1
|
Akuwudike P, López-Riego M, Marczyk M, Kocibalova Z, Brückner F, Polańska J, Wojcik A, Lundholm L. Short- and long-term effects of radiation exposure at low dose and low dose rate in normal human VH10 fibroblasts. Front Public Health 2023; 11:1297942. [PMID: 38162630 PMCID: PMC10755029 DOI: 10.3389/fpubh.2023.1297942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.
Collapse
Affiliation(s)
- Pamela Akuwudike
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Milagrosa López-Riego
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Michal Marczyk
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, United States
| | - Zuzana Kocibalova
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Fabian Brückner
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
3
|
Mukherjee S, Dutta A, Chakraborty A. The cross-talk between Bax, Bcl2, caspases, and DNA damage in bystander HepG2 cells is regulated by γ-radiation dose and time of conditioned media transfer. Apoptosis 2022; 27:184-205. [PMID: 35076828 DOI: 10.1007/s10495-022-01713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2022] [Indexed: 01/25/2023]
Abstract
Although radiation-induced bystander effects have been broadly explored in various biological systems, the molecular mechanisms and the consequences of different regulatory factors (dose, time, cell type) on bystander responses are not clearly understood. This study investigates the effects of irradiated cell-conditioned media (ICCM) collected at different times post-irradiation on bystander cancer cells regarding DNA damage and apoptosis induction. Human hepatocellular carcinoma HepG2 cells were exposed to γ-ray doses of 2 Gy, 5 Gy, and 8 Gy. In the early and late stages (1 h, 2 h, and 24 h) after irradiation, the ICCM was collected and transferred to unirradiated cells. Compared to control, bystander cells showed an increased level of H2AX phosphorylation, mitochondrial membrane depolarization, and elevation of intrinsic apoptotic pathway mediators such as p53, Bax, cas9, cas-3, and PARP cleavage. These results were confirmed by phosphatidylserine (PS) externalization and scanning electron microscopic observations, suggesting a rise in bystander HepG2 cell apoptosis. Anti-apoptotic Bcl2-level and viability were lower in bystander cells compared to control. The highest effects were observed in 8 Gy γ radiation-induced bystander cells. Even though the bystander effect was persistent at all time points of the study, ICCM at the early time points (1 or 2 h) had the most significant impact on the apoptosis markers in bystander cells. Nevertheless, 24 h ICCM induced the highest increase in H2AX and p53 phosphorylation and Bax levels. The effects of ICCM of irradiated HepG2 cells were additionally studied in normal liver cells BRL-3A to simulate actual radiotherapy conditions. The outcomes suggest that the expression of the signaling mediators in bystander cells is highly dynamic. A cross-talk between those signaling mediators regulates bystander responses depending on the radiation dose and time of incubation post-irradiation.
Collapse
Affiliation(s)
- Sharmi Mukherjee
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India.
| | - Anindita Dutta
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Block-LB, Plot-8, Sector-III, Salt Lake, Kolkata, West Bengal, 700 106, India
| |
Collapse
|
4
|
Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021; 11:768493. [PMID: 34888245 PMCID: PMC8649625 DOI: 10.3389/fonc.2021.768493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment
Collapse
Affiliation(s)
- Ellina Macaeva
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Biomedical Engineering, University of South Carolina, Columbia, SC, United States
| | - Arlette Michaux
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Nicole Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marjan Moreels
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Winnok H De Vos
- Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Roel Quintens
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| |
Collapse
|
5
|
Wang B, Tanaka K, Ninomiya Y, Maruyama K, Varès G, Katsube T, Murakami M, Liu C, Fujimori A, Fujita K, Liu Q, Eguchi-Kasai K, Nenoi M. Increased Hematopoietic Stem Cells/Hematopoietic Progenitor Cells Measured as Endogenous Spleen Colonies in Radiation-Induced Adaptive Response in Mice (Yonezawa Effect). Dose Response 2018; 16:1559325818790152. [PMID: 30150909 PMCID: PMC6104214 DOI: 10.1177/1559325818790152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 12/03/2022] Open
Abstract
The existence of radiation-induced adaptive response (AR) was reported in varied
biosystems. In mice, the first in vivo AR model was established using X-rays as
both the priming and the challenge doses and rescue of bone marrow death as the
end point. The underlying mechanism was due to the priming radiation-induced
resistance in the blood-forming tissues. In a series of investigations, we
further demonstrated the existence of AR using different types of ionizing
radiation (IR) including low linear energy transfer (LET) X-rays and high LET
heavy ion. In this article, we validated hematopoietic stem cells/hematopoietic
progenitor cells (HSCs/HPCs) measured as endogenous colony-forming units-spleen
(CFU-S) under AR inducible and uninducible conditions using combination of
different types of IR. We confirmed the consistency of increased CFU-S number
change with the AR inducible condition. These findings suggest that AR in mice
induced by different types of IR would share at least in part a common
underlying mechanism, the priming IR-induced resistance in the blood-forming
tissues, which would lead to a protective effect on the HSCs/HPCs and play an
important role in rescuing the animals from bone marrow death. These findings
provide a new insight into the mechanistic study on AR in vivo.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, People's Republic of China
| | - Kiyomi Eguchi-Kasai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Unverricht-Yeboah M, Giesen U, Kriehuber R. Comparative gene expression analysis after exposure to 123I-iododeoxyuridine, γ- and α-radiation-potential biomarkers for the discrimination of radiation qualities. JOURNAL OF RADIATION RESEARCH 2018; 59:411-429. [PMID: 29800458 PMCID: PMC6054186 DOI: 10.1093/jrr/rry038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/29/2017] [Indexed: 05/27/2023]
Abstract
Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.
Collapse
Affiliation(s)
- Marcus Unverricht-Yeboah
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| | - Ulrich Giesen
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, Braunschweig, Germany
| | - Ralf Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
7
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
8
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|
9
|
Nikitaki Z, Holá M, Donà M, Pavlopoulou A, Michalopoulos I, Angelis KJ, Georgakilas AG, Macovei A, Balestrazzi A. Integrating plant and animal biology for the search of novel DNA damage biomarkers. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 775:21-38. [DOI: 10.1016/j.mrrev.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022]
|
10
|
Ormsby RJ, Staudacher AH, Blyth BJ, Bezak E, Sykes PJ. Temporal Responses to X-Radiation Exposure in Spleen in the pKZ1 Mouse Recombination Assay. Radiat Res 2016; 185:623-9. [PMID: 27223829 DOI: 10.1667/rr14390.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The in vivo mouse transgenic pKZ1 chromosomal inversion assay is a sensitive assay that responds to very low doses of DNA-damaging agents. pKZ1 inversions are measured as the frequency of cells expressing E. coli β-galactosidase protein, which can only be produced from an inverted pKZ1 transgene. In previous studies we reported that a single whole-body low dose of 0.01 mGy X rays alone caused an increase in pKZ1 chromosomal inversions in spleen when analyzed 3 days postirradiation, and yet this same dose could protect from high-dose-induced inversions when delivered as a conditioning dose 4 h before or after a 1 Gy challenge dose. In an attempt to explain these results, we performed temporal studies over a wide radiation dose range to determine if the inversion response was temporally different at different doses. pKZ1 mice were irradiated with a single whole-body X-ray dose of 0.01 mGy, 1 mGy or 1 Gy, and spleen sections were then analyzed for pKZ1 inversions at 7 h, 1 day or 7 days after exposure. No change in inversion frequency was observed at the 7 h time point at any dose. At day 1, an increase in inversions was observed in response to the 0.01 mGy dose, whereas a decrease in inversions below sham-treated frequency was observed for the 1 mGy dose. Inversion frequency for both doses returned to sham-treated inversion frequency by day 7. To our knowledge, this is the first reported study to examine the temporal nature of a radiation response spanning a wide dose range, including doses relevant to occupational exposure, and the results are dynamic and dose specific. The results suggest that inversions induced after low-dose irradiation are removed by homeostatic mechanisms within a short time frame, and underscore the importance of studying responses over a period of time when interpreting radiation effects.
Collapse
Affiliation(s)
- Rebecca J Ormsby
- a Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia
| | - Alexander H Staudacher
- a Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia
| | - Benjamin J Blyth
- a Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia
| | - Eva Bezak
- b International Centre for Allied Health Evidence and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia; and.,c School of Physical Sciences, University of Adelaide, Adelaide, Australia
| | - Pamela J Sykes
- a Flinders Centre for Innovation in Cancer, Flinders University, Bedford Park, South Australia
| |
Collapse
|
11
|
Comparative Analysis of Whole-Genome Gene Expression Changes in Cultured Human Embryonic Stem Cells in Response to Low, Clinical Diagnostic Relevant, and High Doses of Ionizing Radiation Exposure. Int J Mol Sci 2015; 16:14737-48. [PMID: 26133243 PMCID: PMC4519869 DOI: 10.3390/ijms160714737] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 05/23/2015] [Accepted: 06/26/2015] [Indexed: 11/16/2022] Open
Abstract
The biological effects of low-dose ionizing radiation (LDIR) exposure in humans are not comprehensively understood, generating a high degree of controversy in published literature. The earliest stages of human development are known to be among the most sensitive to stress exposures, especially genotoxic stresses. However, the risks stemming from exposure to LDIR, particularly within the clinical diagnostic relevant dose range, have not been directly evaluated in human embryonic stem cells (hESCs). Here, we describe the dynamics of the whole genome transcriptional responses of different hESC lines to both LDIR and, as a reference, high-dose IR (HDIR). We found that even doses as low as 0.05 Gy could trigger statistically significant transient changes in a rather limited subset of genes in all hESCs lines examined. Gene expression signatures of hESCs exposed to IR appear to be highly dose-, time-, and cell line-dependent. We identified 50 genes constituting consensus gene expression signature as an early response to HDIR across all lines of hESC examined. We observed substantial differences in biological pathways affected by either LDIR or HDIR in hESCs, suggesting that the molecular mechanisms underpinning the responses of hESC may fundamentally differ depending on radiation doses.
Collapse
|
12
|
Sokolov MV, Neumann RD. Changes in human pluripotent stem cell gene expression after genotoxic stress exposures. World J Stem Cells 2014; 6:598-605. [PMID: 25426256 PMCID: PMC4178259 DOI: 10.4252/wjsc.v6.i5.598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) represent heterogeneous populations, including induced pluripotent stem cells (iPSCs), endogenous plastic somatic cells, and embryonic stem cells (ESCs). Human ESCs are derived from the inner cell mass of the blastocyst, and they are characterized by the abilities to self-renew indefinitely, and to give rise to all cell types of embryonic lineage (pluripotency) under the guidance of the appropriate chemical, mechanical and environmental cues. The combination of these critical features is unique to hESCs, and set them apart from other human cells. The expectations are high to utilize hESCs for treating injuries and degenerative diseases; for modeling of complex illnesses and development; for screening and testing of pharmacological products; and for examining toxicity, mutagenicity, teratogenicity, and potential carcinogenic effects of a variety of environmental factors, including ionizing radiation (IR). Exposures to genotoxic stresses, such as background IR, are unavoidable; moreover, IR is widely used in diagnostic and therapeutic procedures in medicine on a routine basis. One of the key outcomes of cell exposures to IR is the change in gene expression, which may underlie the ultimate hESCs fate after such a stress. However, gaps in our knowledge about basic biology of hESCs impose a serious limitation to fully realize the potential of hESCs in practice. The purpose of this review is to examine the available evidence of alterations in gene expression in human pluripotent stem cells after genotoxic stress, and to discuss strategies for future research in this important area.
Collapse
|
13
|
Paul S, Ghandhi SA, Weber W, Doyle-Eisele M, Melo D, Guilmette R, Amundson SA. Gene expression response of mice after a single dose of 137CS as an internal emitter. Radiat Res 2014; 182:380-9. [PMID: 25162453 DOI: 10.1667/rr13466.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cesium-137 is a radionuclide of concern in fallout from reactor accidents or nuclear detonations. When ingested or inhaled, it can expose the entire body for an extended period of time, potentially contributing to serious health consequences ranging from acute radiation syndrome to increased cancer risks. To identify changes in gene expression that may be informative for detecting such exposure, and to begin examining the molecular responses involved, we have profiled global gene expression in blood of male C57BL/6 mice injected with 137CsCl. We extracted RNA from the blood of control or 137CsCl-injected mice at 2, 3, 5, 20 or 30 days after exposure. Gene expression was measured using Agilent Whole Mouse Genome Microarrays, and the data was analyzed using BRB-ArrayTools. Between 466-6,213 genes were differentially expressed, depending on the time after 137Cs administration. At early times (2-3 days), the majority of responsive genes were expressed above control levels, while at later times (20-30 days) most responding genes were expressed below control levels. Numerous genes were overexpressed by day 2 or 3, and then underexpressed by day 20 or 30, including many Tp53-regulated genes. The same pattern was seen among significantly enriched gene ontology categories, including those related to nucleotide binding, protein localization and modification, actin and the cytoskeleton, and in the integrin signaling canonical pathway. We compared the expression of several genes three days after 137CsCl injection and three days after an acute external gamma-ray exposure, and found that the internal exposure appeared to produce a more sustained response. Many common radiation-responsive genes are altered by internally administered 137Cs, but the gene expression pattern resulting from continued irradiation at a decreasing dose rate is extremely complex, and appears to involve a late reversal of much of the initial response.
Collapse
Affiliation(s)
- Sunirmal Paul
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | | | | | | | | | |
Collapse
|
14
|
Paul S, Smilenov LB, Amundson SA. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat Res 2013; 180:575-83. [PMID: 24168352 DOI: 10.1667/rr13343.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6-48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | |
Collapse
|
15
|
Lessons learned about human stem cell responses to ionizing radiation exposures: a long road still ahead of us. Int J Mol Sci 2013; 14:15695-723. [PMID: 23899786 PMCID: PMC3759881 DOI: 10.3390/ijms140815695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 12/16/2022] Open
Abstract
Human stem cells (hSC) possess several distinct characteristics that set them apart from other cell types. First, hSC are self-renewing, capable of undergoing both asymmetric and symmetric cell divisions. Second, these cells can be coaxed to differentiate into various specialized cell types and, as such, hold great promise for regenerative medicine. Recent progresses in hSC biology fostered the characterization of the responses of hSC to genotoxic stresses, including ionizing radiation (IR). Here, we examine how different types of hSC respond to IR, with a special emphasis on their radiosensitivity, cell cycle, signaling networks, DNA damage response (DDR) and DNA repair. We show that human embryonic stem cells (hESCs) possess unique characteristics in how they react to IR that clearly distinguish these cells from all adult hSC studied thus far. On the other hand, a manifestation of radiation injuries/toxicity in human bodies may depend to a large extent on hSC populating corresponding tissues, such as human mesenchymal stem cells (hMSC), human hematopoietic stem cells (hHSC), neural hSC, intestine hSC, etc. We discuss here that hSC responses to IR differ notably across many types of hSC which may represent the distinct roles these cells play in development, regeneration and/or maintenance of homeostasis.
Collapse
|
16
|
Wang B, Tanaka K, Ninomiya Y, Maruyama K, VarèS G, Eguchi-Kasai K, Nenoi M. Relieved residual damage in the hematopoietic system of mice rescued by radiation-induced adaptive response (Yonezawa Effect). JOURNAL OF RADIATION RESEARCH 2013; 54:45-51. [PMID: 22923746 PMCID: PMC3534278 DOI: 10.1093/jrr/rrs077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 05/27/2023]
Abstract
Existence of adaptive response (AR) was previously demonstrated in C57BL/6J mice. Irradiations were performed by delivering a priming low dose of X-rays (0.50 Gy) in combination with a challenge high dose of accelerated carbon or neon ion particles. AR was characterized by significantly decreased mortality in the 30-day survival test. This mouse AR model (‘Yonezawa Effect’) was originally established by using X-rays as both the priming and challenge irradiations. The underlying mechanism was due to radio-resistance occurring in blood-forming tissues. In this study, we verified the existence of AR and further investigated residual damage in the hematopoietic system in surviving animals. Results showed that the priming low dose of X-rays could relieve the detrimental effects on the hematopoietic system. We observed both an improvement in the blood platelet count and the ratio of polychromatic erythrocytes (PCEs) to the sum of PCEs and normochromatic erythrocytes (NCEs) and a marked reduction of the incidences of micronucleated PCEs and micronucleated NCEs. These findings suggest that the priming low dose of low linear energy transfer (LET) X-rays induced a protective effect on the hematopoietic system, which may play an important role in both rescue from acute lethal damage (mouse killing) and prevention of late detrimental consequences (residual anhematopoiesis and delayed genotoxic effects) caused by exposure to a high challenge dose from low-LET (X-ray) or high-LET (carbon and neon ion) irradiations. These findings provide new knowledge of the characterization of the Yonezawa Effect by providing new insight into the mechanistic study of AR in vivo.
Collapse
Affiliation(s)
- Bing Wang
- Corresponding authors. Tel: +81-43-206-3093; Fax: +81-43-251-4582; (B. Wang); Tel: +81-43-206-3084; Fax: +81-43-255-6497; E-mail: (M. Nenoi)
| | | | | | | | | | | | - Mitsuru Nenoi
- Corresponding authors. Tel: +81-43-206-3093; Fax: +81-43-251-4582; (B. Wang); Tel: +81-43-206-3084; Fax: +81-43-255-6497; E-mail: (M. Nenoi)
| |
Collapse
|
17
|
Sokolov MV, Panyutin IG, Neumann RD. Whole-genome gene expression profiling reveals the major role of nitric oxide in mediating the cellular transcriptional response to ionizing radiation in normal human fibroblasts. Genomics 2012; 100:277-81. [PMID: 22814268 PMCID: PMC3483410 DOI: 10.1016/j.ygeno.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/26/2012] [Accepted: 07/09/2012] [Indexed: 11/16/2022]
Abstract
The indirect biological effects of ionizing radiation (IR) are thought to be mediated largely by reactive oxygen and nitrogen species (ROS and RNS). However, no data are available on how nitric oxide (NO) modulates the response of normal human cells to IR exposures at the level of the whole transcriptome. Here, we examined the effects of NO and ROS scavengers, carboxy-PTIO and DMSO, on changes in global gene expression in cultured normal human fibroblasts after exposures to gamma-rays, aiming to elucidate the involvement of ROS and RNS in transcriptional response to IR. We found that NO depletion dramatically affects the gene expression in normal human cells following irradiation with gamma-rays. We observed striking (more than seven-fold) reduction of the number of upregulated genes upon NO scavenging compared to reference irradiated cell cultures. NO scavenging in irradiated IMR-90 cells results in induction of p53 signaling, DNA damage and DNA repair pathways.
Collapse
Affiliation(s)
- Mykyta V. Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892, United States of America
| | - Igor G. Panyutin
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892, United States of America
| | - Ronald D. Neumann
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892, United States of America
| |
Collapse
|
18
|
Wang B, Ninomiya Y, Tanaka K, Maruyama K, Varès G, Eguchi-Kasai K, Nenoi M. Adaptive response of low linear energy transfer X-rays for protection against high linear energy transfer accelerated heavy ion-induced teratogenesis. ACTA ACUST UNITED AC 2012; 95:379-85. [PMID: 23109298 DOI: 10.1002/bdrb.21027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND Adaptive response (AR) of low linear energy transfer (LET) irradiations for protection against teratogenesis induced by high LET irradiations is not well documented. In this study, induction of AR by X-rays against teratogenesis induced by accelerated heavy ions was examined in fetal mice. METHODS Irradiations of pregnant C57BL/6J mice were performed by delivering a priming low dose from X-rays at 0.05 or 0.30 Gy on gestation day 11 followed one day later by a challenge high dose from either X-rays or accelerated heavy ions. Monoenergetic beams of carbon, neon, silicon, and iron with the LET values of about 15, 30, 55, and 200 keV/μm, respectively, were examined. Significant suppression of teratogenic effects (fetal death, malformation of live fetuses, or low body weight) was used as the endpoint for judgment of a successful AR induction. RESULTS Existence of AR induced by low-LET X-rays against teratogenic effect induced by high-LET accelerated heavy ions was demonstrated. The priming low dose of X-rays significantly reduced the occurrence of prenatal fetal death, malformation, and/or low body weight induced by the challenge high dose from either X-rays or accelerated heavy ions of carbon, neon or silicon but not iron particles. CONCLUSIONS Successful AR induction appears to be a radiation quality event, depending on the LET value and/or the particle species of the challenge irradiations. These findings would provide a new insight into the study on radiation-induced AR in utero.
Collapse
Affiliation(s)
- Bing Wang
- Radiation Risk Reduction Research Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Human embryonic stem cell responses to ionizing radiation exposures: current state of knowledge and future challenges. Stem Cells Int 2012; 2012:579104. [PMID: 22966236 PMCID: PMC3431129 DOI: 10.1155/2012/579104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/22/2012] [Indexed: 01/27/2023] Open
Abstract
Human embryonic stem cells, which are derived from the inner cell mass of the blastocyst, have become an object of intense study over the last decade. They possess two unique properties that distinguish them from many other cell types: (i) the ability to self-renew indefinitely in culture under permissive conditions, and (ii) the pluripotency, defined as the capability of giving rise to all cell types of embryonic lineage under the guidance of the appropriate developmental cues. The focus of many recent efforts has been on the elucidating the signaling pathways and molecular networks operating in human embryonic stem cells. These cells hold great promise in cell-based regenerative therapies, disease modeling, drug screening and testing, assessing genotoxic and mutagenic risks associated with exposures to a variety of environmental factors, and so forth. Ionizing radiation is ubiquitous in nature, and it is widely used in diagnostic and therapeutic procedures in medicine. In this paper, our goal is to summarize the recent progress in understanding how human embryonic stem cells respond to ionizing radiation exposures, using novel methodologies based on “omics” approaches, and to provide a critical discussion of what remains unknown; thus proposing a roadmap for the future research in this area.
Collapse
|
20
|
van Bergeijk P, Heimiller J, Uyetake L, Su TT. Genome-wide expression analysis identifies a modulator of ionizing radiation-induced p53-independent apoptosis in Drosophila melanogaster. PLoS One 2012; 7:e36539. [PMID: 22666323 PMCID: PMC3362589 DOI: 10.1371/journal.pone.0036539] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/09/2012] [Indexed: 12/20/2022] Open
Abstract
Tumor suppressor p53 plays a key role in DNA damage responses in metazoa, yet more than half of human tumors show p53 deficiencies. Therefore, understanding how therapeutic genotoxins such as ionizing radiation (IR) can elicit DNA damage responses in a p53-independent manner is of clinical importance. Drosophila has been a good model to study the effects of IR because DNA damage responses as well as underlying genes are conserved in this model, and because streamlined gene families make loss-of-function analyses feasible. Indeed, Drosophila is the only genetically tractable model for IR-induced, p53-independent apoptosis and for tissue regeneration and homeostasis after radiation damage. While these phenomenon occur only in the larvae, all genome-wide gene expression analyses after irradiation to date have been in embryos. We report here the first analysis of IR-induced, genome-wide gene expression changes in wild type and p53 mutant Drosophila larvae. Key data from microarrays were confirmed by quantitative RT-PCR. The results solidify the central role of p53 in IR-induced transcriptome changes, but also show that nearly all changes are made of both p53-dependent and p53-independent components. p53 is found to be necessary not just for the induction of but also for the repression of transcript levels for many genes in response to IR. Furthermore, Functional analysis of one of the top-changing genes, EF1a-100E, implicates it in repression of IR-induced p53-independent apoptosis. These and other results support the emerging notion that there is not a single dominant mechanism but that both positive and negative inputs collaborate to induce p53-independent apoptosis in response to IR in Drosophila larvae.
Collapse
Affiliation(s)
- Petra van Bergeijk
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Joseph Heimiller
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Lyle Uyetake
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|
21
|
Sokolov MV, Panyutin IV, Panyutin IG, Neumann RD. Dynamics of the transcriptome response of cultured human embryonic stem cells to ionizing radiation exposure. Mutat Res 2011; 709-710:40-8. [PMID: 21376742 DOI: 10.1016/j.mrfmmm.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/25/2011] [Accepted: 02/21/2011] [Indexed: 01/07/2023]
Abstract
One of the key consequences of exposure of human cells to genotoxic agents is the activation of DNA damage responses (DDR). While the mechanisms underpinning DDR in fully differentiated somatic human cells have been studied extensively, molecular signaling events and pathways involved in DDR in pluripotent human embryonic stem cells (hESC) remain largely unexplored. We studied changes in the human genome-wide transcriptome of H9 hESC line following exposures to 1Gy of gamma-radiation at 2h and 16h post-irradiation. Quantitative real-time PCR was performed to verify the expression data for a subset of genes. In parallel, the cell growth, DDR kinetics, and expression of pluripotency markers in irradiated hESC were monitored. The changes in gene expression in hESC after exposure to ionizing radiation (IR) are substantially different from those observed in somatic human cell lines. Gene expression patterns at 2h post-IR showed almost an exclusively p53-dependent, predominantly pro-apoptotic, signature with a total of only 30 up-regulated genes. In contrast, the gene expression patterns at 16h post-IR showed 354 differentially expressed genes, mostly involved in pro-survival pathways, such as increased expression of metallothioneins, ubiquitin cycle, and general metabolism signaling. Cell growth data paralleled trends in gene expression changes. DDR in hESC followed the kinetics reported for human somatic differentiated cells. The expression of pluripotency markers characteristic of undifferentiated hESC was not affected by exposure to IR during the time course of our analysis. Our data on dynamics of transcriptome response of irradiated hESCs may provide a valuable tool to screen for markers of IR exposure of human cells in their most naive state; thus unmasking the key elements of DDR; at the same time, avoiding the complexity of interpreting distinct cell type-dependent genotoxic stress responses of terminally differentiated cells.
Collapse
Affiliation(s)
- Mykyta V Sokolov
- Nuclear Medicine Division, Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | | | | | | |
Collapse
|
22
|
Pluder F, Barjaktarovic Z, Azimzadeh O, Mörtl S, Krämer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:155-166. [PMID: 21104263 DOI: 10.1007/s00411-010-0342-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ±1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.
Collapse
Affiliation(s)
- Franka Pluder
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vares G, Uehara Y, Ono T, Nakajima T, Wang B, Taki K, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M. Transcription factor-recognition sequences potentially involved in modulation of gene expression after exposure to low-dose-rate γ-rays in the mouse liver. JOURNAL OF RADIATION RESEARCH 2011; 52:249-256. [PMID: 21343681 DOI: 10.1269/jrr.10110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In vivo modulation of gene expression profiles after low-dose and low-dose-rate irradiation has been observed in a variety of experimental systems. However, few studies actually investigated the underlying mechanisms for these genetic responses. In this study, we used pre-existing microarray data and searched for gene modulations in response to long-term, low-dose-rate irradiation. Nucleotide sequences in the neighboring region of the up-regulated, down-regulated, and unaffected genes were retrieved from the Entrez Gene database, and recognition sequences for transcription factors (TFs) were searched using the TFSEARCH database. As a result, we suggested 21 potential TF-binding sites with significantly different incidence between the three gene groups (up-regulated, down-regulated and unaffected gene groups). The binding sites for sterol regulatory element-binding protein 1 (SREBP-1), aryl hydrocarbon receptor (AhR/Ar) and olfactory 1 (Olf-1) were suggested to be involved in up-regulation, while the binding sites for glucocorticoid receptor (GR(GGTACAANNT GTYCTK) ) and hepatocyte nuclear factor 1 (HNF-1) were suggested to be involved in down-regulation of the genes. In addition, the binding sites for activating enhancer-binding protein 4 (AP-4), nuclear factor-κB (NFκB), GR (NNNNNNCNNTNTGTNCTNN) and early growth response 3 (Egr-3) were correlated with modulation of gene expression regardless of the direction of modulation. Our results suggest that these TF-binding sites are involved in gene modulations after long-term continuous irradiation with low-dose-rate γ rays. GR and/or SREBP-1 might be associated with the altered metabolic process observed in liver after exposure to low-dose-rate irradiation.
Collapse
Affiliation(s)
- Guillaume Vares
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Buonanno M, de Toledo SM, Pain D, Azzam EI. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress. Radiat Res 2011; 175:405-15. [PMID: 21319986 DOI: 10.1667/rr2461.1] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ∼ 151 keV/µm), 600 MeV/u silicon ions (LET ∼ 51 keV/µm), or 1 GeV protons (LET ∼ 0.2 keV/µm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-µm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, UMDNJ - New Jersey Medical School Cancer Center, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
25
|
Herok R, Konopacka M, Polanska J, Swierniak A, Rogolinski J, Jaksik R, Hancock R, Rzeszowska-Wolny J. Bystander Effects Induced by Medium From Irradiated Cells: Similar Transcriptome Responses in Irradiated and Bystander K562 Cells. Int J Radiat Oncol Biol Phys 2010; 77:244-52. [DOI: 10.1016/j.ijrobp.2009.11.033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 11/30/2022]
|
26
|
Taki K, Wang B, Nakajima T, Wu J, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M. Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. JOURNAL OF RADIATION RESEARCH 2009; 50:241-252. [PMID: 19398854 DOI: 10.1269/jrr.09011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Measuring global gene expression using cDNA or oligonucleotide microarrays is an effective approach to understanding the complex mechanisms of the effects of radiation. However, few studies have been carried out that investigate gene expression in vivo after prolonged exposure to low-dose-rate radiation. In this study, C57BL/6J mice were continuously irradiated with gamma-rays for 485 days at dose-rates of 0.032-13 microGy/min. Gene expression profiles in the kidney and testis from irradiated and unirradiated mice were analyzed, and differentially expressed genes were identified. A combination of pathway analysis and hierarchical clustering of differentially expressed genes revealed that expression of genes involved in mitochondrial oxidative phosphorylation was elevated in the kidney after irradiation at the dose-rates of 0.65 microGy/min and 13 microGy/min. Expression of cell cycle-associated genes was not profoundly modulated in the kidney, in contrast to the response to acute irradiation, suggesting a threshold in the dose-rate for modulation of the expression of cell cycle-related genes in vivo following exposure to radiation. We demonstrated that changes to the gene expression profile in the testis were largely different from those in the kidney. The Gene Ontology categories "DNA metabolism", "response to DNA damage" and "DNA replication" overlapped significantly with the clusters of genes whose expression decreased with an increase in the dose-rate to the testis. These observations provide a fundamental insight into the organ-specific responses to low-dose-rate radiation.
Collapse
Affiliation(s)
- Keiko Taki
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, 9-1 Anagawa-4-chome, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nakajima T, Taki K, Wang B, Ono T, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Nenoi M. Induction of rhodanese, a detoxification enzyme, in livers from mice after long-term irradiation with low-dose-rate gamma-rays. JOURNAL OF RADIATION RESEARCH 2008; 49:661-666. [PMID: 18957832 DOI: 10.1269/jrr.08074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The health effects of low-dose radiation exposure are of public concern. Although molecular events in the cellular response to high-dose-rate radiation exposure have been fully investigated, effects of long-term exposure to extremely low-dose-rate radiation remain unclear. Protein expression was analyzed by two-dimensional electrophoresis in livers from mice irradiated for 485 days (22 hr/day) at low-dose-rates of 0.032 microGy/min, 0.65 microGy/min and 13 microGy/min (total doses of 21 mGy, 420 mGy and 8000 mGy, respectively). One of the proteins that showed marked changes in expression was identified as rhodanese (thiosulfate sulfurtransferase). Rhodanese expression was increased after irradiation at 0.65 microGy/min and 13 microGy/min, while its expression was not changed at 0.032 microGy/min. Rhodanese is a detoxification enzyme, probably related to the regulation of antioxidative function. However, antioxidative proteins, such as superoxide dismutase (SOD)1 (also known as Cu,Zn-SOD) and SOD2 (also known as Mn-SOD), which can be induced by high-dose-rate radiation, were not induced at any low-dose-rates tested. These findings indicate that rhodanese is a novel protein induced by low-dose-rate radiation, and further analysis could provide insight into the effects of extremely low-dose-rate radiation exposure.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Radiation Effect Mechanisms Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|