1
|
Moreno-Jiménez S, Lopez-Cantillo G, Arevalo-Romero JA, Perdomo-Arciniegas AM, Moreno-Gonzalez AM, Devia-Mejia B, Camacho BA, Gómez-Puertas P, Ramirez-Segura CA. An engineered miniACE2 protein secreted by mesenchymal stromal cells effectively neutralizes multiple SARS-CoV- 2 variants in vitro. Mol Med 2025; 31:151. [PMID: 40269697 PMCID: PMC12016477 DOI: 10.1186/s10020-025-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/27/2025] [Indexed: 04/25/2025] Open
Abstract
SARS-CoV- 2 continues to evolve, producing novel Omicron subvariants through recombinant lineages that acquire new mutations, undermining existing antiviral strategies. The viral fitness and adaptive potential of SARS-CoV- 2 present significant challenges to emergency treatments, particularly monoclonal antibodies, which demonstrate reduced efficacy with the emergence of each new variant. Consequently, immunocompromised individuals, who are more susceptible to severe manifestations of COVID- 19 and face heightened risks of critical complications and mortality, remain vulnerable in the absence of effective emergency treatments. To develop translational approaches that can benefit this at-risk population and establish broader therapeutic strategies applicable across variants, we previously designed and engineered in silico miniACE2 decoys (designated BP2, BP9, and BP11). These decoys demonstrated promising efficacy in neutralizing Omicron subvariants. In this study, we leveraged the therapeutic potential of mesenchymal stromal cells (MSCs) for tissue repair and immunomodulation in lung injuries and used these cells as a platform for the secretion of BP2. Our innovative assays, which were conducted with the BP2 protein secreted into the culture supernatant of BP2-MSCs, demonstrated the potential for neutralizing SARS-CoV- 2, including Omicron subvariants. The development of these advanced therapeutic platforms holds significant promise for scalability to effectively mitigate the impact of severe COVID- 19, contributing to broader and more resilient treatment strategies against the evolving landscape of SARS-CoV- 2 variants.
Collapse
Affiliation(s)
- Sara Moreno-Jiménez
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Gina Lopez-Cantillo
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Jenny Andrea Arevalo-Romero
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
- Research and Innovation Area, Laboratorio Nacional de Diagnostico Veterinario, Instituto Colombiano Agropecuario, 110221, Bogotá, Colombia
| | - Ana María Perdomo-Arciniegas
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Andrea Marisol Moreno-Gonzalez
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bellaneth Devia-Mejia
- Banco de Sangre de Cordón Umbilical, BSCU, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia
| | - Paulino Gómez-Puertas
- Grupo de Modelado Molecular del Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain
| | - Cesar A Ramirez-Segura
- Unidad de Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, Colombia.
| |
Collapse
|
2
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Kuzmina DM, Nikitochkina SY, Mukhina IV, Vorotelyak EA, Vasiliev AV. Preclinical Evaluation of the Safety, Toxicity and Efficacy of Genetically Modified Wharton's Jelly Mesenchymal Stem/Stromal Cells Expressing the Antimicrobial Peptide SE-33. Cells 2025; 14:341. [PMID: 40072070 PMCID: PMC11898551 DOI: 10.3390/cells14050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer promising therapeutic potential in cell-based therapies for various diseases. However, the safety of genetically modified MSCs remains poorly understood. This study aimed to evaluate the general toxicity and safety of Wharton's Jelly-Derived MSCs (WJ-MSCs) engineered to express the antimicrobial peptide SE-33 in an animal model. Genetically modified WJ-MSCs expressing SE-33 were administered to C57BL/6 mice at both therapeutic and excessive doses, either once or repeatedly. Animal monitoring included mortality, clinical signs, and behavioral observations. The toxicity assessment involved histopathological, hematological, and biochemical analyses of major organs and tissues, while immunotoxicity and immunogenicity were examined through humoral and cellular immune responses, macrophage phagocytic activity, and lymphocyte blast transformation. Antimicrobial efficacy was evaluated in a Staphylococcus aureus-induced pneumonia model by monitoring animal mortality and assessing bacterial load and inflammatory processes in the lungs. Mice receiving genetically modified WJ-MSCs exhibited no acute or chronic toxicity, behavioral abnormalities, or pathological changes, regardless of the dose or administration frequency. No significant immunotoxicity or alterations in immune responses were observed, and there were no notable changes in hematological or biochemical serum parameters. Infected animals treated with WJ-MSC-SE33 showed a significant reduction in bacterial load and lung inflammation and improved survival compared to control groups, demonstrating efficacy over native WJ-MSCs. Our findings suggest that WJ-MSCs expressing SE-33 are well tolerated, displaying a favorable safety profile comparable to native WJ-MSCs and potent antimicrobial activity, significantly reducing bacterial load, inflammation, and mortality in an S. aureus pneumonia model. These data support the safety profile of WJ-MSCs expressing SE-33 as a promising candidate for cell-based therapies for bacterial infections, particularly those complicated by antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | | | - Victoria Alexandrovna Khotina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Sofya Yurievna Nikitochkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey Valentinovich Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| |
Collapse
|
3
|
Schultz IC, Dos Santos Pereira Andrade AC, Dubuc I, Laroche A, Allaeys I, Doré E, Bertrand N, Vallières L, Fradette J, Flamand L, Wink MR, Boilard E. Targeting Cytokines: Evaluating the Potential of Mesenchymal Stem Cell Derived Extracellular Vesicles in the Management of COVID-19. Stem Cell Rev Rep 2025; 21:564-580. [PMID: 39340739 DOI: 10.1007/s12015-024-10794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by virus SARS-CoV-2, is characterized by massive inflammation and immune system imbalance. Despite the implementation of vaccination protocols, the accessibility of treatment remains uneven. Furthermore, the persistent threat of new variants underscores the urgent need for expanded research into therapeutic options for SARS-CoV-2. Mesenchymal stem cells (MSCs) are known for their immunomodulatory potential through the release of molecules into the extracellular space, either as soluble elements or carried by extracellular vesicles (EVs). The aim of this study was to evaluate the anti-inflammatory potential of EVs obtained from human adipose tissue (ASC-EVs) against SARS-CoV-2 infection. ASC-EVs were purified by size-exclusion chromatography, and co-culture assays confirmed that ASC-EVs were internalized by human lung cells and could colocalize with SARS-CoV-2 into early and late endosomes. To determine the functionality of ASC-EVs, lung cells were infected with SARS-CoV-2 in the presence of increasing concentrations of ASC-EVs, and the release of cytokines, chemokines and viruses were measured. While SARS-CoV-2 replication was significantly reduced only at the highest concentrations tested, multiplex analysis highlighted that lower concentrations of ASC-EV sufficed to prevent the production of immune modulators. Importantly, ASC-EVs did not contain detectable inflammatory cytokines, nor did they trigger inflammatory mediators, nor affect cellular viability. In conclusion, this work suggests that ASC-EVs have the potential to attenuate inflammation by decreasing the production of pro-inflammatory cytokines in lung cells following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Claudia Dos Santos Pereira Andrade
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Dubuc
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Audrée Laroche
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Isabelle Allaeys
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Etienne Doré
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Nicolas Bertrand
- Axe Endocrinologie et Néphrologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Luc Vallières
- Axe Neurosciences, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de Chirurgie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
- Division of Regenerative Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
| | - Louis Flamand
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada
| | - Marcia Rosangela Wink
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Eric Boilard
- Axe Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, QC, Canada.
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Ma ZX, Wu XF, Cao L, Jiao CY, Ma DP, Zhao YH, Yang ZX, Hu M. Regenerative fibroblasts derived from autologous skin tissue for the treatment of Sjögren's syndrome: a case report. Front Immunol 2025; 16:1529883. [PMID: 39931068 PMCID: PMC11808821 DOI: 10.3389/fimmu.2025.1529883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Background Sjögren's syndrome (SS) is a systemic autoimmune disease, with major symptoms including dry mouth and dry eyes, for which there is no effective treatment. Recent studies have demonstrated that mesenchymal stem cells (MSCs) are effective in the treatment of SS, but the efficacy of allogeneic MSCs is affected by variability among different cell donors, and they are easily cleared by the immune system of the recipient. Autologous MSCs are one of the ideal options for the treatment of SS; however, their function decreases with age. Regenerative fibroblast (rFib) is a type of new MSC obtained through chemical reprogramming technology from skin fibroblasts. In this study, we report the safety and efficacy of intravenous infusion of autologous rFib in a volunteer with SS. Case report In March 2021, the volunteer was diagnosed with SS due to positive anti-SSB antibodies, lymphocyte infiltration in the lip gland, dry eyes, and a large area of purpura in both lower limbs. From May 2021 to November 2022, she received allogeneic Umbilical cord mesenchymal stem cells (UCMSC) therapy (5.0 × 107 UCMSCs per time, totaling 10 infusions), but her condition did not improve. In May 2023, the rFib for the volunteer was prepared, meeting the quality standard of T/CSCB0003-2021 Human Mesenchymal Stem Cells. Between October 2023 and June 2024, the volunteer received a total of 12 intravenous transfusions of autologous rFib. After the treatments, the volunteer experienced no recurrence of purpura in both lower limbs. Symptoms of dry mouth, dry eyes, and fatigue were relieved. ESR, B lymphocytes, rheumatoid factor IgM, and IgA declined, while the proportion of NK cells increased, and most of the cytokines returned to normal levels. In vitro experiments showed that rFib could significantly inhibit the proliferation of T lymphocytes after PHA stimulation. No adverse effects were associated with the use of rFib in the volunteer during the clinical trial. Summary The results of this clinical trial indicate that intravenous injections of autologous rFib are both safe and effective for treating SS. Autologous rFib may be more suitable for treating autoimmune diseases than allogeneic MSCs.
Collapse
Affiliation(s)
- Zhao-Xia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, China
| | - Xing-Fei Wu
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Li Cao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Cheng-Yan Jiao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Dai-Ping Ma
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Yun-Hui Zhao
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Zhi-Xing Yang
- Production Department, Yunnan Jici Institute for Regenerative Medicine Co., Ltd, Kunming, Yunnan, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, China
- Research and Development Department, Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Gonzalez-Sanchez FA, Sanchez-Huerta TM, Huerta-Gonzalez A, Sepulveda-Villegas M, Altamirano J, Aguilar-Aleman JP, Garcia-Varela R. Diabetes current and future translatable therapies. Endocrine 2024; 86:865-881. [PMID: 38971945 DOI: 10.1007/s12020-024-03944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic β-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.
Collapse
Affiliation(s)
- Fabio Antonio Gonzalez-Sanchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Triana Mayra Sanchez-Huerta
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Alexandra Huerta-Gonzalez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Maricruz Sepulveda-Villegas
- Departamento de Medicina Genómica y Hepatología, Hospital Civil de Guadalajara, "Fray Antonio Alcalde", Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Epigmenio González 500, San Pablo, 76130, Santiago de Queretaro, Qro, México
| | - Juan Pablo Aguilar-Aleman
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Ingenieria Biomedica, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Rebeca Garcia-Varela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México.
- Carbone Cancer Center, University of Wisconsin - Madison, 1111 Highland Ave, Wisconsin, 53705, Madison, USA.
| |
Collapse
|
6
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
7
|
Gładyś A, Mazurski A, Czekaj P. Potential Consequences of the Use of Adipose-Derived Stem Cells in the Treatment of Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7806. [PMID: 39063048 PMCID: PMC11277008 DOI: 10.3390/ijms25147806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks as the most prevalent of primary liver cancers and stands as the third leading cause of cancer-related deaths. Early-stage HCC can be effectively managed with available treatment modalities ranging from invasive techniques, such as liver resection and thermoablation, to systemic therapies primarily employing tyrosine kinase inhibitors. Unfortunately, these interventions take a significant toll on the body, either through physical trauma or the adverse effects of pharmacotherapy. Consequently, there is an understandable drive to develop novel HCC therapies. Adipose-derived stem cells (ADSCs) are a promising therapeutic tool. Their facile extraction process, coupled with the distinctive immunomodulatory capabilities of their secretome, make them an intriguing subject for investigation in both oncology and regenerative medicine. The factors they produce are both enzymes affecting the extracellular matrix (specifically, metalloproteinases and their inhibitors) as well as cytokines and growth factors affecting cell proliferation and invasiveness. So far, the interactions observed with various cancer cell types have not led to clear conclusions. The evidence shows both inhibitory and stimulatory effects on tumor growth. Notably, these effects appear to be dependent on the tumor type, prompting speculation regarding their potential inhibitory impact on HCC. This review briefly synthesizes findings from preclinical and clinical studies examining the effects of ADSCs on cancers, with a specific focus on HCC, and emphasizes the need for further research.
Collapse
Affiliation(s)
- Aleksandra Gładyś
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Adam Mazurski
- Students Scientific Society, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
| |
Collapse
|
8
|
Osborn E, Ransom JT, Shulman A, Sengupta V, Choudhry M, Hafiz A, Gooden J, Lightner AL. A novel extracellular vesicle paradigm for the treatment of COVID-19 induced acute respiratory distress syndrome (ARDS). Respir Med Case Rep 2024; 51:102087. [PMID: 39099663 PMCID: PMC11295994 DOI: 10.1016/j.rmcr.2024.102087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/08/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Efficacy of mesenchymal stem cells (MSCs) for treatment of acute respiratory distress syndrome (ARDS) suggests bioactive bone marrow MSC extracellular vesicles (BM-MSC EVs) may be effective. A patient with severe COVID-19 associated ARDS who was presumed to expire was treated with a BM-MSC EV preparation (14 doses over two months) as a rescue treatment for refractory COVID ARDS. Near complete reversal of lung inflammation and fibrosis (per computed tomography), near complete restoration of mobility, hospital discharge (3 months) with resumption of normal activities of daily living (one year) and return to work occurred. No adverse events occurred despite repeated dosing of investigational product, highlighting safety of this potential therapy for ARDS.
Collapse
Affiliation(s)
- Erik Osborn
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | | | | | | | | | - Ali Hafiz
- Mary Washington Healthcare, Fredericksburg, VA, USA
| | - Jacob Gooden
- Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | | |
Collapse
|
9
|
Shao HH, Yin RX. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol Med 2024; 30:92. [PMID: 38898389 PMCID: PMC11186295 DOI: 10.1186/s10020-024-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND COVID-19 is a new infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2). Since the outbreak in December 2019, it has caused an unprecedented world pandemic, leading to a global human health crisis. Although SARS CoV-2 mainly affects the lungs, causing interstitial pneumonia and severe acute respiratory distress syndrome, a number of patients often have extensive clinical manifestations, such as gastrointestinal symptoms, cardiovascular damage and renal dysfunction. PURPOSE This review article discusses the pathogenic mechanisms of cardiovascular damage in COVID-19 patients and provides some useful suggestions for future clinical diagnosis, treatment and prevention. METHODS An English-language literature search was conducted in PubMed and Web of Science databases up to 12th April, 2024 for the terms "COVID-19", "SARS CoV-2", "cardiovascular damage", "myocardial injury", "myocarditis", "hypertension", "arrhythmia", "heart failure" and "coronary heart disease", especially update articles in 2023 and 2024. Salient medical literatures regarding the cardiovascular damage of COVID-19 were selected, extracted and synthesized. RESULTS The most common cardiovascular damage was myocarditis and pericarditis, hypertension, arrhythmia, myocardial injury and heart failure, coronary heart disease, stress cardiomyopathy, ischemic stroke, blood coagulation abnormalities, and dyslipidemia. Two important pathogenic mechanisms of the cardiovascular damage may be direct viral cytotoxicity as well as indirect hyperimmune responses of the body to SARS CoV-2 infection. CONCLUSIONS Cardiovascular damage in COVID-19 patients is common and portends a worse prognosis. Although the underlying pathophysiological mechanisms of cardiovascular damage related to COVID-19 are not completely clear, two important pathogenic mechanisms of cardiovascular damage may be the direct damage of the SARSCoV-2 infection and the indirect hyperimmune responses.
Collapse
Affiliation(s)
- Hong-Hua Shao
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China
| | - Rui-Xing Yin
- Department of Infectious Diseases, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, No. 1 Erli, Changgang Road, Nanning, Guangxi, 530023, People's Republic of China.
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|
10
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Wang C, Yang Y, Jiang C, Xi C, Yin Y, Wu H, Qian C. Exosomes Derived from hucMSCs Primed with IFN-γ Suppress the NF-κB Signal Pathway in LPS-Induced ALI by Modulating the miR-199b-5p/AFTPH Axis. Cell Biochem Biophys 2024; 82:647-658. [PMID: 38216808 DOI: 10.1007/s12013-023-01208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Exosomes (exos) are primarily responsible for the process of mesenchymal stem cells (MSCs) treatment for acute lung injury (ALI), but the mechanism remains unclear, particularly in altered microenvironment. Therefore, this study aimed to investigate the potential mechanism of exos derived from human umbilical cord mesenchymal stem cells (hucMSCs) primed with interferon-gamma (IFN-γ) on ALI and to propose a promising and cell-free strategy. This study extracted exos from hucMSCs supernatant primed and unprimed with IFN-γ marked with IFN-γ-exos and CON-exos, which were identified and traced. IFN-γ-exos administration to ALI models suppressed the NF-κB signaling pathway compared to CON-exos, which were quantified through western blot and immunohistochemical staining. Reverse transcription-quantitative polymerase chain reaction validated miR-199b-5p expression in the IFN-γ-exos and CON-exos treatment groups. Data analysis, a dual-luciferase reporter assay, and cell transfection were conducted to investigate the target binding between miR-199b-5p and Aftiphilin (AFTPH), with AFTPH expression analyzed via cell immunofluorescence and western blot. Co-immunoprecipitation was conducted for the interaction between AFTPH and NF-κB p65. The result revealed that miR-199b-5p was down-regulated in the IFN-γ-exos treatment group, which had a target binding site with AFTPH, and an interaction with NF-κB p65. Consequently, IFN-γ-exos inhibited the NF-κB signaling pathway in ALI in vitro and in vivo through the miR-199b-5p/AFTPH axis. Our results demonstrated new directions of novel and targeted treatment for ALI.
Collapse
Affiliation(s)
- Chun Wang
- Kunming Medical University, Kunming, Yunnan, China
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiran Yang
- Kunming Medical University, Kunming, Yunnan, China
| | - Chen Jiang
- Kunming Medical University, Kunming, Yunnan, China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yunxiang Yin
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haiying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Chuanyun Qian
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Li J, He S, Yang H, Zhang L, Xiao J, Liang C, Liu S. The Main Mechanisms of Mesenchymal Stem Cell-Based Treatments against COVID-19. Tissue Eng Regen Med 2024; 21:545-556. [PMID: 38573476 PMCID: PMC11087407 DOI: 10.1007/s13770-024-00633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.
Collapse
Affiliation(s)
- Jinling Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Laboratory of Basic Medicine Center, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Shipei He
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Hang Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Lizeai Zhang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Jie Xiao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Chaoyi Liang
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China
| | - Sijia Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine and Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
- Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Shuangyong Road, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
13
|
Guo M, Li S, Li C, Mao X, Tian L, Yang X, Xu C, Zeng M. Overexpression of Wnt5a promoted the protective effect of mesenchymal stem cells on Lipopolysaccharide-induced endothelial cell injury via activating PI3K/AKT signaling pathway. BMC Infect Dis 2024; 24:335. [PMID: 38509522 PMCID: PMC10953236 DOI: 10.1186/s12879-024-09204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Lung endothelial barrier injury plays an important role in the pathophysiology of acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) therapy has shown promise in ARDS treatment and restoration of the impaired barrier function. It has been reported that Wnt5a shows protective effects on endothelial cells. Therefore, the study aimed to investigate whether overexpression of Wnt5a could promote the protective effects of MSCs on Lipopolysaccharide (LPS)-induced endothelial cell injury. METHODS To evaluate the protective effects of MSCs overexpressing Wnt5a, we assessed the migration, proliferation, apoptosis, and angiogenic ability of endothelial cells. We assessed the transcription of protective cellular factors using qPCR and determined the molecular mechanism using Western blot analysis. RESULTS Overexpression of Wnt5a upregulated the transcription of protective cellular factors in MSCs. Co-culture of MSCWnt5a promoted endothelial migration, proliferation and angiogenesis, and inhibited endothelial cell apoptosis through the PI3K/AKT pathway. CONCLUSIONS Overexpression of Wnt5a promoted the therapeutic effect of MSCs on endothelial cell injury through the PI3K/AKT signaling. Our study provides a novel approach for utilizing genetically modified MSCs in the transplantation therapy for ARDS.
Collapse
Grants
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 81670066 the National Natural Science Foundation of China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2016A020216009 the Major Science and Technology Planning Project of Guangdong Province, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- 2019A1515011198 the Guangdong Basic and Applied Basic Research Foundation, China
- the Guangdong Basic and Applied Basic Research Foundation, China (2024)
Collapse
Affiliation(s)
- Manliang Guo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shiqi Li
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Chuan Li
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Liru Tian
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Xintong Yang
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
14
|
Nasiri Z, Soleimanjahi H, Baheiraei N, Hashemi SM, Pourkarim MR. The impact understanding of exosome therapy in COVID-19 and preparations for the future approaches in dealing with infectious diseases and inflammation. Sci Rep 2024; 14:5724. [PMID: 38459174 PMCID: PMC10924089 DOI: 10.1038/s41598-024-56334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
Cytokine storms, which result from an abrupt, acute surge in the circulating levels of different pro-inflammatory cytokines, are one of the complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This study aimed to assess the effect of exosomes on the release of pro-inflammatory cytokines in patients with coronavirus disease 2019 (COVID-19) and compare it with a control group. The cytokines evaluated in this study were TNF-α, IL-6, IL-17, and IFN-γ. The study compared the levels of these pro-inflammatory cytokines in the peripheral blood mononuclear cells (PBMCs) of five COVID-19 patients in the intensive care unit, who were subjected to both inactivated SARS-CoV-2 and exosome therapy, with those of five healthy controls. The cytokine levels were quantified using the ELISA method. The collected data was analyzed in SPSS Version 26.0 and GraphPad Prism Version 9. According to the study findings, when PBMCs were exposed to inactivated SARS-CoV-2, pro-inflammatory cytokines increased in both patients and healthy controls. Notably, the cytokine levels were significantly elevated in the COVID-19 patients compared to the control group P-values were < 0.001, 0.001, 0.008, and 0.008 for TNF-α, IL-6, IL-17, and IFN-γ, respectively. Conversely, when both groups were exposed to exosomes, there was a marked reduction in the levels of pro-inflammatory cytokines. This suggests that exosome administration can effectively mitigate the hyperinflammation induced by COVID-19 by suppressing the production of pro-inflammatory cytokines in patients. These findings underscore the potential safety and efficacy of exosomes as a therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Zeynab Nasiri
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Nafiseh Baheiraei
- Department of Anatomical Science, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
15
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Huang X, Tan X, Xie X, Jiang T, Xiao Y, Liu Z. Successful salvage of a severe COVID-19 patient previously with lung cancer and radiation pneumonitis by mesenchymal stem cells: a case report and literature review. Front Immunol 2024; 15:1321236. [PMID: 38380312 PMCID: PMC10876893 DOI: 10.3389/fimmu.2024.1321236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
During the COVID-19 pandemic, elderly patients with underlying condition, such as tumors, had poor prognoses after progressing to severe pneumonia and often had poor response to standard treatment. Mesenchymal stem cells (MSCs) may be a promising treatment for patients with severe pneumonia, but MSCs are rarely used for patients with carcinoma. Here, we reported a 67-year-old female patient with lung adenocarcinoma who underwent osimertinib and radiotherapy and suffered from radiation pneumonitis. Unfortunately, she contracted COVID-19 and that rapidly progressed to severe pneumonia. She responded poorly to frontline treatment and was in danger. Subsequently, she received a salvage treatment with four doses of MSCs, and her symptoms surprisingly improved quickly. After a lung CT scan that presented with a significantly improved infection, she was discharged eventually. Her primary disease was stable after 6 months of follow-up, and no tumor recurrence or progression was observed. MSCs may be an effective treatment for hyperactive inflammation due to their ability related to immunomodulation and tissue repair. Our case suggests a potential value of MSCs for severe pneumonia that is unresponsive to conventional therapy after a COVID-19 infection. However, unless the situation is urgent, it needs to be considered with caution for patients with tumors. The safety in tumor patients still needs to be observed.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xin Tan
- Department of Rehabilitation Medicine, Southern Theater General Hospital, Guangzhou, China
| | - Xiuwen Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingshu Jiang
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Wang C, Jiang C, Yang Y, Xi C, Yin Y, Wu H, Qian C. Therapeutic potential of HUC-MSC-exos primed with IFN-γ against LPS-induced acute lung injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:375-382. [PMID: 38333754 PMCID: PMC10849211 DOI: 10.22038/ijbms.2023.74372.16156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 02/10/2024]
Abstract
Objectives Human umbilical cord mesenchymal stem cells (HUC-MSCs) are pluripotent stem cells with anti-inflammatory and immunomodulatory properties used in the treatment of acute lung injury (ALI). However, the treatment of ALI using exosomes derived from HUC-MSCs (HUC-MSC-exos) primed with interferon-gamma (IFN-γ-exos) has not been described. This study investigated the effects of IFN-γ-exos on ALI. Materials and Methods IFN-γ primed and unprimed HUC-MSC-exos (IFN-γ-exos and CON-exos, respectively) were extracted, identified, and traced. A549 cells and mice subjected to lipopolysaccharide (LPS)-induced inflammation were treated with IFN-γ-exos or CON-exos. Viability; interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and reactive oxygen species (ROS) levels; NF-κB p65, and NLRP3 expression and histology and lung injury scores were measured in cell, supernatant or lung tissue. Results Indoleamine 2,3-dioxygenase (IDO) mRNA expression was elevated in HUC-MSCs primed with 5 ng/mL IFN-γ (P<0.001), and IFN-γ-exos and CON-exos were successfully extracted. LPS-induced inflammation resulted in decreased cell viability in A549 cells, and increased IL-1β, IL-6, TNF-α and ROS levels and NF-κB p65 and NLRP3 expression in A549 cells and mice(P<0.05 to P<0.001). Treatment with IFN-γ-exos and CON-exos increased cell viability and decreased the concentrations of IL-1β, and ROS, expression of NF-κB p65 and NLRP3, and the lung injury score, and these effects were more obvious for IFN-γ-exos(P<0.05 to P<0.001). Conclusion IFN-γ-exos reduced oxidative stress and inflammatory responses in LPS-induced A549 cells and mice. The result demonstrated the therapeutic potential of IFN-γ-exos in LPS-induced ALI.
Collapse
Affiliation(s)
- Chun Wang
- Kunming Medical University, Kunming, China
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chen Jiang
- Kunming Medical University, Kunming, China
| | - Yiran Yang
- Kunming Medical University, Kunming, China
| | - Cheng Xi
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yunxiang Yin
- Department of Emergency Intensive Care Unit, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Haiying Wu
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Chuanyun Qian
- Department of Emergency, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| |
Collapse
|
18
|
Naeem A, Waseem A, Siddiqui AJ, Ray B, Sinha R, Khan AQ, Haque R, Raza SS. Focusing on the cytokine storm in the battle against COVID-19: the rising role of mesenchymal-derived stem cells. Stem Cells 2024:191-207. [DOI: 10.1016/b978-0-323-95545-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
20
|
Chen X, Liu B, Li C, Wang Y, Geng S, Du X, Weng J, Lai P. Stem cell-based therapy for COVID-19. Int Immunopharmacol 2023; 124:110890. [PMID: 37688914 DOI: 10.1016/j.intimp.2023.110890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
While The World Health Organization (WHO) has announced that COVID-19 is no longer a public health emergency of international concern(PHEIC), the risk of reinfection and new emerging variants still makes it crucial to study and work towards the prevention of COVID-19. Stem cell and stem cell-like derivatives have shown some promising results in clinical trials and preclinical studies as an alternative treatment option for the pulmonary illnesses caused by the COVID-19 and can be used as a potential vaccine. In this review, we will systematically summarize the pathophysiological process and potential mechanisms underlying stem cell-based therapy in COVID-19, and the registered COVID-19 clinical trials, and engineered extracellular vesicle as a potential vaccine for preventing COVID-19.
Collapse
Affiliation(s)
- Xiaomei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Bowen Liu
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Chao Li
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Yulian Wang
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Suxia Geng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Xin Du
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Jianyu Weng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Peilong Lai
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China.
| |
Collapse
|
21
|
Derafsh E, Ebrahimzadeh F, Kahrizi MS, Kayedi M, Shojaei N, Rahimi S, Alesaeidi S, Ghafouri K. The therapeutic effects of mesenchymal stem cell (MSCs) exosomes in covid-19 disease; Focusing on dexamethasone therapy. Pathol Res Pract 2023; 251:154815. [PMID: 37797382 DOI: 10.1016/j.prp.2023.154815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023]
Abstract
The study of diseases, specifically their aetiologies, their step-by-step progressions (pathogenesis), and their impact on normal structure and function, is the focus of pathology, a branch of science and medicine. In therapeutic fields, it is critical to decrease significantly elevated levels of proinflammatory cytokines. The immunomodulatory drugs such as dexamethasone have been used in several of inflammatory diseases such as Covid-19. The use of dexamethasone alone or in combination with other drugs or method such as mesenchymal stem cell (MSC) is one of the most up-to-date discussions about Covid-19. In this review, we first examined the effects of dexamethasone as monotherapy on inflammatory cytokines and then examined studies that used combination therapy of dexamethasone and other drugs such as Baricitinib, Tofacitinib and tocilizumab. Also, therapeutic aspects of MSCs are examined in this review.
Collapse
Affiliation(s)
- Ehsan Derafsh
- Department of Basic Medical Science, Windsor University School of Medicine, Brighton's Estate, Cayton, Saint Kitts and Nevis
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, lran
| | | | - Mehrdad Kayedi
- Department of radiology. Shiraz university of medical sciences, Shiraz, iran
| | - Niloofar Shojaei
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Shiva Rahimi
- School of medicine,fasa university of medical sciences,Fasa, Iran
| | - Samira Alesaeidi
- Department of Internal medicine and rheumatology, ⁎Rheumatology Research Center⁎, Tehran University of Medical Sciences, Tehran, Iran.
| | - Kimia Ghafouri
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Gonzaga A, Andreu E, Hernández-Blasco LM, Meseguer R, Al-Akioui-Sanz K, Soria-Juan B, Sanjuan-Gimenez JC, Ferreras C, Tejedo JR, Lopez-Lluch G, Goterris R, Maciá L, Sempere-Ortells JM, Hmadcha A, Borobia A, Vicario JL, Bonora A, Aguilar-Gallardo C, Poveda JL, Arbona C, Alenda C, Tarín F, Marco FM, Merino E, Jaime F, Ferreres J, Figueira JC, Cañada-Illana C, Querol S, Guerreiro M, Eguizabal C, Martín-Quirós A, Robles-Marhuenda Á, Pérez-Martínez A, Solano C, Soria B. Rationale for combined therapies in severe-to-critical COVID-19 patients. Front Immunol 2023; 14:1232472. [PMID: 37767093 PMCID: PMC10520558 DOI: 10.3389/fimmu.2023.1232472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
An unprecedented global social and economic impact as well as a significant number of fatalities have been brought on by the coronavirus disease 2019 (COVID-19), produced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Acute SARS-CoV-2 infection can, in certain situations, cause immunological abnormalities, leading to an anomalous innate and adaptive immune response. While most patients only experience mild symptoms and recover without the need for mechanical ventilation, a substantial percentage of those who are affected develop severe respiratory illness, which can be fatal. The absence of effective therapies when disease progresses to a very severe condition coupled with the incomplete understanding of COVID-19's pathogenesis triggers the need to develop innovative therapeutic approaches for patients at high risk of mortality. As a result, we investigate the potential contribution of promising combinatorial cell therapy to prevent death in critical patients.
Collapse
Affiliation(s)
- Aitor Gonzaga
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
| | - Etelvina Andreu
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Applied Physics Department, Miguel Hernández University, Elche, Spain
| | | | - Rut Meseguer
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Karima Al-Akioui-Sanz
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Bárbara Soria-Juan
- Réseau Hospitalier Neuchâtelois, Hôpital Pourtalès, Neuchâtel, Switzerland
| | | | - Cristina Ferreras
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
| | - Juan R. Tejedo
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Guillermo Lopez-Lluch
- University Pablo de Olavide, Centro Andaluz de Biología del Desarrollo - Consejo Superior de Investigaciones Científicas (CABD-CSIC), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Rosa Goterris
- Clinic University Hospital, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA) Health Research Institute, Valencia, Spain
| | - Loreto Maciá
- Nursing Department, University of Alicante, Alicante, Spain
| | - Jose M. Sempere-Ortells
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Biotechnology Department, University of Alicante, Alicante, Spain
| | - Abdelkrim Hmadcha
- Department of Molecular Biology and Biochemical Engineering, University Pablo de Olavide, Seville, Spain
- Biosanitary Research Institute (IIB-VIU), Valencian International University (VIU), Valencia, Spain
| | - Alberto Borobia
- Clinical Pharmacology Department, La Paz University Hospital, School of Medicine, Universidad Autónoma de Madrid, IdiPAz, Madrid, Spain
| | - Jose L. Vicario
- Transfusion Center of the Autonomous Community of Madrid, Madrid, Spain
| | - Ana Bonora
- Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Jose L. Poveda
- Health Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Arbona
- Valencian Community Blood Transfusion Center, Valencia, Spain
| | - Cristina Alenda
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Fabian Tarín
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Francisco M. Marco
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Immunology Department, Dr. Balmis General University Hospital, Alicante, Spain
| | - Esperanza Merino
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Department of Clinical Medicine, Miguel Hernández University, Elche, Spain
- Infectious Diseases Unit, Dr. Balmis General University Hospital, Alicante, Spain
| | - Francisco Jaime
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - José Ferreres
- Intensive Care Service, Hospital Clinico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | | | | | | | - Manuel Guerreiro
- Department of Hematology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Cristina Eguizabal
- Research Unit, Basque Center for Blood Transfusion and Human Tissues, Galdakao, Spain
- Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | | | | | - Antonio Pérez-Martínez
- Hospital La Paz Institute for Health Research, IdiPAZ, University Hospital La Paz, Madrid, Spain
- Department of Pediatrics, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana (INCLIVA), Valencia, Spain
| | - Bernat Soria
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Institute of Bioengineering, Miguel Hernández University, Elche, Spain
- Biomedical Research Network for Diabetes and Related Metabolic Diseases-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) of the Carlos III Health Institute (ISCIII), Madrid, Spain
| |
Collapse
|
23
|
Samanipour R, Tabatabaee S, delyanee M, Tavakoli A. The promising approach of MSCs therapy for COVID-19 treatment. Cell Tissue Bank 2023; 24:597-612. [PMID: 36526819 PMCID: PMC9757632 DOI: 10.1007/s10561-022-10060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Several ongoing investigations have been founded on the development of an optimized therapeutic strategy for the COVID-19 virus as an undeniable acute challenge for human life. Cell-based therapy and particularly, mesenchymal stem cells (MSCs) therapy has obtained desired outcomes in decreasing the mortality rate of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2), mainly owing to its immunoregulatory impact that prevents the overactivation of the immune system. Also, these cells with their multipotent nature, are capable of repairing the damaged tissue of the lung which leads to reducing the probability of acute respiratory distress syndrome (ARDS). Although this cell-based method is not quite cost-effective for developing countries, regarding its promising results in order to treat SARS-COV-2, more economical evaluation as well as clinical trials should be performed for improving this therapeutic approach. Here in this article, the functional mechanism of MSCs therapy for the treatment of COVID-19 and the clinical trials based on this method will be reviewed. Moreover, its economic efficiency will be discussed.
Collapse
Affiliation(s)
- Reza Samanipour
- Department of Tissue Engineering and Applied Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Tabatabaee
- Department of Bio-Computing, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Mahsa delyanee
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Amirhossein Tavakoli
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Hsueh PR, Ho SJ, Hsieh PC, Liu IM, Jean SS. Use of Multiple Doses of Intravenous Infusion of Umbilical Cord-Mesenchymal Stem Cells for the Treatment of Adult Patients with Severe COVID-19-Related Acute Respiratory Distress Syndrome: Literature Review. Stem Cells Int 2023; 2023:7179592. [PMID: 37638334 PMCID: PMC10457163 DOI: 10.1155/2023/7179592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives Acute respiratory distress syndrome (ARDS) is a critical complication in severe COVID-19 patients. The intravenous infusion (IVF) of umbilical cord- (UC-) mesenchymal stem cells (MSCs), validated to substantially reduce the release of several inflammatory cytokines in vivo, was also shown to exhibit benefits in improving hypoxemia among severe COVID-19 patients. A single dose of IVF-UC-MSCs therapy for severe COVID-19 patients was shown to alleviate the initial ARDS severity, but have 50%-67% case-fatality rates. In Taiwan, few adult patients with severe COVID-19-induced ARDS receiving compassionate adjuvant treatment consisting of either a single dose (1-10 × 106 cells/kg body weight (kg BW)) or three doses (5 × 106 cells/kg BW in each dose) of IVF-UC-MSCs had good outcomes. However, the optimal dosage and rounds of IVF-UC-MSCs administration for the treatment of severe COVID-19 patients with ARDS are undetermined. Methods We reviewed the 2020-2022 PubMed literature database concerning the clinical efficacy of IVF-UC-MSCs among severe COVID-19 patients. Results The data of COVID-19 case series in the PubMed literature revealed a notable heterogeneity in the therapeutic dosage (a single dose: 1-10 × 106 cells/kg BW; and three doses: 50-200 × 106 cells/kg BW in each dose) and the post-ARDS days of IVF-UC-MSCs administration (a single dose: 1-12; and multiple doses: 5-14) for the treatment of severe COVID-19-associated ARDS. The survival rates among these severe COVID-19 patients ranged from 50% to 76%. However, an overall rate of 93.1% of significant improvement in hypoxemia was observed for the COVID-19 survivors receiving IVF-UC-MSCs at the initial ARDS stage. Conclusions According to our analysis, the ideal treatment dosage of IVF-UC-MSCs for severe COVID-19-induced ARDS is likely 5 × 106 cells/kg BW for three cycles within 5 days of ARDS onset in severe COVID-19 patients.
Collapse
Affiliation(s)
- Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sung-Jung Ho
- Division of Pulmonary Medicine, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Po-Chuen Hsieh
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - I-Min Liu
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Shio-Shin Jean
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
- Departments of Internal Medicine and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
| |
Collapse
|
25
|
Laroye C, Gauthier M, Morello J, Charif N, Cannard VL, Bonnet C, Lozniewski A, Tchirkov A, De Isla N, Decot V, Reppel L, Bensoussan D. Scale-Up of Academic Mesenchymal Stromal Cell Production. J Clin Med 2023; 12:4414. [PMID: 37445448 DOI: 10.3390/jcm12134414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Many clinical trials have reported the use of mesenchymal stromal cells (MSCs) following the indication of severe SARS-CoV-2 infection. However, in the COVID19 pandemic context, academic laboratories had to adapt a production process to obtain MSCs in a very short time. Production processes, especially freezing/thawing cycles, or culture medium have impacts on MSC properties. We evaluated the impact of an intermediate cryopreservation state during MSC culture to increase production yields. METHODS Seven Wharton's jelly (WJ)-MSC batches generated from seven different umbilical cords with only one cryopreservation step and 13 WJ-MSC batches produced with intermediate freezing were formed according to good manufacturing practices. The identity (phenotype and clonogenic capacities), safety (karyotype, telomerase activity, sterility, and donor qualification), and functionality (viability, mixed lymphocyte reaction) were analyzed. RESULTS No significant differences between MSC production processes were observed, except for the clonogenic capacity, which was decreased, although it always remained above our specifications. CONCLUSIONS Intermediate cryopreservation allows an increase in the production yield and has little impact on the basic characteristics of MSCs.
Collapse
Affiliation(s)
- Caroline Laroye
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Mélanie Gauthier
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Jessica Morello
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
| | - Naceur Charif
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | | | - Céline Bonnet
- CHRU Nancy, Genetics Laboratory, F-54000 Nancy, France
| | | | - Andrei Tchirkov
- CHRU Clermont-Ferrand, Medical Cytogenetics Laboratory, F-63003 Clermont-Ferrand, France
| | | | - Véronique Decot
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Loïc Reppel
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| | - Danièle Bensoussan
- CHRU Nancy, Cell Therapy and Tissue Bank Unit, MTInov Bioproduction and Biotherapy Integrator, F-54000 Nancy, France
- CNRS, IMoPA, Lorraine University, F-54000 Nancy, France
| |
Collapse
|
26
|
Martínez-Zarco BA, Jiménez-García MG, Tirado R, Ambrosio J, Hernández-Mendoza L. [Mesenchymal stem cells: Therapeutic option in ARDS, COPD, and COVID-19 patients]. REVISTA ALERGIA MÉXICO 2023; 70:89-101. [PMID: 37566772 DOI: 10.29262/ram.v70i1.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/30/2023] [Indexed: 08/13/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD) and COVID-19 have as a common characteristic the inflammatory lesion of the lung epithelium. The therapeutic options are associated with opportunistic infections, a hyperglycemic state, and adrenal involvement. Therefore, the search for new treatment strategies that reduce inflammation, and promote re-epithelialization of damaged tissue is very important. This work describes the relevant pathophysiological characteristics of these diseases and evaluates recent findings on the immunomodulatory, anti-inflammatory and regenerative effect of mesenchymal stem cells (MSC) and their therapeutic use. In Pubmed we selected the most relevant studies on the subject, published between 2003 and 2022 following the PRISMA guide. We conclude that MSCs are an important therapeutic option for regenerative treatment in COPD, ARDS, and COVID-19, because of their ability to differentiate into type II pneumocytes and maintain the size and function of lung tissue by replacing dead or damaged cells.
Collapse
Affiliation(s)
| | | | - Rocío Tirado
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México
| | - Javier Ambrosio
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México
| | - Lilian Hernández-Mendoza
- Doctor en Ciencias Biomédicas, Departamento de Microbiología y Parasitología.Universidad Nacional Autónoma de México, Facultad de Medicina, Laboratorio de Biología del Citoesqueleto y Virología, Ciudad de México.
| |
Collapse
|
27
|
Russo E, Corrao S, Di Gaudio F, Alberti G, Caprnda M, Kubatka P, Kruzliak P, Miceli V, Conaldi PG, Borlongan CV, La Rocca G. Facing the Challenges in the COVID-19 Pandemic Era: From Standard Treatments to the Umbilical Cord-Derived Mesenchymal Stromal Cells as a New Therapeutic Strategy. Cells 2023; 12:1664. [PMID: 37371134 PMCID: PMC10297457 DOI: 10.3390/cells12121664] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which counts more than 650 million cases and more than 6.6 million of deaths worldwide, affects the respiratory system with typical symptoms such as fever, cough, sore throat, acute respiratory distress syndrome (ARDS), and fatigue. Other nonpulmonary manifestations are related with abnormal inflammatory response, the "cytokine storm", that could lead to a multiorgan disease and to death. Evolution of effective vaccines against SARS-CoV-2 provided multiple options to prevent the infection, but the treatment of the severe forms remains difficult to manage. The cytokine storm is usually counteracted with standard medical care and anti-inflammatory drugs, but researchers moved forward their studies on new strategies based on cell therapy approaches. The perinatal tissues, such as placental membranes, amniotic fluid, and umbilical cord derivatives, are enriched in mesenchymal stromal cells (MSCs) that exert a well-known anti-inflammatory role, immune response modulation, and tissue repair. In this review, we focused on umbilical-cord-derived MSCs (UC-MSCs) used in in vitro and in vivo studies in order to evaluate the weakening of the severe symptoms, and on recent clinical trials from different databases, supporting the favorable potential of UC-MSCs as therapeutic strategy.
Collapse
Affiliation(s)
- Eleonora Russo
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Simona Corrao
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | | | - Giusi Alberti
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University, University Hospital Bratislava, 81499 Bratislava, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03649 Martin, Slovakia;
| | - Peter Kruzliak
- Research and Development Services, Pradlacka 18, 61300 Brno, Czech Republic;
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per per i Trapianti e Terapie Ad Alta Specializzazione), 90127 Palermo, Italy; (S.C.); (V.M.); (P.G.C.)
| | - Cesario Venturina Borlongan
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Giampiero La Rocca
- Section of Histology and Embryology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy; (E.R.); (G.A.)
| |
Collapse
|
28
|
Han L, Wu X, Wang O, Luan X, Velander WH, Aynardi M, Halstead ES, Bonavia AS, Jin R, Li G, Li Y, Wang Y, Dong C, Lei Y. Mesenchymal stromal cells and alpha-1 antitrypsin have a strong synergy in modulating inflammation and its resolution. Theranostics 2023; 13:2843-2862. [PMID: 37284443 PMCID: PMC10240832 DOI: 10.7150/thno.83942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
Rationale: Trauma, surgery, and infection can cause severe inflammation. Both dysregulated inflammation intensity and duration can lead to significant tissue injuries, organ dysfunction, mortality, and morbidity. Anti-inflammatory drugs such as steroids and immunosuppressants can dampen inflammation intensity, but they derail inflammation resolution, compromise normal immunity, and have significant adverse effects. The natural inflammation regulator mesenchymal stromal cells (MSCs) have high therapeutic potential because of their unique capabilities to mitigate inflammation intensity, enhance normal immunity, and accelerate inflammation resolution and tissue healing. Furthermore, clinical studies have shown that MSCs are safe and effective. However, they are not potent enough, alone, to completely resolve severe inflammation and injuries. One approach to boost the potency of MSCs is to combine them with synergistic agents. We hypothesized that alpha-1 antitrypsin (A1AT), a plasma protein used clinically and has an excellent safety profile, was a promising candidate for synergism. Methods: This investigation examined the efficacy and synergy of MSCs and A1AT to mitigate inflammation and promote resolution, using in vitro inflammatory assay and in vivo mouse acute lung injury model. The in vitro assay measured cytokine releases, inflammatory pathways, reactive oxygen species (ROS), and neutrophil extracellular traps (NETs) production by neutrophils and phagocytosis in different immune cell lines. The in vivo model monitored inflammation resolution, tissue healing, and animal survival. Results: We found that the combination of MSCs and A1AT was much more effective than each component alone in i) modulating cytokine releases and inflammatory pathways, ii) inhibiting ROS and NETs production by neutrophils, iii) enhancing phagocytosis and, iv) promoting inflammation resolution, tissue healing, and animal survival. Conclusion: These results support the combined use of MSCs, and A1AT is a promising approach for managing severe, acute inflammation.
Collapse
Affiliation(s)
- Li Han
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University; University Park, PA, 16802, USA
| | - Xinran Wu
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Ou Wang
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln; Lincoln, NE, 68588, USA
| | - Xiao Luan
- Biomedical Center of Qingdao University; Qingdao, Shandong, 266000, China
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln; Lincoln, NE, 68588, USA
| | - Michael Aynardi
- Department of Orthopedics Surgery, Pennsylvania State University College of Medicine; Hershey, PA, 17033, USA
| | - E. Scott Halstead
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Pennsylvania State Milton S Hershey Medical Center; Hershey, PA, 17033, USA
| | - Anthony S. Bonavia
- Division of Critical Care Medicine, Department of Anesthesiology and Perioperative Medicine, Pennsylvania State Milton S Hershey Medical Center; Hershey, PA, 17033, USA
| | - Rong Jin
- Department of Neurosurgery, Pennsylvania State Milton S Hershey Medical Center; Hershey, PA, 17033, USA
| | - Guohong Li
- Department of Neurosurgery, Pennsylvania State Milton S Hershey Medical Center; Hershey, PA, 17033, USA
| | - Yulong Li
- Department of Emergency Medicine, University of Nebraska Medical Center; Omaha, NE, 68105, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University; University Park, PA, 16802, USA
| |
Collapse
|
29
|
Liu Q, Ma F, Zhong Y, Wang G, Hu L, Zhang Y, Xie J. Efficacy and safety of human umbilical cord-derived mesenchymal stem cells for COVID-19 pneumonia: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2023; 14:118. [PMID: 37143167 PMCID: PMC10159228 DOI: 10.1186/s13287-023-03286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Elevated levels of inflammatory factors are associated with poor prognosis in coronavirus disease-19 (COVID-19). However, mesenchymal stem cells (MSCs) have immunomodulatory functions. Accordingly, this meta-analysis aimed to determine the efficacy and safety of MSC-based therapy in patients with COVID-19 pneumonia. METHODS Online global databases were used to find relevant studies. Two independent researchers then selected and evaluated the studies for suitability while the Cochrane risk of bias tool determined the quality of all articles and Cochran's Q test and I2 index assessed the degree of heterogeneity in the principal studies. Statistical analysis was performed using Review Manager software, and the effect of each study on the overall estimate was evaluated by sensitivity analysis. RESULTS Seven studies were included in the meta-analysis, and all MSCs used in the trials were acquired from the umbilical cord. The results of these studies (n = 328) indicated that patients with COVID-19 pneumonia who received MSCs had a 0.58 risk of death compared with controls (95% CI = 0.38, 0.87; P = 0.53; I2 = 0%). In terms of inflammatory biomarkers, MSCs reduced the levels of C-reactive protein (n = 88; MD = - 32.49; 95% CI = - 48.43, - 16.56; P = 0.46; I2 = 0%) and interferon-gamma (n = 44; SMD = - 1.23; 95% CI = - 1.89, - 0.57; P = 0.37; I2 = 0%) in severe COVID-19 patients but had no significant effect on interleukin-6 (n = 185; MD = - 0.75; 95% CI = - 7.76, 6.27; P = 0.57; I2 = 0%). A summary of the data revealed no significant differences in adverse events (n = 287) or serious adverse events (n = 229) between the MSC and control groups. CONCLUSIONS Infusion of umbilical cord-derived MSCs is an effective strategy for treating patients with COVID-19 pneumonia, with no noticeable adverse effects.
Collapse
Affiliation(s)
- Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China
| | - Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing, 314000, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou, 310016, China.
| |
Collapse
|
30
|
Thakur A. Shedding Lights on the Extracellular Vesicles as Functional Mediator and Therapeutic Decoy for COVID-19. Life (Basel) 2023; 13:life13030840. [PMID: 36983995 PMCID: PMC10052528 DOI: 10.3390/life13030840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
COVID-19 is an infectious disease caused by the novel coronavirus (SARS-CoV-2) that first appeared in late 2019 and has since spread across the world. It is characterized by symptoms such as fever, cough, and shortness of breath and can lead to death in severe cases. To help contain the virus, measures such as social distancing, handwashing, and other public health measures have been implemented. Vaccine and drug candidates, such as those developed by Pfizer/BioNTech, AstraZeneca, Moderna, Novavax, and Johnson & Johnson, have been developed and are being distributed worldwide. Clinical trials for drug treatments such as remdesivir, dexamethasone, and monoclonal antibodies are underway and have shown promising results. Recently, exosomes have gained attention as a possible mediator of the COVID-19 infection. Exosomes, small vesicles with a size of around 30-200 nm, released from cells, contain viral particles and other molecules that can activate the immune system and/or facilitate viral entry into target cells. Apparently, the role of exosomes in eliciting various immune responses and causing tissue injury in COVID-19 pathogenesis has been discussed. In addition, the potential of exosomes as theranostic and therapeutic agents for the treatment of COVID-19 has been elaborated.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
31
|
Khandelwal V, Sharma T, Gupta S, Singh S, Sharma MK, Parashar D, Kashyap VK. Stem cell therapy: a novel approach against emerging and re-emerging viral infections with special reference to SARS-CoV-2. Mol Biol Rep 2023; 50:2663-2683. [PMID: 36536185 PMCID: PMC9762873 DOI: 10.1007/s11033-022-07957-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 09/17/2022] [Indexed: 12/23/2022]
Abstract
The past several decades have witnessed the emergence and re-emergence of many infectious viral agents, flaviviruses, influenza, filoviruses, alphaviruses, and coronaviruses since the advent of human deficiency virus (HIV). Some of them even become serious threats to public health and have raised major global health concerns. Several different medicinal compounds such as anti-viral, anti-malarial, and anti-inflammatory agents, are under investigation for the treatment of these viral diseases. These therapies are effective improving recovery rates and overall survival of patients but are unable to heal lung damage caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, there is a critical need to identify effective treatments to combat this unmet clinical need. Due to its antioxidant and immunomodulatory properties, stem cell therapy is considered a novel approach to regenerate damaged lungs and reduce inflammation. Stem cell therapy uses a heterogeneous subset of regenerative cells that can be harvested from various adult tissue types and is gaining popularity due to its prodigious regenerative potential as well as immunomodulatory and anti-inflammatory properties. These cells retain expression of cluster of differentiation markers (CD markers), interferon-stimulated gene (ISG), reduce expression of pro-inflammatory cytokines and, show a rapid proliferation rate, which makes them an attractive tool for cellular therapies and to treat various inflammatory and viral-induced injuries. By examining various clinical studies, this review demonstrates positive considerations for the implications of stem cell therapy and presents a necessary approach for treating virally induced infections in patients.
Collapse
Affiliation(s)
- Vishal Khandelwal
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Tarubala Sharma
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Shoorvir Singh
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Manish Kumar Sharma
- Department of Microbiology, Dr. Ram Manohar Lohia Avadh University, Faizabad, Uttar Pradesh, 224001, India
| | - Deepak Parashar
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Vivek K Kashyap
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA. .,South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, 78504, USA.
| |
Collapse
|
32
|
Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A. Current status in cellular-based therapies for prevention and treatment of COVID-19. Crit Rev Clin Lab Sci 2023:1-25. [PMID: 36825325 DOI: 10.1080/10408363.2023.2177605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
Collapse
Affiliation(s)
- Dima Hattab
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Mumen F A Amer
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Lay Hong Chuah
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Athirah Bakhtiar
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
33
|
Al-Akashi Z, Zujur D, Kamiya D, Kato T, Kondo T, Ikeya M. Selective vulnerability of human-induced pluripotent stem cells to dihydroorotate dehydrogenase inhibition during mesenchymal stem/stromal cell purification. Front Cell Dev Biol 2023; 11:1089945. [PMID: 36814599 PMCID: PMC9939518 DOI: 10.3389/fcell.2023.1089945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates. Contrastingly, BRQ-treated iMSCs showed no changes in survival, differentiation potential, or gene expression. The results suggest that BRQ is a potential agent for the effective purification of iMSCs from a mixed population of iMSCs and hiPSCs, which is a crucial step in successful iMSC-based therapy.
Collapse
Affiliation(s)
- Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Toru Kondo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan,*Correspondence: Makoto Ikeya,
| |
Collapse
|
34
|
Nasrollahi H, Talepoor AG, Saleh Z, Eshkevar Vakili M, Heydarinezhad P, Karami N, Noroozi M, Meri S, Kalantar K. Immune responses in mildly versus critically ill COVID-19 patients. Front Immunol 2023; 14:1077236. [PMID: 36793739 PMCID: PMC9923185 DOI: 10.3389/fimmu.2023.1077236] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
The current coronavirus pandemic (COVID-19), caused by SARS-CoV-2, has had devastating effects on the global health and economic system. The cellular and molecular mediators of both the innate and adaptive immune systems are critical in controlling SARS-CoV-2 infections. However, dysregulated inflammatory responses and imbalanced adaptive immunity may contribute to tissue destruction and pathogenesis of the disease. Important mechanisms in severe forms of COVID-19 include overproduction of inflammatory cytokines, impairment of type I IFN response, overactivation of neutrophils and macrophages, decreased frequencies of DC cells, NK cells and ILCs, complement activation, lymphopenia, Th1 and Treg hypoactivation, Th2 and Th17 hyperactivation, as well as decreased clonal diversity and dysregulated B lymphocyte function. Given the relationship between disease severity and an imbalanced immune system, scientists have been led to manipulate the immune system as a therapeutic approach. For example, anti-cytokine, cell, and IVIG therapies have received attention in the treatment of severe COVID-19. In this review, the role of immunity in the development and progression of COVID-19 is discussed, focusing on molecular and cellular aspects of the immune system in mild vs. severe forms of the disease. Moreover, some immune- based therapeutic approaches to COVID-19 are being investigated. Understanding key processes involved in the disease progression is critical in developing therapeutic agents and optimizing related strategies.
Collapse
Affiliation(s)
- Hamid Nasrollahi
- Radio-Oncology Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atefe Ghamar Talepoor
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saleh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Eshkevar Vakili
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paria Heydarinezhad
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Noroozi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki and Diagnostic Center of the Helsinki University Hospital, Helsinki, Finland
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Taufiq H, Shaik Fakiruddin K, Muzaffar U, Lim MN, Rusli S, Kamaluddin NR, Esa E, Abdullah S. Systematic review and meta-analysis of mesenchymal stromal/stem cells as strategical means for the treatment of COVID-19. Ther Adv Respir Dis 2023; 17:17534666231158276. [PMID: 37128999 PMCID: PMC10140776 DOI: 10.1177/17534666231158276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND In coronavirus disease 2019 (COVID-19) patients, elevated levels of inflammatory cytokines from over stimulation of immune cells have become a concern due to the potential outburst of cytokine storm that damages the tissues and organs, especially the lungs. This leads to the manifestation of COVID-19 symptoms, such as pneumonia, acute respiratory distress syndrome (ARDS), multiple organ failure, and eventually death. Mesenchymal stromal/stem cells (MSCs) are currently one of hopeful approaches in treating COVID-19 considering its anti-inflammatory and immunomodulatory functions. On that account, the number of clinical trials concerning the use of MSCs for COVID-19 has been increasing. However, the number of systematic reviews and meta-analysis that specifically discuss its potential as treatment for the disease is still lacking. Therefore, this review will assess the safety and efficacy of MSC administration in COVID-19 patients. OBJECTIVES To pool evidence on the safety and efficacy of MSCs in treating COVID-19 by observing MSC-related adverse effects as well as evaluating its effects in reducing inflammatory response and improving pulmonary function. DATA SOURCES AND METHODS Following literature search across six databases and one trial register, full-text retrieval, and screening against eligibility criteria, only eight studies were included for data extraction. All eight studies evaluated the use of umbilical cord-derived mesenchymal stromal/stem cell (UC-MSC), infused intravenously. Of these eight studies, six studies were included in meta-analysis on the incidence of mortality, adverse events (AEs), and serious adverse events (SAEs), and the levels of C-reactive protein (CRP) and interleukin (IL)-6. Meta-analysis on pulmonary function was not performed due to insufficient data. RESULTS MSC-treated group showed significantly lower risk of mortality than the control group (p = 0.03). No statistical significance was observed on the incidence of AEs (p = 0.78) and SAEs (p = 0.44), and the levels of CRP (p = 0.06) and IL-6 (p = 0.09). CONCLUSION MSCs were safe for use, with lower risk of mortality and no association with AEs. Regarding efficacy, descriptive analysis showed indications of improvement on the inflammatory reaction, lung clearance, and oxygenation status despite the lack of statistical significance in meta-analysis of CRP and IL-6. Nevertheless, more studies are needed for affirmation. REGISTRATION This systematic review and meta-analysis was registered on the PROSPERO database (no. CRD42022307730).
Collapse
Affiliation(s)
- Hannah Taufiq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kamal Shaik Fakiruddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Umaiya Muzaffar
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Moon Nian Lim
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Syahnaz Rusli
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Rizan Kamaluddin
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), National Institutes of Health (NIH), Ministry of Health Malaysia, Shah Alam, Selangor, Malaysia
| | - Syahril Abdullah
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
36
|
MSC-Exosomes Carrying miRNA - Could they Enhance Tocilizumab Activity in Neuropathology of COVID-19? Stem Cell Rev Rep 2023; 19:279-283. [PMID: 35794511 PMCID: PMC9261118 DOI: 10.1007/s12015-022-10409-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
|
37
|
Oliver JC, Silva EN, Soares LM, Scodeler GC, Santos ADS, Corsetti PP, Prudêncio CR, de Almeida LA. Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus. Ther Adv Vaccines Immunother 2022; 10:25151355221144845. [PMID: 36578829 PMCID: PMC9791004 DOI: 10.1177/25151355221144845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022] Open
Abstract
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine's effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Collapse
Affiliation(s)
| | | | | | | | - Ana de Souza Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Carlos Roberto Prudêncio
- Laboratory of Immunotechnology , Center of Immunology, Instituto Adolfo Lutz Institute, São Paulo, Brazil
| | | |
Collapse
|
38
|
Petrosyan A, Martins PN, Solez K, Uygun BE, Gorantla VS, Orlando G. Regenerative medicine applications: An overview of clinical trials. Front Bioeng Biotechnol 2022; 10:942750. [PMID: 36507264 PMCID: PMC9732032 DOI: 10.3389/fbioe.2022.942750] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
Insights into the use of cellular therapeutics, extracellular vesicles (EVs), and tissue engineering strategies for regenerative medicine applications are continually emerging with a focus on personalized, patient-specific treatments. Multiple pre-clinical and clinical trials have demonstrated the strong potential of cellular therapies, such as stem cells, immune cells, and EVs, to modulate inflammatory immune responses and promote neoangiogenic regeneration in diseased organs, damaged grafts, and inflammatory diseases, including COVID-19. Over 5,000 registered clinical trials on ClinicalTrials.gov involve stem cell therapies across various organs such as lung, kidney, heart, and liver, among other applications. A vast majority of stem cell clinical trials have been focused on these therapies' safety and effectiveness. Advances in our understanding of stem cell heterogeneity, dosage specificity, and ex vivo manipulation of stem cell activity have shed light on the potential benefits of cellular therapies and supported expansion into clinical indications such as optimizing organ preservation before transplantation. Standardization of manufacturing protocols of tissue-engineered grafts is a critical first step towards the ultimate goal of whole organ engineering. Although various challenges and uncertainties are present in applying cellular and tissue engineering therapies, these fields' prospect remains promising for customized patient-specific treatments. Here we will review novel regenerative medicine applications involving cellular therapies, EVs, and tissue-engineered constructs currently investigated in the clinic to mitigate diseases and possible use of cellular therapeutics for solid organ transplantation. We will discuss how these strategies may help advance the therapeutic potential of regenerative and transplant medicine.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Division of Urology, Children’s Hospital Los Angeles, Saban Research Institute, Los Angeles, CA, United States
| | - Paulo N. Martins
- Department of Surgery, Transplant Division, UMass Memorial Medical Center, University of Massachusetts, Worcester, MA, United States
| | - Kim Solez
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Basak E. Uygun
- Massachusetts General Hospital, Shriners Hospitals for Children in Boston and Harvard Medical School, Boston, MA, United States
| | - Vijay S. Gorantla
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest Baptist Medical Center and Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, United States
| |
Collapse
|
39
|
Kim K, Bae KS, Kim HS, Lee WY. Effectiveness of Mesenchymal Stem Cell Therapy for COVID-19-Induced ARDS Patients: A Case Report. Medicina (B Aires) 2022; 58:medicina58121698. [PMID: 36556900 PMCID: PMC9784973 DOI: 10.3390/medicina58121698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose: This study assessed the safety, feasibility, and tolerability of mesenchymal stem cells for patients diagnosed with COVID (Coronavirus disease 2019-induced ARDS (acute respiratory distress syndrome)). Materials and Methods: Critically ill adult COVID-19 patients who were admitted to Wonju Severance Christian Hospital were enrolled in this study. One patient received human bone marrow-derived mesenchymal stem cell (hBMSC) transplantation and received a total dose of 9 × 107 allogeneic hBMSCs via intravenous infusion. The main outcome of this study was to assess the safety, adverse events, and efficacy following transplantation of hBMSCs in COVID-19- induced ARDS patients. Efficacy was assessed radiologically based on pneumonia improvement, changes in PaO2/FiO2, and O2 saturation. Results: A 73-year-old man visited Wonju Severance Christian Hospital presenting with fever and fatigue. A throat swab was performed for real-time polymerase chain reaction to confirm COVID-19, and the result was positive. The patient developed ARDS on Day 5. MSC transplantation was performed on that day and administered on Day 29. Early adverse events, including allergic reactions, were not observed following MSC transplantation. Subsequently, clinical symptoms, signs, and laboratory findings, including PaO2/FiO2 and O2 saturation, improved. Conclusion: The results of this case report suggest that intravenous injection of MSC derived from the bone marrow is safe and acceptable and can lead to favorable outcomes for critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Kwangmin Kim
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Keum Seok Bae
- Department of Surgery, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Sungnam 13229, Republic of Korea
- Kim’s Stem Cell Clinic, Seoul 06017, Republic of Korea
| | - Won-Yeon Lee
- Department of Pulmonology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Correspondence: ; Tel.: +82-33-741-0541; Fax: +82-33-0928
| |
Collapse
|
40
|
Liu MY, Chien TW, Chou W. The Hirsch-index in self-citation rates with articles in Medicine (Baltimore): Bibliometric analysis of publications in two stages from 2018 to 2021. Medicine (Baltimore) 2022; 101:e31609. [PMID: 36397355 PMCID: PMC9666158 DOI: 10.1097/md.0000000000031609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Hirsch-index (h-index) is a measure of academic productivity that incorporates both the quantity and quality of an author's output. However, it is still affected by self-citation behaviors. This study aims to determine the research output and self-citation rates (SCRs) in the Journal of Medicine (Baltimore), establishing a benchmark for bibliometrics, in addition to identifying significant differences between stages from 2018 to 2021. METHODS We searched the PubMed database to obtain 17,912 articles published between 2018 and 2021 in Medicine (Baltimore). Two parts were carried out to conduct this study: the categories were clustered according to the medical subject headings (denoted by midical subject headings [MeSH] terms) using social network analysis; 3 visualizations were used (choropleth map, forest plot, and Sankey diagram) to identify dominant entities (e.g., years, countries, regions, institutes, authors, categories, and document types); 2-way analysis of variance (ANOVA) was performed to differentiate outputs between entities and stages, and the SCR with articles in Medicine (Baltimore) was examined. SCR, as well as the proportion of self-citation (SC) in the previous 2 years in comparison to SC were computed. RESULTS We found that South Korea, Sichuan (China), and Beijing (China) accounted for the majority of articles in Medicine (Baltimore); ten categories were clustered and led by 3 MeSh terms: methods, drug therapy, and complications; and more articles (52%) were in the recent stage (2020-2021); no significant difference in counts was observed between the 2 stages based on the top ten entities using the forest plot (Z = 0.05, P = .962) and 2-way ANOVA (F = 0.09, P = .76); the SCR was 5.69% (<15%); the h-index did not differ between the 2 collections of self-citation inclusion and exclusion; and the SC in the previous 2 years accounted for 70% of the self-citation exclusion. CONCLUSION By visualizing the characteristics of a given journal, a breakthrough was made. Subject categories can be classified using MeSH terms. Future bibliographical studies are recommended to perform the 2-way ANOVA and then compare the outputs from 2 stages as well as the changes in h-indexes between 2 sets of self-citation inclusion and exclusion.
Collapse
Affiliation(s)
- Mei-Yuan Liu
- Department of Nutrition, Chi Mei Medical Center, Tainan, Taiwan
- Department of Nutrition and Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Tsair-Wei Chien
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Willy Chou
- Department of Physical Medicine and Rehabilitation, Chiali Chi-Mei Hospital, Tainan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chung San Medical University Hospital, Taichung, Taiwan
- *Correspondence: Willy Chou, Chiali Chi-Mei Hospital, Tainan 710, Taiwan (e-mail: )
| |
Collapse
|
41
|
Azapira N, Pourjafar S, Habibi A, Tayebi L, Keshtkar S, Kaviani M. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Promising Treatment for COVID-19 Pandemic. EXP CLIN TRANSPLANT 2022; 20:980-983. [PMID: 33622217 DOI: 10.6002/ect.2020.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The pandemic of severe acute respiratory syndrome coronavirus-2 infection has prompted the urgent need for novel therapeutic approaches, especially for patients in critically severe conditions. To date, the pathogenesis of COVID-19 is not completely understood, and finding an effective new drug is still inconclusive. Mesenchymal stromal cell-derived extracellular vesicles contain large amounts of proteins, messenger RNA, and microRNAs that act as vehicles that transfer the cargo between cells. These nanotherapeutic materials exert anti-inflammatory effects on the immune system, which are necessary for subsidence of acute inflammation and promotion of tissue repair and regeneration. Therefore, the consideration of mesenchymal stromal cell-derived extracellular vesicles as a new, safe, and effective therapeutic approach in the treatment of COVID-19 pneumonia is suggested.
Collapse
Affiliation(s)
- Negar Azapira
- From the Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|
42
|
Dos Santos PG, Vieira HCVS, Wietholter V, Gallina JP, Andrade TR, Marinowic DR, Zanirati GG, da Costa JC. When to test for COVID-19 using real-time reverse transcriptase polymerase chain reaction: a systematic review. Int J Infect Dis 2022; 123:58-69. [PMID: 35760382 PMCID: PMC9233872 DOI: 10.1016/j.ijid.2022.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the time in days between symptom onset and first positive real-time reverse transcriptase polymerase chain reaction (RT-PCR) result for COVID-19. METHODS This systematic review was conducted in the MEDLINE (PubMed), Embase, and Scopus databases using the following descriptors: "COVID-19", "SARS-CoV-2", "coronavirus", "RT-PCR", "real time PCR", and "diagnosis". RESULTS The included studies were conducted in 31 different countries and reported on a total of 6831 patients. The median age of the participants was 49.95 years. The three most common symptoms were fever, cough, and dyspnea, which affected 4012 (58.68%), 3192 (46.69%), and 2009 patients (29.38%), respectively. Among the 90 included studies, 13 were prospective cohorts, 15 were retrospective cohorts, 36 were case reports, 20 were case series, and six were cross-sectional studies. The overall mean time between symptom onset and positive test result was 6.72 days. Fourteen articles were analyzed separately for the temporal profile of RT-PCR test results; the best performance was on days 22-24, when 98% of test results were positive. CONCLUSION These findings corroborate the RT-PCR COVID-19 testing practices of some health units. In addition, the most frequently described symptoms of these patients can be considered the initial symptoms of infection and used in decision-making about RT-PCR testing.
Collapse
Affiliation(s)
- Paula Gabrielli Dos Santos
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Program in Biomedical Gerontology, Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil
| | - Helena Cristina Valentini Speggiorin Vieira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Undergraduate Research Program, School of Medicine and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vinícius Wietholter
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Undergraduate Research Program, School of Medicine and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Pedro Gallina
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Undergraduate Research Program, School of Medicine and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Thomás Ranquetat Andrade
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Undergraduate Research Program, School of Medicine and Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Program in Biomedical Gerontology, Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil; Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil
| | - Gabriele Goulart Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Graduate Program in Biomedical Gerontology, Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil; Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS) School of Medicine, Porto Alegre, Brazil.
| |
Collapse
|
43
|
Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int Immunopharmacol 2022; 111:109161. [PMID: 35998506 PMCID: PMC9385778 DOI: 10.1016/j.intimp.2022.109161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a highly pathogenic and transmissible virus. Infection caused by SARS-CoV-2 known as Coronavirus disease 2019 (COVID-19) can be severe, especially among high risk populations affected of underlying medical conditions. COVID-19 is characterized by the severe acute respiratory syndrome, a hyper inflammatory syndrome, vascular injury, microangiopathy and thrombosis. Antiviral drugs and immune modulating methods has been evaluated. So far, a particular therapeutic option has not been approved for COVID-19 and a variety of treatments have been studied for COVID-19 including, current treatment such as oxygen therapy, corticosteroids, antiviral agents until targeted therapy and vaccines which are diverse in each patient and have various outcomes. According to the findings of different in vitro and in vivo studies, some novel approach such as gene editing, cell based therapy, and immunotherapy may have significant potential in the treatment of COVID-19. Based on these findings, this paper aims to review the different strategies of treatment against COVID-19 and provide a summary from traditional and newer methods in curing COVID-19.
Collapse
|
44
|
Cao JX, You J, Wu LH, Luo K, Wang ZX. Clinical efficacy analysis of mesenchymal stem cell therapy in patients with COVID-19: A systematic review. World J Clin Cases 2022; 10:9714-9726. [PMID: 36186213 PMCID: PMC9516915 DOI: 10.12998/wjcc.v10.i27.9714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 08/21/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Currently, ongoing trials of mesenchymal stem cells (MSC) therapies for coronavirus disease 2019 (COVID-19) have been reported.
AIM In this study, we investigated whether MSCs have therapeutic efficacy in novel COVID-19 patients.
METHODS Search terms included stem cell, MSC, umbilical cord blood, novel coronavirus, severe acute respiratory syndrome coronavirus-2 and COVID-19, applied to PubMed, the Cochrane Controlled Trials Register, EMBASE and Web of Science.
RESULTS A total of 13 eligible clinical trials met our inclusion criteria with a total of 548 patients. The analysis showed no significant decrease in C-reactive protein (CRP) levels after stem cell therapy (P = 0.11). A reduction of D-dimer levels was also not observed in patients after stem cell administration (P = 0.82). Furthermore, interleukin 6 (IL-6) demonstrated no decrease after stem cell therapy (P = 0.45). Finally, we investigated the overall survival (OS) rate after stem cell therapy in COVID-19 patients. There was a significant improvement in OS after stem cell therapy; the OS of enrolled patients who received stem cell therapy was 90.3%, whereas that of the control group was 79.8% (P = 0.02).
CONCLUSION Overall, our analysis suggests that while MSC therapy for COVID-19 patients does not significantly decrease inflammatory markers such as CRP, D-dimer and IL-6, OS is improved.
Collapse
Affiliation(s)
- Jun-Xia Cao
- Biotherapy Center, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing 100700, China
| | - Jia You
- Biotherapy Center, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing 100700, China
| | - Li-Hua Wu
- Biotherapy Center, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing 100700, China
| | - Kai Luo
- Biotherapy Center, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing 100700, China
| | - Zheng-Xu Wang
- Biotherapy Center, The Seventh Medical Center of People's Liberation Army General Hospital, Beijing 100700, China
| |
Collapse
|
45
|
Chen CH, Chang KC, Lin YN, Ho MW, Cheng MY, Shih WH, Chou CH, Lin PC, Chi CY, Lu MC, Tien N, Wu MY, Chang SS, Hsu WH, Shyu WC, Cho DY, Jeng LB. Mesenchymal stem cell therapy on top of triple therapy with remdesivir, dexamethasone, and tocilizumab improves PaO2/FiO2 in severe COVID-19 pneumonia. Front Med (Lausanne) 2022; 9:1001979. [PMID: 36213639 PMCID: PMC9537613 DOI: 10.3389/fmed.2022.1001979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Background Despite patients with severe coronavirus disease (COVID-19) receiving standard triple therapy, including steroids, antiviral agents, and anticytokine therapy, health condition of certain patients continue to deteriorate. In Taiwan, the COVID-19 mortality has been high since the emergence of previous variants of this disease (such as alpha, beta, or delta). We aimed to evaluate whether adjunctive infusion of human umbilical cord mesenchymal stem cells (MSCs) (hUC-MSCs) on top of dexamethasone, remdesivir, and tocilizumab improves pulmonary oxygenation and suppresses inflammatory cytokines in patients with severe COVID-19. Methods Hospitalized patients with severe or critical COVID-19 pneumonia under standard triple therapy were separated into adjuvant hUC-MSC and non-hUC-MSC groups to compare the changes in the arterial partial pressure of oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio and biological variables. Results Four out of eight patients with severe or critical COVID-19 received either one (n = 2) or two (n = 2) doses of intravenous infusions of hUC-MSCs using a uniform cell dose of 1.0 × 108. Both high-sensitivity C-reactive protein (hs-CRP) level and monocyte distribution width (MDW) were significantly reduced, with a reduction in the levels of interleukin (IL)-6, IL-13, IL-12p70 and vascular endothelial growth factor following hUC-MSC transplantation. The PaO2/FiO2 ratio increased from 83.68 (64.34–126.75) to 227.50 (185.25–237.50) and then 349.56 (293.03–367.92) within 7 days after hUC-MSC infusion (P < 0.001), while the change of PaO2/FiO2 ratio was insignificant in non-hUC-MSC patients (admission day: 165.00 [102.50–237.61]; day 3: 100.00 [72.00–232.68]; day 7: 250.00 [71.00–251.43], P = 0.923). Conclusion Transplantation of hUC-MSCs as adjunctive therapy improves pulmonary oxygenation in patients with severe or critical COVID-19. The beneficial effects of hUC-MSCs were presumably mediated by the mitigation of inflammatory cytokines, characterized by the reduction in both hs-CRP and MDW.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- *Correspondence: Kuan-Cheng Chang,
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Cheng
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Hsin Shih
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Huei Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Chang Lin
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yu Chi
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Min-Chi Lu
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Ni Tien
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Sheng Chang
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Wu-Huei Hsu
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Woei-Cheang Shyu
- School of Medicine, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Woei-Cheang Shyu,
| | - Der-Yang Cho
- School of Medicine, China Medical University, Taichung, Taiwan
- Stroke Center, China Medical University Hospital, Taichung, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Long-Bin Jeng
- School of Medicine, China Medical University, Taichung, Taiwan
- Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan
- Long-Bin Jeng,
| |
Collapse
|
46
|
Upadhyay TK, Trivedi R, Khan F, Pandey P, Sharangi AB, Goel H, Saeed M, Park MN, Kim B. Potential Therapeutic Role of Mesenchymal-Derived Stem Cells as an Alternative Therapy to Combat COVID-19 through Cytokines Storm. Cells 2022; 11:2686. [PMID: 36078094 PMCID: PMC9455060 DOI: 10.3390/cells11172686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
Medical health systems continue to be challenged due to newly emerging COVID-19, and there is an urgent need for alternative approaches for treatment. An increasing number of clinical observations indicate cytokine storms to be associated with COVID-19 severity and also to be a significant cause of death among COVID-19 patients. Cytokine storm involves the extensive proliferative and hyperactive activity of T and macrophage cells and the overproduction of pro-inflammatory cytokines. Stem cells are the type of cell having self-renewal properties and giving rise to differentiated cells. Currently, stem cell therapy is an exciting and promising therapeutic approach that can treat several diseases that were considered incurable in the past. It may be possible to develop novel methods to treat various diseases by identifying stem cells' growth and differentiation factors. Treatment with mesenchymal stem cells (MSCs) in medicine is anticipated to be highly effective. The present review article is organized to put forward the positive arguments and implications in support of mesenchymal stem cell therapy as an alternative therapy to cytokine storms, to combat COVID-19. Using the immunomodulatory potential of the MSCs, it is possible to fight against COVID-19 and counterbalance the cytokine storm.
Collapse
Affiliation(s)
- Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Rashmi Trivedi
- Department of Biotechnology, Parul Institute of Applied Sciences and Animal Cell Culture and Immunobiochemistry Lab, Centre of Research for Development, Parul University, Vadodara 391760, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Amit Baran Sharangi
- Department of Plantation, Spices, Medicinal & Aromatic Crops, BCKV-Agricultural University, Mohanpur 741252, India
| | - Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 110023, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 34464, Saudi Arabia
| | - Moon Nyeo Park
- Department of Korean Medicine, Kyung Hee University, Seoul 05254, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
47
|
Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). Int J Mol Sci 2022; 23:ijms23169274. [PMID: 36012544 PMCID: PMC9409099 DOI: 10.3390/ijms23169274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
The treatment of sepsis and septic shock remains a major public health issue due to the associated morbidity and mortality. Despite an improvement in the understanding of the physiological and pathological mechanisms underlying its genesis and a growing number of studies exploring an even higher range of targeted therapies, no significant clinical progress has emerged in the past decade. In this context, mesenchymal stem cells (MSCs) appear more and more as an attractive approach for cell therapy both in experimental and clinical models. Pre-clinical data suggest a cornerstone role of these cells and their secretome in the control of the host immune response. Host-derived factors released from infected cells (i.e., alarmins, HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (e.g., LPS, peptidoglycans) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of cytokines/chemokines and growth factors that influence, respectively, immune cell recruitment and stem cell mobilization. However, the way in which MSCs exert their beneficial effects in terms of survival and control of inflammation in septic states remains unclear. This review presents the interactions identified between MSCs and mediators of immunity and tissue repair in sepsis. We also propose paradigms related to the plausible roles of MSCs in the process of sepsis and septic shock. Finally, we offer a presentation of experimental and clinical studies and open the way to innovative avenues of research involving MSCs from a prognostic, diagnostic, and therapeutic point of view in sepsis.
Collapse
|
48
|
Loh JK, Wang ML, Cheong SK, Tsai FT, Huang SH, Wu JR, Yang YP, Chiou SH, Ong AHK. The study of cancer cell in stromal environment through induced pluripotent stem cell-derived mesenchymal stem cells. J Chin Med Assoc 2022; 85:821-830. [PMID: 35666590 DOI: 10.1097/jcma.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The development of mesenchymal stem cells (MSCs) has gained reputation from its therapeutic potential in stem cell regeneration, anti-inflammation, tumor suppression, and drug delivery treatment. Previous studies have shown MSCs have both promoting and suppressing effects against cancer cells. While the limitation of obtaining a large quantity of homologous MSCs for studies and treatment remains a challenge, an alternative approach involving the production of MSCs derived from induced pluripotent stem cells (iPSCs; induced MSCs [iMSCs]) may be a promising prospect given its ability to undergo prolonged passage and with similar therapeutic profiles as that of their MSC counterparts. However, the influence of iMSC in the interaction of cancer cells remains to be explored as such studies are not well established. In this study, we aim to differentiate iPSCs into MSC-like cells as a potential substitute for adult MSCs and evaluate its effect on non-small-cell lung cancer (NSCLC). METHODS iMSCs were derived from iPSCs and validated with reference to the International Society of Cellular Therapy guidelines on MSC criteria. To create a stromal environment, the conditioned medium (CM) of iMSCs was harvested and applied for coculturing of NSCLC of H1975 at different concentrations. The H1975 was then harvested for RNA extraction and subjected to next-generation sequencing (NGS) for analysis. RESULTS The morphology of iMSCs-CM-treated H1975 was different from an untreated H1975. Our NGS data suggest the occurrence of apoptotic events and the presence of cytokines from H1975's RNA that are treated with iMSCs-CM. CONCLUSION Our results have shown that iMSCs may suppress the growth of H1975 by releasing proapoptotic cytokines into coculture media. Using iPSC-derived MSC models allows a deeper study of tumor cross talk between MSC and cancer cells that can be applied for potential future cancer therapy.
Collapse
Affiliation(s)
- Jit-Kai Loh
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shu-Huei Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
49
|
Bakhshi H, Soleimani M, Soufizomorrod M, Kooshkaki O. Evaluation of Hematologic Parameters in Patients with COVID-19 Following Mesenchymal Stem Cell Therapy. DNA Cell Biol 2022; 41:768-777. [PMID: 35914059 DOI: 10.1089/dna.2021.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
At present, severe acute respiratory syndrome coronavirus 2 is spreading and has caused over 188 million confirmed patients and more than 4,059,101 deaths. Currently, several clinical trials are done using mesenchymal stem cell (MSC) therapy in patients with coronavirus disease 2019 (COVID-19). These cells have shown safety and effectiveness, implying a promising clinical application in patients with COVID-19. Studies have shown that abnormalities in hematological measures such as white blood cells count, neutrophilia, elevated neutrophil to lymphocyte ratio, inflammatory markers, and lactate dehydrogenase can be used to assess the severity of COVID-19 disease and the response to therapy following MSC treatment. Our study has aimed to review the role of hematological factors in determination of responsiveness to MSC therapy and disease severity in COVID-19 patients.
Collapse
Affiliation(s)
- Haniye Bakhshi
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Soufizomorrod
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Kooshkaki
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
50
|
Tan MI, Alfarafisa NM, Septiani P, Barlian A, Firmansyah M, Faizal A, Melani L, Nugrahapraja H. Potential Cell-Based and Cell-Free Therapy for Patients with COVID-19. Cells 2022; 11:2319. [PMID: 35954162 PMCID: PMC9367488 DOI: 10.3390/cells11152319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Since it was first reported, the novel coronavirus disease 2019 (COVID-19) remains an unresolved puzzle for biomedical researchers in different fields. Various treatments, drugs, and interventions were explored as treatments for COVID. Nevertheless, there are no standard and effective therapeutic measures. Meanwhile, mesenchymal stem cell (MSC) therapy offers a new approach with minimal side effects. MSCs and MSC-based products possess several biological properties that potentially alleviate COVID-19 symptoms. Generally, there are three classifications of stem cell therapy: cell-based therapy, tissue engineering, and cell-free therapy. This review discusses the MSC-based and cell-free therapies for patients with COVID-19, their potential mechanisms of action, and clinical trials related to these therapies. Cell-based therapies involve the direct use and injection of MSCs into the target tissue or organ. On the other hand, cell-free therapy uses secreted products from cells as the primary material. Cell-free therapy materials can comprise cell secretomes and extracellular vesicles. Each therapeutic approach possesses different benefits and various risks. A better understanding of MSC-based and cell-free therapies is essential for supporting the development of safe and effective COVID-19 therapy.
Collapse
Affiliation(s)
- Marselina Irasonia Tan
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Nayla Majeda Alfarafisa
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Popi Septiani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Anggraini Barlian
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Mochamad Firmansyah
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Ahmad Faizal
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Lili Melani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| | - Husna Nugrahapraja
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia; (P.S.); (A.B.); (M.F.); (A.F.); (L.M.); (H.N.)
| |
Collapse
|