function and Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
48
|
Ferrer AI, Trinidad JR, Sandiford O, Etchegaray JP, Rameshwar P. Epigenetic dynamics in cancer stem cell dormancy. Cancer Metastasis Rev 2021; 39:721-738. [PMID: 32394305 DOI: 10.1007/s10555-020-09882-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains one of the most challenging diseases despite significant advances of early diagnosis and therapeutic treatments. Cancerous tumors are composed of various cell types including cancer stem cells capable of self-renewal, proliferation, differentiation, and invasion of distal tumor sites. Most notably, these cells can enter a dormant cellular state that is resistant to conventional therapies. Thereby, cancer stem cells have the intrinsic potential for tumor initiation, tumor growth, metastasis, and tumor relapse after therapy. Both genetic and epigenetic alterations are attributed to the formation of multiple tumor types. This review is focused on how epigenetic dynamics involving DNA methylation and DNA oxidations are implicated in breast cancer and glioblastoma multiforme. The emergence and progression of these cancer types rely on cancer stem cells with the capacity to enter quiescence also known as a dormant cellular state, which dictates the distinct tumorigenic aggressiveness between breast cancer and glioblastomas.
Collapse
Affiliation(s)
- Alejandra I Ferrer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jonathan R Trinidad
- Department of Biological Sciences, Rutgers University, Newark, NJ, 07102, USA
| | - Oleta Sandiford
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | | | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
49
|
Novel pyrano 1,3 oxazine based ligand inhibits the epigenetic reader hBRD2 in glioblastoma. Biochem J 2020; 477:2263-2279. [PMID: 32484211 DOI: 10.1042/bcj20200339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain malignancy, rarely amenable to treatment with a high recurrence rate. GBM are prone to develop resistance to the current repertoire of drugs, including the first-line chemotherapeutic agents with frequent recurrence, limiting therapeutic success. Recent clinical data has evidenced the BRD2 and BRD4 of the BET family proteins as the new druggable targets against GBM. In this relevance, we have discovered a compound (pyrano 1,3 oxazine derivative; NSC 328111; NS5) as an inhibitor of hBRD2 by the rational structure-based approach. The crystal structure of the complex, refined to 1.5 Å resolution, revealed that the NS5 ligand significantly binds to the N-terminal bromodomain (BD1) of BRD2 at the acetylated (Kac) histone binding site. The quantitative binding studies, by SPR and MST assay, indicate that NS5 binds to BD1 of BRD2 with a KD value of ∼1.3 µM. The cell-based assay, in the U87MG glioma cells, confirmed that the discovered compound NS5 significantly attenuated proliferation and migration. Furthermore, evaluation at the translational level established significant inhibition of BRD2 upon treatment with NS5. Hence, we propose that the novel lead compound NS5 has an inhibitory effect on BRD2 in glioblastoma.
Collapse
|
50
|
Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol 2020; 67:154-167. [PMID: 32905832 DOI: 10.1016/j.semcancer.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/10/2019] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
SOX2 is a pleiotropic nuclear transcription factor with major roles in stem cell biology and in development. Over the last 10 years SOX2 has also been implicated as a lineage-specific oncogene, notably in squamous carcinomas but also neurological tumours, particularly glioblastoma. Squamous carcinomas (SQCs) comprise a common group of malignancies for which there are no targeted therapeutic interventions. In this article we review the molecular epidemiological and laboratory evidence linking SOX2 with squamous carcinogenesis, explore in detail the multifaceted impact of SOX2 in SQC, describe areas of uncertainty and highlight areas for potential future research.
Collapse
Affiliation(s)
- Linsey Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|