1
|
Kardassis D, Vindis C, Stancu CS, Toma L, Gafencu AV, Georgescu A, Alexandru-Moise N, Molica F, Kwak BR, Burlacu A, Hall IF, Butoi E, Magni P, Wu J, Novella S, Gamon LF, Davies MJ, Caporali A, de la Cuesta F, Mitić T. Unravelling molecular mechanisms in atherosclerosis using cellular models and omics technologies. Vascul Pharmacol 2025; 158:107452. [PMID: 39667548 DOI: 10.1016/j.vph.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Despite the discovery and prevalent clinical use of potent lipid-lowering therapies, including statins and PCSK9 inhibitors, cardiovascular diseases (CVD) caused by atherosclerosis remain a large unmet clinical need, accounting for frequent deaths worldwide. The pathogenesis of atherosclerosis is a complex process underlying the presence of modifiable and non-modifiable risk factors affecting several cell types including endothelial cells (ECs), monocytes/macrophages, smooth muscle cells (SMCs) and T cells. Heterogeneous composition of the plaque and its morphology could lead to rupture or erosion causing thrombosis, even a sudden death. To decipher this complexity, various cell model systems have been developed. With recent advances in systems biology approaches and single or multi-omics methods researchers can elucidate specific cell types, molecules and signalling pathways contributing to certain stages of disease progression. Compared with animals, in vitro models are economical, easily adjusted for high-throughput work, offering mechanistic insights. Hereby, we review the latest work performed employing the cellular models of atherosclerosis to generate a variety of omics data. We summarize their outputs and the impact they had in the field. Challenges in the translatability of the omics data obtained from the cell models will be discussed along with future perspectives.
Collapse
Affiliation(s)
- Dimitris Kardassis
- University of Crete Medical School and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion, Greece.
| | - Cécile Vindis
- CARDIOMET, Center for Clinical Investigation 1436 (CIC1436)/INSERM, Toulouse, France
| | - Camelia Sorina Stancu
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Laura Toma
- Lipidomics Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Anca Violeta Gafencu
- Gene Regulation and Molecular Therapies Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Adriana Georgescu
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Nicoleta Alexandru-Moise
- Pathophysiology and Cellular Pharmacology Department, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Filippo Molica
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Geneva Center for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandrina Burlacu
- Department of Stem Cell Biology, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elena Butoi
- Department of Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology Nicolae Simionescu, Bucharest, Romania
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milano, Italy; IRCCS MultiMedica, Milan, Italy
| | - Junxi Wu
- University of Strathclyde, Glasgow, United Kingdom
| | - Susana Novella
- Department of Physiology, University of Valencia - INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Luke F Gamon
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Caporali
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Fernando de la Cuesta
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| | - Tijana Mitić
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Yildirim Z, Swanson K, Wu X, Zou J, Wu J. Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish. Annu Rev Pharmacol Toxicol 2025; 65:71-90. [PMID: 39284102 PMCID: PMC12011342 DOI: 10.1146/annurev-pharmtox-022724-095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
Collapse
Affiliation(s)
- Zehra Yildirim
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - Kyle Swanson
- Greenstone Biosciences, Palo Alto, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
3
|
Richards A, Khalil AS, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm RD, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. Nat Commun 2024; 15:10754. [PMID: 39737992 PMCID: PMC11685814 DOI: 10.1038/s41467-024-54917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Xinlei Gao
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
4
|
Behzadi P, Cuevas RA, Crane A, Wendling AA, Chu CC, Moorhead WJ, Wong R, Brown M, Tamakloe J, Suresh S, Salehi P, Jaffe IZ, Kuipers AL, Lukashova L, Verdelis K, St Hilaire C. Rapamycin Reduces Arterial Mineral Density and Promotes Beneficial Vascular Remodeling in a Murine Model of Severe Medial Arterial Calcification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606196. [PMID: 39149364 PMCID: PMC11326142 DOI: 10.1101/2024.08.01.606196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Peripheral artery disease (PAD) is the narrowing of the arteries that carry blood to the lower extremities. PAD has been traditionally associated with atherosclerosis. However, recent studies have found that medial arterial calcification (MAC) is the primary cause of chronic limb ischemia below the knee. MAC involves calcification of the elastic fibers surrounding smooth muscle cells (SMCs) in arteries. Matrix GLA protein (MGP) inhibits vascular calcification by binding circulating calcium and preventing hydroxyapatite crystal deposition, while also modulating osteogenic signaling by blocking BMP-2 activation of RUNX2. Mgp -/- mice develop severe MAC and die around 8 weeks after birth due to aortic rupture or heart failure. We previously discovered a rare genetic disease Arterial Calcification due to Deficiency in CD73 (ACDC) in which patients present with extensive MAC in their lower extremity arteries. Using a patient-specific induced pluripotent stem cell model we found that rapamycin inhibited calcification. Here we investigated whether rapamycin could reduce MAC in vivo using the Mgp -/- murine model. Mgp +/+ and Mgp -/- mice received 5mg/kg rapamycin or vehicle. Calcification content was assessed via microCT, and vascular morphology and extracellular matrix content assessed histologically. Immunostaining and western blot analysis were used to examine SMC phenotype and extracellular matrix content. Rapamycin prolonged Mgp -/- mice lifespan, decreased mineral density in the arteries, maintained SMC contractile phenotype, and improved vessel structure, however, calcification volume was unchanged. Mgp -/- mice with SMC-specific deletion of Raptor or Rictor, did not recapitulate treatment with rapamycin. These findings suggest rapamycin promotes beneficial vascular remodeling in vessels with MAC.
Collapse
Affiliation(s)
- Parya Behzadi
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rolando A Cuevas
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Crane
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew A Wendling
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Claire C Chu
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William J Moorhead
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan Wong
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark Brown
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Tamakloe
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Swathi Suresh
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Payam Salehi
- CardioVascular Center, Vascular Surgery, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington Street, Boston, MA, 02111-1800, USA
| | - Allison L Kuipers
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lyudmila Lukashova
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Verdelis
- Departments of Endodontics and Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cynthia St Hilaire
- Department of Medicine, Division of Cardiology, and the Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Richards A, Khalil A, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm R, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.06.552160. [PMID: 37609322 PMCID: PMC10441287 DOI: 10.1101/2023.08.06.552160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction, despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
|
6
|
Kwartler CS, Pinelo JEE. Use of iPSC-Derived Smooth Muscle Cells to Model Physiology and Pathology. Arterioscler Thromb Vasc Biol 2024; 44:1523-1536. [PMID: 38695171 PMCID: PMC11209779 DOI: 10.1161/atvbaha.123.319703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The implementation of human induced pluripotent stem cell (hiPSC) models has introduced an additional tool for identifying molecular mechanisms of disease that complement animal models. Patient-derived or CRISPR/Cas9-edited induced pluripotent stem cells differentiated into smooth muscle cells (SMCs) have been leveraged to discover novel mechanisms, screen potential therapeutic strategies, and model in vivo development. The field has evolved over almost 15 years of research using hiPSC-SMCs and has made significant strides toward overcoming initial challenges such as the lineage specificity of SMC phenotypes. However, challenges both specific (eg, the lack of specific markers to thoroughly validate hiPSC-SMCs) and general (eg, a lack of transparency and consensus around methodology in the field) remain. In this review, we highlight the recent successes and remaining challenges of the hiPSC-SMC model.
Collapse
Affiliation(s)
- Callie S. Kwartler
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Jose Emiliano Esparza Pinelo
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
7
|
Karbasion N, Xu Y, Snider JC, Bersi MR. Primary Mouse Aortic Smooth Muscle Cells Exhibit Region- and Sex-Dependent Biological Responses In Vitro. J Biomech Eng 2024; 146:060904. [PMID: 38421345 PMCID: PMC11005860 DOI: 10.1115/1.4064965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in elucidating biological mechanisms of cardiovascular remodeling, cardiovascular disease (CVD) remains the leading cause of death worldwide. When stratified by sex, clear differences in CVD prevalence and mortality between males and females emerge. Regional differences in phenotype and biological response of cardiovascular cells are important for localizing the initiation and progression of CVD. Thus, to better understand region and sex differences in CVD presentation, we have focused on characterizing in vitro behaviors of primary vascular smooth muscle cells (VSMCs) from the thoracic and abdominal aorta of male and female mice. VSMC contractility was assessed by traction force microscopy (TFM; single cell) and collagen gel contraction (collective) with and without stimulation by transforming growth factor-beta 1 (TGF-β1) and cell proliferation was assessed by a colorimetric metabolic assay (MTT). Gene expression and TFM analysis revealed region- and sex-dependent behaviors, whereas collagen gel contraction was consistent across sex and aortic region under baseline conditions. Thoracic VSMCs showed a sex-dependent sensitivity to TGF-β1-induced collagen gel contraction (female > male; p = 0.025) and a sex-dependent proliferative response (female > male; p < 0.001) that was not apparent in abdominal VSMCs. Although primary VSMCs exhibit intrinsic region and sex differences in biological responses that may be relevant for CVD presentation, several factors-such as inflammation and sex hormones-were not included in this study. Such factors should be included in future studies of in vitro mechanobiological responses relevant to CVD differences in males and females.
Collapse
Affiliation(s)
- Niyousha Karbasion
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - Yujun Xu
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - J. Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
- Washington University in St. Louis
| | - Matthew R. Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| |
Collapse
|
8
|
Ding H, Hou X, Gao Z, Guo Y, Liao B, Wan J. Challenges and Strategies for Endothelializing Decellularized Small-Diameter Tissue-Engineered Vessel Grafts. Adv Healthc Mater 2024; 13:e2304432. [PMID: 38462702 DOI: 10.1002/adhm.202304432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/26/2024] [Indexed: 03/12/2024]
Abstract
Vascular diseases are the leading cause of ischemic necrosis in tissues and organs, necessitating using vascular grafts to restore blood supply. Currently, small vessels for coronary artery bypass grafts are unavailable in clinical settings. Decellularized small-diameter tissue-engineered vessel grafts (SD-TEVGs) hold significant potential. However, they face challenges, as simple implantation of decellularized SD-TEVGs in animals leads to thrombosis and calcification due to incomplete endothelialization. Consequently, research and development focus has shifted toward enhancing the endothelialization process of decellularized SD-TEVGs. This paper reviews preclinical studies involving decellularized SD-TEVGs, highlighting different strategies and their advantages and disadvantages for achieving rapid endothelialization of these vascular grafts. Methods are analyzed to improve the process while addressing potential shortcomings. This paper aims to contribute to the future commercial viability of decellularized SD-TEVGs.
Collapse
Affiliation(s)
- Heng Ding
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaojie Hou
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100069, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery and Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Liao
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Juyi Wan
- Department of Cardiovascular Surgery, The Affiliated Hospital, Southwest Medical University, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Key Laboratory of cardiovascular remodeling and dysfunction, Luzhou, Sichuan, 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
9
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Zhang Y, Yang Y, Feng Y, Gao X, Pei L, Li X, Gao B, Liu L, Wang C, Gao S. Sonodynamic therapy for the treatment of atherosclerosis. J Pharm Anal 2024; 14:100909. [PMID: 38799235 PMCID: PMC11127226 DOI: 10.1016/j.jpha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 05/29/2024] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium-sized arteries that leads to ischemic heart disease, stroke, and peripheral vascular disease. Despite the current treatments, mortality and disability still remain high. Sonodynamic therapy (SDT), a non-invasive and localized methodology, has been developed as a promising new treatment for inhibiting atherosclerotic progression and stabilizing plaques. Promising progress has been made through cell and animal assays, as well as clinical trials. For example, the effect of SDT on apoptosis and autophagy of cells in AS, especially macrophages, and the concept of non-lethal SDT has also been proposed. In this review, we summarize the ultrasonic parameters and known sonosensitizers utilized in SDT for AS; we elaborate on SDT's therapeutic effects and mechanisms in terms of macrophages, T lymphocytes, neovascularization, smooth muscle cells, lipid, extracellular matrix and efferocytosis within plaques; additionally, we discuss the safety of SDT. A comprehensive summary of the confirmed effects of SDT on AS is conducted to establish a framework for future researchers.
Collapse
Affiliation(s)
- Yan Zhang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ying Yang
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yudi Feng
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xueyan Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Liping Pei
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiaopan Li
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bingxin Gao
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Liu
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chengzeng Wang
- The Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuochen Gao
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
11
|
Baldwin CS, Iyer S, Rao RR. The challenges and prospects of smooth muscle tissue engineering. Regen Med 2024; 19:135-143. [PMID: 38440898 PMCID: PMC10941056 DOI: 10.2217/rme-2023-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/06/2024] Open
Abstract
Many vascular disorders arise as a result of dysfunctional smooth muscle cells. Tissue engineering strategies have evolved as key approaches to generate functional vascular smooth muscle cells for use in cell-based precision and personalized regenerative medicine approaches. This article highlights some of the challenges that exist in the field and presents some of the prospects for translating research advancements into therapeutic modalities. The article emphasizes the need for better developing synergetic intracellular and extracellular cues in the processes to generate functional vascular smooth muscle cells from different stem cell sources for use in tissue engineering strategies.
Collapse
Affiliation(s)
- Christofer S Baldwin
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shilpa Iyer
- Department of Biological Sciences, Fulbright College of Arts & Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Raj R Rao
- Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
12
|
Jiao YC, Wang YX, Liu WZ, Xu JW, Zhao YY, Yan CZ, Liu FC. Advances in the differentiation of pluripotent stem cells into vascular cells. World J Stem Cells 2024; 16:137-150. [PMID: 38455095 PMCID: PMC10915963 DOI: 10.4252/wjsc.v16.i2.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.
Collapse
Affiliation(s)
- Yi-Chang Jiao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Ying-Xin Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Wen-Zhu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Jing-Wen Xu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Yu-Ying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuan-Zhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao) of Shandong University, Qingdao 266103, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China
| | - Fu-Chen Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
- Brain Science Research Institute, Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
13
|
Meijer E, Giles R, van Dijk CGM, Maringanti R, Wissing TB, Appels Y, Chrifi I, Crielaard H, Verhaar MC, Smits AI, Cheng C. Effect of Mechanical Stimuli on the Phenotypic Plasticity of Induced Pluripotent Stem-Cell-Derived Vascular Smooth Muscle Cells in a 3D Hydrogel. ACS APPLIED BIO MATERIALS 2023; 6:5716-5729. [PMID: 38032545 PMCID: PMC10731661 DOI: 10.1021/acsabm.3c00840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Vascular smooth muscle cells (VSMCs) play a pivotal role in vascular homeostasis, with dysregulation leading to vascular complications. Human-induced pluripotent stem-cell (hiPSC)-derived VSMCs offer prospects for personalized disease modeling and regenerative strategies. Current research lacks comparative studies on the impact of three-dimensional (3D) substrate properties under cyclic strain on phenotypic adaptation in hiPSC-derived VSMCs. Here, we aim to investigate the impact of intrinsic substrate properties, such as the hydrogel's elastic modulus and cross-linking density in a 3D static and dynamic environment, on the phenotypical adaptation of human mural cells derived from hiPSC-derived organoids (ODMCs), compared to aortic VSMCs. Methods and results: ODMCs were cultured in two-dimensional (2D) conditions with synthetic or contractile differentiation medium or in 3D Gelatin Methacryloyl (GelMa) substrates with varying degrees of functionalization and percentages to modulate Young's modulus and cross-linking density. Cells in 3D substrates were exposed to cyclic, unidirectional strain. Phenotype characterization was conducted using specific markers through immunofluorescence and gene expression analysis. Under static 2D culture, ODMCs derived from hiPSCs exhibited a VSMC phenotype, expressing key mural markers, and demonstrated a level of phenotypic plasticity similar to primary human VSMCs. In static 3D culture, a substrate with a higher Young's modulus and cross-linking density promoted a contractile phenotype in ODMCs and VSMCs. Dynamic stimulation in the 3D substrate promoted a switch toward a contractile phenotype in both cell types. Conclusion: Our study demonstrates phenotypic plasticity of human ODMCs in response to 2D biological and 3D mechanical stimuli that equals that of primary human VSMCs. These findings may contribute to the advancement of tailored approaches for vascular disease modeling and regenerative strategies.
Collapse
Affiliation(s)
- Elana
M. Meijer
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Rachel Giles
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Christian G. M. van Dijk
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Ranganath Maringanti
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Tamar B. Wissing
- Department
of Biomedical Engineering, Eindhoven University
of Technology; Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology; Eindhoven 5612 AE, The Netherlands
| | - Ymke Appels
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Ihsan Chrifi
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| | - Hanneke Crielaard
- Department
of Biomedical Engineering, Erasmus Medical
Center, Rotterdam 3000 CA, The Netherlands
| | - Marianne C. Verhaar
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
| | - Anthal I.P.M. Smits
- Department
of Biomedical Engineering, Eindhoven University
of Technology; Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology; Eindhoven 5612 AE, The Netherlands
| | - Caroline Cheng
- Department
of Nephrology and Hypertension, Division of Internal Medicine and
Dermatology, University Medical Center Utrecht, Utrecht 3508 GA, The Netherlands
- Regenerative
Medicine Center Utrecht, University Medical
Center Utrecht, Utrecht 3508 GA, The Netherlands
- Experimental
Cardiology, Department of Cardiology, Thorax
Center Erasmus University Medical Center, Rotterdam 3000 CA, The Netherlands
| |
Collapse
|
14
|
Bertucci T, Kakarla S, Winkelman MA, Lane K, Stevens K, Lotz S, Grath A, James D, Temple S, Dai G. Direct differentiation of human pluripotent stem cells into vascular network along with supporting mural cells. APL Bioeng 2023; 7:036107. [PMID: 37564277 PMCID: PMC10411996 DOI: 10.1063/5.0155207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
During embryonic development, endothelial cells (ECs) undergo vasculogenesis to form a primitive plexus and assemble into networks comprised of mural cell-stabilized vessels with molecularly distinct artery and vein signatures. This organized vasculature is established prior to the initiation of blood flow and depends on a sequence of complex signaling events elucidated primarily in animal models, but less studied and understood in humans. Here, we have developed a simple vascular differentiation protocol for human pluripotent stem cells that generates ECs, pericytes, and smooth muscle cells simultaneously. When this protocol is applied in a 3D hydrogel, we demonstrate that it recapitulates the dynamic processes of early human vessel formation, including acquisition of distinct arterial and venous fates, resulting in a vasculogenesis angiogenesis model plexus (VAMP). The VAMP captures the major stages of vasculogenesis, angiogenesis, and vascular network formation and is a simple, rapid, scalable model system for studying early human vascular development in vitro.
Collapse
Affiliation(s)
| | - Shravani Kakarla
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Max A. Winkelman
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Keith Lane
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | | | - Steven Lotz
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Alexander Grath
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| | - Daylon James
- Weill Cornell Medicine, New York, New York 10065, USA
| | - Sally Temple
- Neural Stem Cell Institute, Rensselaer, New York 12144, USA
| | - Guohao Dai
- Northeastern University, Department of Bioengineering, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
16
|
Derhambakhsh S, Mohammadi J, Shokrgozar MA, Rabbani H, Sadeghi N, Nekounam H, Mohammadi S, Lee KB, Khakbiz M. Investigation of electrical stimulation on phenotypic vascular smooth muscle cells differentiation in tissue-engineered small-diameter vascular graft. Tissue Cell 2023; 81:101996. [PMID: 36657256 DOI: 10.1016/j.tice.2022.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
In the development of vascular tissue engineering, particularly in the case of small diameter vessels, one of the key obstacles is the blockage of these veins once they enter the in vivo environment. One of the contributing factors to this problem is the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) from the media layer of the artery to the interior of the channel. Two distinct phenotypes have been identified for smooth muscle cells, namely synthetic and contractile. Since the synthetic phenotype plays an essential role in the unusual growth and migration, the aim of this study was to convert the synthetic phenotype into the contractile one, which is a solution to prevent the abnormal growth of VSMCs. To achieve this goal, these cells were subjected to electrical signals, using a 1000 μA sinusoidal stimulation at 10 Hz for four days, with 20 min duration per 24 h. The morphological transformations and changes in the expression of vimentin, nestin, and β-actin proteins were then studied using ICC and flow cytometry assays. Also, the expression of VSMC specific markers such as smooth muscle myosin heavy chain (SMMHC) and smooth muscle alpha-actin (α-SMA) were evaluated using RT-PCR test. In the final phase of this study, the sheep decellularized vessel was employed as a scaffold for seeding these cells. Based on the results, electrical stimulation resulted in some morphological alterations in VSMCs. Furthermore, the observed reductions in the expression levels of vimentin, nestin and β-actin proteins and increase in the expression of SMMHC and α-SMA markers showed that it is possible to convert the synthetic phenotype to the contractile one using the studied regime of electrical stimulation. Finally, it can be concluded that electrical stimulation can significantly affect the phenotype of VSMCs, as demonstrated in this study.
Collapse
Affiliation(s)
- Sara Derhambakhsh
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| | | | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Niloufar Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Houra Nekounam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Sotoudeh Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Department of Life Science, Faculty of New Sciences and Technologies, University of Tehran, Tehran 439957131, Iran.
| |
Collapse
|
17
|
Liu L, Jouve C, Henry J, Berrandou TE, Hulot JS, Georges A, Bouatia-Naji N. Genomic, Transcriptomic, and Proteomic Depiction of Induced Pluripotent Stem Cells-Derived Smooth Muscle Cells As Emerging Cellular Models for Arterial Diseases. Hypertension 2023; 80:740-753. [PMID: 36655574 DOI: 10.1161/hypertensionaha.122.19733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-β (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.
Collapse
Affiliation(s)
- Lu Liu
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Charlène Jouve
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Joséphine Henry
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Takiy-Eddine Berrandou
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Jean-Sébastien Hulot
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Adrien Georges
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| | - Nabila Bouatia-Naji
- Université Paris Cité, Inserm, PARCC, Paris, France (L.L., C.J., J.H., T.-E.B., J.-S.H., A.G., N.B.-N.)
| |
Collapse
|
18
|
Sivaraman S, Ravishankar P, Rao RR. Differentiation and Engineering of Human Stem Cells for Smooth Muscle Generation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:1-9. [PMID: 35491587 DOI: 10.1089/ten.teb.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cardiovascular diseases are responsible for 31% of global deaths and are considered the main cause of death and disability worldwide. Stem cells from various sources have become attractive options for a range of cell-based therapies for smooth muscle tissue regeneration. However, for efficient myogenic differentiation, the stem cell characteristics, cell culture conditions, and their respective microenvironments need to be carefully assessed. This review covers the various approaches involved in the regeneration of vascular smooth muscles by conditioning human stem cells. This article delves into the different sources of stem cells used in the generation of myogenic tissues, the role of soluble growth factors, use of scaffolding techniques, biomolecular cues, relevance of mechanical stimulation, and key transcription factors involved, aimed at inducing myogenic differentiation. Impact statement The review article's main goal is to discuss the recent advances in the field of smooth muscle tissue regeneration. We look at various cell sources, growth factors, scaffolds, mechanical stimuli, and factors involved in smooth muscle formation. These stem cell-based approaches for vascular muscle formation will provide various options for cell-based therapies with long-term beneficial effects on patients.
Collapse
Affiliation(s)
- Srikanth Sivaraman
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Prashanth Ravishankar
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Raj R Rao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
19
|
Cuevas RA, Wong R, Joolharzadeh P, Moorhead WJ, Chu CC, Callahan J, Crane A, Boufford CK, Parise AM, Parwal A, Behzadi P, St Hilaire C. Ecto-5'-nucleotidase (Nt5e/CD73)-mediated adenosine signaling attenuates TGFβ-2 induced elastin and cellular contraction. Am J Physiol Cell Physiol 2023; 324:C327-C338. [PMID: 36503240 PMCID: PMC9902218 DOI: 10.1152/ajpcell.00054.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Arterial calcification due to deficiency of CD73 (ACDC) is a rare genetic disease caused by a loss-of-function mutation in the NT5E gene encoding the ecto-5'-nucleotidase (cluster of differentiation 73, CD73) enzyme. Patients with ACDC develop vessel arteriomegaly, tortuosity, and vascular calcification in their lower extremity arteries. Histological analysis shows that patients with ACDC vessels exhibit fragmented elastin fibers similar to that seen in aneurysmal-like pathologies. It is known that alterations in transforming growth factor β (TGFβ) pathway signaling contribute to this elastin phenotype in several connective tissue diseases, as TGFβ regulates extracellular matrix (ECM) remodeling. Our study investigates whether CD73-derived adenosine modifies TGFβ signaling in vascular smooth muscle cells (SMCs). We show that Nt5e-/- SMCs have elevated contractile markers and elastin gene expression compared with Nt5e+/+ SMCs. Ecto-5'-nucleotidase (Nt5e)-deficient SMCs exhibit increased TGFβ-2 and activation of small mothers against decapentaplegic (SMAD) signaling, elevated elastin transcript and protein, and potentiate SMC contraction. These effects were diminished when the A2b adenosine receptor was activated. Our results identify a novel link between adenosine and TGFβ signaling, where adenosine signaling via the A2b adenosine receptor attenuates TGFβ signaling to regulate SMC homeostasis. We discuss how disruption in adenosine signaling is implicated in ACDC vessel tortuosity and could potentially contribute to other aneurysmal pathogenesis.
Collapse
Affiliation(s)
- Rolando A Cuevas
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ryan Wong
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pouya Joolharzadeh
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J Moorhead
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claire C Chu
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jack Callahan
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alex Crane
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Camille K Boufford
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Angelina M Parise
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aneesha Parwal
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Parya Behzadi
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Liu Q, Liu Z, Gu H, Ge Y, Wu X, Zuo F, Du Q, Lei Y, Wang Z, Lin H. Comparative study of differentiating human pluripotent stem cells into vascular smooth muscle cells in hydrogel-based culture methods. Regen Ther 2022; 22:39-49. [PMID: 36618488 PMCID: PMC9798140 DOI: 10.1016/j.reth.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs), which provides structural integrity and regulates the diameter of vasculature, are of great potential for modeling vascular-associated diseases and tissue engineering. Here, we presented a detailed comparison of differentiating human pluripotent stem cells (hPSCs) into VSMCs (hPSCs-VSMCs) in four different culture methods, including 2-dimensional (2D) culture, 3-dimensional (3D) PNIPAAm-PEG hydrogel culture, 3-dimensional (3D) alginate hydrogel culture, and transferring 3-dimensional alginate hydrogel culture to 2-dimensional (2D) culture. Both hydrogel-based culture methods could mimic in vivo microenvironment to protect cells from shear force, and avoid cells agglomeration, resulting in the extremely high culture efficiency (e.g., high viability, high purity and high yield) compared with 2D culture. We demonstrated hPSC-VSMCs produced from hydrogel-based culture methods had better contractile phenotypes and the potential of vasculature formation. The transcriptome analysis showed the hPSC-VSMCs derived from hydrogel-based culture methods displayed more upregulated genes in vasculature development, angiogenesis and blood vessel development, extracellular matrix compared with 2D culture. Taken together, hPSC-VSMCs produced from hydrogel-based culture system could be applied in various biomedical fields, and further indicated the suitable development of alginate hydrogel for industrial production by taking all aspects into consideration.
Collapse
Affiliation(s)
- Qing Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100006, China
| | - Zhen Liu
- Department of Neurosurgery, Beijing Shunyi District Hospital, Beijing, 101300, China
| | - Hongyu Gu
- Department of Thoracic Surgery Ward 3, The First Hospital of Qiqihar, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, China
| | - Yuxia Ge
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China
| | - Xuesheng Wu
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fuxing Zuo
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Qian Du
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Huck Life Science Institute, Pennsylvania State University, University Park, PA, 16802, USA,Corresponding author.
| | - Zhanqi Wang
- Department of Vascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, 100029, China,Corresponding author.
| | - Haishuang Lin
- Department of Neurology, The Second Hospital of Harbin, Harbin, 150056, China,Corresponding author.
| |
Collapse
|
21
|
Association between reversine dose and increased plasticity of dedifferentiated fat (DFAT cells) into cardiac derived cells. COR ET VASA 2022. [DOI: 10.33678/cor.2022.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Khanna A, Oropeza BP, Huang NF. Engineering Spatiotemporal Control in Vascularized Tissues. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9100555. [PMID: 36290523 PMCID: PMC9598830 DOI: 10.3390/bioengineering9100555] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
A major challenge in engineering scalable three-dimensional tissues is the generation of a functional and developed microvascular network for adequate perfusion of oxygen and growth factors. Current biological approaches to creating vascularized tissues include the use of vascular cells, soluble factors, and instructive biomaterials. Angiogenesis and the subsequent generation of a functional vascular bed within engineered tissues has gained attention and is actively being studied through combinations of physical and chemical signals, specifically through the presentation of topographical growth factor signals. The spatiotemporal control of angiogenic signals can generate vascular networks in large and dense engineered tissues. This review highlights the developments and studies in the spatiotemporal control of these biological approaches through the coordinated orchestration of angiogenic factors, differentiation of vascular cells, and microfabrication of complex vascular networks. Fabrication strategies to achieve spatiotemporal control of vascularization involves the incorporation or encapsulation of growth factors, topographical engineering approaches, and 3D bioprinting techniques. In this article, we highlight the vascularization of engineered tissues, with a focus on vascularized cardiac patches that are clinically scalable for myocardial repair. Finally, we discuss the present challenges for successful clinical translation of engineered tissues and biomaterials.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ngan F. Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
23
|
Bulut M, Vila Cuenca M, de Graaf M, van den Hil FE, Mummery CL, Orlova VV. Three-Dimensional Vessels-on-a-Chip Based on hiPSC-derived Vascular Endothelial and Smooth Muscle Cells. Curr Protoc 2022; 2:e564. [PMID: 36250774 PMCID: PMC11648816 DOI: 10.1002/cpz1.564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Blood vessels are composed of endothelial cells (ECs) that form the inner vessel wall and mural cells that cover the ECs to mediate their stabilization. Crosstalk between ECs and VSMCs while the ECs undergo microfluidic flow is vital for the function and integrity of blood vessels. Here, we describe a protocol to generate three-dimensional (3D) engineered vessels-on-chip (VoCs) composed of vascular cells derived from human induced pluripotent stem cells (hiPSCs). We first describe protocols for robust differentiation of vascular smooth muscle cells (hiPSC-VSMCs) from hiPSCs that are effective across multiple hiPSC lines. Second, we describe the fabrication of a simple microfluidic device consisting of a single collagen lumen that can act as a cell scaffold and support fluid flow using the viscous finger patterning (VFP) technique. After the channel is seeded sequentially with hiPSC-derived ECs (hiPSC-ECs) and hiPSC-VSMCs, a stable EC barrier covered by VSMCs lines the collagen lumen. We demonstrate that this 3D VoC model can recapitulate physiological cell-cell interaction and can be perfused under physiological shear stress using a microfluidic pump. The uniform geometry of the vessel lumens allows precise control of flow dynamics. We have thus developed a robust protocol to generate an entirely isogenic hiPSC-derived 3D VoC model, which could be valuable for studying vessel barrier function and physiology in healthy or disease states. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Differentiation of hiPSC-VSMCs Support Protocol 1: Characterization of hiPSC-NCCs and hiPSC-VSMCs Support Protocol 2: Preparation of cryopreserved hiPSC-VSMCs and hiPSC-ECs for VoC culture Basic Protocol 2: Generation of 3D VoC model composed of hiPSC-ECs and hiPSC-VSMCs Support Protocol 3: Structural characterization of 3D VoC model.
Collapse
Affiliation(s)
- Merve Bulut
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
| | - Marc Vila Cuenca
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
| | - Mees de Graaf
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Christine L. Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| | - Valeria V. Orlova
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
24
|
Elliott MB, Matsushita H, Shen J, Yi J, Inoue T, Brady T, Santhanam L, Mao HQ, Hibino N, Gerecht S. Off-the-Shelf, Heparinized Small Diameter Vascular Graft Limits Acute Thrombogenicity in a Porcine Model. Acta Biomater 2022; 151:134-147. [PMID: 35933100 DOI: 10.1016/j.actbio.2022.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022]
Abstract
Thrombogenicity poses a challenge to the clinical translation of engineered grafts. Previously, small-diameter vascular grafts (sdVG) composed of fibrin hydrogel microfiber tubes (FMT) with an external poly(ε-caprolactone) (PCL) sheath supported long-term patency in mice. Towards the development of an sdVG with off-the-shelf availability, the FMT's shelf stability, scale-up, and successful conjugation of an antithrombotic drug to the fibrin scaffold are reported here. FMTs maintain mechanical stability and high-water retention after storage for one year in a freezer, in a refrigerator, or at room temperature. Low molecular weight heparin-conjugated fibrin scaffolds enabled local and sustained delivery during two weeks of enzymatic degradation. Upscaled fabrication of sdVGs provides natural biodegradable grafts with size and mechanics suitable for human application. Implantation in a carotid artery interposition porcine model exhibited no rupture with thrombi prevented in all heparinized sdVGs (n=4) over 4-5 weeks. Remodeling of the sdVGs is demonstrated with endothelial cells on the luminal surface and initial formation of the medial layer by 4-5 weeks. However, neointimal hyperplasia at 4-5 weeks led to the stenosis and occlusion of most of the sdVGs, which must be resolved for future long-term in vivo assessments. The off-the-shelf, biodegradable heparinized fibrin sdVG layer limits acute thrombogenicity while mediating extensive neotissue formation as the PCL sheath maintains structural integrity. STATEMENT OF SIGNIFICANCE: : To achieve clinical and commercial utility of small-diameter vascular grafts as arterial conduits, these devices must have off-the-shelf availability for emergency arterial bypass applications and be scaled to a size suitable for human applications. A serious impediment to clinical translation is thrombogenicity. Treatments have focused on long-term systemic drug therapy, which increases the patient's risk of bleeding complications, or coating grafts and stents with anti-coagulants, which minimally improves patient outcomes even when combined with dual anti-platelet therapy. We systematically modified the biomaterial properties to develop anticoagulant embedded, biodegradable grafts that maintain off-the-shelf availability, provide mechanical stability, and prevent clot formation through local drug delivery.
Collapse
Affiliation(s)
- Morgan B Elliott
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Hiroshi Matsushita
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Jessica Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Jaeyoon Yi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Takahiro Inoue
- Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Travis Brady
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Narutoshi Hibino
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Section of Cardiac Surgery, Department of Surgery, The University of Chicago, Chicago, IL 60637
| | - Sharon Gerecht
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218; Department of Materials Science and Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Engineering, Duke University, Durham, NC 27705.
| |
Collapse
|
25
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Suji Choi
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston MA 02134
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115
| | - Christina Alamana
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Kevin K. Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston MA 02134
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138
| | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
26
|
Li T, Xu G, Yi J, Huang Y. Intraoperative Hypothermia Induces Vascular Dysfunction in the CA1 Region of Rat Hippocampus. Brain Sci 2022; 12:brainsci12060692. [PMID: 35741578 PMCID: PMC9221322 DOI: 10.3390/brainsci12060692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Intraoperative hypothermia is very common and leads to memory decline. The hippocampus is responsible for memory formation. As a functional core area, the cornu ammonis 1 (CA1) region of the hippocampus contains abundant blood vessels and is susceptible to ischemia. The aim of the study was to explore vascular function and neuronal state in the CA1 region of rats undergoing intraoperative hypothermia. The neuronal morphological change and activity-regulated cytoskeleton-associated protein (Arc) expression were evaluated by haematoxylin-eosin staining and immunofluorescence respectively. Histology and immunohistochemistry were used to assess vascular function. Results showed that intraoperative hypothermia inhibited the expression of vascular endothelial growth factor and endothelial nitric oxide synthase, and caused reactive oxygen species accumulation. Additionally, the phenotype of vascular smooth muscle cells was transformed from contractile to synthetic, showing a decrease in smooth muscle myosin heavy chain and an increase in osteopontin. Ultimately, vascular dysfunction caused neuronal pyknosis in the CA1 region and reduced memory-related Arc expression. In conclusion, neuronal disorder in the CA1 region was caused by intraoperative hypothermia-related vascular dysfunction. This study could provide a novel understanding of the effect of intraoperative hypothermia in the hippocampus, which might identify a new research target and treatment strategy.
Collapse
|
27
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
28
|
Zhang J, Starkuviene V, Erfle H, Wang Z, Gunkel M, Zeng Z, Sticht C, Kan K, Rahbari N, Keese M. High-content analysis of microRNAs involved in the phenotype regulation of vascular smooth muscle cells. Sci Rep 2022; 12:3498. [PMID: 35241704 PMCID: PMC8894385 DOI: 10.1038/s41598-022-07280-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/02/2022] [Indexed: 11/11/2022] Open
Abstract
In response to vascular injury vascular smooth muscle cells (VSMCs) alternate between a differentiated (contractile) and a dedifferentiated (synthetic) state or phenotype. Although parts of the signaling cascade regulating the phenotypic switch have been described, the role of miRNAs is still incompletely understood. To systematically address this issue, we have established a microscopy-based quantitative assay and identified 23 miRNAs that induced contractile phenotypes when over-expressed. These were then correlated to miRNAs identified from RNA-sequencing when comparing cells in the contractile and synthetic states. Using both approaches, six miRNAs (miR-132-3p, miR-138-5p, miR-141-3p, miR-145-5p, miR-150-5p, and miR-22-3p) were filtered as candidates that induce the phenotypic switch from synthetic to contractile. To identify potentially common regulatory mechanisms of these six miRNAs, their predicted targets were compared with five miRNAs sharing ZBTB20, ZNF704, and EIF4EBP2 as common potential targets and four miRNAs sharing 16 common potential targets. The interaction network consisting of these 19 targets and additional 18 hub targets were created to facilitate validation of miRNA-mRNA interactions by suggesting the most plausible pairs. Furthermore, the information on drug candidates was integrated into the network to predict novel combinatorial therapies that encompass the complexity of miRNAs-mediated regulation. This is the first study that combines a phenotypic screening approach with RNA sequencing and bioinformatics to systematically identify miRNA-mediated pathways and to detect potential drug candidates to positively influence the phenotypic switch of VSMCs.
Collapse
Affiliation(s)
- Jian Zhang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Vytaute Starkuviene
- BioQuant, Heidelberg University, Heidelberg, Germany. .,Institute of Biosciences, Vilnius University Life Sciences Center, Vilnius, Lithuania.
| | - Holger Erfle
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Zhaohui Wang
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Manuel Gunkel
- BioQuant, Heidelberg University, Heidelberg, Germany
| | - Ziwei Zeng
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Center, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kejia Kan
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh Rahbari
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Keese
- Chirurgische Klinik and European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
29
|
Petit C, Karkhaneh Yousefi AA, Guilbot M, Barnier V, Avril S. AFM Stiffness Mapping in Human Aortic Smooth Muscle Cells. J Biomech Eng 2022; 144:1133331. [DOI: 10.1115/1.4053657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Abstract
Aortic Smooth Muscle Cells (SMCs) play a vital role in maintaining mechanical homeostasis in the aorta. We recently found that SMCs of aneurysmal aortas apply larger traction forces than SMCs of healthy aortas. This result was explained by the significant increase of hypertrophic SMCs abundance in aneurysms. In the present study, we investigate whether the cytoskeleton stiffness of SMCs may also be altered in aneurysmal aortas. For that, we use Atomic Force Microscopy (AFM) nanoindentation with a specific mode that allows subcellular-resolution mapping of the local stiffness across a specified region of interest of the cell. Aortic SMCs from a commercial human lineage (AoSMCs, Lonza) and primary aneurysmal SMCs (AnevSMCs) are cultured in conditions promoting the development of their contractile apparatus, and seeded on hydrogels with stiffness properties of 12kPa and 25kPa. Results show that all SMC exhibit globally a lognormal stiffness distribution, with medians in the range 10-30 kPa. The mean of stiffness distributions is slightly higher in aneurysmal SMCs than in healthy cells (16 kPa versus 12 kPa) but the differences are not statistically significant due to the large dispersion of AFM nanoindentation stiffness. We conclude that the possible alterations previously found in aneurysmal SMCs do not affect significantly the AFM nanoindentation stiffness of their cytoskeleton.
Collapse
Affiliation(s)
- Claudie Petit
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | | | - Marine Guilbot
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| | - Vincent Barnier
- Mines Saint-Etienne, Université de Lyon, CNRS, UMR 5307 LGF, F - 42023 Saint-Etienne France
| | - Stephane Avril
- Mines Saint-Etienne, Université de Lyon, INSERM, U 1059 SAINBIOSE, F - 42023 Saint-Etienne France
| |
Collapse
|
30
|
Colin-Pierre C, Berthélémy N, Belloy N, Danoux L, Bardey V, Rivet R, Mine S, Jeanmaire C, Maquart FX, Ramont L, Brézillon S. The Glypican-1/HGF/C-Met and Glypican-1/VEGF/VEGFR2 Ternary Complexes Regulate Hair Follicle Angiogenesis. Front Cell Dev Biol 2021; 9:781172. [PMID: 34957110 PMCID: PMC8692797 DOI: 10.3389/fcell.2021.781172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
The hair renewal involves changes in the morphology of the hair follicle and its micro-vascularization. In alopecia, the hair cycle is accelerated, resulting in the formation of thinner and shorter hair. In addition, alopecia is associated with a decrease in the micro-vascularization of the hair follicles. In this study, the role of glypicans (GPCs) was analyzed in the regulation of the angiogenesis of human dermal microvascular endothelial cells (HDMEC). The analysis of glypican gene expression showed that GPC1 is the major glypican expressed by human keratinocytes of outer root sheath (KORS), human hair follicle dermal papilla cells (HHFDPC) and HDMEC. KORS were demonstrated to secrete VEGF and HGF. The HDMEC pseudotube formation was induced by KORS conditioned media (KORSCM). It was totally abrogated after GPC1 siRNA transfection of HDMEC. Moreover, when cleaved by phospholipase C (PLC), GPC1 promotes the proliferation of HDMEC. Finally, GPC1 was shown to interact directly with VEGFR2 or c-Met to regulate angiogenesis induced by the activation of these receptors. Altogether, these results showed that GPC1 is a key regulator of microvascular endothelial cell angiogenesis induced by VEGF and HGF secreted by KORS. Thus, GPC1 might constitute an interesting target to tackle alopecia in dermatology research.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Nicolas Belloy
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,P3M, Multiscale Molecular Modeling Platform, Université de Reims Champagne-Ardenne, Reims, France
| | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Romain Rivet
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| | - Solène Mine
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - François-Xavier Maquart
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.,CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
31
|
Ozkizilcik A, Sysavanh F, Patel S, Tandon I, Balachandran K. Local Renin-Angiotensin System Signaling Mediates Cellular Function of Aortic Valves. Ann Biomed Eng 2021; 49:3550-3562. [PMID: 34704164 DOI: 10.1007/s10439-021-02876-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
The renin-angiotensin system (RAS) is activated in aortic valve disease, yet little is understood about how it affects the acute functional response of valve interstitial cells (VICs). Herein, we developed a gelatin-based valve thin film (vTF) platform to investigate whether the contractile response of VICs can be regulated via RAS mediators and inhibitors. First, the impact of culture medium (quiescent, activated, and osteogenic medium) on VIC phenotype and function was assessed. Contractility of VICs was measured upon treatment with angiotensin I (Ang I), angiotensin II (Ang II), angiotensin-converting enzyme (ACE) inhibitor, and Angiotensin II type 1 receptor (AT1R) inhibitor. Anisotropic cell alignment on gelatin vTF was achieved independent of culture conditions. Cells cultured in activated and osteogenic conditions were found to be more elongated than in quiescent medium. Increased α-SMA expression was observed in activated medium and no RUNX2 expression were observed in cells. VIC contractile stress increased with increasing concentrations (from 10-10 to 10-6 M) of Ang I and Ang II. Moreover, cell contraction was significantly reduced in all ACE and AT1R inhibitor-treated groups. Together, these findings suggest that local RAS is active in VICs, and our vTF may provide a powerful platform for valve drug screening and development.
Collapse
Affiliation(s)
- Asya Ozkizilcik
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Fah Sysavanh
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Smit Patel
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Ishita Tandon
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA
| | - Kartik Balachandran
- Department of Biomedical Engineering, University of Arkansas, 122 John A.White Jr. Engineering Hall, Fayetteville, AR, 72701, USA.
| |
Collapse
|
32
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
33
|
MiR-377-3p inhibits atherosclerosis-associated vascular smooth muscle cell proliferation and migration via targeting neuropilin2. Biosci Rep 2021; 40:223827. [PMID: 32373927 PMCID: PMC7295640 DOI: 10.1042/bsr20193425] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are vital to atherosclerosis (AS) development and plaque rupture. MicroRNA-377-3p (miR-377-3p) has been reported to inhibit AS in apolipoprotein E knockout (ApoE−/−) mice. Herein, the mechanism underlying the effect of miR-377-3p on alleviating AS is explored. In vivo experiments, ApoE−/− mice were fed with high-fat diet (HFD) to induce AS and treated with miR-377-3p agomir or negative control agomir (agomir-NC) on week 0, 2, 4, 6, 8, 10 after HFD feeding. MiR-377-3p was found to restore HFD-induced AS lesions and expressions of matrix metalloproteinase (MMP)-2, MMP-9, α-smooth muscle actin (α-actin) and calponin. In in vitro experiments, human VSMCs were tranfected with miR-377-3p agomir or agomir-NC, followed by treatment with oxidized low-density lipoprotein (ox-LDL). MiR-377-3p was observed to significantly inhibit ox-LDL-induced VSMC proliferation characterized by inhibited cell viability, expressions of proliferating cell nuclear antigen (PCNA), cyclin D1 and cyclin E and cell cycle transition from G1 to S phase accompanied with less 5-Ethynyl-2′-deoxyuridine (EdU)-positive cells. Furthermore, MiR-377-3p significantly inhibited ox-LDL-induced VSMC migration characterized by inhibited wound closure and decreased relative VSMC migration. Besides, neuropilin2 (NRP2) was verified as a target of miR-377-3p. MiR-377-3p was observed to inhibit NRP2 expressions in vivo and in vitro. Moreover, miR-377-3p significantly inhibited MMP-2 and MMP-9 expressions in human VSMCs. Additionally, miR-377-3p-induced inhibition of VSMC proliferation and migration could be attenuated by NRP2 overexpression. These results indicated that miR-377-3p inhibited VSMC proliferation and migration via targeting NRP2. The present study provides an underlying mechanism for miR-377-3p-based AS therapy.
Collapse
|
34
|
Tu C, Cunningham NJ, Zhang M, Wu JC. Human Induced Pluripotent Stem Cells as a Screening Platform for Drug-Induced Vascular Toxicity. Front Pharmacol 2021; 12:613837. [PMID: 33790786 PMCID: PMC8006367 DOI: 10.3389/fphar.2021.613837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/22/2021] [Indexed: 01/02/2023] Open
Abstract
Evaluation of potential vascular injury is an essential part of the safety study during pharmaceutical development. Vascular liability issues are important causes of drug termination during preclinical investigations. Currently, preclinical assessment of vascular toxicity primarily relies on the use of animal models. However, accumulating evidence indicates a significant discrepancy between animal toxicity and human toxicity, casting doubt on the clinical relevance of animal models for such safety studies. While the causes of this discrepancy are expected to be multifactorial, species differences are likely a key factor. Consequently, a human-based model is a desirable solution to this problem, which has been made possible by the advent of human induced pluripotent stem cells (iPSCs). In particular, recent advances in the field now allow the efficient generation of a variety of vascular cells (e.g., endothelial cells, smooth muscle cells, and pericytes) from iPSCs. Using these cells, different vascular models have been established, ranging from simple 2D cultures to highly sophisticated vascular organoids and microfluidic devices. Toxicity testing using these models can recapitulate key aspects of vascular pathology on molecular (e.g., secretion of proinflammatory cytokines), cellular (e.g., cell apoptosis), and in some cases, tissue (e.g., endothelium barrier dysfunction) levels. These encouraging data provide the rationale for continuing efforts in the exploration, optimization, and validation of the iPSC technology in vascular toxicology.
Collapse
Affiliation(s)
- Chengyi Tu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Nathan J. Cunningham
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Mao Zhang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Medicine, Stanford University, Stanford, CA, United States
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
35
|
Shen M, Quertermous T, Fischbein MP, Wu JC. Generation of Vascular Smooth Muscle Cells From Induced Pluripotent Stem Cells: Methods, Applications, and Considerations. Circ Res 2021; 128:670-686. [PMID: 33818124 PMCID: PMC10817206 DOI: 10.1161/circresaha.120.318049] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The developmental origin of vascular smooth muscle cells (VSMCs) has been increasingly recognized as a major determinant for regional susceptibility or resistance to vascular diseases. As a human material-based complement to animal models and human primary cultures, patient induced pluripotent stem cell iPSC-derived VSMCs have been leveraged to conduct basic research and develop therapeutic applications in vascular diseases. However, iPSC-VSMCs (induced pluripotent stem cell VSMCs) derived by most existing induction protocols are heterogeneous in developmental origins. In this review, we summarize signaling networks that govern in vivo cell fate decisions and in vitro derivation of distinct VSMC progenitors, as well as key regulators that terminally specify lineage-specific VSMCs. We then highlight the significance of leveraging patient-derived iPSC-VSMCs for vascular disease modeling, drug discovery, and vascular tissue engineering and discuss several obstacles that need to be circumvented to fully unleash the potential of induced pluripotent stem cells for precision vascular medicine.
Collapse
Affiliation(s)
- Mengcheng Shen
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | - Thomas Quertermous
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute
- Division of Cardiovascular Medicine, Department of Medicine
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
36
|
HIF2A gain-of-function mutation modulates the stiffness of smooth muscle cells and compromises vascular mechanics. iScience 2021; 24:102246. [PMID: 33796838 PMCID: PMC7995528 DOI: 10.1016/j.isci.2021.102246] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling.
HIF2-SMCs are stiffer than WT-SMCs and differ in contractile SMC marker expression HIF2-SMCs and WT-SMCs differ in EDN1 production and ECM composition HIF- 2α induces EDN1; EDNI subsequently induces SMC stiffening Hif2A GOF mouse arterial SMCs have more disorganized stress fibers and are stiffer
Collapse
|
37
|
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, and Department of Development Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
38
|
Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858412. [PMID: 33553433 PMCID: PMC7846403 DOI: 10.1155/2021/8858412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that mesenchymal stem cells (MSCs) derived from various tissue sources can be differentiated into smooth muscle-like cells (SMLCs) in vitro. In this paper, dental pulp-derived mesenchymal stem cells (DPSCs) were evaluated for their differentiation ability towards smooth muscle-like cells (SMLCs) under the effect of widely used cytokines (TGF-β1 and PDGF-BB) with special focus on different culturing environments. For this purpose, both the commercially used culturing plates (Norm-c) and 0.1% gelatin-precoated (Gel-c) plates were used. Isolated cells displayed plastic adherence, pluripotency and cell surface marker profiling, and adipogenic and osteogenic differentiation potential with lineage specific marker expression. Differentiated cells induced under different culturing plates showed successful differentiation into SMLCs by positively expressing smooth muscle cell (SMC) specific markers both at the mRNA and protein levels. Gelatin coating could substantially enhance DPSC differentiation potential than Norm-c-induced cells. However, the absence of mature marker MHY-11 by immunostaining results from all treatment groups further indicated the development of immature and synthetic SMLCs. Finally, it was concluded that DPSC differentiation ability into SMLCs can be enhanced under cytokine treatment as well as by altering the cellular niche by precoating the culturing plates with suitable substrates. However, to get fully functional, contractile, and mature SMLCs, still many different cytokine cocktail combinations and more suitable coating substrates will be needed.
Collapse
|
39
|
Luo J, Lin Y, Shi X, Li G, Kural MH, Anderson CW, Ellis MW, Riaz M, Tellides G, Niklason LE, Qyang Y. Xenogeneic-free generation of vascular smooth muscle cells from human induced pluripotent stem cells for vascular tissue engineering. Acta Biomater 2021; 119:155-168. [PMID: 33130306 PMCID: PMC8168373 DOI: 10.1016/j.actbio.2020.10.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 01/30/2023]
Abstract
Development of mechanically advanced tissue-engineered vascular grafts (TEVGs) from human induced pluripotent stem cell (hiPSC)-derived vascular smooth muscle cells (hiPSC-VSMCs) offers an innovative approach to replace or bypass diseased blood vessels. To move current hiPSC-TEVGs toward clinical application, it is essential to obtain hiPSC-VSMC-derived tissues under xenogeneic-free conditions, meaning without the use of any animal-derived reagents. Many approaches in VSMC differentiation of hiPSCs have been reported, although a xenogeneic-free method for generating hiPSC-VSMCs suitable for vascular tissue engineering has yet to be established. Based on our previously established standard method of xenogeneic VSMC differentiation, we have replaced all animal-derived reagents with functional counterparts of human origin and successfully derived functional xenogeneic-free hiPSC-VSMCs (XF-hiPSC-VSMCs). Next, our group developed tissue rings via cellular self-assembly from XF-hiPSC-VSMCs, which exhibited comparable mechanical strength to those developed from xenogeneic hiPSC-VSMCs. Moreover, by seeding XF-hiPSC-VSMCs onto biodegradable polyglycolic acid (PGA) scaffolds, we generated engineered vascular tissues presenting effective collagen deposition which were suitable for implantation into an immunodeficient mice model. In conclusion, our xenogeneic-free conditions for generating hiPSC-VSMCs produce cells with the comparable capacity for vascular tissue engineering as standard xenogeneic protocols, thereby moving the hiPSC-TEVG technology one step closer to safe and efficacious clinical translation.
Collapse
Affiliation(s)
- Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - Yuyao Lin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiangyu Shi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Guangxin Li
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, 110122, China
| | - Mehmet H Kural
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Christopher W Anderson
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA
| | - Matthew W Ellis
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Muhammad Riaz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA
| | - George Tellides
- Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura E Niklason
- Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Surgery, Yale University, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Anesthesiology, Yale University, New Haven, CT 06519, USA
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, 06520 USA.
| |
Collapse
|
40
|
Lim YH, Ryu J, Kook H, Kim YK. Identification of Long Noncoding RNAs Involved in Differentiation and Survival of Vascular Smooth Muscle Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:209-221. [PMID: 33230428 PMCID: PMC7515970 DOI: 10.1016/j.omtn.2020.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently been implicated in many pathophysiological cardiovascular processes, including vascular remodeling and atherosclerosis. However, the functional role of lncRNAs in the differentiation, proliferation, and apoptosis of vascular smooth muscle cells (VSMCs) is largely unknown. In this study, differentially expressed lncRNAs in synthetic and contractile human VSMCs were screened using RNA sequencing. Among the seven selected lncRNAs, the expression of MSC-AS1, MBNL1-AS1, and GAS6-AS2 was upregulated, whereas the expression of NR2F1-AS1, FUT8-AS1, FOXC2-AS1, and CTD-2207P18.2 was reduced upon VSMC differentiation. We focused on the NR2F1-AS1 and FOXC2-AS1 lncRNAs and showed that their knockdown significantly reduced the expression of smooth muscle contractile marker genes (ACTA2, CNN1, and TAGLN). Furthermore, FOXC2-AS1 was found to regulate cell proliferation and apoptosis through Akt/mTOR signaling, and affect Notch signaling, which is a key regulator of the contractile phenotype of VSMCs. Taken together, we identified novel lncRNAs involved in VSMC proliferation and differentiation and FOXC2-AS1 as a multifunctional regulator for vascular homeostasis and associated diseases.
Collapse
Affiliation(s)
- Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
41
|
Shi X, He L, Zhang SM, Luo J. Human iPS Cell-derived Tissue Engineered Vascular Graft: Recent Advances and Future Directions. Stem Cell Rev Rep 2020; 17:862-877. [PMID: 33230612 DOI: 10.1007/s12015-020-10091-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/19/2022]
Abstract
Tissue engineered vascular grafts (TEVGs) generated from human primary cells represent a promising vascular interventional therapy. However, generation and application of these TEVGs may be significantly hindered by the limited accessibility, finite expandability, donor-donor functional variation and immune-incompatibility of primary seed cells from donors. Alternatively, human induced pluripotent stem cells (hiPSCs) offer an infinite source to obtain functional vascular cells in large quantity and comparable quality for TEVG construction. To date, TEVGs (hiPSC-TEVGs) with significant mechanical strength and implantability have been generated using hiPSC-derived seed cells. Despite being in its incipient stage, this emerging field of hiPSC-TEVG research has achieved significant progress and presented promising future potential. Meanwhile, a series of challenges pertaining hiPSC differentiation, vascular tissue engineering technologies and future production and application await to be addressed. Herein, we have composed this review to introduce progress in TEVG generation using hiPSCs, summarize the current major challenges, and encapsulate the future directions of research on hiPSC-based TEVGs. Graphical abstract.
Collapse
Affiliation(s)
- Xiangyu Shi
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA
| | - Lile He
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Shang-Min Zhang
- Department of Pathology, Yale School of Medicine, 06520, New Haven, CT, USA
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine , Yale School of Medicine, 300 George Street, Room 752, New Haven, CT, 06511, USA. .,Yale Stem Cell Center, 06520, New Haven, CT, USA.
| |
Collapse
|
42
|
Davaapil H, Shetty DK, Sinha S. Aortic "Disease-in-a-Dish": Mechanistic Insights and Drug Development Using iPSC-Based Disease Modeling. Front Cell Dev Biol 2020; 8:550504. [PMID: 33195187 PMCID: PMC7655792 DOI: 10.3389/fcell.2020.550504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Thoracic aortic diseases, whether sporadic or due to a genetic disorder such as Marfan syndrome, lack effective medical therapies, with limited translation of treatments that are highly successful in mouse models into the clinic. Patient-derived induced pluripotent stem cells (iPSCs) offer the opportunity to establish new human models of aortic diseases. Here we review the power and potential of these systems to identify cellular and molecular mechanisms underlying disease and discuss recent advances, such as gene editing, and smooth muscle cell embryonic lineage. In particular, we discuss the practical aspects of vascular smooth muscle cell derivation and characterization, and provide our personal insights into the challenges and limitations of this approach. Future applications, such as genotype-phenotype association, drug screening, and precision medicine are discussed. We propose that iPSC-derived aortic disease models could guide future clinical trials via “clinical-trials-in-a-dish”, thus paving the way for new and improved therapies for patients.
Collapse
Affiliation(s)
- Hongorzul Davaapil
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Deeti K Shetty
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, United Kingdom
| |
Collapse
|
43
|
Yong U, Lee S, Jung S, Jang J. Interdisciplinary approaches to advanced cardiovascular tissue engineering: ECM-based biomaterials, 3D bioprinting, and its assessment. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2516-1091/abb211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Early modulation of macrophage ROS-PPARγ-NF-κB signalling by sonodynamic therapy attenuates neointimal hyperplasia in rabbits. Sci Rep 2020; 10:11638. [PMID: 32669704 PMCID: PMC7363872 DOI: 10.1038/s41598-020-68543-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/14/2020] [Indexed: 11/08/2022] Open
Abstract
Disruption of re-endothelialization and haemodynamic balance remains a critical side effect of drug-eluting stents (DES) for preventing intimal hyperplasia. Previously, we found that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) suppressed macrophage-mediated inflammation in atherosclerotic plaques. However, the effects on intimal hyperplasia and re-endothelialization remain unknown. In this study, 56 rabbits were randomly assigned to control, ultrasound, ALA and ALA-SDT groups, and each group was divided into two subgroups (n = 7) on day 3 after right femoral artery balloon denudation combined with a hypercholesterolemic diet. Histopathological analysis revealed that ALA-SDT enhanced macrophage apoptosis and ameliorated inflammation from day 1. ALA-SDT inhibited neointima formation without affecting re-endothelialization, increased blood perfusion, decreased the content of macrophages, proliferating smooth muscle cells (SMCs) and collagen but increased elastin by day 28. In vitro, ALA-SDT induced macrophage apoptosis and reduced TNF-α, IL-6 and IL-1β via the ROS-PPARγ-NF-κB signalling pathway, which indirectly inhibited human umbilical artery smooth muscle cell (HUASMC) proliferation, migration and IL-6 production. ALA-SDT effectively inhibits intimal hyperplasia without affecting re-endothelialization. Hence, its clinical application combined with bare-metal stent (BMS) implantation presents a potential strategy to decrease bleeding risk caused by prolonged dual-antiplatelet regimen after DES deployment.
Collapse
|
45
|
Association of Circulating microRNAs with Coronary Artery Disease and Usefulness for Reclassification of Healthy Individuals: The REGICOR Study. J Clin Med 2020; 9:jcm9051402. [PMID: 32397522 PMCID: PMC7290581 DOI: 10.3390/jcm9051402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Risk prediction tools cannot identify most individuals at high coronary artery disease (CAD) risk. Oxidized low-density lipoproteins (oxLDLs) and microRNAs are actively involved in atherosclerosis. Our aim was to examine the association of CAD and oxLDLs-induced microRNAs, and to assess the microRNAs predictive capacity of future CAD events. Human endothelial and vascular smooth muscle cells were treated with oxidized/native low-density lipoproteins, and microRNA expression was analyzed. Differentially expressed and CAD-related miRNAs were examined in serum samples from (1) a case-control study with 476 myocardial infarction (MI) patients and 487 controls, and (2) a case-cohort study with 105 incident CAD cases and 455 randomly-selected cohort participants. MicroRNA expression was analyzed with custom OpenArray plates, log rank tests and Cox regression models. Twenty-one microRNAs, two previously undescribed (hsa-miR-193b-5p and hsa-miR-1229-5p), were up- or down-regulated upon cell treatment with oxLDLs. One of the 21, hsa-miR-122-5p, was also upregulated in MI cases (fold change = 4.85). Of the 28 CAD-related microRNAs tested, 11 were upregulated in MI cases-1 previously undescribed (hsa-miR-16-5p)-, and 1/11 was also associated with CAD incidence (adjusted hazard ratio = 0.55 (0.35–0.88)) and improved CAD risk reclassification, hsa-miR-143-3p. We identified 2 novel microRNAs modulated by oxLDLs in endothelial cells, 1 novel microRNA upregulated in AMI cases compared to controls, and one circulating microRNA that improved CAD risk classification.
Collapse
|
46
|
Floy ME, Mateyka TD, Foreman KL, Palecek SP. Human pluripotent stem cell-derived cardiac stromal cells and their applications in regenerative medicine. Stem Cell Res 2020; 45:101831. [PMID: 32446219 PMCID: PMC7931507 DOI: 10.1016/j.scr.2020.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/16/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is one of the leading causes of death in the United States. Recent advances in stem cell biology have led to the development and engineering of human pluripotent stem cell (hPSC)-derived cardiac cells and tissues for application in cellular therapy and cardiotoxicity studies. Initial studies in this area have largely focused on improving differentiation efficiency and maturation states of cardiomyocytes. However, other cell types in the heart, including endothelial and stromal cells, play crucial roles in cardiac development, injury response, and cardiomyocyte function. This review discusses recent advances in differentiation of hPSCs to cardiac stromal cells, identification and classification of cardiac stromal cell types, and application of hPSC-derived cardiac stromal cells and tissues containing these cells in regenerative and drug development applications.
Collapse
Affiliation(s)
- Martha E Floy
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Taylor D Mateyka
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Markou M, Kouroupis D, Badounas F, Katsouras A, Kyrkou A, Fotsis T, Murphy C, Bagli E. Tissue Engineering Using Vascular Organoids From Human Pluripotent Stem Cell Derived Mural Cell Phenotypes. Front Bioeng Biotechnol 2020; 8:278. [PMID: 32363181 PMCID: PMC7182037 DOI: 10.3389/fbioe.2020.00278] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022] Open
Abstract
Diffusion is a limiting factor in regenerating large tissues (100–200 μm) due to reduced nutrient supply and waste removal leading to low viability of the regenerating cells as neovascularization of the implant by the host is a slow process. Thus, generating prevascularized tissue engineered constructs, in which endothelial (ECs) and mural (MCs) cells, such as smooth muscle cells (SMCs), and pericytes (PCs), are preassembled into functional in vitro vessels capable of rapidly connecting to the host vasculature could overcome this obstacle. Toward this purpose, using feeder-free and low serum conditions, we developed a simple, efficient and rapid in vitro approach to induce the differentiation of human pluripotent stem cells-hPSCs (human embryonic stem cells and human induced pluripotent stem cells) to defined SMC populations (contractile and synthetic hPSC-SMCs) by extensively characterizing the cellular phenotype (expression of CD44, CD73, CD105, NG2, PDGFRβ, and contractile proteins) and function of hPSC-SMCs. The latter were phenotypically and functionally stable for at least 8 passages, and could stabilize vessel formation and inhibit vessel network regression, when co-cultured with ECs in vitro. Subsequently, using a methylcellulose-based hydrogel system, we generated spheroids consisting of EC/hPSC-SMC (vascular organoids), which were extensively phenotypically characterized. Moreover, the vascular organoids served as focal starting points for the sprouting of capillary-like structures in vitro, whereas their delivery in vivo led to rapid generation of a complex functional vascular network. Finally, we investigated the vascularization potential of these vascular organoids, when embedded in hydrogels composed of defined extracellular components (collagen/fibrinogen/fibronectin) that can be used as scaffolds in tissue engineering applications. In summary, we developed a robust method for the generation of defined SMC phenotypes from hPSCs. Fabrication of vascularized tissue constructs using hPSC-SMC/EC vascular organoids embedded in chemically defined matrices is a significant step forward in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Maria Markou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Dimitrios Kouroupis
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Fotios Badounas
- Transgenic Technology Laboratory, Inflammation Group, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Athanasios Katsouras
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Athena Kyrkou
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Theodore Fotsis
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, Ioannina, Greece.,Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Carol Murphy
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| | - Eleni Bagli
- Foundation for Research and Technology-Hellas, Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Ioannina, Greece
| |
Collapse
|
48
|
Ji X, Lyu P, Hu R, Yao W, Jiang H. Generation of an enteric smooth muscle cell line from the pig ileum. J Anim Sci 2020; 98:skaa102. [PMID: 32249920 PMCID: PMC7179811 DOI: 10.1093/jas/skaa102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/02/2020] [Indexed: 11/14/2022] Open
Abstract
Smooth muscle cells (SMCs) play an important role in physiology and production in farm animals such as pigs. Here, we report the generation of a pig SMC line. Our original objective was to establish an enteroendocrine cell line from the pig ileum epithelium through lentiviral transduction of the Simian Virus (SV) 40 large T antigen. However, an initial expression analysis of marker genes in nine cell clones revealed that none of them were enteroendocrine cells or absorptive enterocytes, goblet cells, or Paneth cells, some of the major cell types existing in the ileum epithelium. A more detailed characterization of one clone named PIC7 by RNA-seq showed that these cells expressed many of the known smooth muscle-specific or -enriched genes, including smooth muscle actin alpha 2, calponin 1, calponin 3, myosin heavy chain 11, myosin light chain kinase, smoothelin, tenascin C, transgelin, tropomyosin 1, and tropomyosin 2. Both quantitative PCR and RNA-seq analyses showed that the PIC7 cells had a high expression of mRNA for smooth muscle actin gamma 2, also known as enteric smooth muscle actin. A Western blot analysis confirmed the expression of SV40 T antigen in the PIC7 cells. An immunohistochemical analysis demonstrated the expression of smooth muscle actin alpha 2 filaments in the PIC7 cells. A collagen gel contraction assay showed that the PIC7 cells were capable of both spontaneous contraction and contraction in response to serotonin stimulation. We conclude that the PIC7 cells are derived from an enteric SMC from the pig ileum. These cells may be a useful model for studying the cellular and molecular physiology of pig enteric SMCs. Because pigs are similar to humans in anatomy and physiology, the PIC7 cells may be also used as a model for human intestinal SMCs.
Collapse
Affiliation(s)
- Xu Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Pengcheng Lyu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| | - Rui Hu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA
| |
Collapse
|
49
|
Ding Y, Johnson R, Sharma S, Ding X, Bryant SJ, Tan W. Tethering transforming growth factor β1 to soft hydrogels guides vascular smooth muscle commitment from human mesenchymal stem cells. Acta Biomater 2020; 105:68-77. [PMID: 31982589 DOI: 10.1016/j.actbio.2020.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/10/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) hold great promise for vascular smooth muscle regeneration. However, most studies have mainly relied on extended supplementation of sophisticated biochemical regimen to drive MSC differentiation towards vascular smooth muscle cells (vSMCs). Herein we demonstrate a concomitant method that exploits the advantages of biomimetic matrix stiffness and tethered transforming growth factor β1 (TGF-β1) to guide vSMC commitment from human MSCs. Our designed poly(ethylene glycol) hydrogels, presenting a biomimetic stiffness and tethered TGF-β1, provide an instructive environment to potently upregulate smooth muscle marker expression in vitro and in vivo. Importantly, it significantly enhances the functional contractility of vSMCs derived from MSCs within 3 days. Interestingly, compared to non-tethered one, tethered TGF-β1 enhanced the potency of vSMC commitment on hydrogels. We provide compelling evidence that combining stiffness and tethered TGF-β1 on poly(ethylene glycol) hydrogels can be a promising approach to drastically enhance maturation and function of vSMCs from stem cell differentiation in vitro and in vivo. STATEMENT OF SIGNIFICANCE: A fast, reliable and safe regeneration of vascular smooth muscle cells (vSMCs) from stem cell differentiation is promising for vascular tissue engineering and regenerative medicine applications, but remains challenging. Herein, a photo-click hydrogel platform is devised to recapitulate the stiffness of vascular tissue and appropriate presentation of transforming growth factor β1 (TGF-β1) to guide vSMC commitment from mesenchymal stem cells (MSCs). We demonstrate that such concomitant method drastically enhanced regeneration of mature, functional vSMCs from MSCs in vitro and in vivo within only a 3-days span. This work is not only of fundamental scientific importance, revealing how physiochemical factors and the manner of their presentation direct stem cell differentiation, but also attacks the long-standing difficulty in regenerating highly functional vSMCs within a short period.
Collapse
|
50
|
Wang Y, Hao Y, Zhao Y, Huang Y, Lai D, Du T, Wan X, Zhu Y, Liu Z, Wang Y, Wang N, Zhang P. TRIM28 and TRIM27 are required for expressions of PDGFRβ and contractile phenotypic genes by vascular smooth muscle cells. FASEB J 2020; 34:6271-6283. [PMID: 32162409 DOI: 10.1096/fj.201902828rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cells (VSMCs) in the normal arterial media continually express contractile phenotypic markers which are reduced dramatically in response to injury. Tripartite motif-containing proteins are a family of scaffold proteins shown to regulate gene silencing, cell growth, and differentiation. We here investigated the biological role of tripartite motif-containing 28 (TRIM28) and tripartite motif-containing 27 (TRIM27) in VSMCs. We observed that siRNA-mediated knockdown of TRIM28 and TRIM27 inhibited platelet-derived growth factor (PDGF)-induced migration in human VSMCs. Both TRIM28 and TRIM27 can regulate serum response element activity and were required for maintaining the contractile gene expression in human VSMCs. At the same time, TRIM28 and TRIM27 knockdown reduced the expression of PDGF receptor-β (PDGFRβ) and the phosphorylation of its downstream signaling components. Immunoprecipitation showed that TRIM28 formed complexes with TRIM27 through its N-terminal RING-B boxes-Coiled-Coil domain. Furthermore, TRIM28 and TRIM27 were shown to be upregulated and mediate the VSMC contractile marker gene and PDGFRβ expression in differentiating human bone marrow mesenchymal stem cells. In conclusion, we identified that TRIM28 and TRIM27 cooperatively maintain the endogenous expression of PDGFRβ and contractile phenotype of human VSMCs.
Collapse
Affiliation(s)
- Yinfang Wang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yilong Hao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Zhao
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yitong Huang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongwu Lai
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohong Wan
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yuefeng Zhu
- Department of Cardiovascular Medicine and Vascular Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjun Liu
- Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Nanping Wang
- The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Peng Zhang
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|