1
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
2
|
Vanderstichele S, Vranckx JJ. Anti-fibrotic effect of adipose-derived stem cells on fibrotic scars. World J Stem Cells 2022; 14:200-213. [PMID: 35432731 PMCID: PMC8963379 DOI: 10.4252/wjsc.v14.i2.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/01/2021] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sustained injury, through radiotherapy, burns or surgical trauma, can result in fibrosis, displaying an excessive deposition of extracellular matrix (ECM), persisting inflammatory reaction, and reduced vascularization. The increasing recognition of fibrosis as a cause for disease and mortality, and increasing use of radiotherapy causing fibrosis, stresses the importance of a decent anti-fibrotic treatment.
AIM To obtain an in-depth understanding of the complex mechanisms underlying fibrosis, and more specifically, the potential mechanisms-of-action of adipose-derived stomal cells (ADSCs) in realizing their anti-fibrotic effect.
METHODS A systematic review of the literature using PubMed, Embase and Web of Science was performed by two independent reviewers.
RESULTS The injection of fat grafts into fibrotic tissue, releases ADSC into the environment. ADSCs’ capacity to directly differentiate into key cell types (e.g., ECs, fibroblasts), as well as to secrete multiple paracrine factors (e.g., hepatocyte growth factor, basis fibroblast growth factor, IL-10), allows them to alter different mechanisms underlying fibrosis in a combined approach. ADSCs favor ECM degradation by impacting the fibroblast-to-myofibroblast differentiation, favoring matrix metalloproteinases over tissue inhibitors of metalloproteinases, positively influencing collagen organization, and inhibiting the pro-fibrotic effects of transforming growth factor-β1. Furthermore, they impact elements of both the innate and adaptive immune response system, and stimulate angiogenesis on the site of injury (through secretion of pro-angiogenic cytokines like stromal cell-derived factor-1 and vascular endothelial growth factor).
CONCLUSION This review shows that understanding the complex interactions of ECM accumulation, immune response and vascularization, is vital to fibrosis treatments’ effectiveness like fat grafting. It details how ADSCs intelligently steer this complex system in an anti-fibrotic or pro-angiogenic direction, without falling into extreme dilation or stimulation of a single aspect. Detailing this combined approach, has brought fat grafting one step closer to unlocking its full potential as a non-anecdotal treatment for fibrosis.
Collapse
Affiliation(s)
| | - Jan Jeroen Vranckx
- Department of Plastic, Reconstructive Surgery, KU-Leuven University Hospitals, Leuven 3000, Belgium
| |
Collapse
|
3
|
Paternoster JL, Vranckx JJ. State of the art of clinical applications of Tissue Engineering in 2021. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:592-612. [PMID: 34082599 DOI: 10.1089/ten.teb.2021.0017] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tissue engineering (TE) was introduced almost 30 years ago as a potential technique for regenerating human tissues. However, despite promising laboratory findings, the complexity of the human body, scientific hurdles, and lack of persistent long-term funding still hamper its translation towards clinical applications. In this report, we compile an inventory of clinically applied TE medical products relevant to surgery. A review of the literature, including articles published within the period from 1991 to 2020, was performed according to the PRISMA protocol, using databanks PubMed, Cochrane Library, Web of Science, and Clinicaltrials.gov. We identified 1039 full-length articles as eligible; due to the scarcity of clinical, randomised, controlled trials and case studies, we extended our search towards a broad surgical spectrum. Forty papers involved clinical TE studies. Amongst these, 7 were related to TE protocols for cartilage applied in the reconstruction of nose, ear, and trachea. Nine papers reported TE protocols for articular cartilage, 9 for urological purposes, 7 described TE strategies for cardiovascular aims, and 8 for dermal applications. However, only two clinical studies reported on three-dimensional (3D) and functional long-lasting TE constructs. The concept of generating 3D TE constructs and organs based on autologous molecules and cells is intriguing and promising. The first translational tissue-engineered products and techniques have been clinically implemented. However, despite the 30 years of research and development in this field, TE is still in its clinical infancy. Multiple experimental, ethical, budgetary, and regulatory difficulties hinder its rapid translation. Nevertheless, the first clinical applications show great promise and indicate that the translation towards clinical medical implementation has finally started.
Collapse
Affiliation(s)
- Julie Lien Paternoster
- UZ Leuven Campus Gasthuisberg Hospital Pharmacy, 574134, Plastic Surgery , Herestraat 49, Leuven, Belgium, 3000;
| | - Jan Jeroen Vranckx
- Universitaire Ziekenhuizen Leuven, 60182, Plastic and Reconstructive Surgery, Leuven, Belgium;
| |
Collapse
|
4
|
Vranckx JJ, Hondt MD. Tissue engineering and surgery: from translational studies to human trials. Innov Surg Sci 2017; 2:189-202. [PMID: 31579752 PMCID: PMC6754028 DOI: 10.1515/iss-2017-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
Tissue engineering was introduced as an innovative and promising field in the mid-1980s. The capacity of cells to migrate and proliferate in growth-inducing medium induced great expectancies on generating custom-shaped bioconstructs for tissue regeneration. Tissue engineering represents a unique multidisciplinary translational forum where the principles of biomaterial engineering, the molecular biology of cells and genes, and the clinical sciences of reconstruction would interact intensively through the combined efforts of scientists, engineers, and clinicians. The anticipated possibilities of cell engineering, matrix development, and growth factor therapies are extensive and would largely expand our clinical reconstructive armamentarium. Application of proangiogenic proteins may stimulate wound repair, restore avascular wound beds, or reverse hypoxia in flaps. Autologous cells procured from biopsies may generate an ‘autologous’ dermal and epidermal laminated cover on extensive burn wounds. Three-dimensional printing may generate ‘custom-made’ preshaped scaffolds – shaped as a nose, an ear, or a mandible – in which these cells can be seeded. The paucity of optimal donor tissues may be solved with off-the-shelf tissues using tissue engineering strategies. However, despite the expectations, the speed of translation of in vitro tissue engineering sciences into clinical reality is very slow due to the intrinsic complexity of human tissues. This review focuses on the transition from translational protocols towards current clinical applications of tissue engineering strategies in surgery.
Collapse
Affiliation(s)
- Jan Jeroen Vranckx
- Department of Plastic and Reconstructive Surgery, KU Leuven University Hospitals, 49 Herestraat, B-3000 Leuven, Belgium
| | - Margot Den Hondt
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU-Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
5
|
In vitro construction of scaffold-free bilayered tissue-engineered skin containing capillary networks. BIOMED RESEARCH INTERNATIONAL 2013; 2013:561410. [PMID: 23607091 PMCID: PMC3625575 DOI: 10.1155/2013/561410] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 01/31/2023]
Abstract
Many types of skin substitutes have been constructed using exogenous materials.
Angiogenesis is an important factor for tissue-engineered skin constructs. In this study, we constructed a scaffold-free bilayered tissue-engineered
skin containing a capillary network. First, we cocultured dermal fibroblasts with dermal microvascular endothelial cells at a ratio of 2 : 1. A fibrous sheet was formed
by the interactions between the fibroblasts and the endothelial cells, and capillary-like structures were observed after 20 days of coculture. Epithelial cells were
then seeded on the fibrous sheet to assemble the bilayered tissue. HE staining showed that tissue-engineered skin exhibited a stratified epidermis after 7 days.
Immunostaining showed that the epithelium promoted the formation of capillary-like structures. Transmission electron microscopy (TEM) analysis showed that the
capillary-like structures were typical microblood vessels. ELISA demonstrated that vascularization was promoted by significant upregulation of vascularization
associated growth factors due to interactions among the 3 types of cells in the bilayer, as compared to cocultures of fibroblast and endothelial cells and
monocultures.
Collapse
|
6
|
Hendrickx B, Vranckx JJ, Luttun A. Cell-Based Vascularization Strategies for Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:13-24. [DOI: 10.1089/ten.teb.2010.0315] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Benoit Hendrickx
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Jan J. Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic, Reconstructive, and Aesthetic Surgery, KUL–University Hospitals, Leuven, Belgium
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Koyama T, Hackl F, Aflaki P, Bergmann J, Zuhaili B, Waisbren E, Govindarajulu U, Yao F, Eriksson E. A new technique of ex vivo gene delivery of VEGF to wounds using genetically modified skin particles promotes wound angiogenesis. J Am Coll Surg 2011; 212:340-8. [PMID: 21247781 DOI: 10.1016/j.jamcollsurg.2010.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transplantation of genetically modified keratinocytes has been shown to accelerate wound healing. However, this method is labor-intensive and time-consuming. We have developed a new technique of intraoperative gene delivery to wounds that involves transplantation of transfected minced skin particles (MSPs) derived from harvested partial-thickness skin. STUDY DESIGN MSPs measuring 0.8 × 0.8 × 0.35 mm were created from a split-thickness skin graft of a pig. In vitro transfection was carried out with adenoviral LacZ (Ad-LacZ) for qualitative and adenoviral vascular endothelial growth factor (Ad-VEGF) for quantitative analysis. Transfected MSPs were transplanted to each of 2.5 × 2.5 cm full-thickness wounds on the dorsum of the pig. Nontransfected MSPs served as controls. Wound chambers were applied and injected with saline to create a wet environment. RESULTS LacZ expression was detected in migrating cells originating from MSPs both in vitro and in vivo. VEGF expression in the wound fluid of Ad-VEGF-MSP-transplanted wounds on each of days 2 to 4 (mean ± SEM 6.74 ± 1.89 ng/mL, day 2; 9.88 ± 2.27 ng/mL, day 3; 9.87 ± 1.28 ng/mL, day 4) was significantly higher (p < 0.0001) compared with wounds transplanted with either untransfected MSPs, Ad-LacZ-MSPs, or untransplanted controls. In vitro VEGF expression was significantly higher (p < 0.0001) in Ad-VEGF 1 × 10(10) transfected MSPs compared with either Ad-VEGF 1 × 10(9) transfected MSPs or untransfected MSPs. Wounds transplanted with Ad-VEGF-MSPs showed significantly higher (p < 0.0001) numbers of newly formed blood vessels (12.6 ± 0.9 vessels/high power field [HPF]) compared with wounds transplanted with either Ad-LacZ-MSPs (4.4 ± 0.5 vessels/HPF) or untransfected MSPs (5.2 ± 0.7 vessels/HPF). All MSP-transplanted wounds (Ad-VEGF-MSPs, untransfected MSPs, Ad-LacZ-MSPs) showed significantly higher re-epithelialization compared with untransplanted wounds on days 10 and 14 (p < 0.0001). CONCLUSIONS We demonstrated successful transfection of MSPs that can be transplanted to wounds as a source of gene-expressing cells. This technique can be used to deliver growth-modulating genes in wound healing.
Collapse
Affiliation(s)
- Taro Koyama
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ito A, Kamihira M. Tissue Engineering Using Magnetite Nanoparticles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 104:355-95. [DOI: 10.1016/b978-0-12-416020-0.00009-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Dickens S, Van den Berge S, Hendrickx B, Verdonck K, Luttun A, Vranckx JJ. Nonviral Transfection Strategies for Keratinocytes, Fibroblasts, and Endothelial Progenitor Cells for Ex Vivo Gene Transfer to Skin Wounds. Tissue Eng Part C Methods 2010; 16:1601-8. [DOI: 10.1089/ten.tec.2009.0648] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery—Biomedical Science Group, KUL Leuven University Hospitals, Leuven, Belgium
| | - Stefaan Van den Berge
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery—Biomedical Science Group, KUL Leuven University Hospitals, Leuven, Belgium
| | - Benoit Hendrickx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery—Biomedical Science Group, KUL Leuven University Hospitals, Leuven, Belgium
| | - Kristoff Verdonck
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery—Biomedical Science Group, KUL Leuven University Hospitals, Leuven, Belgium
| | - Aernout Luttun
- Department of Molecular and Cellular Medicine—Biomedical Science Group, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan J. Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery—Biomedical Science Group, KUL Leuven University Hospitals, Leuven, Belgium
| |
Collapse
|
10
|
Hendrickx B, Verdonck K, Van den Berge S, Dickens S, Eriksson E, Vranckx JJ, Luttun A. Integration of blood outgrowth endothelial cells in dermal fibroblast sheets promotes full thickness wound healing. Stem Cells 2010; 28:1165-77. [PMID: 20506500 DOI: 10.1002/stem.445] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascularization is the cornerstone of wound healing. We introduced human blood outgrowth endothelial cells (hBOEC) in a self-assembled human dermal fibroblast sheet (hDFS), intended as a tissue-engineered dermal substitute with inherent vascular potential. hBOEC were functionally and molecularly different from early endothelial progenitor cells and human umbilical vein endothelial cells (HUVEC). hBOEC alone, unlike HUVEC, efficiently revascularized and re-oxygenated the wound bed, both by active incorporation into new vessels and by trophic stimulation of host angiogenesis in a dose-dependent manner. Furthermore, hBOEC alone, but not HUVEC, accelerated epithelial coverage and matrix organization of the wound bed. In addition, integration of hBOEC in hDFS not only further improved vascularization, epithelial coverage and matrix organization but also prevented excessive wound contraction. In vitro analyses with hBOEC, fibroblasts and keratinocytes revealed that these effects were both due to growth factor crosstalk and to short cutting hypoxia. Among multiple growth factors secreted by hBOEC, placental growth factor mediated at least in part the beneficial effects on keratinocyte migration and proliferation. Overall, this combined tissue engineering approach paves the way for clinical development of a fully autologous vascularized dermal substitute for patients with large skin defects that do not heal properly.
Collapse
Affiliation(s)
- Benoit Hendrickx
- Center for Molecular and Vascular Biology, KULeuven, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
11
|
Rochon MH, Fradette J, Fortin V, Tomasetig F, Roberge CJ, Baker K, Berthod F, Auger FA, Germain L. Normal human epithelial cells regulate the size and morphology of tissue-engineered capillaries. Tissue Eng Part A 2010; 16:1457-68. [PMID: 19938961 DOI: 10.1089/ten.tea.2009.0090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The survival of thick tissues/organs produced by tissue engineering requires rapid revascularization after grafting. Although capillary-like structures have been reconstituted in some engineered tissues, little is known about the interaction between normal epithelial cells and endothelial cells involved in the in vitro angiogenic process. In the present study, we used the self-assembly approach of tissue engineering to examine this relationship. An endothelialized tissue-engineered dermal substitute was produced by adding endothelial cells to the tissue-engineered dermal substitute produced by the self-assembly approach. The latter consists in culturing fibroblasts in the medium supplemented with serum and ascorbic acid. A network of tissue-engineered capillaries (TECs) formed within the human extracellular matrix produced by dermal fibroblasts. To determine whether epithelial cells modify TECs, the size and form of TECs were studied in the endothelialized tissue-engineered dermal substitute cultured in the presence or absence of epithelial cells. In the presence of normal keratinocytes from skin, cornea or uterine cervix, endothelial cells formed small TECs (cross-sectional area estimated at less than 50 microm(2)) reminiscent of capillaries found in the skin's microcirculation. In contrast, TECs grown in the absence of epithelial cells presented variable sizes (larger than 50 microm(2)), but the addition of keratinocyte-conditioned media or exogenous vascular endothelial growth factor induced their normalization toward a smaller size. Vascular endothelial growth factor neutralization inhibited the effect of keratinocyte-conditioned media. These results provide new direct evidence that normal human epithelial cells play a role in the regulation of the underlying TEC network, and advance our knowledge in tissue engineering for the production of TEC networks in vitro.
Collapse
Affiliation(s)
- Marie-Hélène Rochon
- Laboratoire d'Organogénèse Expérimentale, Centre de recherche FRSQ du CHA Universitaire de Québec, Département de Chirurgie, Faculté de Médecine, Université Laval, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Han YF, Han YQ, Pan YG, Chen YL, Chai JK. Transplantation of microencapsulated cells expressing VEGF improves angiogenesis in implanted xenogeneic acellular dermis on wound. Transplant Proc 2010; 42:1935-1943. [PMID: 20620551 DOI: 10.1016/j.transproceed.2009.12.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 12/29/2009] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cell-based gene therapy using cells that express angiogenic factors is an alternative technique for therapeutic angiogenesis in transplantation of xenogeneic acellular dermis matrix (ADM). However, immune rejection is a substantial obstacle to implantation of genetically engineered allogeneic or xenogeneic cells. OBJECTIVE To evaluate application of microencapsulated cells that express vascular endothelial growth factor (VEGF) in xenogeneic ADM transplants to improve wound angiogenesis and healing. MATERIALS AND METHODS NIH3T3 cells were genetically modified to secrete VEGF and enveloped in semipermeable microcapsules. Microencapsulated VEGF-NIH3T3 cells were implanted in defects on the dorsa of guinea pigs with xenogeneic ADM and autologous split-thickness skin grafts. Cell structure and microencapsulation were observed at microscopy, and expression of VEGF was detected using an enzyme-linked immunosorbent assay (ELISA) and immunochemistry. Extent of angiogenesis in the ADM and the survival rate of the composite skin were evaluated after 2 weeks. In addition, expression of human VEGF and CD31 in the implanted acellular dermis was assessed, and microvessel density was calculated. RESULTS Microencapsulated VEGF-expressing NIH3T3 cells were prepared successfully, and demonstrated proliferation and viability, and expressed VEGF both in vitro and in vivo. Extent of angiogenesis and survival rate of the composite skin containing the microencapsulated VEGF-expressing cells were significantly greater than in controls. Microencapsulated VEGF-expressing NIH3T3 cells augmented early angiogenesis in ADM implanted on wound and improved healing. CONCLUSION Microencapsulated xenogeneic cell-based gene therapy may be a novel approach to therapeutic angiogenesis in transplantation of xenogeneic ADM skin.
Collapse
Affiliation(s)
- Y-F Han
- Burns Institute, First Hospital Affiliated with General Hospital of Chinese PLA, Beijing, PR China
| | | | | | | | | |
Collapse
|
13
|
Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A Plasma-Based Biomatrix Mixed with Endothelial Progenitor Cells and Keratinocytes Promotes Matrix Formation, Angiogenesis, and Reepithelialization in Full-Thickness Wounds. Tissue Eng Part A 2009; 15:1533-42. [DOI: 10.1089/ten.tea.2008.0246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Pieter Vermeulen
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stijn Dickens
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Karlien Degezelle
- Department of Intensive Care—Perfusion Sciences, KU Leuven University Hospital, Leuven, Belgium
| | - Stefaan Van den Berge
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Benoit Hendrickx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Laboratory of Plastic Surgery and Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, KU Leuven University Hospital, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Grochot-Przeczek A, Lach R, Mis J, Skrzypek K, Gozdecka M, Sroczynska P, Dubiel M, Rutkowski A, Kozakowska M, Zagorska A, Walczynski J, Was H, Kotlinowski J, Drukala J, Kurowski K, Kieda C, Herault Y, Dulak J, Jozkowicz A. Heme oxygenase-1 accelerates cutaneous wound healing in mice. PLoS One 2009; 4:e5803. [PMID: 19495412 PMCID: PMC2686151 DOI: 10.1371/journal.pone.0005803] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 05/08/2009] [Indexed: 12/26/2022] Open
Abstract
Heme oxygenase-1 (HO-1), a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2(nd) and 3(rd) days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db) mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.
Collapse
Affiliation(s)
- Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Radoslaw Lach
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Mis
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Klaudia Skrzypek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Gozdecka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Patrycja Sroczynska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Milena Dubiel
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Rutkowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Magdalena Kozakowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Zagorska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jacek Walczynski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Halina Was
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jerzy Kotlinowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | - Yann Herault
- Centre for Transgenic Animals, CNRS, Orleans, France
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AJ); (JD)
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail: (AJ); (JD)
| |
Collapse
|