1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Wu L, He J, Shen N, Chen S. Molecular and cellular mechanisms underlying peripheral nerve injury-induced cellular ecological shifts: Implications for neuroregeneration. IBRO Neurosci Rep 2025; 18:120-129. [PMID: 39877591 PMCID: PMC11773043 DOI: 10.1016/j.ibneur.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
The peripheral nervous system is a complex ecological network, and its injury triggers a series of fine-grained intercellular regulations that play a crucial role in the repair process. The peripheral nervous system is a sophisticated ecological network, and its injury initiates a cascade of intricate intercellular regulatory processes that are instrumental in the repair process. Despite the advent of sophisticated microsurgical techniques, the repair of peripheral nerve injuries frequently proves inadequate, resulting in adverse effects on patients' quality of life. Accordingly, the continued pursuit of more efficacious treatments is of paramount importance. In this paper, a review of the relevant literature from recent years was conducted to identify the key cell types involved after peripheral nerve injury. These included Schwann cells, macrophages, neutrophils, endothelial cells, and fibroblasts. The review was conducted in depth. This paper analyses the phenotypic changes of these cells after injury, the relevant factors affecting these changes, and how they coordinate with neurons and other cell types. In addition, it explores the potential mechanisms that mediate the behaviour of these cells. Understanding the interactions between these cells and their mutual regulation with neurons is of great significance for the discovery of new neuroregenerative treatments and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Limao Wu
- School of Clinical Medicine, Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Jinglan He
- Affiliated Hospital of Hebei University of Engineering, No. 80, Jianshe Street, Fuxing District, Handan City, Hebei Province 056003, China
| | - Na Shen
- Department of Science and Education, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 056004, China
| | - Song Chen
- Orthopaedic Center, Affiliated Hospital of Hebei University of Engineering, No.81 Congtai Road, Congtai District, Handan City, Hebei Province 56004, China
| |
Collapse
|
3
|
Ajwad N, Mustapha M, Idris Z, Lee SY. The Recent Applications of Stem Cell-Derived Exosomes and Hydrogels in Neurological Disorders. TISSUE ENGINEERING. PART B, REVIEWS 2025. [PMID: 40323680 DOI: 10.1089/ten.teb.2024.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Neurological disorders such as Alzheimer's disease, Parkinson's disease, and stroke pose significant challenges for conventional therapy due to the complexities of the blood-brain barrier (BBB) and the restricted delivery of drugs to the central nervous system. Exosomes, a type of small extracellular vesicle secreted by nearly all cell types, hold substantial promise as delivery vehicles for therapeutic agents in treating these conditions. Notably, stem cell-secreted exosomes have emerged as particularly effective due to their regenerative potential and natural ability to cross the BBB. Similarly, hydrogels have gained recognition as versatile biomaterials capable of supporting sustained release and targeted delivery of therapeutics. The combination of the regenerative properties of stem cell-derived exosomes (SC-Exos) with the structural and functional benefits of hydrogels offers a promising approach for enhancing neurogenesis, modulating neuroinflammation, and facilitating tissue repair. This review explores the origin, structure, and modifications of exosomes as well as the synthesis and incorporation methods of hydrogels in the therapeutic context for debilitating neurological disorders. It highlights recent advancements in using SC-Exos and hydrogels for therapeutic delivery, addressing both current challenges and future applications. Improving our understanding of hydrogels loaded with SC-Exos for cargo transportation and neural tissue regeneration may pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Nabil Ajwad
- Regenerative Medicine Research Group, Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Si-Yuen Lee
- Regenerative Medicine Research Group, Department of Hematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
4
|
Zou Y, Zhang G, Yang Y, Huang H, Li Z, Chen X, Zheng D, Lu YG, Niu G. Advanced techniques and innovations in peripheral nerve repair: a comprehensive review for clinical and experimental reference. Rev Neurosci 2025; 36:243-265. [PMID: 39566026 DOI: 10.1515/revneuro-2024-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 11/22/2024]
Abstract
Peripheral nerve injury, resulting from various physical and chemical causes, has a high incidence and significant functional impact. This injury, affecting both sensory and motor functions, can severely diminish quality of life and cause mental health issues. Consequently, it is a major focus of current research. Recent advancements in peripheral nerve repair technology, including the application of new techniques and materials, have expanded the options for nerve repair methods. A comprehensive article that combines the pathological process of peripheral nerve repair with these methods is needed to advance research in this field. This review aims to provide a comprehensive overview of various techniques for repairing peripheral nerve injuries. Beginning with the histopathology of nerve injury, it evaluates these techniques in detail to offer clinical guidance. This review summarizes the advantages and disadvantages of various peripheral nerve repair methods, including photobiological modulation therapy, suture repair, nerve graft repair, vein graft catheter repair, muscle graft repair, laser welding repair, nerve catheter repair, nerve sliding repair technology, growth factor-assisted repair, stem cell therapy, and exosome therapy. Additionally, it explores future directions in the treatment of peripheral nerve injuries, providing valuable references for experimental research and clinical treatment.
Collapse
Affiliation(s)
- Yuchun Zou
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
| | - Gonghang Zhang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Yuchen Yang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Hankai Huang
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Zongxu Li
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- School of Stomatology, 74551 Fujian Medical University , Fuzhou 350004, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Preventive Dentistry, 74551 School and Hospital of Stomatology, Fujian Medical University , 246 Yangqiao Middle Road, Fuzhou 350001, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Preventive Dentistry, 74551 School and Hospital of Stomatology, Fujian Medical University , 246 Yangqiao Middle Road, Fuzhou 350001, China
| | - Gang Niu
- Fujian Key Laboratory of Oral Diseases, 74551 School and Hospital of Stomatology, Fujian Biological Materials Engineering and Technology Center of Stomatology, Fujian Medical University , Fuzhou 350004, China
- Department of Maxillofacial Surgery, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Middle Road, Fuzhou 350002, China
| |
Collapse
|
5
|
Delshad M, Sanaei MJ, Mohammadi MH, Sadeghi A, Bashash D. Exosomal Biomarkers: A Comprehensive Overview of Diagnostic and Prognostic Applications in Malignant and Non-Malignant Disorders. Biomolecules 2025; 15:587. [PMID: 40305328 PMCID: PMC12024574 DOI: 10.3390/biom15040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
Exosomes are small extracellular vesicles, ranging from 30 to 150 nm, that are essential in cell biology, mediating intercellular communication and serving as biomarkers due to their origin from cells. Exosomes as biomarkers for diagnosing various illnesses have gained significant investigation due to the high cost and invasive nature of current diagnostic procedures. Exosomes have a clear advantage in the diagnosis of diseases because they include certain signals that are indicative of the genetic and proteomic profile of the ailment. This feature gives them the potential to be useful liquid biopsies for real-time, noninvasive monitoring, enabling early cancer identification for the creation of individualized treatment plans. According to our analysis, the trend toward utilizing exosomes as diagnostic and prognostic tools has raised since 2012. In this regard, the proportion of malignant indications is higher compared with non-malignant ones. To be precise, exosomes have been used the most in gastrointestinal, thoracic, and urogenital cancers, along with cardiovascular, diabetic, breathing, infectious, and brain disorders. To the best of our knowledge, this is the first research to examine all registered clinical trials that look at exosomes as a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Mahda Delshad
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
- Department of Laboratory Sciences, School of Allied Medical Sciences, Zanjan University of Medical Sciences, Zanjan 1411718541, Iran
| | - Mohammad-Javad Sanaei
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Mohammad Hossein Mohammadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717411, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran; (M.D.); (M.-J.S.); (M.H.M.)
| |
Collapse
|
6
|
Qin M, Wang Y, Wang Z, Dong B, Yang P, Liu Y, Xi Q, Ma J. Adipose-derived small extracellular vesicle miR-146a-5p targets Fbx32 to regulate mitochondrial autophagy and delay aging in skeletal muscle. J Nanobiotechnology 2025; 23:287. [PMID: 40211295 PMCID: PMC11983871 DOI: 10.1186/s12951-025-03367-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigates how miR-146a-5p, found in adipose tissue-derived small extracellular vesicles (sEV), influences mitochondrial autophagy and its impact on delaying skeletal muscle aging through the targeting of Fbx32. The findings highlight miR-146a-5p as crucial in skeletal muscle development and aging, influencing autophagy, apoptosis, differentiation, and proliferation, collectively impacting muscle atrophy. In C2C12 cells, miR-146a-5p mimics decreased apoptosis, autophagy, and reactive oxygen species (ROS) levels, while enhancing ATP production; conversely, miR-146a-5p inhibitors had the opposite effects. Furthermore, miR-146a-5p-enriched sEV from adipose tissue alleviated skeletal muscle atrophy in aged mice and promoted muscle fiber growth and repair by regulating mitochondrial autophagy and apoptosis. Mechanistically, miR-146a-5p modulated mitochondrial autophagy in myoblasts by targeting Fbx32 and impacting the FoxO3 signaling pathway. This led to a notable decrease in apoptosis-related gene expression, reduced ROS production, and elevated ATP levels. In conclusion, miR-146a-5p derived from WAT-sEV modulates myoblast autophagy, apoptosis, ROS, and differentiation through the Fbx32/FoxO3 signaling axis. This work presents a novel molecular target and theoretical framework for delaying skeletal muscle aging and developing therapies for skeletal muscle-related disorders.
Collapse
Affiliation(s)
- Mengran Qin
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yan Wang
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Zihan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Benchao Dong
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Peichuan Yang
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
| | - Youyi Liu
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Tianjin Orthopedic Institute, Tianjin, 300050, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Jianxiong Ma
- Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Tianjin Orthopedic Institute, Tianjin, 300050, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, China.
| |
Collapse
|
7
|
Aldali F, Yang Y, Deng C, Li X, Cao X, Xu J, Li Y, Ding J, Chen H. Induced Pluripotent Stem Cell-Derived Exosomes Promote Peripheral Nerve Regeneration in a Rat Sciatic Nerve Crush Injury Model: A Safety and Efficacy Study. Cells 2025; 14:529. [PMID: 40214483 PMCID: PMC11989054 DOI: 10.3390/cells14070529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Peripheral nerve injury (PNI) remains a significant clinical challenge, often leading to long-term functional impairment. Despite advances in therapies, current repair strategies offer unsatisfactory clinical outcomes. Exosomes derived from induced pluripotent stem cells (iPSC-Exos) have emerged as a promising therapeutic approach in regenerative medicine. This study assesses the efficacy and safety of iPSC-Exos in a rat model of sciatic nerve crush injury. Briefly, iPSCs were generated from peripheral blood mononuclear cells (PBMCs) of healthy donors using Sendai virus vectors and validated for pluripotency. iPSC-Exos were characterized and injected at the injury site. Functional recovery was assessed through gait analysis, grip strength, and pain response. Histological and molecular analyses were used to examine axonal regeneration, myelination, Schwann cell (SC) activation, angiogenesis, and changes in gene expression. iPSC-Exos were efficiently internalized by SC, promoting their proliferation. No adverse effects were observed between groups on body weight, organ histology, or hematological parameters. iPSC-Exos injection significantly enhanced nerve regeneration, muscle preservation, and vascularization, with RNA sequencing revealing activation of PI3K-AKT and focal adhesion pathways. These findings support iPSC-Exos as a safe and effective non-cell-based therapy for PNIs, highlighting their potential for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Yujie Yang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiangling Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Xiaojian Cao
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jia Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yajie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
| | - Jianlin Ding
- Department of Gynecology & Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.A.); (Y.Y.); (C.D.); (X.L.); (X.C.); (J.X.); (Y.L.)
- Stem Cell Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Wei Z, Li X, Chen Y, Han Z, Li Y, Gan L, Yang Y, Chen Y, Zhang F, Ye X, Cui W. Programmable DNA‐Peptide Conjugated Hydrogel via Click Chemistry for Sequential Modulation of Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2025. [DOI: 10.1002/adfm.202419915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Indexed: 02/02/2025]
Abstract
AbstractDuring peripheral nerve regeneration, current deoxyribonucleic acid (DNA)‐based therapeutic platforms face the challenge of precisely regulating Schwann cells (SCs) fate to sustain their repair phenotype due to their inability to stably and precisely integrate multiple bioactive components. Herein, the strain‐promoted azide–alkyne cycloaddition reaction is utilized to integrate the neurotrophic factor mimetic peptide RGI and the laminin‐derived peptide IKVAV into DNA monomers. Through DNA sequence self‐assembly, a programmable DNA‐peptide conjugated hydrogel is constructed for loading bone marrow mesenchymal stem cell‐derived exosomes. This programmable hydrogel can rapidly, stably, and precisely integrate various bioactive components into the hydrogel network, thereby enabling sequential modulation of peripheral nerve repair. In vitro, studies show that this hydrogel, through sequential modulation mechanisms, can activate the neuregulin‐1 (Nrg1)/ErbB pathway to induce the reprogramming of SCs and promote the recruitment and proliferation of repair SCs. The induced repair SCs promote neuronal axon outgrowth and enhance tube formation in endothelial cells. In vivo, this programmable hydrogel can gelate in situ through intraneural injection in a rat sciatic nerve crush injury model, promoting nerve regeneration and functional recovery. In summary, this work provides an effective and practical strategy for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Wei
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yicheng Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Zhaopu Han
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yan Li
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Lin Gan
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yang Yang
- Department of Rehabilitation Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yujie Chen
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Feng Zhang
- Eye Institute and Department of Ophthalmology Eye & ENT Hospital Fudan University Shanghai 200031 P. R. China
- NHC Key Laboratory of Myopia (Fudan University) Key Laboratory of Myopia Chinese Academy of Medical Sciences Shanghai 200031 P. R. China
| | - Xiaojian Ye
- Department of Orthopaedics Laboratory of Key Technology and Materials in Minimally Invasive Spine Surgery Center for Spinal Minimally Invasive Research Hongqiao International Institute of Medicine, Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
9
|
Xu M, Ma L, Liang H, Tang W, Gu S. Protective effects of small RNAs encapsulated in Artemisia Capillaris-derived exosomes against non-alcoholic fatty liver disease. Front Pharmacol 2025; 15:1476820. [PMID: 39834802 PMCID: PMC11743690 DOI: 10.3389/fphar.2024.1476820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Artemisia capillaris, a traditional medicinal plant, is renowned for its therapeutic properties, including the promotion of anti-inflammatory and bile secretion. Notably, it has demonstrated efficacy in the treatment of jaundice. This study aimed to evaluate the potential of Artemisia capillaris-derived exosomes (ACDEs) as a novel therapeutic approach in non-alcoholic fatty liver disease (NAFLD). Methods The physicochemical properties of ACDEs were isolated and characterized using differential centrifugation, and the therapeutic efficacy was evaluated in an in vivo methionine-choline-deficient (MCD) diet induced NAFLD mouse model. In vitro, mouse hepatocytes were treated with palmitic acid (PA) to simulate a high fat environment. Intracellular triglycerides (TG) and total cholesterol (TC) levels were quantified, and Oil Red O staining was assessed. Additionally, the expression levels of proteins and RNAs associated with lipogenesis and inflammation were analyzed. Results The NAFLD mouse model exhibited notable liver damage, including lipid deposition and inflammatory responses. However, treatment with ACDEs exhibited broad pharmacological activities, effectively reversing hepatic lipid accumulation and inflammatory damage. In vitro experiments revealed that ACDEs were internalized by AML12 cells via macropinocytosis and caveolin-mediated endocytosis. This treatment ameliorated dysregulated lipid metabolism and inhibited inflammatory responses. High throughput sequencing further identified a distinct small RNA profile in ACDEs, indicating the potential involvement in interspecies physiological regulation. Discussion In conclusion, this study provides evidence for the therapeutic potential of ACDEs in NAFLD and offers a novel perspective for the development of Artemisia capillaris-based therapies for NAFLD, related metabolic disorders, and hepatitis.
Collapse
Affiliation(s)
- Min Xu
- Geriatric Hospital of Nanjing Medical University, The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Longjun Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wei Tang
- Department of Endocrinology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Shouyong Gu
- Institute of Geriatric Medicine, Jiangsu Province Geriatric Hospital, Nanjing, China
| |
Collapse
|
10
|
Lu P, Chen Z, Wu M, Feng S, Chen S, Cheng X, Zhao Y, Liu X, Gong L, Bian L, Yi S, Wang H. Type I collagen extracellular matrix facilitates nerve regeneration via the construction of a favourable microenvironment. BURNS & TRAUMA 2024; 12:tkae049. [PMID: 39659559 PMCID: PMC11631217 DOI: 10.1093/burnst/tkae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 12/12/2024]
Abstract
Background The extracellular matrix (ECM) provides essential physical support and biochemical cues for diverse biological activities, including tissue remodelling and regeneration, and thus is commonly applied in the construction of artificial peripheral nerve grafts. Nevertheless, the specific functions of essential peripheral nerve ECM components have not been fully determined. Our research aimed to differentially represent the neural activities of main components of ECM on peripheral nerve regeneration. Methods Schwann cells from sciatic nerves and neurons from dorsal root ganglia were isolated and cultured in vitro. The cells were seeded onto noncoated dishes, Matrigel-coated dishes, and dishes coated with the four major ECM components fibronectin, laminin, collagen I, and collagen IV. The effects of these ECM components on Schwann cell proliferation were determined via methylthiazolyldiphenyl-tetrazolium bromide (MTT), Cell Counting Kit-8, and 5-ethynyl-2'-deoxyuridine (EdU) assays, whereas their effects on cell migration were determined via wound healing and live-cell imaging. Neurite growth in neurons cultured on different ECM components was observed. Furthermore, the two types of collagen were incorporated into chitosan artificial nerves and used to repair sciatic nerve defects in rats. Immunofluorescence analysis and a behavioural assessment, including gait, electrophysiology, and target muscle analysis, were conducted. Results ECM components, especially collagen I, stimulated the DNA synthesis and movement of Schwann cells. Direct measurement of the neurite lengths of neurons cultured on ECM components further revealed the beneficial effects of ECM components on neurite outgrowth. Injection of collagen I into chitosan and poly(lactic-co-glycolic acid) artificial nerves demonstrated that collagen I facilitated axon regeneration and functional recovery after nerve defect repair by stimulating the migration of Schwann cells and the formation of new blood vessels. In contrast, collagen IV recruited excess fibroblasts and inflammatory macrophages and thus had disadvantageous effects on nerve regeneration. Conclusions These findings reveal the modulatory effects of specific ECM components on cell populations of peripheral nerves, reveal the contributing roles of collagen I in microenvironment construction and axon regeneration, and highlight the use of collagen I for the healing of injured peripheral nerves.
Collapse
Affiliation(s)
- Panjian Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Zhiying Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Mingjun Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Shuyue Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Sailing Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiyang Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yahong Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xingyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Lijing Bian
- Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Hongkui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical School of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| |
Collapse
|
11
|
Xu SL, Li JH, Zhang WM, Fu MJ, Xing HM, Ma H, Gong XH, Wu RH, Liang YB, Cui RZ, Chi ZL. Transcriptomic analysis of plasma-derived small extracellular vesicles reveals the pathological characteristics of normal tension glaucoma. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:438-454. [PMID: 39697633 PMCID: PMC11648459 DOI: 10.20517/evcna.2024.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 12/20/2024]
Abstract
Aim Normal tension glaucoma (NTG) is a common optic neuropathy that can be challenging to diagnose due to the intraocular pressure remaining within the normal range. Early diagnosis and intervention are crucial for the effective lifelong management of patients. Methods This study recruited a total of 225 participants. Small extracellular vesicles (sEVs) RNA from circulating plasma was analyzed via transcriptomic sequencing, and its expression levels were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Logistic regression, linear regression, and receiver operating characteristic (ROC) curve analyses were performed to examine the association of biomarkers with clinicopathological characteristics. Results Analysis of sEVs mRNAs in NTG patients revealed mitochondrial dysfunction and enrichment of central nervous system degenerative pathways, reflecting the pathological features of NTG. Compared with those in the controls, the expression levels of sEVs let-7b-5p in the plasma of NTG patients were significantly lower, with an area under the curve (AUC) of 0.870 (95%CI: 0.797-0.943) (P < 0.0001), and the AUC combined with age was 0.923 (95%CI: 0.851-0.996) (P < 0.0001). In addition, we found that let-7b-5p levels were significantly correlated with the severity and visual field defects of NTG patients and had good specificity compared with other ophthalmic diseases. Conclusion The sEVs RNA signatures in circulating plasma from NTG revealed mitochondrial dysfunction and that sEVs let-7b-5p can be a useful noninvasive biomarker for NTG.
Collapse
Affiliation(s)
- Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Authors contributed equally
| | - Jun-Hua Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Authors contributed equally
| | - Wen-Meng Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Meng-Jun Fu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xian-Hui Gong
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Rong-Han Wu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yuan-Bo Liang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Ren-Zhe Cui
- Department of Ophthalmology, Affiliated Hospital of Yanbian University, Yanji 133001, Jilin, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
12
|
Luo Z, Zhu J, Fang Z, Xu R, Wan R, He Y, Chen Y, Chen S, Wang Q, Liu Q, Chen S. Exercise-augmented THSD7B exhibited a positive prognostic implication and tumor-suppressed functionality in pan-cancer. Front Immunol 2024; 15:1440226. [PMID: 39161765 PMCID: PMC11330788 DOI: 10.3389/fimmu.2024.1440226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Breast cancer, one of the most prevalent malignancies among women worldwide, has rising incidence rates. Physical activity, particularly exercise, has emerged as a significant modifier of cancer prognosis, influencing both tumor biology and patient outcomes. METHODS In this study, we utilized a murine breast cancer model, dividing mice into a control group and an exercise group; the latter underwent 21 days of voluntary running. We conducted RNA sequencing, bioinformatics analysis, pan-cancer analysis, and cellular experiments to investigate the underlying mechanisms influenced by exercise. RESULTS Exercise led to a significant reduction in tumor size and weight. Post-exercise mRNA sequencing indicated a notable upregulation of THSD7B in the exercised mice, with significant alterations observed in pathways such as MicroRNAs in cancers and the Calcium signaling pathway. In a broader cancer context, THSD7B showed considerable expression variability, being significantly downregulated in several cancers, correlating with positive prognostic outcomes in PRAD, LAML, KIRC, and GBM and highlighting its potential role as a prognostic marker and therapeutic target. THSD7B expression was also negatively associated with processes of breast cancer cell proliferation, migration, and invasion. CONCLUSION This study underscores the dual role of exercise in modulating gene expression relevant to tumor growth and highlights the potential of THSD7B as a therapeutic target in cancer. Future research should further explore the specific mechanisms by which exercise and THSD7B influence cancer progression and develop immunotherapy-enhanced strategies to change patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhu
- Department of Orthopaedics, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Tongzhou, Jiangsu, China
| | - Zhengyuan Fang
- The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, Liaoning, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwei He
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuo Chen
- Internal Medicine of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Qizhi Liu
- Internal Medicine of Chinese Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Liao S, Chen Y, Luo Y, Zhang M, Min J. The phenotypic changes of Schwann cells promote the functional repair of nerve injury. Neuropeptides 2024; 106:102438. [PMID: 38749170 DOI: 10.1016/j.npep.2024.102438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
Functional recovery after nerve injury is a significant challenge due to the complex nature of nerve injury repair and the non-regeneration of neurons. Schwann cells (SCs), play a crucial role in the nerve injury repair process because of their high plasticity, secretion, and migration abilities. Upon nerve injury, SCs undergo a phenotypic change and redifferentiate into a repair phenotype, which helps in healing by recruiting phagocytes, removing myelin fragments, promoting axon regeneration, and facilitating myelin formation. However, the repair phenotype can be unstable, limiting the effectiveness of the repair. Recent research has found that transplantation of SCs can be an effective treatment option, therefore, it is essential to comprehend the phenotypic changes of SCs and clarify the related mechanisms to develop the transplantation therapy further.
Collapse
Affiliation(s)
- Shufen Liao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yan Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yin Luo
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Mengqi Zhang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jun Min
- Neurology Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
14
|
Luo Z, Zhu J, Xu R, Wan R, He Y, Chen Y, Wang Q, Chen S, Chen S. Exercise-downregulated CD300E acted as a negative prognostic implication and tumor-promoted role in pan-cancer. Front Immunol 2024; 15:1437068. [PMID: 39144140 PMCID: PMC11321962 DOI: 10.3389/fimmu.2024.1437068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Breast cancer ranks as one of the most prevalent malignancies among women globally, with increasing incidence rates. Physical activity, particularly exercise, has emerged as a potentially significant modifier of cancer prognosis, influencing tumor biology and patient outcomes. METHODS Using a murine breast cancer model, we established a control and an exercise group, where the latter was subjected to 21 days of voluntary running. RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell experiments were performed to validate the underlying mechanisms. RESULTS We observed that exercise significantly reduced tumor size and weight, without notable changes in body weight, suggesting that physical activity can modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial downregulation of CD300E in the exercise group, accompanied by alterations in critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway. Expanding our analysis to a broader cancer spectrum, CD300E demonstrated significant expression variability across multiple cancer types, with pronounced upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation was correlated with poorer prognostic outcomes, emphasizing CD300E's potential role as a prognostic marker and therapeutic target. Moreover, CD300E expression was associated with cancer cell proliferation and apoptosis. CONCLUSION The study highlights the dual role of exercise in modulating gene expression relevant to tumor growth and the potential of CD300E as a target in cancer therapeutics. Further research is encouraged to explore the mechanisms by which exercise and CD300E influence cancer progression and to develop targeted strategies that could enhance patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinguo Zhu
- Department of Orthopaedics, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Tongzhou, Jiangsu, China
| | - Rui Xu
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanwei He
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisheng Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China
| | - Shuo Chen
- Department of Sports Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
16
|
Zong Y, Dai Y, Yan J, Yu B, Wang D, Mao S. The roles of circular RNAs in nerve injury and repair. Front Mol Neurosci 2024; 17:1419520. [PMID: 39077756 PMCID: PMC11284605 DOI: 10.3389/fnmol.2024.1419520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024] Open
Abstract
Nerve injuries significantly impact the quality of life for patients, with severe cases posing life-threatening risks. A comprehensive understanding of the pathophysiological mechanisms underlying nerve injury is crucial to the development of effective strategies to promote nerve regeneration. Circular RNAs (circRNAs), a recently characterized class of RNAs distinguished by their covalently closed-loop structures, have been shown to play an important role in various biological processes. Numerous studies have highlighted the pivotal role of circRNAs in nerve regeneration, identifying them as potential therapeutic targets. This review aims to succinctly outline the latest advances in the role of circRNAs related to nerve injury repair and the underlying mechanisms, including peripheral nerve injury, traumatic brain injury, spinal cord injury, and neuropathic pain. Finally, we discuss the potential applications of circRNAs in drug development and consider the potential directions for future research in this field to provide insights into circRNAs in nerve injury repair.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, School of Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
17
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Brough S, Alizadeh M. Recent perspectives on the synergy of mesenchymal stem cells with micro/nano strategies in peripheral nerve regeneration-a review. Front Bioeng Biotechnol 2024; 12:1401512. [PMID: 39050683 PMCID: PMC11266111 DOI: 10.3389/fbioe.2024.1401512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Despite the intrinsic repair of peripheral nerve injury (PNI), it is important to carefully monitor the process of peripheral nerve repair, as peripheral nerve regeneration is slow and incomplete in large traumatic lesions. Hence, mesenchymal stem cells (MSCs) with protective and regenerative functions are utilized in synergy with innovative micro/nano technologies to enhance the regeneration process of peripheral nerves. Nonetheless, as MSCs are assessed using standard regenerative criteria including sensory-motor indices, structural features, and morphology, it is challenging to differentiate between the protective and regenerative impacts of MSCs on neural tissue. This study aims to analyze the process of nerve regeneration, particularly the performance of MSCs with and without synergistic approaches. It also focuses on the paracrine secretions of MSCs and their conversion into neurons with functional properties that influence nerve regeneration after PNI. Furthermore, the study explores new ideas for nerve regeneration after PNI by considering the synergistic effect of MSCs and therapeutic compounds, neuronal cell derivatives, biological or polymeric conduits, organic/inorganic nanoparticles, and electrical stimulation. Finally, the study highlights the main obstacles to developing synergy in nerve regeneration after PNI and aims to open new windows based on recent advances in neural tissue regeneration.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohammad Kamalabadi-Farahani
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Brough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Sheng Z, Wang X, Ding X, Zheng Y, Guo A, Cui J, Ma J, Duan W, Dong H, Zhang H, Cui M, Su W, Zhang B. Exosomal miRNA-92a derived from cancer-associated fibroblasts promote invasion and metastasis in breast cancer by regulating G3BP2. Cell Signal 2024; 119:111182. [PMID: 38640983 DOI: 10.1016/j.cellsig.2024.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Cancer-associated Fibroblasts (CAFs) exert a tumor-promoting effect in various cancers, including breast cancer. CAFs secrete exosomes containing miRNA and proteins, influencing the tumor microenvironment. In this study, we identified CAF-derived exosomes that transport functional miR-92a from CAFs to tumor cells, thereby intensifying the aggressiveness of breast cancer. CAFs downregulate the expression of G3BP2 in breast cancer cells, and a significant elevation in miR-92a levels in CAF-derived exosomes was observed. Both in vitro and in vivo experiments demonstrate that miR-92a enhances breast cancer cell migration and invasion by directly targeting G3BP2, functioning as a tumor-promoting miRNA. We validated that the RNA-binding proteins SNRPA facilitate the transfer of CAF-derived exosomal miR-92a to breast cancer cells. The reduction of G3BP2 protein by CAF-derived exosomes releases TWIST1 into the nucleus, promoting epithelial-mesenchymal transition (EMT) and further exacerbating breast cancer progression. Moreover, CAF-derived exosomal miR-92a induces tumor invasion and metastasis in mice. Overall, our study reveals that CAF-derived exosomal miR-92a serves as a promoter in the migration and invasion of breast cancer cells by reducing G3BP2 and may represent a potential novel tumor marker for breast cancer.
Collapse
Affiliation(s)
- Zhimei Sheng
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Xuejie Wang
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaodi Ding
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Yuanhang Zheng
- Department of Pathology, Weifang people's Hospital, Weifang, Shandong, China
| | - Ai Guo
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Jiayu Cui
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jing Ma
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Wanli Duan
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Hao Dong
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongxing Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Meimei Cui
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China
| | - Wenxia Su
- Department of Physiology, Second Medical University, Weifang, Shandong, China
| | - Baogang Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China.
| |
Collapse
|
19
|
Cheng HY, Su GL, Wu YX, Chen G, Yu ZL. Extracellular vesicles in anti-tumor drug resistance: Mechanisms and therapeutic prospects. J Pharm Anal 2024; 14:100920. [PMID: 39104866 PMCID: PMC11298875 DOI: 10.1016/j.jpha.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 08/07/2024] Open
Abstract
Drug resistance presents a significant challenge to achieving positive clinical outcomes in anti-tumor therapy. Prior research has illuminated reasons behind drug resistance, including increased drug efflux, alterations in drug targets, and abnormal activation of oncogenic pathways. However, there's a need for deeper investigation into the impact of drug-resistant cells on parental tumor cells and intricate crosstalk between tumor cells and the malignant tumor microenvironment (TME). Recent studies on extracellular vesicles (EVs) have provided valuable insights. EVs are membrane-bound particles secreted by all cells, mediating cell-to-cell communication. They contain functional cargoes like DNA, RNA, lipids, proteins, and metabolites from mother cells, delivered to other cells. Notably, EVs are increasingly recognized as regulators in the resistance to anti-cancer drugs. This review aims to summarize the mechanisms of EV-mediated anti-tumor drug resistance, covering therapeutic approaches like chemotherapy, targeted therapy, immunotherapy and even radiotherapy. Detecting EV-based biomarkers to predict drug resistance assists in bypassing anti-tumor drug resistance. Additionally, targeted inhibition of EV biogenesis and secretion emerges as a promising approach to counter drug resistance. We highlight the importance of conducting in-depth mechanistic research on EVs, their cargoes, and functional approaches specifically focusing on EV subpopulations. These efforts will significantly advance the development of strategies to overcome drug resistance in anti-tumor therapy.
Collapse
Affiliation(s)
- Hao-Yang Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Liang Su
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yu-Xuan Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430071, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
20
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
21
|
Mushtaq M, Zineldeen DH, Mateen MA, Haider KH. Mesenchymal stem cells' "garbage bags" at work: Treating radial nerve injury with mesenchymal stem cell-derived exosomes. World J Stem Cells 2024; 16:467-478. [PMID: 38817330 PMCID: PMC11135253 DOI: 10.4252/wjsc.v16.i5.467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
Unlike central nervous system injuries, peripheral nerve injuries (PNIs) are often characterized by more or less successful axonal regeneration. However, structural and functional recovery is a senile process involving multifaceted cellular and molecular processes. The contemporary treatment options are limited, with surgical intervention as the gold-standard method; however, each treatment option has its associated limitations, especially when the injury is severe with a large gap. Recent advancements in cell-based therapy and cell-free therapy approaches using stem cell-derived soluble and insoluble components of the cell secretome are fast-emerging therapeutic approaches to treating acute and chronic PNI. The recent pilot study is a leap forward in the field, which is expected to pave the way for more enormous, systematic, and well-designed clinical trials to assess the therapeutic efficacy of mesenchymal stem cell-derived exosomes as a bio-drug either alone or as part of a combinatorial approach, in an attempt synergize the best of novel treatment approaches to address the complexity of the neural repair and regeneration.
Collapse
Affiliation(s)
- Mazhar Mushtaq
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
| | - Doaa Hussein Zineldeen
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Tanta University, Tanta 6632110, Egypt
| | - Muhammad Abdul Mateen
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman AlRajhi University, Albukairiyah 52736, AlQaseem, Saudi Arabia.
| |
Collapse
|
22
|
Zhou Y, Zhang Y, Xu J, Wang Y, Yang Y, Wang W, Gu A, Han B, Shurin GV, Zhong R, Shurin MR, Zhong H. Schwann cell-derived exosomes promote lung cancer progression via miRNA-21-5p. Glia 2024; 72:692-707. [PMID: 38192185 DOI: 10.1002/glia.24497] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
23
|
Wang Z, Wang Q, Qin F, Chen J. Exosomes: a promising avenue for cancer diagnosis beyond treatment. Front Cell Dev Biol 2024; 12:1344705. [PMID: 38419843 PMCID: PMC10900531 DOI: 10.3389/fcell.2024.1344705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes, extracellular vesicles secreted by cells, have garnered significant attention in recent years for their remarkable therapeutic potential. These nanoscale carriers can be harnessed for the targeted delivery of therapeutic agents, such as pharmaceuticals, proteins, and nucleic acids, across biological barriers. This versatile attribute of exosomes is a promising modality for precision medicine applications, notably in the realm of cancer therapy. However, despite their substantial therapeutic potential, exosomes still confront challenges tied to standardization and scalability that impede their practice in clinical applications. Moreover, heterogeneity in isolation methodologies and limited cargo loading mechanisms pose obstacles to ensuring consistent outcomes, thereby constraining their therapeutic utility. In contrast, exosomes exhibit a distinct advantage in cancer diagnosis, as they harbor specific signatures reflective of the tumor's genetic and proteomic profile. This characteristic endows them with the potential to serve as valuable liquid biopsies for non-invasive and real-time monitoring, making possible early cancer detection for the development of personalized treatment strategies. In this review, we provide an extensive evaluation of the advancements in exosome research, critically examining their advantages and limitations in the context of cancer therapy and early diagnosis. Furthermore, we present a curated overview of the most recent technological innovations utilizing exosomes, with a focus on enhancing the efficacy of early cancer detection.
Collapse
Affiliation(s)
- Zhu Wang
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Qin
- School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jie Chen
- Breast Center, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute for Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Mankavi F, Ibrahim R, Wang H. Advances in Biomimetic Nerve Guidance Conduits for Peripheral Nerve Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2528. [PMID: 37764557 PMCID: PMC10536071 DOI: 10.3390/nano13182528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023]
Abstract
Injuries to the peripheral nervous system are a common clinical issue, causing dysfunctions of the motor and sensory systems. Surgical interventions such as nerve autografting are necessary to repair damaged nerves. Even with autografting, i.e., the gold standard, malfunctioning and mismatches between the injured and donor nerves often lead to unwanted failure. Thus, there is an urgent need for a new intervention in clinical practice to achieve full functional recovery. Nerve guidance conduits (NGCs), providing physicochemical cues to guide neural regeneration, have great potential for the clinical regeneration of peripheral nerves. Typically, NGCs are tubular structures with various configurations to create a microenvironment that induces the oriented and accelerated growth of axons and promotes neuron cell migration and tissue maturation within the injured tissue. Once the native neural environment is better understood, ideal NGCs should maximally recapitulate those key physiological attributes for better neural regeneration. Indeed, NGC design has evolved from solely physical guidance to biochemical stimulation. NGC fabrication requires fundamental considerations of distinct nerve structures, the associated extracellular compositions (extracellular matrices, growth factors, and cytokines), cellular components, and advanced fabrication technologies that can mimic the structure and morphology of native extracellular matrices. Thus, this review mainly summarizes the recent advances in the state-of-the-art NGCs in terms of biomaterial innovations, structural design, and advanced fabrication technologies and provides an in-depth discussion of cellular responses (adhesion, spreading, and alignment) to such biomimetic cues for neural regeneration and repair.
Collapse
Affiliation(s)
| | | | - Hongjun Wang
- Department of Biomedical Engineering, Semcer Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (F.M.); (R.I.)
| |
Collapse
|