1
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
2
|
Qian E, Kang Y. Branched Channels in Porous β-Tricalcium Phosphate Scaffold Promote Vascularization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19081-19093. [PMID: 38442339 DOI: 10.1021/acsami.3c17328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Rapid and efficient vascularization is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, branched channels were created in the porous β-TCP scaffold by using 3D printing and a template-casting method to facilitate the instant flow of blood supply. Human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were seeded in the channeled porous scaffolds and characterized through a double-stranded DNA (dsDNA) assay, alkaline phosphatase (ALP) assay, and cell migration. Channeled porous β-TCP scaffolds were then implanted in the subcutaneous pockets of mice. Histological staining and immunohistochemical staining on vascularization and bone-related markers were carried out on the embedded paraffin sections. Results from in vitro experiments showed that branched channels significantly promoted HUVECs' infiltration, migration, proliferation, and angiogenesis, and also promoted the proliferation and osteogenesis differentiation of hBMSCs. In vivo implantation results showed that, in the early stage after implantation, cells significantly migrated into branched channeled scaffolds. More matured blood vessels formed in the branched channeled scaffolds compared to that in nonchanneled and straight channeled scaffolds. Beside promoting vascularization, the branched channels also stimulated the infiltration of bone-related cells into the scaffolds. These results suggested that the geometric design of branched channels in the porous β-TCP scaffold promoted rapid vascularization and potentially stimulated bone cells recruitment.
Collapse
Affiliation(s)
- Enze Qian
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Faculty of Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
3
|
Buonocore M, Grimaldi M, Santoro A, Covelli V, Marino C, Napolitano E, Novi S, Tecce MF, Ciaglia E, Montella F, Lopardo V, Perugini V, Santin M, D’Ursi AM. Exploiting the Features of Short Peptides to Recognize Specific Cell Surface Markers. Int J Mol Sci 2023; 24:15610. [PMID: 37958593 PMCID: PMC10650159 DOI: 10.3390/ijms242115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Antibodies are the macromolecules of choice to ensure specific recognition of biomarkers in biological assays. However, they present a range of shortfalls including a relatively high production cost and limited tissue penetration. Peptides are relatively small molecules able to reproduce sequences of highly specific paratopes and, although they have less biospecificity than antibodies, they offer advantages like ease of synthesis, modifications of their amino acid sequences and tagging with fluorophores and other molecules required for detection. This work presents a strategy to design peptide sequences able to recognize the CD44 hyaluronic acid receptor present in the plasmalemma of a range of cells including human bone marrow stromal mesenchymal cells. The protocol of identification of the optimal amino acid sequence was based on the combination of rational design and in silico methodologies. This protocol led to the identification of two peptide sequences which were synthesized and tested on human bone marrow mesenchymal stromal cells (hBM-MSCs) for their ability to ensure specific binding to the CD44 receptor. Of the two peptides, one binds CD44 with sensitivity and selectivity, thus proving its potential to be used as a suitable alternative to this antibody in conventional immunostaining. In the context of regenerative medicine, the availability of this peptide could be harnessed to functionalize tissue engineering scaffolds to anchor stem cells as well as to be integrated into systems such as cell sorters to efficiently isolate MSCs from biological samples including various cell subpopulations. The data here reported can represent a model for developing peptide sequences able to recognize hBM-MSCs and other types of cells and for their integration in a range of biomedical applications.
Collapse
Affiliation(s)
- Michela Buonocore
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Chemical Sciences, University of Naples Federico II, 80138 Naples, Italy
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, 84084 Fisciano, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Carmen Marino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Enza Napolitano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Sara Novi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Francesco Montella
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valentina Lopardo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (E.C.); (F.M.); (V.L.)
| | - Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton BN2 4AT, UK; (V.P.); (M.S.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy or (M.B.); (M.G.); (A.S.); or (V.C.); (C.M.); (E.N.); (S.N.); (M.F.T.)
| |
Collapse
|
4
|
Alves L, Machado V, Botelho J, Mendes JJ, Cabral JMS, da Silva CL, Carvalho MS. Enhanced Proliferative and Osteogenic Potential of Periodontal Ligament Stromal Cells. Biomedicines 2023; 11:biomedicines11051352. [PMID: 37239023 DOI: 10.3390/biomedicines11051352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Cell-based therapies using periodontal ligament stromal cells (PDLSC) for periodontal regeneration may represent an alternative source for mesenchymal stromal cells (MSC) to MSC derived from bone marrow (MSC(M)) and adipose tissue (MSC(AT)). We aimed to characterize the osteogenic/periodontal potential of PDLSC in comparison to MSC(M) and MSC(AT). PDLSC were obtained from surgically extracted healthy human third molars, while MSC(M) and MSC(AT) were obtained from a previously established cell bank. Flow cytometry, immunocytochemistry, and cell proliferation analyses provided cellular characteristics from each group. Cells from the three groups presented MSC-like morphology, MSC-related marker expression, and multilineage differentiation capacity (adipogenic, chondrogenic, and osteogenic). In this study, PDLSC expressed osteopontin, osteocalcin, and asporin, while MSC(M) and MSC(AT) did not. Of note, only PDLSC expressed CD146, a marker previously applied to identify PDLSC, and presented higher proliferative potential compared to MSC(M) and MSC(AT). Upon osteogenic induction, PDLSC exhibited higher calcium content and enhanced upregulation of osteogenic/periodontal genes compared to MSC(M) and MSC(AT), such as Runx2, Col1A1 and CEMP-1. However, the alkaline phosphatase activity of PDLSC did not increase. Our findings suggest that PDLSC might be a promising cell source for periodontal regeneration, presenting enhanced proliferative and osteogenic potential compared to MSC(M) and MSC(AT).
Collapse
Affiliation(s)
- Laura Alves
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Vanessa Machado
- Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
- Evidence-Based Hub, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
| | - João Botelho
- Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
- Evidence-Based Hub, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
| | - José João Mendes
- Clinical Research Unit, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
- Evidence-Based Hub, Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, 2829-511 Almada, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marta S Carvalho
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
5
|
Goh D, Yang Y, Lee EH, Hui JHP, Yang Z. Managing the Heterogeneity of Mesenchymal Stem Cells for Cartilage Regenerative Therapy: A Review. Bioengineering (Basel) 2023; 10:bioengineering10030355. [PMID: 36978745 PMCID: PMC10045936 DOI: 10.3390/bioengineering10030355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/12/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Articular cartilage defects commonly result from trauma and are associated with significant morbidity. Since cartilage is an avascular, aneural, and alymphatic tissue with a poor intrinsic healing ability, the regeneration of functional hyaline cartilage remains a difficult clinical problem. Mesenchymal stem cells (MSCs) are multipotent cells with multilineage differentiation potential, including the ability to differentiate into chondrocytes. Due to their availability and ease of ex vivo expansion, clinicians are increasingly applying MSCs in the treatment of cartilage lesions. However, despite encouraging pre-clinical and clinical data, inconsistencies in MSC proliferative and chondrogenic potential depending on donor, tissue source, cell subset, culture conditions, and handling techniques remain a key barrier to widespread clinical application of MSC therapy in cartilage regeneration. In this review, we highlight the strategies to manage the heterogeneity of MSCs ex vivo for more effective cartilage repair, including reducing the MSC culture expansion period, and selecting MSCs with higher chondrogenic potential through specific genetic markers, surface markers, and biophysical attributes. The accomplishment of a less heterogeneous population of culture-expanded MSCs may improve the scalability, reproducibility, and standardisation of MSC therapy for clinical application in cartilage regeneration.
Collapse
Affiliation(s)
- Doreen Goh
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Yanmeng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - James Hoi Po Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
| | - Zheng Yang
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower block Level 11, Singapore 119288, Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore 11751, Singapore
- Critical Analytics for Manufacturing Personalised-Medicine, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Correspondence: ; Tel.: +65-6516-5398
| |
Collapse
|
6
|
Shi C, Zhang K, Zhao Z, Wang Y, Xu H, Wei W. Correlation between stem cell molecular phenotype and atherosclerotic plaque neointima formation and analysis of stem cell signal pathways. Front Cell Dev Biol 2023; 11:1080563. [PMID: 36711040 PMCID: PMC9877345 DOI: 10.3389/fcell.2023.1080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Vascular stem cells exist in the three-layer structure of blood vessel walls and play an indispensable role in angiogenesis under physiological conditions and vascular remodeling under pathological conditions. Vascular stem cells are mostly quiescent, but can be activated in response to injury and participate in endothelial repair and neointima formation. Extensive studies have demonstrated the differentiation potential of stem/progenitor cells to repair endothelium and participate in neointima formation during vascular remodeling. The stem cell population has markers on the surface of the cells that can be used to identify this cell population. The main positive markers include Stem cell antigen-1 (Sca1), Sry-box transcription factor 10 (SOX10). Stromal cell antigen 1 (Stro-1) and Stem cell growth factor receptor kit (c-kit) are still controversial. Different parts of the vessel have different stem cell populations and multiple markers. In this review, we trace the role of vascular stem/progenitor cells in the progression of atherosclerosis and neointima formation, focusing on the expression of stem cell molecular markers that occur during neointima formation and vascular repair, as well as the molecular phenotypic changes that occur during differentiation of different stem cell types. To explore the correlation between stem cell molecular markers and atherosclerotic diseases and neointima formation, summarize the differential changes of molecular phenotype during the differentiation of stem cells into smooth muscle cells and endothelial cells, and further analyze the signaling pathways and molecular mechanisms of stem cells expressing different positive markers participating in intima formation and vascular repair. Summarizing the limitations of stem cells in the prevention and treatment of atherosclerotic diseases and the pressing issues that need to be addressed, we provide a feasible scheme for studying the signaling pathways of vascular stem cells involved in vascular diseases.
Collapse
Affiliation(s)
- Chuanxin Shi
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kefan Zhang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenyu Zhao
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haozhe Xu
- Department of Biotherapy, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wei
- Division of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Wei Wei,
| |
Collapse
|
7
|
Dieterle MP, Gross T, Steinberg T, Tomakidi P, Becker K, Vach K, Kremer K, Proksch S. Characterization of a Stemness-Optimized Purification Method for Human Dental-Pulp Stem Cells: An Approach to Standardization. Cells 2022; 11:cells11203204. [PMID: 36291072 PMCID: PMC9600643 DOI: 10.3390/cells11203204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human dental pulp stem cells (hDPSCs) are promising for oral/craniofacial regeneration, but their purification and characterization is not yet standardized. hDPSCs from three donors were purified by magnetic activated cell sorting (MACS)-assisted STRO-1-positive cell enrichment (+), colony derivation (c), or a combination of both (c/+). Immunophenotype, clonogenicity, stemness marker expression, senescence, and proliferation were analyzed. Multilineage differentiation was assessed by qPCR, immunohistochemistry, and extracellular matrix mineralization. To confirm the credibility of the results, repeated measures analysis and post hoc p-value adjustment were applied. All hDPSC fractions expressed STRO-1 and were similar for several surface markers, while their clonogenicity and expression of CD10/44/105/146, and 166 varied with the purification method. (+) cells proliferated significantly faster than (c/+), while (c) showed the highest increase in metabolic activity. Colony formation was most efficient in (+) cells, which also exhibited the lowest cellular senescence. All hDPSCs produced mineralized extracellular matrix. Regarding osteogenic induction, (c/+) revealed a significant increase in mRNA expression of COL5A1 and COL6A1, while osteogenic marker genes were detected at varying levels. (c/+) were the only population missing BDNF gene transcription increase during neurogenic induction. All hDPSCs were able to differentiate into chondrocytes. In summary, the three hDPSCs populations showed differences in phenotype, stemness, proliferation, and differentiation capacity. The data suggest that STRO-1-positive cell enrichment is the optimal choice for hDPSCs purification to maintain hDPSCs stemness. Furthermore, an (immuno) phenotypic characterization is the minimum requirement for quality control in hDPSCs studies.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tara Gross
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-27047460
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kathrin Becker
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, Germany
| | - Katrin Kremer
- Department of Oral and Maxillofacial Surgery, Center for Dental Medicine, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Susanne Proksch
- Department of Operative Dentistry and Periodontology, Centre for Dental Medicine Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
- G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center—University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
8
|
Chen Y, Zhang Z, Yang X, Liu A, Liu S, Feng J, Xuan K. Odontogenic MSC Heterogeneity: Challenges and Opportunities for Regenerative Medicine. Front Physiol 2022; 13:827470. [PMID: 35514352 PMCID: PMC9061943 DOI: 10.3389/fphys.2022.827470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 01/09/2023] Open
Abstract
Cellular heterogeneity refers to the genetic and phenotypic differences among cells, which reflect their various fate choices, including viability, proliferation, self-renewal probability, and differentiation into different lineages. In recent years, research on the heterogeneity of mesenchymal stem cells has made some progress. Odontogenic mesenchymal stem cells share the characteristics of mesenchymal stem cells, namely, good accessibility, low immunogenicity and high stemness. In addition, they also exhibit the characteristics of vasculogenesis and neurogenesis, making them attractive for tissue engineering and regenerative medicine. However, the usage of mesenchymal stem cell subgroups differs in different diseases. Furthermore, because of the heterogeneity of odontogenic mesenchymal stem cells, their application in tissue regeneration and disease management is restricted. Findings related to the heterogeneity of odontogenic mesenchymal stem cells urgently need to be summarized, thus, we reviewed studies on odontogenic mesenchymal stem cells and their specific subpopulations, in order to provide indications for further research on the stem cell regenerative therapy.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoxue Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Anqi Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jianying Feng
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
9
|
Khalid S, Ekram S, Salim A, Chaudhry GR, Khan I. Transcription regulators differentiate mesenchymal stem cells into chondroprogenitors, and their in vivo implantation regenerated the intervertebral disc degeneration. World J Stem Cells 2022; 14:163-182. [PMID: 35432734 PMCID: PMC8963382 DOI: 10.4252/wjsc.v14.i2.163] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is the leading cause of lower back pain. Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix (ECM). Mesenchymal stem cells (MSCs) have been envisioned as a promising treatment for degenerative illnesses. Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc (IVD). AIM To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes, and to assess their therapeutic potential in IVD regeneration. METHODS MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers. MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers. These differentiated MSCs were implanted in the rat model of IVDD. The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs. RESULTS Isolated cells showed fibroblast-like morphology and expressed CD105, CD90, CD73, CD29, and Vimentin but not CD45 antigens. Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene, BMP, Sox-9, Six-1, and Aggrecan, and protein expression of Sox-9 and Six-1. The implanted cells integrated, survived, and homed in the degenerated intervertebral disc. Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture. CONCLUSION Genetically modified MSCs accelerate cartilage regeneration, providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases.
Collapse
Affiliation(s)
- Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, United States
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan.
| |
Collapse
|
10
|
Mackay BS, Marshall K, Grant-Jacob JA, Kanczler J, Eason RW, Oreffo ROC, Mills B. The future of bone regeneration: integrating AI into tissue engineering. Biomed Phys Eng Express 2021; 7. [PMID: 34271556 DOI: 10.1088/2057-1976/ac154f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that harnesses biomaterial and stem cell research to utilise the body's natural healing responses to regenerate tissue and organs. There remain many unanswered questions in tissue engineering, with optimal biomaterial designs still to be developed and a lack of adequate stem cell knowledge limiting successful application. Advances in artificial intelligence (AI), and deep learning specifically, offer the potential to improve both scientific understanding and clinical outcomes in regenerative medicine. With enhanced perception of how to integrate artificial intelligence into current research and clinical practice, AI offers an invaluable tool to improve patient outcome.
Collapse
Affiliation(s)
- Benita S Mackay
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Karen Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - James A Grant-Jacob
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - Robert W Eason
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Ben Mills
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
12
|
Zha K, Li X, Yang Z, Tian G, Sun Z, Sui X, Dai Y, Liu S, Guo Q. Heterogeneity of mesenchymal stem cells in cartilage regeneration: from characterization to application. NPJ Regen Med 2021; 6:14. [PMID: 33741999 PMCID: PMC7979687 DOI: 10.1038/s41536-021-00122-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage is susceptible to damage but hard to self-repair due to its avascular nature. Traditional treatment methods are not able to produce satisfactory effects. Mesenchymal stem cells (MSCs) have shown great promise in cartilage repair. However, the therapeutic effect of MSCs is often unstable partly due to their heterogeneity. Understanding the heterogeneity of MSCs and the potential of different types of MSCs for cartilage regeneration will facilitate the selection of superior MSCs for treating cartilage damage. This review provides an overview of the heterogeneity of MSCs at the donor, tissue source and cell immunophenotype levels, including their cytological properties, such as their ability for proliferation, chondrogenic differentiation and immunoregulation, as well as their current applications in cartilage regeneration. This information will improve the precision of MSC-based therapeutic strategies, thus maximizing the efficiency of articular cartilage repair.
Collapse
Affiliation(s)
- Kangkang Zha
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xu Li
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yang
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Guangzhao Tian
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Sun
- Medical School of Chinese PLA, Beijing, China
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Yongjing Dai
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, Beijing, China.
| |
Collapse
|
13
|
Couto de Carvalho LA, Tosta Dos Santos SL, Sacramento LV, de Almeida VR, de Aquino Xavier FC, Dos Santos JN, Gomes Henriques Leitão ÁC. Mesenchymal stem cell markers in periodontal tissues and periapical lesions. Acta Histochem 2020; 122:151636. [PMID: 33132168 DOI: 10.1016/j.acthis.2020.151636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are characterized by the potential to differentiate into multiple cell lineages, high proliferation rates, and self-renewal capacity, in addition to the ability to maintain their undifferentiated state. These cells have been identified in physiological oral tissues such as pulp tissue, dental follicle, apical papilla and periodontal ligament, as well as in pathological situations such as chronic periapical lesions (CPLs). The criteria used for the identification of MSCs include the positive expression of specific surface antigens, with CD73, CD90, CD105, CD44, CD146, STRO-1, CD166, NANOG and OCT4 being the most specific for these cells. AIM The aim of this review was to explore the literature on markers able to identify MSCs as well as the presence of these cells in the healthy periodontal ligament and CPLs, highlighting their role in regenerative medicine and implications in the progression of these lesions. METHODS Narrative literature review searching the PubMed and Medline databases. Articles published in English between 1974 and 2020 were retrieved. CONCLUSION The included studies confirmed the presence of MSCs in the healthy periodontal ligament and in CPLs. Several surface markers are used for the characterization of these cells which, although not specific, are effective in cell recognition. Mesenchymal stem cells participate in tissue repair, exerting anti- inflammatory, immunosuppressive and proangiogenic effects, and are therefore involved in the progression and attenuation of CPLs or even in the persistence of these lesions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Nunes Dos Santos
- Postgraduation Program in Dentistry and Health, Federal University of Bahia, Salvador, BA, Brazil
| | | |
Collapse
|
14
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
15
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
16
|
Characterization and therapeutic applications of mesenchymal stem cells for regenerative medicine. Tissue Cell 2020; 64:101330. [PMID: 32473704 DOI: 10.1016/j.tice.2020.101330] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent, genomic stable, self-renewable, and culturally expandable adult stem cells. MSCs facilitate tissue development, maintenance and repair, and produce secretory factors that support engraftment and trophic functions, marking them an attractive option in cell therapy, regenerative medicine and tissue engineering. METHOD In this review, we summarize the recent researches regarding the isolation and characterization of MSCs, therapeutic applications and advanced engineering techniques. We also discuss the advantages and limitations that remain to be overcome for MSCs based therapy. RESULTS It has been demonstrated that MSCs are able to modulate endogenous tissue and immune cells. Preclinical studies and early phase clinical trials have shown their great potential for tissue engineering of bone, cartilage, marrow stroma, muscle, fat, and other connective tissues. CONCLUSIONS MSC-based therapy show considerable promise to rebuild damaged or diseased tissues, which could be a promising therapeutic method for regeneration medicine.
Collapse
|
17
|
Bourgine PE, Fritsch K, Pigeot S, Takizawa H, Kunz L, Kokkaliaris KD, Coutu DL, Manz MG, Martin I, Schroeder T. Fate Distribution and Regulatory Role of Human Mesenchymal Stromal Cells in Engineered Hematopoietic Bone Organs. iScience 2019; 19:504-513. [PMID: 31442666 PMCID: PMC6710718 DOI: 10.1016/j.isci.2019.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 07/01/2019] [Accepted: 08/02/2019] [Indexed: 12/21/2022] Open
Abstract
The generation of humanized ectopic ossicles (hOss) in mice has been proposed as an advanced translational and fundamental model to study the human hematopoietic system. The approach relies on the presence of human bone marrow-derived mesenchymal stromal cells (hMSCs) supporting the engraftment of transplanted human hematopoietic stem and progenitor cells (HSPCs). However, the functional distribution of hMSCs within the humanized microenvironment remains to be investigated. Here, we combined genetic tools and quantitative confocal microscopy to engineer and subsequently analyze hMSCs′ fate and distribution in hOss. Implanted hMSCs reconstituted a humanized environment including osteocytes, osteoblasts, adipocytes, and stromal cells associated with vessels. By imaging full hOss, we identified rare physical interactions between hMSCs and human CD45+/CD34+/CD90+ cells, supporting a functional contact-triggered regulatory role of hMSCs. Our study highlights the importance of compiling quantitative information from humanized organs, to decode the interactions between the hematopoietic and the stromal compartments.
Mesenchymal cells can generate human bone organs with tailored molecular signature Mesenchymal cells reconstitute a human niche environment capable of regulating HSPCs
Collapse
Affiliation(s)
- Paul E Bourgine
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland; Department of Clinical Sciences, Lund Stem Cell Center, Lund University, BMC B11, 221 84 Lund, Sweden; Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kristin Fritsch
- Department of Hematology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Sebastien Pigeot
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Leo Kunz
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Konstantinos D Kokkaliaris
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Daniel L Coutu
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Markus G Manz
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Ivan Martin
- Tissue Engineering, Department of Biomedicine, University of Basel and University Hospital Basel, 4056 Basel, Switzerland.
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
18
|
Virant-Klun I, Omejec S, Stimpfel M, Skerl P, Novakovic S, Jancar N, Vrtacnik-Bokal E. Female Age Affects the Mesenchymal Stem Cell Characteristics of Aspirated Follicular Cells in the In Vitro Fertilization Programme. Stem Cell Rev Rep 2019; 15:543-557. [PMID: 31055736 DOI: 10.1007/s12015-019-09889-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aspirated follicular cells (AFCs) from the in vitro fertilization program can express various stem cell markers and are even able to differentiate into different types of cells in vitro. The female reproductive potential decreases with increasing age due to lowered ovarian reserve and oocyte quality, but data on the effect of female age on stem cell characteristics of AFCs are scarce. Therefore, the aim of this study was to elucidate whether female age affects the mesenchymal stem cell (MSC) characteristics of AFCs. Follicular aspirates were collected from 12 patients included in the in vitro fertilization programme with a normal ovarian reserve. Patients were divided into four age groups: Group A ≤ 30 years, Group B 31-35 years, Group C 36-39 years and Group D ≥ 40 years. After removal of the oocytes, AFCs were collected from follicular aspirates using hypo-osmotic technique and cultured in vitro, and their stemness was compared according to female age. The cultured AFCs were analysed for gene expression using the Human Mesenchymal Stem Cell RT2 Profiler™ PCR Array, for their potential for differentiation into adipogenic and osteogenic lineage, and for their expression of MSC-related markers using immunocytochemistry. We found that female age can significantly influence their stemness: expression of pluripotency and MSC-related genes, and their differentiation potential. Despite the relatively high expression of MSC-related genes, the AFCs of the oldest patients had the lowest potential to differentiate into osteogenic and adipogenic lineages in vitro, which may be related to their age and the changed ovarian function.
Collapse
Affiliation(s)
- Irma Virant-Klun
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia.
| | - S Omejec
- Blood Transfusion Centre of Slovenia, Slajmerjeva 6, 1000, Ljubljana, Slovenia
| | - M Stimpfel
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - P Skerl
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - S Novakovic
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Zaloska 2, 1000, Ljubljana, Slovenia
| | - N Jancar
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| | - E Vrtacnik-Bokal
- Department of Obstetrics and Gynaecology, University Medical Centre Ljubljana, Zaloska cesta 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
19
|
Rojas-Rodriguez R, Lujan-Hernandez J, Min SY, DeSouza T, Teebagy P, Desai A, Tessier H, Slamin R, Siegel-Reamer L, Berg C, Baez A, Lalikos J, Corvera S. Generation of Functional Human Adipose Tissue in Mice from Primed Progenitor Cells. Tissue Eng Part A 2019; 25:842-854. [PMID: 30306830 PMCID: PMC6590775 DOI: 10.1089/ten.tea.2018.0067] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adipose tissue (AT) is used extensively in reconstructive and regenerative therapies, but transplanted fat often undergoes cell death, leading to inflammation, calcification, and requirement for further revision surgery. Previously, we have found that mesenchymal progenitor cells within human AT can proliferate in three-dimensional culture under proangiogenic conditions. These cells (primed ADipose progenitor cells, PADS) robustly differentiate into adipocytes in vitro (ad-PADS). The goal of this study is to determine whether ad-PADS can form structured AT in vivo, with potential for use in surgical applications. Grafts formed from ad-PADS were compared to grafts formed from AT obtained by liposuction after implantation into nude mice. Graft volume was measured by microcomputed tomography scanning, and the functionality of cells within the graft was assessed by quantifying circulating human adiponectin. The degree of graft vascularization by donor or host vessels and the content of human or mouse adipocytes within the graft were measured using species-specific endothelial and adipocyte-specific quantitative real time polymerase chain reaction probes, and histochemistry with mouse and human-specific lectins. Our results show that ad-PADS grafted subcutaneously into nude mice induce robust vascularization from the host, continue to increase in volume over time, express the human adipocyte marker PLIN1 at levels comparable to human AT, and secrete increasing amounts of human adiponectin into the mouse circulation. In contrast, grafts composed of AT fragments obtained by liposuction become less vascularized, develop regions of calcification and decreased content of PLIN1, and secrete lower amounts of adiponectin per unit volume. Enrichment of liposuction tissue with ad-PADS improves vascularization, indicating that ad-PADS may be proangiogenic. Mechanistically, ad-PADS express an extracellular matrix gene signature that includes elements previously associated with small vessel development (COL4A1). Thus, through the formation of a proangiogenic environment, ad-PADS can form functional AT with capacity for long-term survival, and can potentially be used to improve outcomes in reconstructive and regenerative medicine.
Collapse
Affiliation(s)
- Raziel Rojas-Rodriguez
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jorge Lujan-Hernandez
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - So Yun Min
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Tiffany DeSouza
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Teebagy
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Anand Desai
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Heather Tessier
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Robert Slamin
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Leah Siegel-Reamer
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Cara Berg
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Angel Baez
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Janice Lalikos
- 2 Department of Surgery, University of Massachusetts Medical School and UMASS Memorial Medical Center, Worcester, Massachusetts
| | - Silvia Corvera
- 1 Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
20
|
Apel C, Buttler P, Salber J, Dhanasingh A, Neuss S. Differential mineralization of human dental pulp stem cells on diverse polymers. ACTA ACUST UNITED AC 2019; 63:261-269. [PMID: 28157689 DOI: 10.1515/bmt-2016-0141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
In tissue engineering, biomaterials are used as scaffolds for spatial distribution of specific cell types. Biomaterials can potentially influence cell proliferation and extracellular matrix formation, both in positive and negative ways. The aim of the present study was to investigate and compare mineralized matrix production of human dental pulp stem cells (DPSC), cultured on 17 different well-characterized polymers. Osteogenic differentiation of DPSC was induced for 21 days on biomaterials using dexamethasone, L-ascorbic-acid-2-phosphate, and sodium β-glycerophosphate. Success of differentiation was analyzed by quantitative RealTime PCR, alkaline phosphatase (ALP) activity, and visualization of calcium accumulations by alizarin red staining with subsequent quantification by colorimetric method. All of the tested biomaterials of an established biomaterial bank enabled a mineralized matrix formation of the DPSC after osteoinductive stimulation. Mineralization on poly(tetrafluoro ethylene) (PTFE), poly(dimethyl siloxane) (PDMS), Texin, LT706, poly(epsilon-caprolactone) (PCL), polyesteramide type-C (PEA-C), hyaluronic acid, and fibrin was significantly enhanced (p<0.05) compared to standard tissue culture polystyrene (TCPS) as control. In particular, PEA-C, hyaluronic acid, and fibrin promoted superior mineralization values. These results were confirmed by ALP activity on the same materials. Different biomaterials differentially influence the differentiation and mineralized matrix formation of human DPSC. Based on the present results, promising biomaterial candidates for bone-related tissue engineering applications in combination with DPSC can be selected.
Collapse
Affiliation(s)
- Christian Apel
- Department of Biohybrid and Medical Textiles, Institute of Applied Medical Engineering, Helmholtz-Institute of Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Patricia Buttler
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University, Aachen, Germany
| | - Jochen Salber
- Chirurgische Klinik und Poliklinik, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil GmbH, Ruhr Universität Bochum, Bochum, Germany
| | - Anandhan Dhanasingh
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- Institute of Pathology, RWTH Aachen University, Aachen, Germany.,Helmholtz Institute of Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
21
|
Poltavtseva RA, Poltavtsev AV, Lutsenko GV, Svirshchevskaya EV. Myths, reality and future of mesenchymal stem cell therapy. Cell Tissue Res 2018; 375:563-574. [PMID: 30456646 DOI: 10.1007/s00441-018-2961-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell (MSC) therapy represents an alternative approach for tissue regeneration and inflammation control. In spite of a huge amount of preclinical data that has been accumulated on the therapeutic properties of MSCs, there are many conflicting results, possibly due to differences in the properties of MSCs obtained from different sources or underestimated mechanisms of MSC in vivo behavior. This review consolidates the in vivo effects of MSC therapy, discusses the fate of MSCs after intravascular and local delivery and proposes possible trends in MSC therapy.
Collapse
Affiliation(s)
- R A Poltavtseva
- Federal State Budget Institution "Research Center for Obstetrics, Gynecology and Perinatology" Ministry of Healthcare of the Russian Federation, Oparin St, 4, Moscow, Russian Federation, 117997
| | - A V Poltavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya St, 16/10, Moscow, Russian Federation, 117997
| | - G V Lutsenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya St, 16/10, Moscow, Russian Federation, 117997
| | - E V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya St, 16/10, Moscow, Russian Federation, 117997.
| |
Collapse
|
22
|
Proksch S, Galler KM. Scaffold Materials and Dental Stem Cells in Dental Tissue Regeneration. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40496-018-0197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Consentius C, Mirenska A, Jurisch A, Reinke S, Scharm M, Zenclussen AC, Hennig C, Volk HD. In situ detection of CD73+ CD90+ CD105+ lineage: Mesenchymal stromal cells in human placenta and bone marrow specimens by chipcytometry. Cytometry A 2018; 93:889-893. [PMID: 30211969 DOI: 10.1002/cyto.a.23509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2018] [Accepted: 05/24/2018] [Indexed: 12/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) support endogenous regeneration and present therefore promising opportunities for in situ tissue engineering. They can be isolated and expanded from various tissues, for example, bone marrow, adipose tissue, or placenta. The minimal consensus definition criteria of ex vivo expanded MSCs requires them to be positive for CD73, CD90, and CD105 expression, while being negative for CD34, CD45, CD14, CD19, and HLA-DR. This study aimed to compare the in situ phenotype of MSCs with that of their culture-expanded progeny. We report for the first time in situ detection of cells expressing this marker combination in human placenta cryosections as well as in bone marrow aspirates using multiplex-immunohistology (Chipcytometry), a technique that allows staining of more than 100 biomarkers consecutively on the same cell. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christine Consentius
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | | | - Anke Jurisch
- Institute of Medical Immunology, Berlin, Germany
| | - Simon Reinke
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Markus Scharm
- Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynaecology, Medical Faculty, Otto-von-Guericke-University, Magdeburg, Germany
| | | | - Hans-Dieter Volk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany.,Institute of Medical Immunology, Berlin, Germany
| |
Collapse
|
24
|
Farag A, Hashimi SM, Vaquette C, Bartold PM, Hutmacher DW, Ivanovski S. The effect of decellularized tissue engineered constructs on periodontal regeneration. J Clin Periodontol 2018; 45:586-596. [PMID: 29500836 DOI: 10.1111/jcpe.12886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
AIM To evaluate the effect of decellularized tissue engineered constructs on cell differentiation in vitro and periodontal regeneration in vivo. MATERIALS AND METHODS Periodontal ligament cell (PDLC) sheets were loaded on polycaprolactone (PCL) scaffolds and then decellularized. Constructs were assessed for their effect on allogenic PDLC and mesenchymal stem cell (MSC) differentiation in vitro, as evaluated by gene expression of bone and periodontal ligament tissue markers post-seeding. Expression of MSC marker STRO-1 was assessed by immunostaining. Decellularized constructs were evaluated in a rat periodontal defect model to assess their biocompatibility and tissue integration. Microcomputed topography (μCT) and histological assessment were performed to assess the regenerative potential of the constructs at 2 and 4 weeks postoperatively. RESULTS There was upregulation of bone marker gene expression by PDLCs especially on the 14th day. MSCs lacked bone markers expression, but showed increased collagen I marker expression on day 14. STRO-1 expression by the MSCs decreased over the three timepoints when seeded on decellularized sheets. Histological assessment demonstrated the biocompatibility of the decellularized constructs in vivo. More new attachment formation was observed on the decellularized constructs compared to scaffold only controls. CONCLUSION Decellularized tissue engineered constructs are capable of inducing cell differentiation in vitro and have the potential to facilitate periodontal regeneration in vivo.
Collapse
Affiliation(s)
- Amro Farag
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University (University of Dammam), Dammam, Saudi Arabia
| | - Cedryck Vaquette
- Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
| | - Peter M Bartold
- Colgate Australian Clinical, Dental Research Centre, Dental School, University of Adelaide, Adelaide, SA, Australia
| | | | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
25
|
Bhartiya D, James K. Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. J Ovarian Res 2017; 10:29. [PMID: 28438190 PMCID: PMC5404303 DOI: 10.1186/s13048-017-0324-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
We have earlier reported the presence of very small embryonic-like stem cells (VSELs) in adult mouse uterus along with slightly bigger progenitors termed endometrial stem cells (EnSCs) and their regulation by ovarian hormones thus demonstrating a crucial role played by them during proliferation, differentiation and remodeling of the endometrium. Present study is a brief communication wherein we have examined the effect of higher dose of estrogen (E, 2 μg/day), progesterone (P, 1 mg/day) and follicle stimulating hormone (FSH, 5 IU/day for 5 days) specifically on the myometrium and perimetrium surrounding the endometrium in bilaterally ovariectomized mice. Similar treatment with E & P was recently used in a study published in the journal Nature to study the effect of steroid hormones on hematopoietic stem cells and this treatment regimen helps achieve hormone levels observed during pregnancy. Quiescent spherical stem cells (lacking PCNA expression) with high nucleo-cytoplasmic ratio and nuclear OCT-4A were detected in the perimetrium of atrophied (bilaterally ovariectomized) uterus. PCNA expression was observed after treatment and cells with cytoplasmic OCT-4B were invariably observed in the myometrium. VSELs were clearly visualized after treatment and the effect of P and FSH was more prominent compared to E on the development of myometrium. It is speculated that stem cells with nuclear OCT-4A located in the perimetrium differentiate to give rise to endothelial and myometrial cells with cytoplasmic OCT-4B. Based on the results of present study and published reports showing the presence of pluripotent markers (OCT-4, NANOG and SOX2) in human myometrial side population and expression of particularly OCT-4A in human leiomyomas, we speculate that these nuclear OCT-4 positive stem cells located in the perimetrium are the possible tumor initiating cells leading to the development of leiomyomas rather than the mesenchymal cells which express cytoplasmic OCT-4B.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | - Kreema James
- Stem Cell Biology Department, National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| |
Collapse
|
26
|
Fitter S, Gronthos S, Ooi SS, Zannettino AC. The Mesenchymal Precursor Cell Marker Antibody STRO-1 Binds to Cell Surface Heat Shock Cognate 70. Stem Cells 2017; 35:940-951. [DOI: 10.1002/stem.2560] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide; Adelaide South Australia Australia
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Soo Siang Ooi
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| | - Andrew C.W. Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Science, Adelaide Medical School
- Cancer Theme, South Australian Health and Medical Research Institute; Adelaide South Australia Australia
| |
Collapse
|
27
|
Mo M, Wang S, Zhou Y, Li H, Wu Y. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential. Cell Mol Life Sci 2016; 73:3311-21. [PMID: 27141940 PMCID: PMC11108490 DOI: 10.1007/s00018-016-2229-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/16/2016] [Accepted: 04/14/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties.
Collapse
Affiliation(s)
- Miaohua Mo
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Shan Wang
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Ying Zhou
- School of Life Sciences, Tsinghua University, Beijing, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China
| | - Hong Li
- Department of General Surgery, Qingdao Municipal Hospital, 5 Donghai M Rd, Qingdao, China.
| | - Yaojiong Wu
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, L406A, Tsinghua Campus, The University Town, Shenzhen, China.
| |
Collapse
|
28
|
Norozi F, Ahmadzadeh A, Shahrabi S, Vosoughi T, Saki N. Mesenchymal stem cells as a double-edged sword in suppression or progression of solid tumor cells. Tumour Biol 2016; 37:11679-11689. [PMID: 27440203 DOI: 10.1007/s13277-016-5187-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Tumor cells are able to attract mesenchymal stem cells (MSCs) to primary tumor site. On the other hand, MSCs secrete various factors to attract tumor cells towards BM. In this review, in addition to assessment of MSCs function at tumor sites and their impact on growth and metastasis of tumor cells, the importance of MSC in attraction of malignant cells to BM and their involvement in drug resistance of tumor cells have also been studied. Relevant literature was identified by a PubMed search (2000-2015) of English-language literature using the terms mesenchymal stem cells, cancer cell, metastasis, and tumor microenvironment. MSCs migrate towards tumor microenvironment and are involved in both pro-tumorigenic and antitumorigenic functions. The dual function of MSCs at tumor sites is dependent upon a variety of factors, including the type and origin of MSCs, the cancer cell line under study, in vivo or in vitro conditions, the factors secreted by MSCs and interactions between MSCs, host immune cells and cancer cells. Therefore, MSCs can be regarded both as friends and enemies of cancer cells. Although the role of a number of pathways, including IL-6/STAT3 pathway, has been indicated in controlling the interaction between MSCs and tumor cells, other mechanisms by which MSCs can control the tumor cells are not clear yet. A better understanding of these mechanisms through further studies can determine the exact role of MSCs in cancer progression and identify them as important therapeutic agents or targets.
Collapse
Affiliation(s)
- Fatemeh Norozi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Ahmadzadeh
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of biochemistry and hematology, Faculty of Medicine, Semnan University of medical sciences, Semnan, Iran
| | - Tina Vosoughi
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
29
|
Ciapetti G, Granchi D, Fotia C, Savarino L, Dallari D, Del Piccolo N, Donati DM, Baldini N. Effects of hypoxia on osteogenic differentiation of mesenchymal stromal cells used as a cell therapy for avascular necrosis of the femoral head. Cytotherapy 2016; 18:1087-99. [PMID: 27421741 DOI: 10.1016/j.jcyt.2016.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AIMS Avascular necrosis of the femoral head (AVN) occurs as common result of various conditions or develops as a primary entity, with a high freqency in young adults. Because of its tendency toward osteoarthritis requiring total hip arthroplasty, alternative treatments are being advocated, including cell therapy with mesenchymal stromal cells (MSCs). Because osteonecrotic bone is a severely hypoxic tissue, with a 1-3% oxygen tension, the survival and function of multipotent cells is questionable. METHODS In this study, the proliferative, immunophenotypic and osteogenic properties of bone marrow (BM)-derived MSCs from a clinical series of patients with AVN were evaluated under in vitro conditions mimicking the hypoxic milieu of AVN to verify the rationale for cell therapy. MSCs retrieved from the iliac crest (BM-MSC) were isolated, expanded and induced to osteogenic differentiation under a 2% pO2 atmosphere (hypoxia) in comparison with the standard 21% pO2 (normoxia) that is routinely used in cell culture assays. RESULTS Both proliferation and colony-forming ability were significantly enhanced in hypoxia-exposed BM-MSCs compared with BM-MSCs under normoxia. The expression of bone-related genes, including alkaline phosphatase, Type I collagen, and osteocalcin was significantly increased under hypoxia. Moreover, mineral deposition after osteogenic induction was not hampered, but in some cases even enhanced under low oxygen tension. CONCLUSIONS These findings support autologous cell therapy as an effective treatment to stimulate bone healing in the hypoxic microenvironment of AVN.
Collapse
Affiliation(s)
- Gabriela Ciapetti
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Donatella Granchi
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Caterina Fotia
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lucia Savarino
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Dante Dallari
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Del Piccolo
- Conservative Orthopaedic Surgery and Innovative Techniques, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Davide Maria Donati
- 3rd Orthopaedic and Traumatologic Clinic, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| |
Collapse
|
30
|
Xavier M, Oreffo ROC, Morgan H. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques. Biotechnol Adv 2016; 34:908-923. [PMID: 27236022 DOI: 10.1016/j.biotechadv.2016.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/13/2016] [Accepted: 05/22/2016] [Indexed: 01/03/2023]
Abstract
Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples.
Collapse
Affiliation(s)
- Miguel Xavier
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom.; Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, United Kingdom..
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, Southampton General Hospital, Tremona Road, SO16 6YD Southampton, United Kingdom..
| | - Hywel Morgan
- Faculty of Physical Sciences and Engineering, Institute for Life Sciences, University of Southampton, SO17 1BJ, United Kingdom..
| |
Collapse
|
31
|
Beeravolu N, Khan I, McKee C, Dinda S, Thibodeau B, Wilson G, Perez-Cruet M, Bahado-Singh R, Chaudhry GR. Isolation and comparative analysis of potential stem/progenitor cells from different regions of human umbilical cord. Stem Cell Res 2016; 16:696-711. [PMID: 27107345 DOI: 10.1016/j.scr.2016.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 04/09/2016] [Accepted: 04/11/2016] [Indexed: 12/16/2022] Open
Abstract
Human umbilical cord (hUC) blood and tissue are non-invasive sources of potential stem/progenitor cells with similar cell surface properties as bone marrow stromal cells (BMSCs). While they are limited in cord blood, they may be more abundant in hUC. However, the hUC is an anatomically complex organ and the potential of cells in various sites of the hUC has not been fully explored. We dissected the hUC into its discrete sites and isolated hUC cells from the cord placenta junction (CPJ), cord tissue (CT), and Wharton's jelly (WJ). Isolated cells displayed fibroblastoid morphology, and expressed CD29, CD44, CD73, CD90, and CD105, and showed evidence of differentiation into multiple lineages in vitro. They also expressed low levels of pluripotency genes, OCT4, NANOG, SOX2 and KLF4. Passaging markedly affected cell proliferation with concomitant decreases in the expression of pluripotency and other markers, and an increase in chondrogenic markers. Microarray analysis further revealed the differences in the gene expression of CPJ-, CT- and WJ-hUC cells. Five coding and five lncRNA genes were differentially expressed in low vs. high passage hUC cells. Only MAEL was expressed at high levels in both low and high passage CPJ-hUC cells. They displayed a greater proliferation limit and a higher degree of multi-lineage differentiation in vitro and warrant further investigation to determine their full differentiation capacity, and therapeutic and regenerative medicine potential.
Collapse
Affiliation(s)
- Naimisha Beeravolu
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Irfan Khan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA; Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Pakistan
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA
| | - Sumi Dinda
- School of Health Sciences, Oakland University, Rochester, MI 48309, USA
| | | | - George Wilson
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA; Beaumont Health System, Royal Oak, MI 48073, USA
| | - Mick Perez-Cruet
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA; Beaumont Health System, Royal Oak, MI 48073, USA
| | | | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
32
|
Wang J, Lin G, Alwaal A, Zhang X, Wang G, Jia X, Banie L, Villalta J, Lin CS, Lue TF. Kinetics of Label Retaining Cells in the Developing Rat Kidneys. PLoS One 2015; 10:e0144734. [PMID: 26650841 PMCID: PMC4674088 DOI: 10.1371/journal.pone.0144734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 11/23/2015] [Indexed: 12/23/2022] Open
Abstract
Background The kidney is a specialized low-regenerative organ with several different types of cellular lineages. The BrdU label-retaining cell (LRCs) approach has been used as part of a strategy to identify tissue-specific stem cells in the kidney; however, because the complementary base pairing in double-stranded DNA blocks the access of the anti-BrdU antibody to BrdU subunits, the stem cell marker expression in BrdU-labeled cells are often difficult to detect. In this study, we introduced a new cell labeling and detection method in which BrdU was replaced with 5-ethynyl-2-deoxyuridine (EdU) and examined the time-dependent dynamic changes of EdU-labeled cells and potential stem/progenitor markers in the development of kidney. Methods Newborn rats were intraperitoneally injected with EdU, and their kidneys were harvested respectively at different time points at 1 day, 3 days, 1 week, 2 weeks, and 6 weeks post-injection. The kidney tissues were processed for EdU and cellular markers by immunofluorescence staining. Results At the early stage, LRCs labeled by EdU were 2176.0 ± 355.6 cells at day one in each renal tissue section, but dropped to 168 ± 48.4 cells by week 6. As time increased, the numbers of LRCs were differentially expressed in the renal cortex and papilla. At the postnatal day one, nearly twice as many cells in the cortex were EdU-labeled as compared to the papilla (28.6 ± 3.6% vs. 15.6 ± 3.4%, P<0.05), while there were more LRCs within the renal papilla since the postnatal week one, and at the postnatal week 6, one third as many cells in the cortex were EdU-labeled as compared to the papilla (2.5 ± 0.1% vs. 7.7 ± 2.7%, P<0.05). The long-term LRCs at 6-week time point were associated exclusively with the glomeruli in the cortex and the renal tubules in the papilla. At 6 weeks, the EdU-labeled LRCs combined with expression of CD34, RECA-1, Nestin, and Synaptopodin were discretely but widely distributed within the glomeruli; Stro-1 around the glomeruli; and α-smooth muscle actin (SMA) in arteries. Conversely, co-expression of CD34, RECA-1, and Nestin with the long term EdU-labeled LRCs was significantly lower in renal tubules (P<0.01), while Stro-1 and Synaptopodin were not detected. Conclusion Our data found that at 6-week time point, EdU-labeled LRCs existing in the glomeruli expressed undifferentiated podocyte and endothelial markers at high rates, while those in the renal tubules expressed Nestin and vascular markers at low rates. To understand the characterization and localization of these EdU-LRCs, further studies will be needed to test cell lineage tracing, clonogenicity and differentiation potency, and the contributions to the regeneration of the kidney in response to renal injury/repair.
Collapse
Affiliation(s)
- Jianwen Wang
- Department of Urology, Beijing ChaoYang Hospital, Capital Medical University, 8 Gongtinanlu, Beijing, 100020, China
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
- * E-mail:
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Amjad Alwaal
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Xiaoyu Zhang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Xingyuan Jia
- Department of Urology, Beijing ChaoYang Hospital, Capital Medical University, 8 Gongtinanlu, Beijing, 100020, China
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Jacqueline Villalta
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| | - Tom F. Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA, 94143-0738, United States of America
| |
Collapse
|
33
|
Schimke MM, Marozin S, Lepperdinger G. Patient-Specific Age: The Other Side of the Coin in Advanced Mesenchymal Stem Cell Therapy. Front Physiol 2015; 6:362. [PMID: 26696897 PMCID: PMC4667069 DOI: 10.3389/fphys.2015.00362] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022] Open
Abstract
Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation within any type of stroma in the body of higher animals. Prominently, MSC have been recognized to reside in perivascular locations, supposedly maintaining blood vessel integrity. During tissue damage and injury, MSC/pericytes become activated, evade from their perivascular niche and are thus assumed to support wound healing and tissue regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been performed to address bone, cartilage, or heart regeneration. Furthermore, prominent studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease. Therefore, additional fields of application are presently conceived, in which MSC-based therapies potentially unfold beneficial effects, such as amelioration of non-healing conditions after tendon or spinal cord injury, as well as neuropathies. Working along these lines, MSC-based scientific research has been forged ahead to prominently occupy the clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered a determining factor for outcome and success of clinical therapies?
Collapse
Affiliation(s)
| | | | - Günter Lepperdinger
- Department of Cell Biology and Physiology, Stem Cell Research, Aging and Regeneration, University SalzburgSalzburg, Austria
| |
Collapse
|
34
|
Marković M, Tomić S, Djokić J, Čolić M. Mesenchymal Stem Cells from Periapical Lesions Upregulate the Production of Immunoregulatory Cytokines by Inflammatory Cells in Culture / Mezenhimske matične ćelije iz periapeksnih lezija stimulišu produkciju imunoregulacijskih citokina od strane inflamacijskih ćelija u kulturi. ACTA FACULTATIS MEDICAE NAISSENSIS 2015. [DOI: 10.1515/afmnai-2015-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
The pathophysiology of periapical lesions (PLs) is under control of pro-inflammatory and anti-inflammatory (mainly immunoregulatory) cytokines. We have recently established mesenchymal stem cells (MSCs) from PLs and showed their suppressive effects on the production of proinflammatory cytokines from PLs inflammatory cells (ICs). In this work we studied the production of interleukin (IL)-10, IL-27 and transforming growth factor (TGF)-β, by PL-ICs in direct or indirect contacts with PL-MSCs. PL-ICs, which were isolated from four different asymptomatic PLs, predominantly composed of lymphocytes, followed by neutrophil granulocytes, macrophages and plasma cells. PLMSCs, expressing typical MSC markers, were co-cultivated with PL-ICs at 1:10 ratio, either in direct contact or in a transwell-system, for 24 hours. The levels of cytokines in cell-culture supernatants were tested by ELISA. The results showed that PL-MSCs up-regulated the production of all three immunoregulatory cytokines by PL-ICs. PL-MSCs stimulated the production of IL-10 and IL-27 via soluble factors, whereas the up-regulation of TGF-β required direct cell-to-cell contacts. In conclusion, our results showed for the first time the involvement of PL-MSCs in restriction of inflammation in PLs by up-regulation of immunoregulatory cytokines.
Collapse
|
35
|
Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:762098. [PMID: 26236348 PMCID: PMC4506912 DOI: 10.1155/2015/762098] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes(+)) MSCs also play a role in the progression of various diseases. However, Nes(+) cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes(+) cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs.
Collapse
|
36
|
Rusu MC, Vrapciu AD, Hostiuc S, Hariga CS. Brown adipocytes, cardiac protection and a common adipo- and myogenic stem precursor in aged human hearts. Med Hypotheses 2015; 85:212-4. [PMID: 25956736 DOI: 10.1016/j.mehy.2015.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/18/2015] [Accepted: 04/25/2015] [Indexed: 12/25/2022]
Abstract
New data on adult stem cells (ASCs) are continuously added by research for use in regenerative medicine. However organ-specific ASC markers are incompletely explored. It was demonstrated that in non-cardiac brown adipose tissue (BAT) CD133+ cells differentiate in cardiomyocytes, and such BAT-derived cells induce bone marrow-derived cells into cardiomyocytes, thus being a promising source for cardiac stem cell therapy. During embryogenesis the subepicardial fat derives from BAT. Although it was not specifically investigated in human adult or aged hearts, it is actually known that metabolically active BAT can be found in many adult humans, is related to antiobesity effects, and it may derive from stem/progenitor cells. Stro-1 can safely identify in situ cardiac stem cells (CSCs) with myogenic and adipogenic potential. It was therefore raised the hypothesis of subepicardial differentiation of CSCs in BAT in adult/aged hearts, which could be viewed, such as in infants, as a mechanism of protection. This could be determined by the reactivation of an embryologic differentiation pattern in which brown adipocytes and muscle cells derive from a common stem ancestor. Such quiescent common stem ancestors could be suggested in adult, or aged, human hearts, when subepicardial BAT is found, and if a Stro-1+/CD133+/Isl-1+ phenotype of CSCs is determined.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER, Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania; International Society of Regenerative Medicine and Surgery (ISRMS), Romania.
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S Hostiuc
- Division of Legal Medicine and Bioethics, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; National Institute of Legal Medicine, Bucharest, Romania
| | - C S Hariga
- Department 11 Surgery, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
37
|
Mechanical stimulation of human tendon stem/progenitor cells results in upregulation of matrix proteins, integrins and MMPs, and activation of p38 and ERK1/2 kinases. BMC Mol Biol 2015; 16:6. [PMID: 25880261 PMCID: PMC4373449 DOI: 10.1186/s12867-015-0036-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
Background Tendons are dense connective tissues subjected periodically to mechanical stress upon which complex responsive mechanisms are activated. These mechanisms affect not only the development of these tissues but also their healing. Despite of the acknowledged importance of the mechanical stress for tendon function and repair, the mechanotransduction mechanisms in tendon cells are still unclear and the elucidation of these mechanisms is a key goal in tendon research. Tendon stem/progenitor cells (TSPC) possess common adult stem cell characteristics, and are suggested to actively participate in tendon development, tissue homeostasis as well as repair. This makes them an important cell population for tendon repair, and also an interesting research target for various open questions in tendon cell biology. Therefore, in our study we focused on TSPC, subjected them to five different mechanical protocols, and investigated the gene expression changes by using semi-quantitative, quantitative PCR and western blotting technologies. Results Among the 25 different genes analyzed, we can convincingly report that the tendon-related genes - fibromodulin, lumican and versican, the collagen I-binding integrins - α1, α2 and α11, the matrix metalloproteinases - MMP9, 13 and 14 were strongly upregulated in TSPC after 3 days of mechanical stimulation with 8% amplitude. Molecular signaling analyses of five key integrin downstream kinases suggested that mechanical stimuli are mediated through ERK1/2 and p38, which were significantly activated in 8% biaxial-loaded TSPC. Conclusions Our results demonstrate the positive effect of 8% mechanical loading on the gene expression of matrix proteins, integrins and matrix metalloproteinases, and activation of integrin downstream kinases p38 and ERK1/2 in TSPC. Taken together, our study contributes to better understanding of mechanotransduction mechanisms in TPSC, which in long term, after further translational research between tendon cell biology and orthopedics, can be beneficial to the management of tendon repair. Electronic supplementary material The online version of this article (doi:10.1186/s12867-015-0036-6) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Liu L, Aleksandrowicz E, Fan P, Schönsiegel F, Zhang Y, Sähr H, Gladkich J, Mattern J, Depeweg D, Lehner B, Fellenberg J, Herr I. Enrichment of c-Met+ tumorigenic stromal cells of giant cell tumor of bone and targeting by cabozantinib. Cell Death Dis 2014; 5:e1471. [PMID: 25321478 PMCID: PMC4237261 DOI: 10.1038/cddis.2014.440] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/21/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Giant cell tumor of bone (GCTB) is a very rare tumor entity, which is little examined owing to the lack of established cell lines and mouse models and the restriction of available primary cell lines. The stromal cells of GCTB have been made responsible for the aggressive growth and metastasis, emphasizing the presence of a cancer stem cell population. To identify and target such tumor-initiating cells, stromal cells were isolated from eight freshly resected GCTB tissues. Tumorigenic properties were examined by colony and spheroid formation, differentiation, migration, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, immunohistochemistry, antibody protein array, Alu in situ hybridization, FACS analysis and xenotransplantation into fertilized chicken eggs and mice. A sub-population of the neoplastic stromal cells formed spheroids and colonies, differentiated to osteoblasts, migrated to wounded regions and expressed the metastasis marker CXC-chemokine receptor type 4, indicating self-renewal, invasion and differentiation potential. Compared with adherent-growing cells, markers for pluripotency, stemness and cancer progression, including the CSC surface marker c-Met, were enhanced in spheroidal cells. This c-Met-enriched sub-population formed xenograft tumors in fertilized chicken eggs and mice. Cabozantinib, an inhibitor of c-Met in phase II trials, eliminated CSC features with a higher therapeutic effect than standard chemotherapy. This study identifies a c-Met+ tumorigenic sub-population within stromal GCTB cells and suggests the c-Met inhibitor cabozantinib as a new therapeutic option for targeted elimination of unresectable or recurrent GCTB.
Collapse
Affiliation(s)
- L Liu
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - E Aleksandrowicz
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - P Fan
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F Schönsiegel
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Y Zhang
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Sähr
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - J Gladkich
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J Mattern
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - D Depeweg
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - B Lehner
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - J Fellenberg
- Department of Experimental Orthopedics, Orthopedic University Hospital, Heidelberg, Germany
| | - I Herr
- Department of Molecular OncoSurgery, General, Visceral and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
39
|
Xiao L, Kumazawa Y, Okamura H. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroidsin vitro: A journey to survival and organogenesis. Biol Cell 2014; 106:405-19. [DOI: 10.1111/boc.201400024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/25/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Li Xiao
- Department of Pharmacology; School of Life Dentistry at Tokyo, The Nippon Dental University; Chiyoda-ku, Tokyo 102-0071 Japan
| | - Yasuo Kumazawa
- Department of Oral and Maxillofacial Surgery; The Nippon Dental University Hospital; Chiyoda-ku, Tokyo 102-0071 Japan
| | - Hisashi Okamura
- Department of Oral and Maxillofacial Surgery; The Nippon Dental University Hospital; Chiyoda-ku, Tokyo 102-0071 Japan
| |
Collapse
|
40
|
Gothard D, Greenhough J, Ralph E, Oreffo RO. Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J Tissue Eng 2014; 5:2041731414551763. [PMID: 25383172 PMCID: PMC4221949 DOI: 10.1177/2041731414551763] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/06/2014] [Indexed: 12/11/2022] Open
Abstract
Stro-1 has proved an efficacious marker for enrichment of skeletal stem and progenitor cells although isolated populations remain heterogeneous, exhibiting variable colony-forming efficiency and osteogenic differentiation potential. The emerging findings that skeletal stem cells originate from adventitial reticular cells have brought two further markers to the fore including CD146 and CD105 (both primarily endothelial and perivascular). This study has compared CD146-, CD105- and Stro-1 (individual and in combination)-enriched human bone marrow stromal cell subsets and assessed whether these endothelial/perivascular markers offer further selection over conventional Stro-1. Fluorescent cell sorting quantification showed that CD146 and CD105 both targeted smaller (2.22% ± 0.59% and 6.94% ± 1.34%, respectively) and potentially different human bone marrow stromal cell fractions compared to Stro-1 (16.29% ± 0.78%). CD146+, but not CD105+, cells exhibited similar alkaline phosphatase-positive colony-forming efficiency in vitro and collagen/proteoglycan deposition in vivo to Stro-1+ cells. Molecular analysis of a number of select osteogenic and potential osteo-predictive genes including ALP, CADM1, CLEC3B, DCN, LOXL4, OPN, POSTN and SATB2 showed Stro-1+ and CD146+ populations possessed similar expression profiles. A discrete human bone marrow stromal cell fraction (2.04% ± 0.41%) exhibited positive immuno-labelling for both Stro-1 and CD146. The data presented here show that CD146+ populations are comparable but not superior to Stro-1+ populations. However, this study demonstrates the critical need for new candidate markers with which to isolate homogeneous skeletal stem cell populations or skeletal stem cell populations which exhibit homogeneous in vitro/in vivo characteristics, for implementation within tissue engineering and regenerative medicine strategies.
Collapse
Affiliation(s)
- David Gothard
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Joanna Greenhough
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Esther Ralph
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| | - Richard Oc Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Institute of Developmental Sciences, Southampton General Hospital, School of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
41
|
Faghihi F, Papadimitropoulos A, Martin I, Eslaminejad MB. Effect of Purmorphamine on Osteogenic Differentiation of Human Mesenchymal Stem Cells in a Three-Dimensional Dynamic Culture System. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0343-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
42
|
Skoloudik L, Chrobok V, Kalfert D, Koci Z, Filip S. Multipotent mesenchymal stromal cells in otorhinolaryngology. Med Hypotheses 2014; 82:769-73. [DOI: 10.1016/j.mehy.2014.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/02/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
|
43
|
Abstract
Stem cell (SC) therapy for erectile dysfunction (ED) has been investigated in 35 published studies, with one being a small-scale clinical trial. Out of these 35 studies, 19 are concerned with cavernous nerve (CN) injury-associated ED while 10 with diabetes mellitus- (DM-) associated ED. Adipose-derived SCs (ADSCs) were employed in 18 studies while bone marrow SCs (BMSCs) in 9. Transplantation of SCs was done mostly by intracavernous (IC) injection, as seen in 25 studies. Allogeneic and xenogeneic transplantations have increasingly been performed but their immune-incompatibility issues were rarely discussed. More recent studies also tend to use combinatory therapies by modifying or supplementing SCs with angiogenic or neurotrophic genes or proteins. All studies reported better erectile function with SC transplantation, and the majority also reported improved muscle, endothelium, and/or nerve in the erectile tissue. However, differentiation or engraftment of transplanted SCs has rarely been observed; thus, paracrine action is generally believed to be responsible for SC’s therapeutic effects. But still, few studies actually investigated and none proved paracrine action as a therapeutic mechanism. Thus, based exclusively on functional outcome data shown in preclinical studies, two clinical trials are currently recruiting patients for treatment with IC injection of ADSC and BMSC, respectively.
Collapse
|
44
|
The role of mesenchymal stem cells in bone repair and regeneration. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2013; 24:257-62. [DOI: 10.1007/s00590-013-1328-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/24/2013] [Indexed: 12/13/2022]
|
45
|
Lin CS, Ning H, Lin G, Lue TF. Is CD34 truly a negative marker for mesenchymal stromal cells? Cytotherapy 2013; 14:1159-63. [PMID: 23066784 DOI: 10.3109/14653249.2012.729817] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The prevailing school of thought is that mesenchymal stromal cells (MSC) do not express CD34, and this sets MSC apart from hematopoietic stem cells (HSC), which do express CD34. However, the evidence for MSC being CD34(-) is largely based on cultured MSC, not tissue-resident MSC, and the existence of CD34(-) HSC is in fact well documented. Furthermore, the Stro-1 antibody, which has been used extensively for the identification/isolation of MSC, was generated by using CD34(+) bone marrow cells as immunogen. Thus, neither MSC being CD34(-) nor HSC being CD34(+) is entirely correct. In particular, two studies that analyzed CD34 expression in uncultured human bone marrow nucleated cells found that MSC (BMSC) existed in the CD34(+) fraction. Several studies have also found that freshly isolated adipose-derived MSC (ADSC) express CD34. In addition, all of these ADSC studies and several other MSC studies have observed a disappearance of CD34 expression when the cells are propagated in culture. Thus the available evidence points to CD34 being expressed in tissue-resident MSC, and its negative finding being a consequence of cell culturing.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California , San Francisco, California 94143 – 0738, USA.
| | | | | | | |
Collapse
|
46
|
Nair AM, Tsai YT, Shah KM, Shen J, Weng H, Zhou J, Sun X, Saxena R, Borrelli J, Tang L. The effect of erythropoietin on autologous stem cell-mediated bone regeneration. Biomaterials 2013; 34:7364-71. [PMID: 23831188 DOI: 10.1016/j.biomaterials.2013.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) although used for bone tissue engineering are limited by the requirement of isolation and culture prior to transplantation. Our recent studies have shown that biomaterial implants can be engineered to facilitate the recruitment of MSCs. In this study, we explore the ability of these implants to direct the recruitment and the differentiation of MSCs in the setting of a bone defect. We initially determined that both stromal derived factor-1alpha (SDF-1α) and erythropoietin (Epo) prompted different degrees of MSC recruitment. Additionally, we found that Epo and bone morphogenetic protein-2 (BMP-2), but not SDF-1α, triggered the osteogenic differentiation of MSCs in vitro. We then investigated the possibility of directing autologous MSC-mediated bone regeneration using a murine calvaria model. Consistent with our in vitro observations, Epo-releasing scaffolds were found to be more potent in bridging the defect than BMP-2 loaded scaffolds, as determined by computed tomography (CT) scanning, fluorescent imaging and histological analyses. These results demonstrate the tremendous potential, directing the recruitment and differentiation of autologous MSCs has in the field of tissue regeneration.
Collapse
Affiliation(s)
- Ashwin M Nair
- Bioengineering Department, University of Texas Southwestern Medical Center and The University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Randelli P, Conforti E, Piccoli M, Ragone V, Creo P, Cirillo F, Masuzzo P, Tringali C, Cabitza P, Tettamanti G, Gagliano N, Anastasia L. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity. Am J Sports Med 2013; 41:1653-64. [PMID: 23393078 DOI: 10.1177/0363546512473572] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. HYPOTHESIS Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. STUDY DESIGN Controlled laboratory study. METHODS Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. RESULTS Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. CONCLUSION This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. CLINICAL RELEVANCE Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.
Collapse
Affiliation(s)
- Pietro Randelli
- IRCCS Policlinico San Donato, piazza Malan 1, 20097 San Donato Milanese, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol 2013; 28:1109-16. [PMID: 23588700 DOI: 10.14670/hh-28.1109] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early observations that cultured mesenchymal stem cells (MSCs) could be induced to exhibit certain characteristics of osteocytes and chondrocytes led to the proposal that they could be transplanted for tissue repair through cellular differentiation. Therefore, many subsequent preclinical studies with transplanted MSCs have strived to demonstrate that cellular differentiation was the underlying mechanism for the therapeutic effect. These studies generally followed the minimal criteria set by The International Society for Cellular Therapy in assuring MSC identity by using CD70, CD90, and CD105 as positive markers and CD34 as a negative marker. However, the three positive markers are co-expressed in a wide variety of cells, and therefore, even when used in combination, they are certainly incapable of identifying MSCs in vivo. Another frequently used MSC marker, Stro-1, has been shown to be an endothelial antigen and whether it can identify MSCs in vivo remains unknown. On the other hand, the proposed negative marker CD34 has increasingly been shown to be expressed in native MSCs, such as in the adipose tissue. It has also helped establish that MSCs are likely vascular stem cells (VSCs) that reside in the capillaries and in the adventitia of larger blood vessels. These cells do not express CD31, CD104b, or α-SMA, and therefore are designated as CD34+CD31-CD140b-SMA-. Many preclinical MSC transplantation studies have also attempted to demonstrate cellular differentiation by using labeled MSCs. However, all commonly used labels have shortcomings that often complicate data interpretation. The β-gal (LacZ) gene as a label is problematic because many mammalian tissues have endogenous β-gal activities. The GFP gene is similarly problematic because many mammalian tissues are endogenously fluorescent. The cell membrane label DiI can be adsorbed by host cells, and nuclear stains Hoechst dyes and DAPI can be transferred to host cells. Thymidine analog BrdU is associated with loss of cellular protein antigenicity due to harsh histological conditions. Newer thymidine analog EdU is easier to detect by chemical reaction to azide-conjugated Alexa fluors, but certain bone marrow cells are reactive to these fluors in the absence of EdU. These caveats need to be taken into consideration when designing or interpreting MSC transplantation experiments.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | | | |
Collapse
|
49
|
Sivasubramaniyan K, Harichandan A, Schumann S, Sobiesiak M, Lengerke C, Maurer A, Kalbacher H, Bühring HJ. Prospective isolation of mesenchymal stem cells from human bone marrow using novel antibodies directed against Sushi domain containing 2. Stem Cells Dev 2013; 22:1944-54. [PMID: 23406305 DOI: 10.1089/scd.2012.0584] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Several strategies have been developed to facilitate the prospective isolation of bone marrow-derived mesenchymal stem/stromal cells (BM-MSCs) based on the selective expression or absence of surface markers. Recently, we described the monoclonal antibodies W3D5 and W5C5, which selectively react with BM-MSCs, but not with hematopoietic cells. Both antibodies showed an identical reactivity pattern, indicating that they may recognize the same molecule. To identify the cognate antigen, cultured MSCs were sorted for cells expressing either very high levels of W5C5/W3D5 antigen or for cells which were negative for this antigen. Further processing of these cells for microarray analysis revealed a 20-fold enrichment of the type 1 integral membrane protein Sushi domain containing 2 (SUSD2) in the in W5C5(+) subset. To confirm the identity of the W5C5/W3D5 antigen to SUSD2, HEK293 cells were transfected with the full-length coding sequence of human SUSD2 followed by reactivity analysis of W5C5 and W3D5 antibodies with the transfected line. Flow cytometric analysis showed that both antibodies selectively recognized HEK293/huSUSD2 cells, but not the parental cell line. In line with this, SUSD2 siRNA treatment of SUSD2(+) WERI-RB-1 retinoblastoma cells reduced the expression levels of W3D5 and W5C5 antigens to ~39% and 37%, respectively. Finally, FACSorting and colony assays revealed that only SUSD2(+), but not SUSD2(-) BM cells give rise to colony-forming units-fibroblasts and are able to differentiate into osteoblasts, adipocytes, and chondrocytes. In conclusion, we identified SUSD2 as a novel and specific marker for the prospective isolation of BM-MSCs.
Collapse
Affiliation(s)
- Kavitha Sivasubramaniyan
- Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, Department of Internal Medicine II, University Clinic of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hodgetts SI, Simmons PJ, Plant GW. Human Mesenchymal Precursor Cells (Stro-1+) from Spinal Cord Injury Patients Improve Functional Recovery and Tissue Sparing in an Acute Spinal Cord Injury Rat Model. Cell Transplant 2013; 22:393-412. [DOI: 10.3727/096368912x656081] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study aimed to determine the potential of purified (Stro-1+) human mesenchymal precursor cells (hMPCs) to repair the injured spinal cord (SC) after transplantation into T-cell-deficient athymic RNU nude rats following acute moderate contusive spinal cord injury (SCI). hMPCs were isolated from the bone marrow (BM) stroma of SCI patients and transplanted as a suspension graft in medium [with or without immunosuppression using cyclosporin A (CsA)]. Extensive anatomical analysis shows statistically significant improvement in functional recovery, tissue sparing, and cyst reduction. We provide quantitative assessment of supraspinal projections in combination with functional outcomes. hMPC-transplanted animals consistently achieved mean BBB scores of 15 at 8 weeks postinjury. Quantitative histological staining revealed that graft-recipient animals possessed more intact spinal tissue and reduced cyst formation than controls. Fluorogold (FG) retrograde tracing revealed sparing/regeneration of supraspinal and local propriospinal axonal pathways, but no statistical differences were observed compared to controls. Immunohistochemical analysis revealed increased serotonergic (5-HT) and sensory (CGRP) axonal growth within and surrounding transplanted donor hMPCs 2 weeks posttransplantation, but no evidence of hMPC transdifferentiation was seen. Although hMPCs initially survive at 2 weeks posttransplantation, their numbers were dramatically reduced and no cells were detected at 8 weeks posttransplantation using retroviral/lentiviral GFP labeling and a human nuclear antigen (HNA) antibody. Additional immunosuppression with CsA did not improve hMPC survival or their ability to promote tissue sparing or functional recovery. We propose Stro-1+-selected hMPCs provide (i) a reproducible source for stem cell transplantation for SC therapy and (ii) a positive host microenvironment resulting in the promotion of tissue sparing/repair that subsequently improves behavioral outcomes after SCI. Our results provide a new candidate for consideration as a stem cell therapy for the repair of traumatic CNS injury.
Collapse
Affiliation(s)
- Stuart I. Hodgetts
- Eileen Bond Spinal Cord Research Laboratory, School of Anatomy and Human Biology, University of Western Australia, Perth, Western Australia
| | - Paul J. Simmons
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Giles W. Plant
- Eileen Bond Spinal Cord Research Laboratory, School of Anatomy and Human Biology, University of Western Australia, Perth, Western Australia
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|