1
|
Nagaraju GP, Saddala MS, Sarvesh S, Reddy Bandi DS, Khaliq AM, Masood A, Akce M, El-Rayes BF. Paricalcitol plus hydroxychloroquine enhances gemcitabine activity and induces mesenchymal to epithelial transition in pancreatic ductal adenocarcinoma: A single cell RNA-seq analysis. Cancer Lett 2025:217809. [PMID: 40409452 DOI: 10.1016/j.canlet.2025.217809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 05/05/2025] [Accepted: 05/17/2025] [Indexed: 05/25/2025]
Abstract
Epithelial-mesenchymal transition (EMT) describes a process by which epithelial cells acquire mesenchymal properties associated with increased migration, invasion, and resistance to therapy. In pancreatic ductal adenocarcinoma (PDAC), targeting the molecular and intercellular communication pathways that drive EMT represents a promising therapeutic strategy. Here, we investigate the effects of combined treatment with gemcitabine (G), paricalcitol (P), and hydroxychloroquine (GPH) in KPC-Luc orthotopic mouse models of PDAC, using single-cell RNA sequencing (scRNA-seq), high-dimensional weighted gene co-expression network analysis (hdWGCNA), and cell-cell communication analysis. GPH treatment reduces EMT, which is associated with the downregulation of the essential gene fibronectin (Fn1). Collagen and Fn1 pathways co-expression decreases in GPH-treated KPC-Luc tumors. Cancer-associated fibroblasts (CAFs) appear dominant in collagen signaling, whereas macrophages mediate Fn1 signaling. GPH treatment reduces the expression interaction strength between ligands and receptors (collagen-integrin and Fn1-Cd44 or Fn1-Sdc4) compared to sham, PH, and G. Altogether, this study presents a comprehensive single-cell resolution map of the molecular and cellular mechanisms by which GPH treatment impairs EMT in PDAC, identifying potential therapeutic targets within the fibronectin and collagen signaling axes.
Collapse
Affiliation(s)
| | | | - Sujith Sarvesh
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ateeq M Khaliq
- Indiana University School of Medicine, Indianapolis, IN-46202, USA
| | - Ashiq Masood
- Indiana University School of Medicine, Indianapolis, IN-46202, USA
| | - Mehmet Akce
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
2
|
Muzaffar A, Tajudin AA, Syahir A. A cutting-edge solution to a Gordian knot? Aptamers targeting cancer stem cell markers for strategic cancer therapy. Drug Discov Today 2025; 30:104365. [PMID: 40288486 DOI: 10.1016/j.drudis.2025.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cancer stem cells (CSCs) are key drivers of tumor proliferation and serve as a basis for therapeutic resistance, metastasis, and recurrence. The erratic efficacy of conventional therapeutic approaches is limited because of their inability to exterminate CSCs. This has spurred the development of novel cancer treatment paradigms that target specifically these cells. Importantly, CSCs are identified and classified based on the differential expression of biomarkers, facilitating their precise isolation and tailored therapeutic interventions. Numerous promising approaches have been developed to target CSC markers, paving the way to precision medicine in cancer treatment. Aptamers are molecularly targeting agents comprising single-strand oligonucleotides arranged in a unique fashion that allows them to bind their targets, including cancer biomarkers, with high specificity and affinity. Given their programmable nature, they can be chemically modified and integrated with various diagnostic components, including nanoparticles (NPs), drugs, and therapeutic RNAs, thereby enhancing their applicability in disease treatment. In this review, we shed light on various aptamer designs that show potential to target putative CSC markers and to efficiently deliver therapeutic moieties.
Collapse
Affiliation(s)
- Aneesa Muzaffar
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Amir Syahir
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanobiotechnology Research Group, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess epitranscriptome plasticity in a neuronal cell line. Cell Syst 2025; 16:101238. [PMID: 40118059 PMCID: PMC12006983 DOI: 10.1016/j.cels.2025.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/03/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant lead (unhealthy). We discovered that the expression of some psi writers changes significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and their possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
- Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yuchen Qiu
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
4
|
Xu F, Gao Y, Li T, Jiang T, Wu X, Yu Z, Zhang J, Hu Y, Cao J. Single-Cell Sequencing Reveals the Heterogeneity of Hepatic Natural Killer Cells and Identifies the Cytotoxic Natural Killer Subset in Schistosomiasis Mice. Int J Mol Sci 2025; 26:3211. [PMID: 40244063 PMCID: PMC11989782 DOI: 10.3390/ijms26073211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/08/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Schistosoma japonicum eggs in the host liver form granuloma and liver fibrosis and then lead to portal hypertension and cirrhosis, seriously threatening human health. Natural killer (NK) cells can kill activated hepatic stellate cells (HSCs) against hepatic fibrosis. We used single-cell sequencing to screen hepatic NK cell subsets against schistosomiasis liver fibrosis. Hepatic NK cells were isolated from uninfected mice and mice infected for four and six weeks. The NK cells underwent single-cell sequencing. The markers' expression in the NK subsets was detected through Reverse Transcription-Quantitative PCR (RT-qPCR). The proportion and granzyme B (Gzmb) expression of the total NK and Thy1+NK were detected. NK cells overexpressing Thy1 (Thy1-OE) were constructed, and functions were detected. The results revealed that the hepatic NK cells could be divided into mature, immature, regulatory-like, and memory-like NK cells and re-clustered into ten subsets. C3 (Cx3cr1+NK) and C4 (Thy1+NK) increased at week four post-infection, and other subsets decreased continuously. The successfully constructed Thy1-OE NK cells had significantly higher effector molecules and induced greater HSC apoptosis than the control NK cells. It revealed a pattern of hepatic NK cells in a mouse model of schistosomiasis. The Thy1+NK cells could be used as target cells against hepatic fibrosis.
Collapse
Affiliation(s)
- Fangfang Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Teng Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Tingting Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Xiaoying Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Zhihao Yu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jing Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Yuan Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China; (F.X.); (Y.G.); (T.L.); (T.J.); (X.W.); (Z.Y.); (J.Z.)
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Hekimoglu ER, Esrefoglu M, Cimen FBK, Pasin Ö, Dedeakayogullari H. Therapeutic Potential of Stromal Vascular Fraction in Enhancing Wound Healing: A Preclinical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04554-5. [PMID: 39681692 DOI: 10.1007/s00266-024-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion. Recently, the heterogeneous cell population found in the SVF gained wide-ranging translational significance in regenerative medicine. METHODS Forty-eight male rats were randomly divided into two main groups, including the control and SVF groups. Each group was further divided into four groups as follows: 0th-, 3rd-, 7th-, and 10th-day groups. A skin excision of 1 × 1 cm covering the epidermis and dermis was performed on the back skin. Just after the wound was created, a subepidermal injection of SVF was applied. SVF was obtained from human adipose tissue using Lipocube SVFTM. On the 0th (1 h after the injections), 3rd, 7th, and 10th days, rats were killed, and skin excisions from the wound areas tissues were performed. Histopathological, biochemical, and western blotting analyses were performed on tissues. RESULTS Our data showed that SVF obtained from a healthy woman improved wound healing in healthy rats. SVF has promoted wound healing mainly because of its antioxidant, antiapoptotic, and fibroblast/myofibroblast stimulating effects. SVF stimulated collagen production and contraction of the wound lips, supporting the closure. CONCLUSIONS Our study provides additional data about the efficacy and pathophysiological and molecular mechanisms of the action of SVF on wound healing in healthy subjects. Our study is an experimental animal study. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey.
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
6
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess neuronal epitranscriptome plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586895. [PMID: 38585714 PMCID: PMC10996719 DOI: 10.1101/2024.03.26.586895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant, lead (unhealthy). We discovered that the expression of some psi writers change significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Interestingly, examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and its possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
| | | | - Yuchen Qiu
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Amr Makhamreh
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Keqing Nian
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Stuart Akeson
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | | | | | - Dylan Bloch
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Miten Jain
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Meni Wanunu
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | | |
Collapse
|
7
|
Yi C, Zang N, Gao L, Ren F. THY1 is a prognostic-related biomarker via mediating immune infiltration in lung squamous cell carcinoma (LUSC). Aging (Albany NY) 2024; 16:9498-9517. [PMID: 38819947 PMCID: PMC11210259 DOI: 10.18632/aging.205880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Thymus cell antigen 1 (THY1) has been proven to play pivotal roles in many diseases. However, we do not fully understand its functional mechanism, especially in lung squamous cell carcinoma (LUSC). Here, we aimed to perform a comprehensive analysis to explore the expression and prognostic values of THY1 in LUSC using bioinformatic technology. Some online public databases (e.g., ONCOMINE, PrognoScan, TIMER, Kaplan-Meier plotter, STRING, LinkedOmics, and GEPIA) were used to explore the expression, prognostic significance, and potential molecular mechanism of THY1. The analysis indicated that THY1 was significantly up-regulated and closely correlated with poor prognosis in many malignant tumors, including LUSC. Further analysis revealed that over-expression of THY1 was significantly correlated with clinicopathological parameters (e.g., individual cancer stage, age, smoking habits, nodal metastasis status, and TP53 mutation status) in LUSC. The CpG islands methylation of THY1 was negatively correlated with THY1 mRNA expression in The Cancer Genome Atlas Program (TCGA). Further enrichment analysis of THY1 correlated genes revealed that they were mainly correlated with the formation of extracellular matrix (ECM), and got involved in the pathway of epithelial mesenchymal transition (EMT). Furthermore, differentially expressed THY1 was significantly correlated with immune cell infiltrations and poor prognosis in LUSC. In summary, bioinformatic analysis demonstrated that THY1 was significantly over-expressed and closely correlated with unfavorable prognosis in LUSC, which may apply as a promising diagnostic and therapeutic biomarker for LUSC in the future.
Collapse
Affiliation(s)
- Changsheng Yi
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou 450008, China
| | - Nan Zang
- Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Limin Gao
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Fang Ren
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
8
|
Hindle J, Williams A, Kim Y, Kim D, Patil K, Khatkar P, Osgood Q, Nelson C, Routenberg DA, Howard M, Liotta LA, Kashanchi F, Branscome H. hTERT-Immortalized Mesenchymal Stem Cell-Derived Extracellular Vesicles: Large-Scale Manufacturing, Cargo Profiling, and Functional Effects in Retinal Epithelial Cells. Cells 2024; 13:861. [PMID: 38786083 PMCID: PMC11120263 DOI: 10.3390/cells13100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
As the economic burden associated with vision loss and ocular damage continues to rise, there is a need to explore novel treatment strategies. Extracellular vesicles (EVs) are enriched with various biological cargo, and there is abundant literature supporting the reparative and immunomodulatory properties of stem cell EVs across a broad range of pathologies. However, one area that requires further attention is the reparative effects of stem cell EVs in the context of ocular damage. Additionally, most of the literature focuses on EVs isolated from primary stem cells; the use of EVs isolated from human telomerase reverse transcriptase (hTERT)-immortalized stem cells has not been thoroughly examined. Using our large-scale EV-manufacturing platform, we reproducibly manufactured EVs from hTERT-immortalized mesenchymal stem cells (MSCs) and employed various methods to characterize and profile their associated cargo. We also utilized well-established cell-based assays to compare the effects of these EVs on both healthy and damaged retinal pigment epithelial cells. To the best of our knowledge, this is the first study to establish proof of concept for reproducible, large-scale manufacturing of hTERT-immortalized MSC EVs and to investigate their potential reparative properties against damaged retinal cells. The results from our studies confirm that hTERT-immortalized MSC EVs exert reparative effects in vitro that are similar to those observed in primary MSC EVs. Therefore, hTERT-immortalized MSCs may represent a more consistent and reproducible platform than primary MSCs for generating EVs with therapeutic potential.
Collapse
Affiliation(s)
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Kajal Patil
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | | | - Collin Nelson
- Meso Scale Diagnostics, L.L.C., Rockville, MD 20850, USA (D.A.R.)
| | | | - Marissa Howard
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| | - Heather Branscome
- ATCC, Manassas, VA 20110, USA
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA (K.P.)
| |
Collapse
|
9
|
Jalali S, Selvaganapathy PR. A self-assembly and cellular migration based fabrication of high-density 3D tubular constructs of barrier forming membranes. LAB ON A CHIP 2024; 24:2468-2484. [PMID: 38563430 DOI: 10.1039/d4lc00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) in vitro models, superior in simulating physiological conditions compared to 2D models, offer intricate cell-cell and cell-ECM interactions with diverse signaling cues like fluid shear stress and growth factor gradients. Yet, developing 3D tissue barrier models, specifically perfusable luminal structures with dense, multicellular constructs maintained for extended durations with oxygen and nutrients, remains a technical challenge. Here, we describe a molding-based approach for the fabrication of free-standing, perfusable, high cellular density tissue constructs using a self-assembly and migration process to form functional barriers. This technique utilizes a polytetrafluoroethylene (PTFE)-coated stainless-steel wire, held by stainless steel needles, as a template for a perfusable channel within an elongated PDMS well. Upon adding a bio-ink mix of cells and collagen, it self-assembles into a high cell density layer conformally around the wire. Removing the wire reveals a hollow construct, connectable to an inlet and outlet for perfusion. This scalable method allows creating varied dimensions and multicellular configurations. Notably, post-assembly, cells such as human umbilical vein endothelial cells (HUVECs) migrate to the surface and form functional barriers with adherens junctions. Permeability tests and fluorescence imaging confirm that these constructs closely mimic in vivo endothelial barrier permeability, exhibiting the lowest permeability among all in vitro models in the literature. Unlike traditional methods involving uneven post-seeding of endothelial cells leading to subpar barriers, our approach is a straightforward alternative for fabricating complex perfusable 3D tissue constructs and effective tissue barriers for use in various applications, including tissue engineering, drug screening, and disease modeling.
Collapse
Affiliation(s)
- Seyedaydin Jalali
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
10
|
Sukowati CH, El-Khobar K, Jasirwan COM, Kurniawan J, Gani RA. Stemness markers in hepatocellular carcinoma of Eastern vs. Western population: Etiology matters? Ann Hepatol 2024; 29:101153. [PMID: 37734662 DOI: 10.1016/j.aohep.2023.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. HCC development is associated with its underlying etiologies, mostly caused by infection of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV), alcohol, non-alcoholic fatty liver disease, and exposure to aflatoxins. These variables, together with human genetic susceptibility, contribute to HCC molecular heterogeneity, including at the cellular level. HCC initiation, tumor recurrence, and drug resistance rates have been attributed to the presence of liver cancer stem cells (CSC). This review summarizes available data regarding whether various HCC etiologies may be associated to the appearance of CSC biomarkers. It also described the genetic variations of tumoral tissues obtained from Western and Eastern populations, in particular to the oncogenic effect of HBV in the human genome.
Collapse
Affiliation(s)
- Caecilia Hc Sukowati
- Liver Cancer Unit, Fondazione Italiana Fegato ONLUS, AREA Science Park campus Basovizza, SS14 km 163.5, Trieste 34149, Italy; Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia.
| | - Korri El-Khobar
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Chyntia Olivia Maurine Jasirwan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Juferdy Kurniawan
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| | - Rino Alvani Gani
- Hepatobiliary Division, Medical Staff Group of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital, Jl. Pangeran Diponegoro No.71, Jakarta 10430, Indonesia
| |
Collapse
|
11
|
Sanie-Jahromi F, Nowroozzadeh MH, Shaabanian M, Khademi B, Owji N, Mehrabani D. Characterization of Central and Nasal Orbital Adipose Stem Cells and their Neural Differentiation Footprints. Curr Stem Cell Res Ther 2024; 19:1111-1119. [PMID: 37670706 DOI: 10.2174/1574888x19666230905114246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND The unique potential of stem cells to restore vision and regenerate damaged ocular cells has led to the increased attraction of researchers and ophthalmologists to ocular regenerative medicine in recent decades. In addition, advantages such as easy access to ocular tissues, non-invasive follow-up, and ocular immunologic privilege have enhanced the desire to develop ocular regenerative medicine. OBJECTIVE This study aimed to characterize central and nasal orbital adipose stem cells (OASCs) and their neural differentiation potential. METHODS The central and nasal orbital adipose tissues extracted during an upper blepharoplasty surgery were explant-cultured in Dulbecco's Modified Eagle Medium (DMEM)/F12 supplemented with 10% fetal bovine serum (FBS). Cells from passage 3 were characterized morphologically by osteogenic and adipogenic differentiation potential and by flow cytometry for expression of mesenchymal (CD73, CD90, and CD105) and hematopoietic (CD34 and CD45) markers. The potential of OASCs for the expression of NGF, PI3K, and MAPK and to induce neurogenesis was assessed by real-time PCR. RESULTS OASCs were spindle-shaped and positive for adipogenic and osteogenic induction. They were also positive for mesenchymal and negative for hematopoietic markers. They were positive for NGF expression in the absence of any significant alteration in the expression of PI3K and MAPK genes. Nasal OASCs had higher expression of CD90, higher potential for adipogenesis, a higher level of NGF expression under serum-free supplementation, and more potential for neuron-like morphology. CONCLUSION We suggested the explant method of culture as an easy and suitable method for the expansion of OASCs. Our findings denote mesenchymal properties of both central and nasal OASCs, while mesenchymal and neural characteristics were expressed stronger in nasal OASCs when compared to central ones. These findings can be added to the literature when cell transplantation is targeted in the treatment of neuro-retinal degenerative disorders.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M Hossein Nowroozzadeh
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shaabanian
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behzad Khademi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Naser Owji
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Liu G, Zhu G, Wu X, Tang Z, Shao W, Wang M, Xia H, Sun Q, Yan M. Thy-1 knockdown promotes the osteogenic differentiation of GMSCs via the Wnt/β-catenin pathway. J Cell Mol Med 2023; 27:3805-3815. [PMID: 37786319 PMCID: PMC10718136 DOI: 10.1111/jcmm.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023] Open
Abstract
Gingival mesenchymal stem cells (GMSCs) are newly developed seed cells for tissue engineering owing to their easy isolation, abundance and high growth rates. Thy-1 is an important regulatory molecule in the differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the function of Thy-1 in the osteogenic differentiation of GMSCs by reducing the expression of Thy-1 using a lentivirus. The results demonstrated that Thy-1 knockdown promoted the osteogenic differentiation of GMSCs in vitro. Validation by RNA-seq revealed an obvious decrease in Vcam1 and Sox9 gene expression with Thy-1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that the differentially expressed genes were enriched in the Wnt signalling pathway. We further demonstrated that Thy-1 knockdown promoted osteogenic differentiation of GMSCs by activating the Wnt/β-catenin signalling pathway. Therefore, Thy-1 has a key regulatory role in the differentiation of GMSCs and maybe a core molecule connecting transcription factors related to the differentiation of MSCs. Our study also highlighted the potential of Thy-1 to modify MSCs, which may help improve their use in tissue engineering.
Collapse
Affiliation(s)
- Gufeng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Guixin Zhu
- The State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Xiaoyi Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Ziqiao Tang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Wenjun Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Min Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Department of Oral Implantology, Hospital and School of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Haibin Xia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Department of Oral Implantology, Hospital and School of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Quan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
- Center for Prosthodontics and Implant Dentistry, Optics Valley Branch, School and Hospital of StomatologyWuhan UniversityWuhanPeople's Republic of China
| | - Mingdong Yan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of StomatologyFujian Medical UniversityFuzhouPeople's Republic of China
| |
Collapse
|
13
|
Pirri C, Caroccia B, Angelini A, Piazza M, Petrelli L, Caputo I, Montemurro C, Ruggieri P, De Caro R, Stecco C. A New Player in the Mechanobiology of Deep Fascia: Yes-Associated Protein (YAP). Int J Mol Sci 2023; 24:15389. [PMID: 37895068 PMCID: PMC10607668 DOI: 10.3390/ijms242015389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Recent studies have demonstrated that fascial fibroblasts are susceptible to mechanical stimuli, leading to the remodeling of the extracellular matrix (ECM). Moreover, the extensive literature on Yes-associated protein (YAP) has shown its role in cell mechanics, linking cell properties, such as shape, adhesion, and size, to the expression of specific genes. The aim of this study was to investigate the presence of YAP in deep fascia and its activation after a mechanical stimulus was induced via a focal extracorporeal shockwave (fESW) treatment. Thoracolumbar fascia (TLF) samples were collected from eight patients (age: 30-70 years; four males and four females) who had undergone spine elective surgical procedures at the Orthopedic Clinic of University of Padova. YAP was measured in both tissue and TLF-derived fibroblasts through immunoblotting. COL1A1 and HABP2 gene expression were also evaluated in fibroblasts 2, 24, and 48 h after the fESW treatment. YAP was expressed in all the examined tissues. The ratio between the active/inactive forms (YAP/p-YAP) of the protein significantly increased in fascial fibroblasts after mechanical stimulation compared to untreated cells (p = 0.0022). Furthermore, COL1A1 and HABP2 gene expression levels were increased upon treatment. These findings demonstrate that YAP is expressed in the deep fascia of the thoracolumbar region, suggesting its involvement in fascial mechanotransduction processes, remodeling, regeneration, and fibrogenesis. This study indicates, for the first time, that YAP is a "new player" in the mechanobiology of deep fascia.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| | - Brasilina Caroccia
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Andrea Angelini
- Department of Orthopedics and Orthopedic Oncology, University of Padova, 35128 Padova, Italy; (A.A.); (P.R.)
| | - Maria Piazza
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Lucia Petrelli
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | - Ilaria Caputo
- Department of Medicine-DIMED, University of Padova, 35128 Padova, Italy; (B.C.); (M.P.); (L.P.); (I.C.)
| | | | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padova, 35128 Padova, Italy; (A.A.); (P.R.)
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| | - Carla Stecco
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy; (R.D.C.); (C.S.)
| |
Collapse
|
14
|
Do NT, Lee SY, Lee YS, Shin C, Kim D, Lee TG, Son JG, Kim SH. Time-sequential fibroblast-to-myofibroblast transition in elastin-variable 3D hydrogel environments by collagen networks. Biomater Res 2023; 27:103. [PMID: 37848974 PMCID: PMC10583321 DOI: 10.1186/s40824-023-00439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Fibrosis plays an important role in both normal physiological and pathological phenomena as fibroblasts differentiate to myofibroblasts. The activation of fibroblasts is determined through interactions with the surrounding extracellular matrix (ECM). However, how this fibroblast-to-myofibroblast transition (FMT) is regulated and affected by elastin concentration in a three-dimensional (3D) microenvironment has not been investigated. METHODS We developed an insoluble elastin-gradient 3D hydrogel system for long-lasting cell culture and studied the molecular mechanisms of the FMT in embedded cells by nanoflow LC-MS/MS analysis along with validation through real-time PCR and immunofluorescence staining. RESULTS By optimizing pH and temperature, four 3D hydrogels containing fibroblasts were successfully fabricated having elastin concentrations of 0, 20, 50, and 80% in collagen. At the low elastin level (20%), fibroblast proliferation was significantly increased compared to others, and in particular, the FMT was clearly observed in this condition. Moreover, through mass spectrometry of the hydrogel environment, it was confirmed that differentiation proceeded in two stages. In the early stage, calcium-dependent proteins including calmodulin and S100A4 were highly associated. On the other hand, in the late stage after several passages of cells, distinct markers of myofibroblasts were presented such as morphological changes, increased production of ECM, and increased α-SMA expression. We also demonstrated that the low level of elastin concentration induced some cancer-associated fibroblast (CAF) markers, including PDGFR-β, and fibrosis-related disease markers, including THY-1. CONCLUSION Using our developed 3D elastin-gradient hydrogel system, we evaluated the effect of different elastin concentrations on the FMT. The FMT was induced even at a low concentration of elastin with increasing CAF level via calcium signaling. With this system, we were able to analyze varying protein expressions in the overall FMT process over several cellular passages. Our results suggest that the elastin-gradient system employing nonlinear optics imaging provides a good platform to study activated fibroblasts interacting with the microenvironment, where the ECM plays a pivotal role.
Collapse
Affiliation(s)
- Nhuan T Do
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- BioMedical Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Sun Young Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Yoon Seo Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - ChaeHo Shin
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- Nanoconvergence Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Daeho Kim
- Bruker Nano Surface & Metrology, Bruker Korea, Seongnam, 13493, Republic of Korea
| | - Tae Geol Lee
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
- Nanoconvergence Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jin Gyeong Son
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| | - Se-Hwa Kim
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
- BioMedical Measurement, University of Science and Technology, 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
15
|
Yan YM, Jin MZ, Li SH, Wu Y, Wang Q, Hu FF, Shen C, Yin WH. Hub genes, diagnostic model, and predicted drugs in systemic sclerosis by integrated bioinformatics analysis. Front Genet 2023; 14:1202561. [PMID: 37501723 PMCID: PMC10369177 DOI: 10.3389/fgene.2023.1202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Background: Systemic sclerosis (scleroderma; SSc), a rare and heterogeneous connective tissue disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. The purpose of the present study was to identify hub genes, diagnostic markers and explore potential small-molecule drugs of SSc. Methods: The cohorts of data used in this study were downloaded from the Gene Expression Complex (GEO) database. Integrated bioinformatic tools were utilized for exploration, including Weighted Gene Co-Expression Network Analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, gene set enrichment analysis (GSEA), Connectivity Map (CMap) analysis, molecular docking, and pharmacokinetic/toxicity properties exploration. Results: Seven hub genes (THY1, SULF1, PRSS23, COL5A2, NNMT, SLCO2B1, and TIMP1) were obtained in the merged gene expression profiles of GSE45485 and GSE76885. GSEA results have shown that they are associated with autoimmune diseases, microorganism infections, inflammatory related pathways, immune responses, and fibrosis process. Among them, THY1 and SULF1 were identified as diagnostic markers and validated in skin samples from GSE32413, GSE95065, GSE58095 and GSE125362. Finally, ten small-molecule drugs with potential therapeutic effects were identified, mainly including phosphodiesterase (PDE) inhibitors (BRL-50481, dipyridamole), TGF-β receptor inhibitor (SB-525334), and so on. Conclusion: This study provides new sights into a deeper understanding the molecular mechanisms in the pathogenesis of SSc. More importantly, the results may offer promising clues for further experimental studies and novel treatment strategies.
Collapse
Affiliation(s)
- Yue-Mei Yan
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Meng-Zhu Jin
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Sheng-Hua Li
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yun Wu
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei-Fei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Wen-Hao Yin
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
16
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
17
|
Prakash N, Kim J, Jeon J, Kim S, Arai Y, Bello AB, Park H, Lee SH. Progress and emerging techniques for biomaterial-based derivation of mesenchymal stem cells (MSCs) from pluripotent stem cells (PSCs). Biomater Res 2023; 27:31. [PMID: 37072836 PMCID: PMC10114339 DOI: 10.1186/s40824-023-00371-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
The use of mesenchymal stem cells (MSCs) for clinical purposes has skyrocketed in the past decade. Their multilineage differentiation potentials and immunomodulatory properties have facilitated the discovery of therapies for various illnesses. MSCs can be isolated from infant and adult tissue sources, which means they are easily available. However, this raises concerns because of the heterogeneity among the various MSC sources, which limits their effective use. Variabilities arise from donor- and tissue-specific differences, such as age, sex, and tissue source. Moreover, adult-sourced MSCs have limited proliferation potentials, which hinders their long-term therapeutic efficacy. These limitations of adult MSCs have prompted researchers to develop a new method for generating MSCs. Pluripotent stem cells (PSCs), such as embryonic stem cells and induced PSCs (iPSCs), can differentiate into various types of cells. Herein, a thorough review of the characteristics, functions, and clinical importance of MSCs is presented. The existing sources of MSCs, including adult- and infant-based sources, are compared. The most recent techniques for deriving MSCs from iPSCs, with a focus on biomaterial-assisted methods in both two- and three-dimensional culture systems, are listed and elaborated. Finally, several opportunities to develop improved methods for efficiently producing MSCs with the aim of advancing their various clinical applications are described.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jiseong Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Jieun Jeon
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Siyeon Kim
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Yoshie Arai
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Engineering, Dongguk University, Seoul, 04620, Korea.
| |
Collapse
|
18
|
Rasouli R, Paun RA, Tabrizian M. Sonoprinting nanoparticles on cellular spheroids via surface acoustic waves for enhanced nanotherapeutics delivery. LAB ON A CHIP 2023; 23:2091-2105. [PMID: 36942710 DOI: 10.1039/d2lc00854h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotherapeutics, on their path to the target tissues, face numerous physicochemical hindrances that affect their therapeutic efficacy. Physical barriers become more pronounced in pathological tissues, such as solid tumors, where they limit the penetration of nanocarriers into deeper regions, thereby preventing the efficient delivery of drug cargo. To address this challenge, we introduce a novel approach that employs surface acoustic wave (SAW) technology to sonoprint and enhance the delivery of nanoparticles onto and into cell spheroids. Our SAW platform is designed to generate focused and unidirectional acoustic waves for creating vigorous acoustic streaming while promoting Bjerknes forces. The effect of SAW excitation on cell viability, as well as the accumulation and penetration of nanoparticles on human breast cancer (MCF 7) and mouse melanoma (YUMM 1.7) cell spheroids were investigated. The high frequency, low input voltage, and contact-free nature of the proposed SAW system ensured over 92% cell viability for both cell lines after SAW exposure. SAW sonoprinting enhanced the accumulation of 100 nm polystyrene particles on the periphery of the spheroids to near four-fold, while the penetration of nanoparticles into the core regions of the spheroids was improved up to three times. To demonstrate the effectiveness of our SAW platform on the efficacy of nanotherapeutics, the platform was used to deliver nanoliposomes encapsulated with the anti-cancer metal compound copper diethyldithiocarbamate (CuET) to MCF 7 and YUMM 1.7 cell spheroids. A three-fold increase in the cytotoxic activity of the drug was observed in spheroids under the effect of SAW, compared to controls. The capacity of SAW-based devices to be manufactured as minuscule wearable patches can offer highly controllable, localized, and continuous acoustic waves to enhance drug delivery efficiency to target tissues.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Radu Alexandru Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
20
|
Wei L, Liu Z, Qin L, Xian L, Chen K, Zhou S, Hu L, Xiong Y, Li B, Qin Y. BORIS variant SF2(C2/A4) promotes the malignant development of liver cancer by activating epithelial-mesenchymal transition and hepatic stellate cells. Mol Carcinog 2023; 62:731-742. [PMID: 36929051 DOI: 10.1002/mc.23520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
The underlying mechanisms of metastasis and recurrence of liver cancer remain largely unknown. Here, we found that Brother of the Regulator of Imprinted Sites (BORIS) variant SF2(C2/A4) was highly expressed in high metastatic potential hepatocellular carcinoma (HCC) cells and clinical tumor samples, related to the formation of satellite nodules. Its over expression promoted self-renewal, the expression of tumor stem cell markers, chemoresistance, wound healing rate, invasion and metastasis of HepG2 and Hep3B cells; reinforced epithelial-mesenchymal transition (EMT), decreased the expression of E-cadherin and increased N-cadherin and Vimentin. Subcellular localization experiment showed that BORIS SF2(C2/A4) was localized in nucleus and cytoplasm. Further double luciferase reporter gene experiment confirmed that it bound to TWIST1 gene promoter and significantly increased latter expression. BORIS SF2(C2/A4) knock down induced apoptosis of HCCLM3 and PLC/PRF/5 cells, and increased the protein content of cleaved caspase 3. Additionally, BORIS SF2(C2/A4) over expression increased the expression of fibroblast growth factor 2 (FGF2) in HepG2 and Hep3B cells. FGF2 expressed higher in HCC tumor tissues than in paired peri-tumor tissues, and its expression was positively correlated with BORIS SF2(C2/A4). Interestingly, high expression of FGF2 is also associated with the formation of satellite nodules. Moreover, using the medium from BORIS SF2(C2/A4) overexpressed cell lines to coculture hepatic stellate cell (HSCs) line LX-2, the latter could be activated and increased the expression of CD90 and PIGF, which is consistent with the effect of adding bFGF alone. These results indicate that BORIS SF2(C2/A4) plays a role in deterioration of liver cancer by regulating TWIST1 to induce EMT, and by FGF2 to activate HSCs.
Collapse
Affiliation(s)
- Ling Wei
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhongjian Liu
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Longjun Xian
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Chen
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Siqi Zhou
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lei Hu
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yimei Xiong
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Bo Li
- Department of Surgery Division of Liver Transplantation, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Qin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
21
|
A Simplified and Effective Approach for the Isolation of Small Pluripotent Stem Cells Derived from Human Peripheral Blood. Biomedicines 2023; 11:biomedicines11030787. [PMID: 36979766 PMCID: PMC10045871 DOI: 10.3390/biomedicines11030787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation. Here, we report a simplified and effective approach for the isolation of small pluripotent stem cells derived from human peripheral blood. Our approach results in a high yield of small blood stem cell (SBSC) population, which expresses pluripotent embryonic markers (e.g., Nanog, SSEA-3) and the Yamanaka factors. Further, a fraction of SBSCs also co-express hematopoietic markers (e.g., CD45 and CD90) and/or mesenchymal markers (e.g., CD29, CD105 and PTH1R), suggesting a mixed stem cell population. Finally, quantitative proteomic profiling reveals that SBSCs contain various stem cell markers (CD9, ITGA6, MAPK1, MTHFD1, STAT3, HSPB1, HSPA4), and Transcription reg complex factors (e.g., STAT5B, PDLIM1, ANXA2, ATF6, CAMK1). In conclusion, we present a novel, simplified and effective isolating process that yields an abundant population of small-sized cells with characteristics of pluripotency from human peripheral blood.
Collapse
|
22
|
Echalar B, Dostalova D, Palacka K, Javorkova E, Hermankova B, Cervena T, Zajicova A, Holan V, Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol In Vitro 2023; 87:105536. [PMID: 36528116 DOI: 10.1016/j.tiv.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
Collapse
Affiliation(s)
- Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Dominika Dostalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
23
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
24
|
Chiu HW, Hung SW, Chiu CF, Hong JR. A Mitochondrion-Targeting Protein (B2) Primes ROS/Nrf2-Mediated Stress Signals, Triggering Apoptosis and Necroptosis in Lung Cancer. Biomedicines 2023; 11:biomedicines11010186. [PMID: 36672696 PMCID: PMC9855812 DOI: 10.3390/biomedicines11010186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
The betanodavirus B2 protein targets mitochondria and triggers mitochondrion-mediated cell death signaling in lung cancer cells; however, its molecular mechanism remains unknown. In this study, we observed that B2 triggers hydrogen peroxide/Nrf2-involved stress signals in the dynamic regulation of non-small lung cancer cell (NSCLC)-programmed cell death. Here, the B2 protein works as a necrotic inducer that triggers lung cancer death via p53 upregulation and RIP3 expression, suggesting a new perspective on lung cancer therapy. We employed the B2 protein to target A549 lung cancer cells and solid tumors in NOD/SCID mice. Tumors were collected and processed for the hematoxylin and eosin staining of tissue and cell sections, and their sera were used for blood biochemistry analysis. We observed that B2 killed an A549 cell-induced solid tumor in NOD/SCID mice; however, the mutant ΔB2 did not. In NOD/SCID mice, B2 (but not ΔB2) induced both p53/Bax-mediated apoptosis and RIPK3-mediated necroptosis. Finally, immunochemistry analysis showed hydrogen peroxide /p38/Nrf2 stress strongly inhibited the production of tumor markers CD133, Thy1, and napsin, which correlate with migration and invasion in cancer cells. This B2-triggered, ROS/Nrf2-mediated stress signal triggered multiple signals via pathways that killed A549 lung cancer tumor cells in vivo. Our results provide novel insight into lung cancer management and drug therapy.
Collapse
Affiliation(s)
- Hsuan-Wen Chiu
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
| | - Shao-Wen Hung
- Division of Animal Industry, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300, Taiwan
| | - Ching-Feng Chiu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jiann-Ruey Hong
- Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
- Department of Biotechnology and Bioindustry, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: ; Tel.: +886-6-2003082; Fax: +886-6-2766505
| |
Collapse
|
25
|
Budhraja R, Saraswat M, De Graef D, Ranatunga W, Ramarajan MG, Mousa J, Kozicz T, Pandey A, Morava E. N-glycoproteomics reveals distinct glycosylation alterations in NGLY1-deficient patient-derived dermal fibroblasts. J Inherit Metab Dis 2023; 46:76-91. [PMID: 36102038 PMCID: PMC10092224 DOI: 10.1002/jimd.12557] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Congenital disorders of glycosylation are genetic disorders that occur due to defects in protein and lipid glycosylation pathways. A deficiency of N-glycanase 1, encoded by the NGLY1 gene, results in a congenital disorder of deglycosylation. The NGLY1 enzyme is mainly involved in cleaving N-glycans from misfolded, retro-translocated glycoproteins in the cytosol from the endoplasmic reticulum before their proteasomal degradation or activation. Despite the essential role of NGLY1 in deglycosylation pathways, the exact consequences of NGLY1 deficiency on global cellular protein glycosylation have not yet been investigated. We undertook a multiplexed tandem mass tags-labeling-based quantitative glycoproteomics and proteomics analysis of fibroblasts from NGLY1-deficient individuals carrying different biallelic pathogenic variants in NGLY1. This quantitative mass spectrometric analysis detected 8041 proteins and defined a proteomic signature of differential expression across affected individuals and controls. Proteins that showed significant differential expression included phospholipid phosphatase 3, stromal cell-derived factor 1, collagen alpha-1 (IV) chain, hyaluronan and proteoglycan link protein 1, and thrombospondin-1. We further detected a total of 3255 N-glycopeptides derived from 550 glycosylation sites of 407 glycoproteins by multiplexed N-glycoproteomics. Several extracellular matrix glycoproteins and adhesion molecules showed altered abundance of N-glycopeptides. Overall, we observed distinct alterations in specific glycoproteins, but our data revealed no global accumulation of glycopeptides in the patient-derived fibroblasts, despite the genetic defect in NGLY1. Our findings highlight new molecular and system-level insights for understanding NGLY1-CDDG.
Collapse
Affiliation(s)
- Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diederik De Graef
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Wasantha Ranatunga
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Madan G Ramarajan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jehan Mousa
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Kozicz
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva Morava
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medical Genetics and Department of Biophysics, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
26
|
Dewing JM, Saunders V, O’Kelly I, Wilson DI. Defining cardiac cell populations and relative cellular composition of the early fetal human heart. PLoS One 2022; 17:e0259477. [PMID: 36449524 PMCID: PMC9710754 DOI: 10.1371/journal.pone.0259477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
While the adult human heart is primarily composed of cardiomyocytes, fibroblasts, endothelial and smooth muscle cells, the cellular composition during early development remains largely unknown. Reliable identification of fetal cardiac cell types using protein markers is critical to understand cardiac development and delineate the cellular composition of the developing human heart. This is the first study to use immunohistochemistry (IHC), flow cytometry and RT-PCR analyses to investigate the expression and specificity of commonly used cardiac cell markers in the early human fetal heart (8-12 post-conception weeks). The expression of previously reported protein markers for the detection of cardiomyocytes (Myosin Heavy Chain (MHC) and cardiac troponin I (cTnI), fibroblasts (DDR2, THY1, Vimentin), endothelial cells (CD31) and smooth muscle cells (α-SMA) were assessed. Two distinct populations of cTnI positive cells were identified through flow cytometry, with MHC positive cardiomyocytes showing high cTnI expression (cTnIHigh) while MHC negative non-myocytes showed lower cTnI expression (cTnILow). cTnI expression in non-myocytes was further confirmed by IHC and RT-PCR analyses, suggesting troponins are not cardiomyocyte-specific and may play distinct roles in non-muscle cells during early development. Vimentin (VIM) was expressed in cultured ventricular fibroblast populations and flow cytometry revealed VIMHigh and VIMLow cell populations in the fetal heart. MHC positive cardiomyocytes were VIMLow whilst CD31 positive endothelial cells were VIMHigh. Using markers investigated within this study, we characterised fetal human cardiac populations and estimate that 75-80% of fetal cardiac cells are cardiomyocytes and are MHC+/cTnIHigh/VIMLow, whilst non-myocytes comprise 20-25% of total cells and are MHC-/cTnILow/VIMHigh, with CD31+ endothelial cells comprising ~9% of this population. These findings show distinct differences from those reported for adult heart.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Vinay Saunders
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ita O’Kelly
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Immunocore Ltd, Abingdon, Oxford, United Kingdom
| | - David I. Wilson
- Institute for Developmental Sciences, School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
27
|
Nishio T, Koyama Y, Fuji H, Ishizuka K, Iwaisako K, Taura K, Hatano E, Brenner DA, Kisseleva T. The Role of Mesothelin in Activation of Portal Fibroblasts in Cholestatic Liver Injury. BIOLOGY 2022; 11:1589. [PMID: 36358290 PMCID: PMC9687690 DOI: 10.3390/biology11111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
Abstract
Fibrosis is a common consequence of abnormal wound healing, which is characterized by infiltration of myofibroblasts and formation of fibrous scar. In liver fibrosis, activated Hepatic Stellate Cells (aHSCs) and activated Portal Fibroblasts (aPFs) are the major contributors to the origin of hepatic myofibroblasts. aPFs are significantly involved in the pathogenesis of cholestatic fibrosis, suggesting that aPFs may be a primary target for anti-fibrotic therapy in cholestatic injury. aPFs are distinguishable from aHSCs by specific markers including mesothelin (Msln), Mucin 16 (Muc16), and Thymus cell antigen 1 (Thy1, CD90) as well as fibulin 2, elastin, Gremlin 1, ecto-ATPase nucleoside triphosphate diphosphohydrolase 2. Msln plays a critical role in activation of PFs, via formation of Msln-Muc16-Thy1 complex that regulates TGFβ1/TGFβRI-mediated fibrogenic signaling. The opposing pro- and anti-fibrogenic effects of Msln and Thy1 are key components of the TGFβ1-induced activation pathway in aPFs. In addition, aPFs and activated lung and kidney fibroblasts share similarities across different organs with expression of common markers and activation cascade including Msln-Thy1 interaction. Here, we summarize the potential function of Msln in activation of PFs and development of cholestatic fibrosis, offering a novel perspective for anti-fibrotic therapy targeting Msln.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroaki Fuji
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe 610-0394, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital Medical Research Institute, 2-4-20 Ogimachi, Kita-ku, Osaka 530-8480, Japan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, 54 Kawaharacho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - David A. Brenner
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, #0063, La Jolla, CA 92093, USA
| |
Collapse
|
28
|
Rix B, Maduro AH, Bridge KS, Grey W. Markers for human haematopoietic stem cells: The disconnect between an identification marker and its function. Front Physiol 2022; 13:1009160. [PMID: 36246104 PMCID: PMC9564379 DOI: 10.3389/fphys.2022.1009160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The haematopoietic system is a classical stem cell hierarchy that maintains all the blood cells in the body. Haematopoietic stem cells (HSCs) are rare, highly potent cells that reside at the apex of this hierarchy and are historically some of the most well studied stem cells in humans and laboratory models, with haematopoiesis being the original system to define functional cell types by cell surface markers. Whilst it is possible to isolate HSCs to near purity, we know very little about the functional activity of markers to purify HSCs. This review will focus on the historical efforts to purify HSCs in humans based on cell surface markers, their putative functions and recent advances in finding functional markers on HSCs.
Collapse
Affiliation(s)
| | | | | | - William Grey
- *Correspondence: Katherine S. Bridge, ; William Grey,
| |
Collapse
|
29
|
Grandi F, Miot HA, Rocha RM, Gomes CMS, Queiroz‐Hazarbassanov N, Montoya‐Florez LM, Cogliati B, Rocha NS. Immunophenotypic and molecular profile of cancer stem‐cell markers in ex vivo canine transmissible venereal tumour (CTVT). Vet Med Sci 2022; 8:2297-2306. [DOI: 10.1002/vms3.828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fabrizio Grandi
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiotherapy Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| | | | | | | | | | - Bruno Cogliati
- Department of Pathology School of Veterinary Medicine and Animal Science University of Sao Paulo São Paulo Brazil
| | - Noeme Sousa Rocha
- Department of Pathology, Botucatu Medical School Universidade Estadual Paulista, UNESP Botucatu São Paulo Brazil
| |
Collapse
|
30
|
Dubey A, Saini S, Sharma V, Malik H, Kumar D, De AK, Bhattacharya D, Malakar D. Deducing Insulin-Producing Cells from Goat Adipose Tissue-Derived Mesenchymal Stem Cells. Cell Reprogram 2022; 24:195-203. [PMID: 35787695 DOI: 10.1089/cell.2022.0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cell is a potent tool for regenerative medicine against control of incurable diseases in human and animals. Diabetes mellitus is one such condition marked with the blood glucose is high due to lack of insulin (INS) hormone secreted by the pancreatic cells. Rare, but sporadic, cases of dysfunctional pancreatic cells in goat as well as the promises of stem cell therapy as an off-the-shelf medicine prompted us to explore the potential of adipose-derived goat mesenchymal stem cells (AD-MSCs) to transdifferentiate into pancreatic islet-like cells. We isolated, in vitro cultured, and characterized the AD-MSCs by expression of MSC-specific markers and differentiation into multiple mesodermal lineage cells. The characterized AD-MSCs were in vitro transdifferentiated into INS-producing islet-like cells using a cocktail of glucose, nicotinamide, activin-A, exendin-4, pentagastrin, retinoic acid, and mercaptoethanol in 3 weeks. The transdifferentiated islet-like cells demonstrated the expression of pancreatic endoderm-specific transcripts PDX1, NGN3, PAX6, PAX4, ISL1, and GLUT2 as well as protein expression of pancreatic and duodenal homeobox 1 (PDX1), INS, and Islets 1 (ISL1). The islet-like cells also demonstrated the significant glucose-dependent INS release with respect to the course of transdifferentiation regime. The study envisaged to create the building material for basic research into mechanism of glucose homeostasis, which may pave road for developments in diabetes drug discovery and regenerative therapies.
Collapse
Affiliation(s)
- Amit Dubey
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Sikander Saini
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Vishal Sharma
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Hrudananda Malik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Dinesh Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Arun Kumar De
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Debasis Bhattacharya
- Animal Science Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
31
|
Wang Z, Zhao Z, Xia Y, Cai Z, Wang C, Shen Y, Liu R, Qin H, Jia J, Yuan G. Potential biomarkers in the fibrosis progression of nonalcoholic steatohepatitis (NASH). J Endocrinol Invest 2022; 45:1379-1392. [PMID: 35226336 DOI: 10.1007/s40618-022-01773-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Fibrosis is the only histological feature reflecting the severity and prognosis of nonalcoholic steatohepatitis (NASH). We aim to explore novel genes associated with fibrosis progression in NASH. METHODS Two human RNA-seq datasets were downloaded from the public database. Weighted gene co-expression network analysis (WGCNA) was used to identify their co-expressed modules and further bioinformatics analysis was performed to identify hub genes within the modules. Finally, based on two single-cell RNA-seq datasets from mice and one microarray dataset from human, we further observed the expression of hub genes in different cell clusters and liver tissues. RESULTS 7 hub genes (SPP1, PROM1, SOX9, EPCAM, THY1, CD34 and MCAM) associated with fibrosis progression were identified. Single-cell RNA-seq analysis revealed that those hub genes were expressed by different cell clusters such as cholangiocytes, natural killer (NK) cells, and hepatic stellate cells (HSCs). We also found that SPP1 and CD34 serve as markers of different HSCs clusters, which are associated with inflammatory response and fibrogenesis, respectively. Further study suggested that SPP1, SOX9, MCAM and THY1 might be related to NASH-associated hepatocellular carcinoma (HCC). Receiver operating characteristic (ROC) analysis showed that the high expression of these genes could well predict the occurrence of HCC. At the same time, there were significant differences in metabolism-related pathway changes between different HCC subtypes, and SOX9 may be involved in these changes. CONCLUSIONS The present study identified novel genes associated with NASH fibrosis and explored their effects on fibrosis from a single-cell perspective that might provide new ideas for the early diagnosis, monitoring, evaluation, and prediction of fibrosis progression in NASH.
Collapse
Affiliation(s)
- Z Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Z Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Y Xia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Z Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - C Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Y Shen
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - R Liu
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - H Qin
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - J Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| | - G Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
32
|
Zhang Z, Chen W, Tiemessen DM, Oosterwijk E, Kouwer PHJ. A Temperature-Based Easy-Separable (TempEasy) 3D Hydrogel Coculture System. Adv Healthc Mater 2022; 11:e2102389. [PMID: 35029325 PMCID: PMC11469334 DOI: 10.1002/adhm.202102389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wen Chen
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dorien M. Tiemessen
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Egbert Oosterwijk
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
33
|
Combined Targeting of AKT and mTOR Inhibits Tumor Formation of EpCAM+ and CD90+ Human Hepatocellular Carcinoma Cells in an Orthotopic Mouse Model. Cancers (Basel) 2022; 14:cancers14081882. [PMID: 35454789 PMCID: PMC9024696 DOI: 10.3390/cancers14081882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) and Thy-1 cell surface antigen (CD90) have been implicated as cancer stem cell (CSC) markers in hepatocellular carcinoma (HCC). Expression of EpCAM and CD90 on HCC cells is associated with increased tumorigenicity, metastasis and poor prognosis. In this study, we demonstrate that combined treatment with AKT and mTOR inhibitors—i.e., MK2206 and RAD001—results in a synergistic reduction in proliferation of EpCAM+ and CD90+ HCC cells cultured either as adherent cells or as tumoroids in vitro. In addition, tumor growth was reduced by combined treatment with AKT and mTOR inhibitors in an orthotopic xenograft mouse model of an EpCAM+ HCC cell line (Huh7) and primary patient-derived EpCAM+ HCC cells (HCC1) as well as a CD90+ HCC-related cell line (SK-HEP1) in vivo. However, during AKT/mTOR treatment, outgrowth of therapy-resistant tumors was observed in all mice analyzed within a few weeks. Resistance was associated in most cases with restoration of AKT signaling in the tumors, intrahepatic metastases and distant metastases. In addition, an upregulation of the p38 MAPK pathway was identified in the AKT/mTOR inhibitor-resistant tumor cells by kinome profiling. The development of resistant cells during AKT/mTOR therapy was further analyzed by red-green-blue (RGB) marking of HCC cells, which revealed an outgrowth of a large number of Huh7 cells over a period of 6 months. In summary, our data demonstrate that combined treatment with AKT and mTOR inhibitors exhibits synergistic effects on proliferation of EpCAM+ as well as CD90+ HCC cells in vitro. However, the fast development of large numbers of resistant clones under AKT/mTOR therapy observed in vitro and in the orthotopic xenotransplantation mouse model in vivo strongly suggests that this therapy alone will not be sufficient to eliminate EpCAM+ or CD90+ cancer stem cells from HCC patients.
Collapse
|
34
|
Li Z, Wu Y, Yates ME, Tasdemir N, Bahreini A, Chen J, Levine KM, Priedigkeit NM, Nasrazadani A, Ali S, Buluwela L, Arnesen S, Gertz J, Richer JK, Troness B, El-Ashry D, Zhang Q, Gerratana L, Zhang Y, Cristofanilli M, Montanez MA, Sundd P, Wallace CT, Watkins SC, Fumagalli C, Guerini-Rocco E, Zhu L, Tseng GC, Wagle N, Carroll JS, Jank P, Denkert C, Karsten MM, Blohmer JU, Park BH, Lucas PC, Atkinson JM, Lee AV, Oesterreich S. Hotspot ESR1 Mutations Are Multimodal and Contextual Modulators of Breast Cancer Metastasis. Cancer Res 2022; 82:1321-1339. [PMID: 35078818 PMCID: PMC8983597 DOI: 10.1158/0008-5472.can-21-2576] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/03/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
Abstract
Constitutively active estrogen receptor α (ER/ESR1) mutations have been identified in approximately one-third of ER+ metastatic breast cancers. Although these mutations are known as mediators of endocrine resistance, their potential role in promoting metastatic disease has not yet been mechanistically addressed. In this study, we show the presence of ESR1 mutations exclusively in distant but not local recurrences in five independent breast cancer cohorts. In concordance with transcriptomic profiling of ESR1-mutant tumors, genome-edited ESR1 Y537S and D538G-mutant cell models exhibited a reprogrammed cell adhesive gene network via alterations in desmosome/gap junction genes and the TIMP3/MMP axis, which functionally conferred enhanced cell-cell contacts while decreasing cell-extracellular matrix adhesion. In vivo studies showed ESR1-mutant cells were associated with larger multicellular circulating tumor cell (CTC) clusters with increased compactness compared with ESR1 wild-type CTCs. These preclinical findings translated to clinical observations, where CTC clusters were enriched in patients with ESR1-mutated metastatic breast cancer. Conversely, context-dependent migratory phenotypes revealed cotargeting of Wnt and ER as a vulnerability in a D538G cell model. Mechanistically, mutant ESR1 exhibited noncanonical regulation of several metastatic pathways, including secondary transcriptional regulation and de novo FOXA1-driven chromatin remodeling. Collectively, these data provide evidence for ESR1 mutation-modulated metastasis and suggest future therapeutic strategies for targeting ESR1-mutant breast cancer. SIGNIFICANCE Context- and allele-dependent transcriptome and cistrome reprogramming in mutant ESR1 cell models elicit diverse metastatic phenotypes related to cell adhesion and migration, which can be pharmacologically targeted in metastatic breast cancer.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Yang Wu
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Megan E. Yates
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nilgun Tasdemir
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Amir Bahreini
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
| | - Jian Chen
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Kevin M. Levine
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| | - Nolan M. Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Azadeh Nasrazadani
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laki Buluwela
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Spencer Arnesen
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Benjamin Troness
- University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Dorraya El-Ashry
- University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Qiang Zhang
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Lorenzo Gerratana
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
- Department of Medicine (DAME) University of Udine, Udine, Italy
| | - Youbin Zhang
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Massimo Cristofanilli
- Robert H. Lurie Cancer Center of Northwestern University, Feinberg School of Medicine, Chicago, IL, US
| | - Maritza A. Montanez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh PA, USA
| | - Callen T. Wallace
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh PA, USA
| | - Simon C. Watkins
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh PA, USA
| | - Caterina Fumagalli
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Li Zhu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh PA, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh PA, USA
| | - Nikhil Wagle
- Department of Medical Oncology and Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, USA
| | - Jason S. Carroll
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Paul Jank
- Institut of Pathology, Philipps-University Marburg, UKGM - Universitätsklinikum Marburg, Marburg, Germany
| | - Carsten Denkert
- Institut of Pathology, Philipps-University Marburg, UKGM - Universitätsklinikum Marburg, Marburg, Germany
| | - Maria M Karsten
- Department of Gynecology with Breast Center, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humbold-Univeristät zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jens-Uwe Blohmer
- Department of Gynecology with Breast Center, Charité – Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humbold-Univeristät zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ben H. Park
- Vanderbilt University Ingraham Cancer Center, Nashville, TN, USA
| | - Peter C. Lucas
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| | - Jennifer M. Atkinson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
| | - Adrian V. Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh PA, USA
- Women’s Cancer Research Center, Magee Women’s Research Institute, UPMC Hillman Cancer Center, Pittsburgh PA, USA
- Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh PA, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh PA, USA
| |
Collapse
|
35
|
Mancarella S, Serino G, Gigante I, Cigliano A, Ribback S, Sanese P, Grossi V, Simone C, Armentano R, Evert M, Calvisi DF, Giannelli G. CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. J Exp Clin Cancer Res 2022; 41:65. [PMID: 35172861 PMCID: PMC8851853 DOI: 10.1186/s13046-022-02283-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intrahepatic Cholangiocarcinoma (iCCA) is characterized by a strong stromal reaction playing a role in tumor progression. Thymus cell antigen 1 (THY1), also called Cluster of Differentiation 90 (CD90), is a key regulator of cell-cell and cell-matrix interaction. In iCCA, CD90 has been reported to be associated with a poor prognosis. In an iCCA PDX model, we recently found that CD90 was downregulated in mice treated with the Notch γ-secretase inhibitor Crenigacestat. The study aims to investigate the role of CD90 in relation to the NOTCH pathway. METHODS THY1/CD90 gene and protein expression was evaluated in human iCCA tissues and xenograft models by qRT-PCR, immunohistochemistry, and immunofluorescence. Notch1 inhibition was achieved by siRNA. THY1/CD90 functions were investigated in xenograft models built with HuCCT1 and KKU-M213 cell lines, engineered to overexpress or knockdown THY1, respectively. RESULTS CD90 co-localized with EPCAM, showing its epithelial origin. In vitro, NOTCH1 silencing triggered HES1 and THY1 down-regulation. RBPJ, a critical transcriptional regulator of NOTCH signaling, exhibited putative binding sites on the THY1 promoter and bound to the latter, implying CD90 as a downstream NOTCH pathway effector. In vivo, Crenigacestat suppressed iCCA growth and reduced CD90 expression in the PDX model. In the xenograft model, Crenigacestat inhibited tumor growth of HuCCT1 cells transfected to overexpress CD90 and KKU-M213 cells constitutively expressing high levels of CD90, while not affecting the growth of HuCCT1 control cells and KKU-M213 depleted of CD90. In an iCCA cohort, patients with higher expression levels of NOTCH1/HES1/THY1 displayed a significantly shorter survival. CONCLUSIONS iCCA patients with higher NOTCH1/HES1/THY1 expression have the worst prognosis, but they are more likely to benefit from Notch signaling inhibition. These findings represent the scientific rationale for testing NOTCH1 inhibitors in clinical trials, taking the first step toward precision medicine for iCCA.
Collapse
Affiliation(s)
- Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, 17489, Greifswald, Germany
| | - Paola Sanese
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Valentina Grossi
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Cristiano Simone
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, 93053, Regensburg, Germany
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Via Turi 27, 70013, Castellana Grotte, Italy.
| |
Collapse
|
36
|
CD34 +THY1 + synovial fibroblast subset in arthritic joints has high osteoblastic and chondrogenic potentials in vitro. Arthritis Res Ther 2022; 24:45. [PMID: 35168627 PMCID: PMC8845288 DOI: 10.1186/s13075-022-02736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Synovial fibroblasts (SFs) in rheumatoid arthritis (RA) and osteoarthritis (OA) play biphasic roles in joint destruction and regeneration of bone/cartilage as mesenchymal stem cells (MSCs). Although MSCs contribute to joint homeostasis, such function is impaired in arthritic joints. We have identified functionally distinct three SF subsets characterized by the expression of CD34 and THY1 as follows: CD34+THY1+, CD34−THY1−, and CD34−THY1+. The objective of this study was to clarify the differentiation potentials as MSCs in each SF subset since both molecules would be associated with the MSC function. Methods SF subsets were isolated from synovial tissues of 70 patients (RA: 18, OA: 52). Expressions of surface markers associated with MSCs (THY1, CD34, CD73, CD271, CD54, CD44, and CD29) were evaluated in fleshly isolated SF subsets by flow cytometry. The differentiation potentials of osteogenesis, chondrogenesis, and adipogenesis were evaluated with histological staining and a quantitative polymerase chain reaction of differentiation marker genes. Small interfering RNA was examined to deplete THY1 in SFs. Results The expression levels of THY1+, CD73+, and CD271+ were highest and those of CD54+ and CD29+ were lowest in CD34+THY1+ among three subsets. Comparing three subsets, the calcified area, alkaline phosphatase (ALP)-stained area, and cartilage matrix subset were the largest in the CD34+THY1+ subset. Consistently, the expressions of differentiation markers of the osteoblasts (RUNX2, ALPL, and OCN) or chondrocytes (ACAN) were the highest in the CD34+THY1+ subset, indicating that the CD34+THY1+ subset possessed the highest osteogenic and chondrogenic potential among three subsets, while the differentiation potentials to adipocytes were comparable among the subsets regarding lipid droplet formations and the expression of LPL and PPARγ. The knockdown of THY1 in bulk SFs resulted in impaired osteoblast differentiation indicating some functional aspects in this stem-cell marker. Conclusion The CD34+THY1+ SF subset has high osteogenic and chondrogenic potentials. The preferential enhancement of MSC functions in the CD34+THY1+ subset may provide a new treatment strategy for regenerating damaged bone/cartilage in arthritic joints. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02736-7.
Collapse
|
37
|
Jiang Z, Shi Y, Zhao W, Zhou L, Zhang B, Xie Y, Zhang Y, Tan G, Wang Z. Association between chronic periodontitis and the risk of Alzheimer's disease: combination of text mining and GEO dataset. BMC Oral Health 2021; 21:466. [PMID: 34556089 PMCID: PMC8461934 DOI: 10.1186/s12903-021-01827-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although chronic periodontitis has previously been reported to be linked with Alzheimer's disease (AD), the pathogenesis between the two is unclear. The purpose of this study is to analyze and screen the relevant and promising molecular markers between chronic periodontitis and Alzheimer's disease (AD). METHODS In this paper, we analyzed three AD expression datasets and extracted differentially expressed genes (DEGs), then intersected them with chronic periodontitis genes obtained from text mining, and finally obtained integrated DEGs. We followed that by enriching the matching the matching cell signal cascade through DAVID analysis. Moreover, the MCODE of Cytoscape software was employed to uncover the protein-protein interaction (PPI) network and the matching hub gene. Finally, we verified our data using a different independent AD cohort. RESULTS The chronic periodontitis gene set acquired from text abstracting was intersected with the previously obtained three AD groups, and 12 common genes were obtained. Functional enrichment assessment uncovered 12 cross-genes, which were mainly linked to cell morphogenesis involved in neuron differentiation, leading edge membrane, and receptor ligand activity. After PPI network creation, the ten hub genes linked to AD were retrieved, consisting of SPP1, THY1, CD44, ITGB1, HSPB3, CREB1, SST, UCHL1, CCL5 and BMP7. Finally, the function terms in the new independent dataset were used to verify the previous dataset, and we found 22 GO terms and one pathway, "ECM-receptor interaction pathways", in the overlapping functional terms. CONCLUSIONS The establishment of the above-mentioned candidate key genes, as well as the enriched signaling cascades, provides promising molecular markers for chronic periodontitis-related AD, which may help the diagnosis and treatment of AD patients in the future.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Liwei Zhou
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Yaya Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Romero Y, Aquino-Gálvez A. Hypoxia in Cancer and Fibrosis: Part of the Problem and Part of the Solution. Int J Mol Sci 2021; 22:8335. [PMID: 34361103 PMCID: PMC8348404 DOI: 10.3390/ijms22158335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adaptive responses to hypoxia are involved in the progression of lung cancer and pulmonary fibrosis. However, it has not been pointed out that hypoxia may be the link between these diseases. As tumors or scars expand, a lack of oxygen results in the activation of the hypoxia response, promoting cell survival even during chronic conditions. The role of hypoxia-inducible factors (HIFs) as master regulators of this adaptation is crucial in both lung cancer and idiopathic pulmonary fibrosis, which have shown the active transcriptional signature of this pathway. Emerging evidence suggests that interconnected feedback loops such as metabolic changes, fibroblast differentiation or extracellular matrix remodeling contribute to HIF overactivation, making it an irreversible phenomenon. This review will focus on the role of HIF signaling and its possible overlapping in order to identify new opportunities in therapy and regeneration.
Collapse
Affiliation(s)
- Yair Romero
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Arnoldo Aquino-Gálvez
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico
| |
Collapse
|
39
|
Huang X, Khoong Y, Han C, Su D, Ma H, Gu S, Li Q, Zan T. Targeting Dermal Fibroblast Subtypes in Antifibrotic Therapy: Surface Marker as a Cellular Identity or a Functional Entity? Front Physiol 2021; 12:694605. [PMID: 34335301 PMCID: PMC8319956 DOI: 10.3389/fphys.2021.694605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are the chief effector cells in fibrotic diseases and have been discovered to be highly heterogeneous. Recently, fibroblast heterogeneity in human skin has been studied extensively and several surface markers for dermal fibroblast subtypes have been identified, holding promise for future antifibrotic therapies. However, it has yet to be confirmed whether surface markers should be looked upon as merely lineage landmarks or as functional entities of fibroblast subtypes, which may further complicate the interpretation of cellular function of these fibroblast subtypes. This review aims to provide an update on current evidence on fibroblast surface markers in fibrotic disorders of skin as well as of other organ systems. Specifically, studies where surface markers were treated as lineage markers and manipulated as functional membrane proteins are both evaluated in parallel, hoping to reveal the underlying mechanism behind the pathogenesis of tissue fibrosis contributed by various fibroblast subtypes from multiple angles, shedding lights on future translational researches.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyao Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Zhang CY, Hu YC, Zhang Y, Ma WD, Song YF, Quan XH, Guo X, Wang CX. Glutamine switches vascular smooth muscle cells to synthetic phenotype through inhibiting miR-143 expression and upregulating THY1 expression. Life Sci 2021; 277:119365. [PMID: 33741416 DOI: 10.1016/j.lfs.2021.119365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
AIMS Vascular smooth muscle cells (VSMCs) are involved in the pathogenesis of many human cardiovascular diseases. They modulate their phenotype from "contractile" to "synthetic" in response to changes in local environmental cues. How glutamine regulates the differentiation of VSMCs and the underlying mechanisms remain largely unknown. MAIN METHODS Here, we explored the effects of various doses of glutamine (0 mM, 1 mM, 2 mM, and 4 mM) on the proliferation, migration, and phenotypic switch of human VSMCs in vitro. Glutamine dose-dependently enhanced VSMC proliferation, and markedly increased VSMC migration. KEY FINDINGS Notably, glutamine promoted the phenotypic switch of VSMCs towards a synthetic phenotype, as evidenced by significantly decreased expression of contractile markers myosin heavy chain 11 (MYH11) and calponin while increased expression of synthetic markers collagen I and vimentin. Importantly, these changes upon glutamine treatments were attenuated after additional treatments with glutamine metabolism inhibitor BPTES. Additionally, glutamine downregulated miR-143 expression, and miR-143 inactivation alone resulted in enhanced proliferation, migration, and promoted the synthetic phenotype of VSMCs. Moreover, Thy-1 cell surface antigen (THY1) was validated as a downstream target of miR-143, and THY1 expression was upregulated by glutamine in VSMCs. Furthermore, either miR-143 overexpression or THY1 silencing abolished the effect of glutamine on proliferation, migration, and phenotypic switch of VSMCs, supporting a novel glutamine-miR-143-THY1 pathway in modulating VSMC functions. SIGNIFICANCE This study demonstrated a novel mechanism of glutamine in modulation of VSMC phenotypic switch by targeting miR-143 and THY1, and provides significant insight on targeted therapy of patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Chun-Yan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China
| | - Yan-Chao Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China
| | - Yan Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China
| | - Wei-Dong Ma
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China
| | - Ya-Fan Song
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China
| | - Xiao-Hui Quan
- Department of Cardiovascular Medicine, Xi'an No.1 Hospital, 30 Fen Xiang, South Street, 710004 Xi'an, China
| | - Xuan Guo
- Department of Cardiovascular Medicine, Xi'an No.1 Hospital, 30 Fen Xiang, South Street, 710004 Xi'an, China
| | - Cong-Xia Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xi Wu Road, 710004 Xi'an, China.
| |
Collapse
|
41
|
Xu L, Ni N, Gao H, Hu P. MicroRNA-1301-3p promotes the progression of non-small cell lung cancer by targeting Thy-1 and predicts poor prognosis of patients. Oncol Lett 2021; 21:327. [PMID: 33692859 PMCID: PMC7933762 DOI: 10.3892/ol.2021.12589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 12/25/2022] Open
Abstract
The role of microRNA (miR)-1301-3p has been investigated in breast cancer and colorectal cancer. Dysregulation of miR-1301-3p expression in non-small cell lung cancer (NSCLC) is speculated to be associated with tumor progression, which was systemically investigated in the present study. Reverse transcription-quantitative PCR analysis was performed to detect miR-1301-3p expression in 124 paired tissue samples and cultured cell lines. The results demonstrated that miR-1301-3p expression was regulated by transfection with miR-1301-3p mimic or inhibitor, and the proliferation, migration and invasion of the transfected cells were assessed via the Cell Counting Kit-8 and Transwell assays. In addition, miR-1301-3p expression was significantly upregulated in NSCLC tissues and cells compared with normal tissues and normal cells, respectively. Notably, upregulated miR-1301-3p expression in NSCLC tissues was significantly associated with the TNM stage, lymph node metastasis and poor prognosis of patients with NSCLC. Furthermore, upregulated miR-1301-3p expression in NSCLC cells promoted cell proliferation, migration and invasion, the effects of which were reversed following miR-1301-3p knockdown. Thy-1 was identified as a direct target of miR-1301-3p, which serves as a tumor promoter in the progression of NSCLC. Taken together, the results of the present study suggest that upregulated miR-1301-3p expression in NSCLC acts as an independent prognostic factor and a tumor promoter by targeting thy-1, thus provides a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ling Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Na Ni
- Department of Clinical Medical Laboratory, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Haiyang Gao
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| | - Pengbo Hu
- Department of Emergency, Binzhou Medical University Hospital, Binzhou, Shandong 256600, P.R. China
| |
Collapse
|
42
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
43
|
Luong AB, Do HQ, Tarchi P, Bonazza D, Bottin C, Cabral LKD, Tran LDC, Doan TPT, Crocè LS, Pham HLT, Tiribelli C, Sukowati CHC. The mRNA Distribution of Cancer Stem Cell Marker CD90/Thy-1 Is Comparable in Hepatocellular Carcinoma of Eastern and Western Populations. Cells 2020; 9:2672. [PMID: 33322687 PMCID: PMC7764111 DOI: 10.3390/cells9122672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Epidemiology of hepatocellular carcinoma (HCC) showed a correlation between incidence and geographical-relevant risk factors. This study aims to compare the distributions of cancer stem cells (CSC) in two distant populations in Asia and Europe. We analyzed 52 and 43 selected HCC patients undergoing hepatectomy in Ho Chi Minh City (Vietnam) and Trieste (Italy). Each patient sample consisted of HCC, peri-HCC, and non-tumoral (distal) tissue. Demographic data were recorded together with clinical findings. The protocol for the collection of tissue samples and RNA was standardized in both laboratories and gene expression analysis was performed in a single laboratory with identical PCR conditions. Baseline data showed comparable laboratory findings between the two cohorts. mRNA distribution showed a comparable pattern of all CSC markers analyzed with the expression of CD90 progressively increasing from distal and peri-HCC to be highest in HCC (p < 0.001), confirmed by immunofluorescence data. CD90 mRNA distribution was related to HBV-related HCC and a tumor diameter less than 5 cm. Patients with high tumoral CD90 mRNA had a shorter time (p < 0.05) to tumor recurrence compared to patients with lower CD90. This comparative study showed that CD90 mRNA expressions are comparable between Eastern and Western HCC cases.
Collapse
Affiliation(s)
- An B. Luong
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
- Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City 700000, Vietnam
| | - Huy Q. Do
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
- Laboratory of Stem Cell Research and Application, VNUHCM-University of Science, Ho Chi Minh City 700000, Vietnam
| | - Paola Tarchi
- Clinical Surgery Unit, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34148 Trieste, Italy;
| | - Deborah Bonazza
- Surgical Pathology Unit, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), 34148 Trieste, Italy;
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Loraine Kay D. Cabral
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
- Doctoral School in Molecular Biomedicine, University of Trieste, 34127 Trieste, Italy
| | - Long D. C. Tran
- University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City 700000, Vietnam; (L.D.C.T.); (H.L.T.P.)
| | - Thao P. T. Doan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City 700000, Vietnam;
| | - Lory S. Crocè
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Hoa L. T. Pham
- University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh, Ho Chi Minh City 700000, Vietnam; (L.D.C.T.); (H.L.T.P.)
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
| | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato ONLUS, AREA Science Park Basovizza, 34149 Trieste, Italy; (A.B.L.); (H.Q.D.); (L.K.D.C.); (L.S.C.); (C.T.)
| |
Collapse
|
44
|
Couto de Carvalho LA, Tosta Dos Santos SL, Sacramento LV, de Almeida VR, de Aquino Xavier FC, Dos Santos JN, Gomes Henriques Leitão ÁC. Mesenchymal stem cell markers in periodontal tissues and periapical lesions. Acta Histochem 2020; 122:151636. [PMID: 33132168 DOI: 10.1016/j.acthis.2020.151636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Nunes Dos Santos
- Postgraduation Program in Dentistry and Health, Federal University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
45
|
Petinati N, Kapranov N, Davydova Y, Bigildeev A, Pshenichnikova O, Karpenko D, Drize N, Kuzmina L, Parovichnikova E, Savchenko V. Immunophenotypic characteristics of multipotent mesenchymal stromal cells that affect the efficacy of their use in the prevention of acute graft vs host disease. World J Stem Cells 2020; 12:1377-1395. [PMID: 33312405 PMCID: PMC7705461 DOI: 10.4252/wjsc.v12.i11.1377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/31/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MSCs) are widely used in the clinic due to their unique properties, namely, their ability to differentiate in all mesenchymal directions and their immunomodulatory activity. Healthy donor MSCs were used to prevent the development of acute graft vs host disease (GVHD) after allogeneic bone marrow transplantation (allo-BMT). The administration of MSCs to patients was not always effective. The MSCs obtained from different donors have individual characteristics. The differences between MSC samples may affect their clinical efficacy.
AIM To study the differences between effective and ineffective MSCs.
METHODS MSCs derived from the bone marrow of a hematopoietic stem cells donor were injected intravenously into allo-BMT recipients for GVHD prophylaxis at the moment of blood cell reconstitution. Aliquots of 52 MSC samples that were administered to patients were examined, and the same cells were cultured in the presence of peripheral blood mononuclear cells (PBMCs) from a third-party donor or treated with the pro-inflammatory cytokines IL-1β, IFN and TNF. Flow cytometry revealed the immunophenotype of the nontreated MSCs, the MSCs cocultured with PBMCs for 4 d and the MSCs exposed to cytokines. The proportions of CD25-, CD146-, CD69-, HLA-DR- and PD-1-positive CD4+ and CD8+ cells and the distribution of various effector and memory cell subpopulations in the PBMCs cocultured with the MSCs were also determined.
RESULTS Differences in the immunophenotypes of effective and ineffective MSCs were observed. In the effective samples, the mean fluorescence intensity (MFI) of HLA-ABC, HLA-DR, CD105, and CD146 was significantly higher. After MSCs were treated with IFN or cocultured with PBMCs, the HLA-ABC, HLA-DR, CD90 and CD54 MFI showed a stronger increase in the effective MSCs, which indicated an increase in the immunomodulatory activity of these cells. When PBMCs were cocultured with effective MSCs, the proportions of CD4+ and CD8+central memory cells significantly decreased, and the proportion of CD8+CD146+ lymphocytes increased more than in the subpopulations of lymphocytes cocultured with MSC samples that were ineffective in the prevention of GVHD; in addition, the proportion of CD8+effector memory lymphocytes decreased in the PBMCs cocultured with the effective MSC samples but increased in the PBMCs cocultured with the ineffective MSC samples. The proportion of CD4+CD146+ lymphocytes increased only when cocultured with the inefficient samples.
CONCLUSION For the first time, differences were observed between MSC samples that were effective for GVHD prophylaxis and those that were ineffective. Thus, it was shown that the immunomodulatory activity of MSCs depends on the individual characteristics of the MSC population.
Collapse
Affiliation(s)
- Nataliya Petinati
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Nikolay Kapranov
- Laboratory for Immunophenotyping of Blood and Bone Marrow Cells, National Research Center for Hematology, Moscow 125167, Russia
| | - Yulia Davydova
- Laboratory for Immunophenotyping of Blood and Bone Marrow Cells, National Research Center for Hematology, Moscow 125167, Russia
| | - Alexey Bigildeev
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Olesya Pshenichnikova
- Laboratory for Genetic Engineering, National Research Center for Hematology, Moscow 125167, Russia
| | - Dmitriy Karpenko
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Nina Drize
- Laboratory for Physiology of Hematopoiesis, National Research Center for Hematology, Moscow 125167, Russia
| | - Larisa Kuzmina
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| | - Elena Parovichnikova
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| | - Valeriy Savchenko
- Hematopoiesis Depression and Bone Marrow Transplantation Department, National Research Center for Hematology, Moscow 125167, Russia
| |
Collapse
|
46
|
Abou-ElNaga A, El-Chennawi F, Ibrahim Kamel S, Mutawa G. The Potentiality of Human Umbilical Cord Isolated Mesenchymal Stem/Stromal Cells for Cardiomyocyte Generation. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:91-101. [PMID: 33204112 PMCID: PMC7667202 DOI: 10.2147/sccaa.s253108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/01/2020] [Indexed: 01/30/2023]
Abstract
Background The new therapeutic strategy of managing cardiac diseases is based on cell therapy; it highly suggests the use of multipotent mesenchymal stem/stromal cells (MSCs). MSCs widely used in researches are known to be isolated from bone marrow. However, this research seeks to use a human umbilical cord (HUC) as an alternative source of MSCs. Since HUC Wharton's jelly (WJ)-isolated MSCs originate as fetal tissue they are highly preferable for their potential advantages over other adult tissues. Methods The researchers used enzymatic digestion to establish a primary HUC-WJ-isolated MSC line. Then, flow cytometry was used to characterize MSCs and hematopoietic stem cells (HSCs) markers' expression. In addition, the cardiac differentiation capacity of HUC-WJ-isolated MSCs in vitro was investigated by two protocols. Protocol-1 necessitates the dependence on merely 5-azacytidine (5-Aza), whereas in protocol-2, 5-Aza was supported by basic fibroblast growth factor (BFGF). The comparative study between the two protocols was applied by inspecting the ultrastructure of differentiated cells, measuring RT-PCR mRNA cardiac markers and the quantitative detection of cardiac proteins. Results HUC-WJ isolated MSCs were expressed by CD90+ve, CD105+ve, CD106+ve, CD45-ve, and CD146-ve. Remarkable TNNT1, NKX2.5, and Desmin mRNA expression and higher quantitative LDH and cTnI were detected by applying protocol-2. This same protocol-2 induced cardiac morphological features that were revealed by identifying cardiomyocyte-like cells and typical sarcomeres. Conclusion HUC-WJ is proved to be an ethical and effective source of MSCs induced cardiac differentiation, whereas BFGF supports 5-Aza in MSCs-cardiomyocytes differentiation.
Collapse
Affiliation(s)
- Amoura Abou-ElNaga
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Farha El-Chennawi
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samar Ibrahim Kamel
- Zoology Department, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt
| | - Ghada Mutawa
- Department of Basic Science, Faculty of Dentistry, Horus University in Egypt (HUE), New Damietta 34518, Egypt
| |
Collapse
|
47
|
Do HQ, Luong AB, Bonazza D, Bottin C, Doan TP, Tran LD, Truong NH, Tell G, Pham HL, Tiribelli C, Sukowati CH. Differential capacity of CD90+ cells in autophagy activation following chemotherapy in hepatocellular carcinoma. Ann Hepatol 2020; 19:645-652. [PMID: 32745631 DOI: 10.1016/j.aohep.2020.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Analysis of cancer biomarkers is an important tool in developing targeted-therapy and in modulating chemoresistance. Here, we analyze the relevance of CD90, a marker of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) and its correlation with autophagy. MATERIALS AND METHODS For in vivo study, 86 specimens were collected from 43 patients undergoing liver resections. In each patient, HCC nodule (HCC) and surrounding non-tumor (SNT) were collected. For in vitro study, HCC cells JHH6 subpopulations expressing CD90+ and CD90- were isolated using magnetic-sorter and confirmed by flow-cytometry. Upon doxorubicin treatment, autophagy turn-over was analyzed by RTqPCR for mRNA expression, Western blot for protein expression, and autophagosome staining for autophagy-flux. Cytotoxicity test was performed by MTT assay. Gene and protein analysis were performed in clinical samples together with immunohistostaining. RESULTS CD90 mRNA expression was higher in HCC than in SNT for 8-fold (p < 0.001). LC3-II protein was up-regulated in the HCC in comparison with the SNT (p < 0.05). In vitro model showed that CD90+ and CD90- cells had diverse expressions of autophagy-related genes. Upon doxorubicin treatment, autophagy was activated in both cells by increasing LC3-II protein expression, autophagic vacuoles, and dysregulation of autophagy-related mRNAs. A differential autophagic capacity was noticed between two subpopulations and it was correlated with cellular toxicity assay. CONCLUSIONS We demonstrated the relevance of differential autophagy capacity of CD90+ cells in HCC. Autophagy was involved in cancer-defense mechanism against doxorubicin. Cancer promoting function of autophagy in CD90+ cells was also related to cancer environment.
Collapse
Affiliation(s)
- Huy Q Do
- Fondazione Italiana Fegato - ONLUS, AREA Science Park, Basovizza, Trieste, Italy; Laboratory of Stem Cell Research and Application, VNUHCM-University of Science, Ho Chi Minh, Vietnam
| | - An B Luong
- Fondazione Italiana Fegato - ONLUS, AREA Science Park, Basovizza, Trieste, Italy; Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh, Vietnam
| | - Deborah Bonazza
- Surgical Pathology Unit, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliana Isontina (ASUGI), Trieste, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Thao Pt Doan
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh, Vietnam
| | - Long Dc Tran
- University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh, Vietnam
| | - Nhung H Truong
- Laboratory of Stem Cell Research and Application, VNUHCM-University of Science, Ho Chi Minh, Vietnam
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Hoa Lt Pham
- University Medical Center, University of Medicine and Pharmacy at Ho Chi Minh, Vietnam
| | - Claudio Tiribelli
- Fondazione Italiana Fegato - ONLUS, AREA Science Park, Basovizza, Trieste, Italy
| | - Caecilia Hc Sukowati
- Fondazione Italiana Fegato - ONLUS, AREA Science Park, Basovizza, Trieste, Italy; Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy.
| |
Collapse
|
48
|
DNA Methylation in Pulmonary Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:51-62. [PMID: 32949389 DOI: 10.1007/978-981-15-4494-1_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
DNA methylations, including global methylation pattern and specific gene methylation, are associated with pathogenesis and progress of pulmonary fibrosis. This chapter illustrates alteration of DNA methylation in pulmonary fibrosis as a predictive or prognostic factor. Treatment with the DNA methylation inhibitors will be an emerging anti-fibrosis therapy, although we are still in the pre-clinical stage of using epigenetic markers as potential targets for biomarkers and therapeutic interventions.
Collapse
|
49
|
Cai Y, Wang J, Zou K. The Progresses of Spermatogonial Stem Cells Sorting Using Fluorescence-Activated Cell Sorting. Stem Cell Rev Rep 2020; 16:94-102. [PMID: 31792769 DOI: 10.1007/s12015-019-09929-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In recent years, the research on stem cells has been more and more in-depth, and many achievements have been made in application. However, due to the small number of spermatogonial stem cells (SSCs) and deficiency of efficient markers, it is difficult to obtain very pure SSCs, which results in the research on them being hindered. In fact, many methods have been developed to isolate and purify SSCs, but these methods have their shortcomings. Fluorescence-activated cell sorting (FACS), as a method to enrich SSCs with the help of specific surface markers, has the characteristics of high efficiency and accuracy in enrichment of SSCs, thus it is widely accepted as an effective method for purification of SSCs. This review summarizes the recent studies on the application of FACS in SSCs, and introduces some commonly used markers of effective SSCs sorting, aiming to further optimize the FACS sorting method for SSCs, so as to promote the research of germline stem cells and provide new ideas for the research of reproductive biology.
Collapse
Affiliation(s)
- Yihui Cai
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
50
|
Li H, Masieri FF, Schneider M, Kottek T, Hahnel S, Yamauchi K, Obradović D, Seon JK, Yun SJ, Ferrer RA, Franz S, Simon JC, Lethaus B, Savković V. Autologous, Non-Invasively Available Mesenchymal Stem Cells from the Outer Root Sheath of Hair Follicle Are Obtainable by Migration from Plucked Hair Follicles and Expandable in Scalable Amounts. Cells 2020; 9:E2069. [PMID: 32927740 PMCID: PMC7564264 DOI: 10.3390/cells9092069] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Regenerative therapies based on autologous mesenchymal stem cells (MSC) as well as stem cells in general are still facing an unmet need for non-invasive sampling, availability, and scalability. The only known adult source of autologous MSCs permanently available with no pain, discomfort, or infection risk is the outer root sheath of the hair follicle (ORS). METHODS This study presents a non-invasively-based method for isolating and expanding MSCs from the ORS (MSCORS) by means of cell migration and expansion in air-liquid culture. RESULTS The method yielded 5 million cells of pure MSCORS cultured in 35 days, thereby superseding prior art methods of culturing MSCs from hair follicles. MSCORS features corresponded to the International Society for Cell Therapy characterization panel for MSCs: adherence to plastic, proliferation, colony forming, expression of MSC-markers, and adipo-, osteo-, and chondro-differentiation capacity. Additionally, MSCORS displayed facilitated random-oriented migration and high proliferation, pronounced marker expression, extended endothelial and smooth muscle differentiation capacity, as well as a paracrine immunomodulatory effect on monocytes. MSCORS matched or even exceeded control adipose-derived MSCs in most of the assessed qualities. CONCLUSIONS MSCORS qualify for a variety of autologous regenerative treatments of chronic disorders and prophylactic cryopreservation for purposes of acute treatments in personalized medicine.
Collapse
Affiliation(s)
- Hanluo Li
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Federica Francesca Masieri
- School of (EAST) Engineering, Arts, Science & Technology, University of Suffolk, Ipswich, Suffolk IP41QJ, UK;
| | - Marie Schneider
- Clinic for Hematology, Cell Therapy and Hemostaseology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Tina Kottek
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Sebastian Hahnel
- Polyclinic for Dental Prosthetics and Material Sciences, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Kensuke Yamauchi
- Kensuke Yamauchi, Department of Oral & Maxillofacial Surgery, Tohoku University, Sendai 980-8577, Japan;
| | | | - Jong-Keun Seon
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Sook Jung Yun
- Chonnam National University Hwasun Hospital, Hwasun-gun 58128, Korea; (J.-K.S.); (S.J.Y.)
| | - Rubén A. Ferrer
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Sandra Franz
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Jan-Christoph Simon
- Clinic for Dermatology, Venereology and Allergology, University Hospital Leipzig, 04103 Leipzig, Germany; (R.A.F.); (S.F.); (J.-C.S.)
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany; (H.L.); (T.K.); (B.L.)
| |
Collapse
|