1
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
2
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
3
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
4
|
Van Looveren D, Giacomazzi G, Thiry I, Sampaolesi M, Gijsbers R. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:51-67. [PMID: 34553002 PMCID: PMC8433069 DOI: 10.1016/j.omtm.2021.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/16/2021] [Indexed: 10/27/2022]
Abstract
To develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLVW390A-CBX was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLVW390A-CBX vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter. MLVW390A-CBX-EFS produced like MLVWT and efficiently transduced laboratory cells and primary human CD34+ hematopoetic stem cells (HSC) without transgene silencing over time, while displaying a more preferred, redistributed, and safer integration pattern. In a human mesoangioblast (MAB) stem cell model, the myogenic fusion capacity was hindered following MLVWT transduction, while this remained unaffected when applying MLVW390A-CBX. Likewise, smooth muscle cell differentiation of MABs was unaltered by MLVW390A-CBX-EFS. Taken together, our results underscore the potential of MLVW390A-CBX-EFS as a clinically relevant viral vector for ex-vivo gene therapy, combining efficient production with a preferable integration site distribution profile and stable expression over time.
Collapse
Affiliation(s)
- Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Giorgia Giacomazzi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Irina Thiry
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maurilio Sampaolesi
- Laboratory of Translational Cardiomyology, Department of Development and Regeneration, Stem Cell Research Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmacological and Pharmaceutical Sciences, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Abstract
Gene therapy has traditionally involved the delivery of exogenous genetic material to a cell-most commonly to replace defective genes causing monogenic disorders. This allows cells to produce proteins that are otherwise absent in sufficient quantities, ideally for a therapeutic purpose. Since its inception over 40 years ago, the field of gene therapy has significantly expanded and now includes targeted gene editing strategies, including, but not limited to, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs).
Collapse
Affiliation(s)
- Barbara Coons
- Center for Fetal Research, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | |
Collapse
|
6
|
Retrieval of vector integration sites from cell-free DNA. Nat Med 2021; 27:1458-1470. [PMID: 34140705 DOI: 10.1038/s41591-021-01389-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/07/2021] [Indexed: 12/23/2022]
Abstract
Gene therapy (GT) has rapidly attracted renewed interest as a treatment for otherwise incurable diseases, with several GT products already on the market and many more entering clinical testing for selected indications. Clonal tracking techniques based on vector integration enable monitoring of the fate of engineered cells in the blood of patients receiving GT and allow assessment of the safety and efficacy of these procedures. However, owing to the limited number of cells that can be tested and the impracticality of studying cells residing in peripheral organs without performing invasive biopsies, this approach provides only a partial snapshot of the clonal repertoire and dynamics of genetically modified cells and reduces the predictive power as a safety readout. In this study, we developed liquid biopsy integration site sequencing, or LiBIS-seq, a polymerase chain reaction technique optimized to quantitatively retrieve vector integration sites from cell-free DNA released into the bloodstream by dying cells residing in several tissues. This approach enabled longitudinal monitoring of in vivo liver-directed GT and clonal tracking in patients receiving hematopoietic stem cell GT, improving our understanding of the clonal composition and turnover of genetically modified cells in solid tissues and, in contrast to conventional analyses based only on circulating blood cells, enabling earlier detection of vector-marked clones that are aberrantly expanding in peripheral tissues.
Collapse
|
7
|
Mallhi KK, Petrovic A, Ochs HD. Hematopoietic Stem Cell Therapy for Wiskott-Aldrich Syndrome: Improved Outcome and Quality of Life. J Blood Med 2021; 12:435-447. [PMID: 34149291 PMCID: PMC8206065 DOI: 10.2147/jbm.s232650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder caused by mutations in the WAS gene resulting in congenital thrombocytopenia, eczema, recurrent infections and an increased incidence of autoimmune diseases and malignancies. Without curative therapies, affected patients have diminished life expectancy and reduced quality of life. Since WAS protein (WASP) is constitutively expressed only in hematopoietic stem cell-derived lineages, hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) are well suited to correct the hematologic and immunologic defects. Advances in high-resolution HLA typing, new techniques to prevent GvHD allowing the use of haploidentical donors, and the introduction of reduced intensity conditioning regimens with myeloablative features have increased overall survival (OS) to over 90%. The development of GT for WAS has provided basic knowledge into vector selection and random integration of various viral vectors into the genome, with the possibility of inducing leukemogenesis. After trials and errors, inactivating lentiviral vectors carrying the WAS gene were successfully evaluated in clinical trials, demonstrating cure of the disease except for insufficient resolution of the platelet defect. Thus, 50 years of clinical evaluation, genetic exploration and extensive clinical trials, a lethal syndrome has turned into a curable disorder.
Collapse
Affiliation(s)
- Kanwaldeep K Mallhi
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Division of Immunology and Division of Hematology and Oncology, Seattle Children’s Hospital, Seattle, WA, USA
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| |
Collapse
|
8
|
Odiba AS, Okoro NO, Durojaye OA, Wu Y. Gene therapy in PIDs, hemoglobin, ocular, neurodegenerative, and hemophilia B disorders. Open Life Sci 2021; 16:431-441. [PMID: 33987480 PMCID: PMC8093481 DOI: 10.1515/biol-2021-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022] Open
Abstract
A new approach is adopted to treat primary immunodeficiency disorders, such as the severe combined immunodeficiency (SCID; e.g., adenosine deaminase SCID [ADA-SCID] and IL-2 receptor X-linked severe combined immunodeficiency [SCID-X1]). The success, along with the feasibility of gene therapy, is undeniable when considering the benefits recorded for patients with different classes of diseases or disorders needing treatment, including SCID-X1 and ADA-SCID, within the last two decades. β-Thalassemia and sickle cell anemia are two prominent monogenic blood hemoglobin disorders for which a solution has been sought using gene therapy. For instance, transduced autologous CD34+ HSCs via a self-inactivating (SIN)-Lentivirus (LV) coding for a functional copy of the β-globin gene has become a feasible procedure. adeno-associated virus (AAV) vectors have found application in ocular gene transfer in retinal disease gene therapy (e.g., Leber's congenital amaurosis type 2), where no prior treatment existed. In neurodegenerative disorders, successes are now reported for cases involving metachromatic leukodystrophy causing severe cognitive and motor damage. Gene therapy for hemophilia also remains a viable option because of the amount of cell types that are capable of synthesizing biologically active FVIII and FIX following gene transfer using AAV vectors in vivo to correct hemophilia B (FIX deficiency), and it is considered an ideal target, as proven in preclinical studies. Recently, the clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 gene-editing tool has taken a center stage in gene therapy research and is reported to be efficient and highly precise. The application of gene therapy to these areas has pushed forward the therapeutic clinical application.
Collapse
Affiliation(s)
- Arome Solomon Odiba
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Biochemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Molecular Genetics and Biotechnology, University of Nigeria, Nsukka, Nigeria.,Department of Biochemistry, University of Nigeria, Nsukka, Nigeria
| | - Nkwachukwu Oziamara Okoro
- Molecular Biology Laboratory, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, China.,Department of Pharmaceutical and Medicinal Chemistry, College of Life Science and Technology, Guangxi University, Nanning, China.,Department of Pharmaceutical and medicinal Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Olanrewaju Ayodeji Durojaye
- Department of Biochemistry and Molecular Biology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yanjun Wu
- Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Institute for Laboratory Animal, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
9
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Yang Y, Lee JE, Jeong HY, Shim JY, Baek MJ, Son MJ, Kim YJ, Noh H, Lim KI. Alteration of gammaretroviral vector integration patterns by insertion of histone and leucine zipper into integrase. Biotechnol Bioeng 2020; 117:3924-3937. [PMID: 32816306 DOI: 10.1002/bit.27540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/19/2022]
Abstract
Retroviral vectors show long-term gene expression in gene therapy through the integration of transgenes into the human cell genome. Murine leukemia virus (MLV), a well-studied gammaretrovirus, has been often used as a representative retroviral vector. However, frequent integrations of MLV-based vectors into transcriptional start sites (TSSs) could lead to the activation of oncogenes by enhancer effects of the genetic components within the vectors. Therefore, the MLV integration preference for TSSs limits its wider use in clinical applications. To reduce the integration preference of MLV-based vectors, we attempted to perturb the structure of the viral integrase that plays a key role in determining integration sites. For this goal, we inserted histones and leucine zippers, having DNA-binding property, into internal sites of MLV integrase. This integrase engineering yielded multiple mutant vectors that showed significantly different integration patterns compared with that of wild-type vector. Some mutant vectors did not prefer the key regulatory genomic domains of human cells, TSSs. Moreover, a couple of engineered vectors did not integrate into the genomic sites near the TSSs of oncogenes. Overall, this study suggests that structural perturbation of integrase is a simple way to develop safer MLV-based retroviral vectors for use in clinical applications.
Collapse
Affiliation(s)
- Yeji Yang
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Division of Analytical Science Research, Research Center for Biocenvergence Analysis, Korea Basic Science Institute, Chungcheongbukdo, Korea
| | - Ji-Eun Lee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Health and Environment Research Institute of Gwangju, Gwangju, Korea
| | - Hye-Young Jeong
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Ji-Yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Min-Jeong Baek
- Bioinformatics Analysis Team, Research Institute, National Cancer Center, Goyang, Korea
| | - Min-Jeong Son
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Yeon-Ju Kim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea
| | - Hohsuk Noh
- Department of Statistics, Sookmyung Women's University, Seoul, Korea
| | - Kwang-Il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul, Korea.,Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
11
|
Kalina T, Bakardjieva M, Blom M, Perez-Andres M, Barendregt B, Kanderová V, Bonroy C, Philippé J, Blanco E, Pico-Knijnenburg I, Paping JHMP, Wolska-Kuśnierz B, Pac M, Tkazcyk J, Haerynck F, Akar HH, Formánková R, Freiberger T, Svatoň M, Šedivá A, Arriba-Méndez S, Orfao A, van Dongen JJM, van der Burg M. EuroFlow Standardized Approach to Diagnostic Immunopheneotyping of Severe PID in Newborns and Young Children. Front Immunol 2020; 11:371. [PMID: 32265901 PMCID: PMC7096355 DOI: 10.3389/fimmu.2020.00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The EuroFlow PID consortium developed a set of flow cytometry tests for evaluation of patients with suspicion of primary immunodeficiency (PID). In this technical report we evaluate the performance of the SCID-RTE tube that explores the presence of recent thymic emigrants (RTE) together with T-cell activation status and maturation stages and discuss its applicability in the context of the broader EuroFlow PID flow cytometry testing algorithm for diagnostic orientation of PID of the lymphoid system. We have analyzed peripheral blood cells of 26 patients diagnosed between birth and 2 years of age with a genetically defined primary immunodeficiency disorder: 15 severe combined immunodeficiency (SCID) patients had disease-causing mutations in RAG1 or RAG2 (n = 4, two of them presented with Omenn syndrome), IL2RG (n = 4, one of them with confirmed maternal engraftment), NHEJ1 (n = 1), CD3E (n = 1), ADA (n = 1), JAK3 (n = 3, two of them with maternal engraftment) and DCLRE1C (n = 1) and 11 other PID patients had diverse molecular defects [ZAP70 (n = 1), WAS (n = 2), PNP (n = 1), FOXP3 (n = 1), del22q11.2 (DiGeorge n = 4), CDC42 (n = 1) and FAS (n = 1)]. In addition, 44 healthy controls in the same age group were analyzed using the SCID-RTE tube in four EuroFlow laboratories using a standardized 8-color approach. RTE were defined as CD62L+CD45RO-HLA-DR-CD31+ and the activation status was assessed by the expression of HLA-DR+. Naïve CD8+ T-lymphocytes and naïve CD4+ T-lymphocytes were defined as CD62L+CD45RO-HLA-DR-. With the SCID-RTE tube, we identified patients with PID by low levels or absence of RTE in comparison to controls as well as low levels of naïve CD4+ and naïve CD8+ lymphocytes. These parameters yielded 100% sensitivity for SCID. All SCID patients had absence of RTE, including the patients with confirmed maternal engraftment or oligoclonally expanded T-cells characteristic for Omenn syndrome. Another dominant finding was the increased numbers of activated CD4+HLA-DR+ and CD8+HLA-DR+ lymphocytes. Therefore, the EuroFlow SCID-RTE tube together with the previously published PIDOT tube form a sensitive and complete cytometric diagnostic test suitable for patients suspected of severe PID (SCID or CID) as well as for children identified via newborn screening programs for SCID with low or absent T-cell receptor excision circles (TRECs).
Collapse
Affiliation(s)
- Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Marina Bakardjieva
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Maartje Blom
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Perez-Andres
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Barbara Barendregt
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Veronika Kanderová
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Carolien Bonroy
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jan Philippé
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elena Blanco
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Ingrid Pico-Knijnenburg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jitse H M P Paping
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jakub Tkazcyk
- Department of Pediatrics, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Filomeen Haerynck
- PID Research Lab, Department of Pediatric Pulmonology and Immunology, Ghent University Hospital, Ghent, Belgium
| | - Himmet Haluk Akar
- Department of Pediatric Immunology and Allergy, Kanuni Sultan Süleyman Training and Research Hospital, Istanbul Health Sciences University, Istanbul, Turkey
| | - Renata Formánková
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Michael Svatoň
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Anna Šedivá
- Department of Immunology, University Hospital Motol, Prague, Czechia
| | - Sonia Arriba-Méndez
- Servicio de Pediatría, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine-Serv. Cytometry, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain
| | - Jacques J M van Dongen
- Department of Immunohematology and Blood Transfusion (IHB), Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Immunology, Department of Pediatrics, Leiden University Medical Center (LUMC), Leiden, Netherlands.,Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
12
|
Boudeffa D, Bertin B, Biek A, Mormin M, Leseigneur F, Galy A, Merten OW. Toward a Scalable Purification Protocol of GaLV-TR-Pseudotyped Lentiviral Vectors. Hum Gene Ther Methods 2020; 30:153-171. [PMID: 31516018 DOI: 10.1089/hgtb.2019.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lentiviral vectors (LV) that are used in research and development as well as in clinical trials are in majority vesicular stomatitis virus G glycoprotein (VSVg) pseudotyped. The predominance of this pseudotype choice for clinical gene therapy studies is largely due to a lack of purification schemes for pseudotypes other than VSVg. In this study, we report for the first time the development of a new downstream process protocol allowing high-yield production of stable and infectious gibbon ape leukemia virus (GaLV)-TR-LV particles. We identified critical conditions in tangential flow filtration (TFF) and chromatographic steps for preserving the infectivity/functionality of LV during purification. This was carried out by identifying for each step, the critical parameters affecting LV infectivity, including pH, salinity, presence of stabilizers, temperature, and by defining the optimal order of these steps. A three-step process was developed for GaLV-TR-LV purification consisting of one TFF and two chromatographic steps (ion-exchange chromatography and size exclusion chromatography) permitting recoveries of >27% of infectious particles. With this process, purified GaLV-pseudotyped LV enabled the transduction of 70% human CD34+ cells in the presence of the Vectofusin-1 peptide, whereas in the same conditions nonpurified vector transduced only 9% of the cells (multiplicity of infection 20). Our protocol will allow for the first time the purification of GaLV-TR-LV that are biologically active, stable, and with sufficient recovery in the perspective of preclinical studies and clinical applications. Obviously, further optimizations are required to improve final vector yields.
Collapse
Affiliation(s)
| | | | | | - Mirella Mormin
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | | - Anne Galy
- Généthon, Evry, France.,Integrare Research Unit (UMR_S951), Généthon, Inserm, Université Evry Val-d'Essonne, Université Paris Saclay, EPHE, Evry, France
| | | |
Collapse
|
13
|
Hernandez M, Recalde S, Garcia-Garcia L, Bezunartea J, Miskey C, Johnen S, Diarra S, Sebe A, Rodriguez-Madoz JR, Pouillot S, Marie C, Izsvák Z, Scherman D, Kropp M, Prosper F, Thumann G, Ivics Z, Garcia-Layana A, Fernandez-Robredo P. Preclinical Evaluation of a Cell-Based Gene Therapy Using the Sleeping Beauty Transposon System in Choroidal Neovascularization. Mol Ther Methods Clin Dev 2019; 15:403-417. [PMID: 31890733 PMCID: PMC6909167 DOI: 10.1016/j.omtm.2019.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive retinal disorder characterized by imbalanced pro- and antiangiogenic signals. The aim of this study was to evaluate the effect of ex vivo cell-based gene therapy with stable expression of human pigment epithelium-derived factor (PEDF) release using the non-viral Sleeping Beauty (SB100X) transposon system delivered by miniplasmids free of antibiotic resistance markers (pFAR4). Retinal pigment epithelial (RPE) cells and iris pigment epithelial (IPE) cells were co-transfected with pFAR4-inverted terminal repeats (ITRs) CMV-PEDF-BGH and pFAR4-CMV-SB100X-SV40 plasmids. Laser-induced choroidal neovascularization (CNV) was performed in rats, and transfected primary cells (transfected RPE [tRPE] and transfected IPE [tIPE] cells) were injected into the subretinal space. The leakage and CNV areas, vascular endothelial growth factor (VEGF), PEDF protein expression, metalloproteinases 2 and 9 (MMP-2/9), and microglial/macrophage markers were measured. Injection with tRPE/IPE cells significantly reduced the leakage area at 7 and 14 days and the CNV area at 7 days. There was a significant increase in PEDF and the PEDF/VEGF ratio with tRPE cells and a reduction in the MMP-2 activity. Our data demonstrated that ex vivo non-viral gene therapy reduces CNV and could be an effective and safe therapeutic option for angiogenic retinal diseases.
Collapse
Affiliation(s)
- Maria Hernandez
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Sergio Recalde
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Laura Garcia-Garcia
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Jaione Bezunartea
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Sabine Diarra
- Department of Ophthalmology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Attila Sebe
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Juan Roberto Rodriguez-Madoz
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
| | | | - Corinne Marie
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
- Chimie ParisTech, PSL Research University, F-75005 Paris, France
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Scherman
- Université de Paris, UTCBS, CNRS, INSERM, F-75006 Paris, France
| | - Martina Kropp
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Felipe Prosper
- Regenerative Medicine Program, Center for Applied Medical Research (CIMA), University of Navarra, IdiSNA, Pamplona 31008, Spain
- Area of Cell Therapy, Clínica Universidad de Navarra, University of Navarra, IdiSNA, Pamplona 31008, Spain
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva, 1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich-Institut, 63225 Langen, Germany
| | - Alfredo Garcia-Layana
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| | - Patricia Fernandez-Robredo
- Experimental Ophthalmology Laboratory, Ophthalmology, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
- Red Temática de Investigación Cooperativa Sanitaria en Enfermedades Oculares, Oftared, ISCIII, Madrid, Spain
| |
Collapse
|
14
|
Bueren JA, Quintana-Bustamante O, Almarza E, Navarro S, Río P, Segovia JC, Guenechea G. Advances in the gene therapy of monogenic blood cell diseases. Clin Genet 2019; 97:89-102. [PMID: 31231794 DOI: 10.1111/cge.13593] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 01/19/2023]
Abstract
Hematopoietic gene therapy has markedly progressed during the last 15 years both in terms of safety and efficacy. While a number of serious adverse events (SAE) were initially generated as a consequence of genotoxic insertions of gamma-retroviral vectors in the cell genome, no SAEs and excellent outcomes have been reported in patients infused with autologous hematopoietic stem cells (HSCs) transduced with self-inactivated lentiviral and gammaretroviral vectors. Advances in the field of HSC gene therapy have extended the number of monogenic diseases that can be treated with these approaches. Nowadays, evidence of clinical efficacy has been shown not only in primary immunodeficiencies, but also in other hematopoietic diseases, including beta-thalassemia and sickle cell anemia. In addition to the rapid progression of non-targeted gene therapies in the clinic, new approaches based on gene editing have been developed thanks to the discovery of designed nucleases and improved non-integrative vectors, which have markedly increased the efficacy and specificity of gene targeting to levels compatible with its clinical application. Based on advances achieved in the field of gene therapy, it can be envisaged that these therapies will soon be part of the therapeutic approaches used to treat life-threatening diseases of the hematopoietic system.
Collapse
Affiliation(s)
- Juan A Bueren
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Oscar Quintana-Bustamante
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Elena Almarza
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - José C Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Guillermo Guenechea
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
15
|
Hall E, Shenoy S. Hematopoietic Stem Cell Transplantation: A Neonatal Perspective. Neoreviews 2019; 20:e336-e345. [PMID: 31261097 DOI: 10.1542/neo.20-6-e336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is indicated in various nonmalignant disorders that arise from genetic, hematopoietic, and immune system defects. Many of the disorders described here have life-threatening consequences in the absence of HSCT, a curative intervention. However, timing and approach to HSCT vary by disorder and optimum results are achieved by performing transplantation before irreversible disease-related morbidity or infectious complications. This article details the principles of HSCT in the very young, lists indications, and explores the factors that contribute to successful outcomes based on transplantation and disease-related nuances. It provides an overview into the HSCT realm from a neonatologist's perspective, describes the current status of transplantation for relevant disorders of infancy, and provides a glimpse into future efforts at improving on current success.
Collapse
Affiliation(s)
- Erin Hall
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Children's Mercy Hospital, Kansas City, MO
| | - Shalini Shenoy
- Department of Pediatrics, Division of Hematology/Oncology/Bone Marrow Transplantation, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, MO
| |
Collapse
|
16
|
|
17
|
Fraldi A, Serafini M, Sorrentino NC, Gentner B, Aiuti A, Bernardo ME. Gene therapy for mucopolysaccharidoses: in vivo and ex vivo approaches. Ital J Pediatr 2018; 44:130. [PMID: 30442177 PMCID: PMC6238250 DOI: 10.1186/s13052-018-0565-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by a deficiency in lysosomal enzymes catalyzing the stepwise degradation of glycosaminoglycans (GAGs). The current therapeutic strategies of enzyme replacement therapy and allogeneic hematopoietic stem cell transplantation have been reported to reduce patient morbidity and to improve their quality of life, but they are associated with persistence of residual disease burden, in particular at the neurocognitive and musculoskeletal levels. This indicates the need for more efficacious treatments capable of effective and rapid enzyme delivery to the affected organs, especially the brain and the skeleton. Gene therapy (GT) strategies aimed at correcting the genetic defect in patient cells could represent a significant improvement for the treatment of MPS when compared with conventional approaches. While in-vivo GT strategies foresee the administration of viral vector particles directly to patients with the aim of providing normal complementary DNA to the affected cells, ex-vivo GT approaches are based on the ex-vivo transduction of patient cells that are subsequently infused back. This review provides insights into the state-of-art accomplishments made with in vivo and ex vivo GT-based approaches in MPS and provide a vision for the future in the medical community.
Collapse
Affiliation(s)
- Alessandro Fraldi
- Telethon Institute of Genetic and Medicine (TIGEM), Via Campi Flegrei, 34, Pozzuoli, Naples Italy
- Department of Medical and Translational Science, Federico II University, Via Pansini 5, Naples, 80131 Italy
| | - Marta Serafini
- Department of Pediatrics, Dulbecco Telethon Institute, Centro Ricerca M. Tettamanti, University of Milano-Bicocca, Monza, Italy
| | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20123 Milan, Italy
| |
Collapse
|
18
|
Dynamics of genetically engineered hematopoietic stem and progenitor cells after autologous transplantation in humans. Nat Med 2018; 24:1683-1690. [DOI: 10.1038/s41591-018-0195-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/07/2018] [Indexed: 01/04/2023]
|
19
|
Hartmann J, Schüßler-Lenz M, Bondanza A, Buchholz CJ. Clinical development of CAR T cells-challenges and opportunities in translating innovative treatment concepts. EMBO Mol Med 2018; 9:1183-1197. [PMID: 28765140 PMCID: PMC5582407 DOI: 10.15252/emmm.201607485] [Citation(s) in RCA: 349] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, together with checkpoint inhibition, has been celebrated as a breakthrough technology due to the substantial benefit observed in clinical trials with patients suffering from relapsed or refractory B‐cell malignancies. In this review, we provide a comprehensive overview of the clinical trials performed so far worldwide and analyze parameters such as targeted antigen and indication, CAR molecular design, CAR T cell manufacturing, anti‐tumor activities, and related toxicities. More than 200 CAR T cell clinical trials have been initiated so far, most of which aim to treat lymphoma or leukemia patients using CD19‐specific CARs. An increasing number of studies address solid tumors as well. Notably, not all clinical trials conducted so far have shown promising results. Indeed, in a few patients CAR T cell therapy resulted in severe adverse events with fatal outcome. Of note, less than 10% of the ongoing CAR T cell clinical trials are performed in Europe. Taking lead from our analysis, we discuss the problems and general hurdles preventing efficient clinical development of CAR T cells as well as opportunities, with a special focus on the European stage.
Collapse
Affiliation(s)
- Jessica Hartmann
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Martina Schüßler-Lenz
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Attilio Bondanza
- Innovative immunotherapies, Ospedale San Raffaele, Milano, Italy
| | - Christian J Buchholz
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany .,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
20
|
Dighe NM, Tan KW, Tan LG, Shaw SSW, Buckley SMK, Sandikin D, Johana N, Tan YW, Biswas A, Choolani M, Waddington SN, Antoniou MN, Chan JKY, Mattar CNZ. A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassemia in a HbbTh3/+ murine model. Exp Hematol 2018; 62:45-55. [PMID: 29605545 PMCID: PMC5965454 DOI: 10.1016/j.exphem.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 03/17/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
Abstract
Major hemoglobinopathies place tremendous strain on global resources. Intrauterine hemopoietic cell transplantation (IUHCT) and gene transfer (IUGT) can potentially reduce perinatal morbidities with greater efficacy than postnatal therapy alone. We performed both procedures in the thalassemic HbbTh3/+ mouse. Intraperitoneal delivery of co-isogenic cells at embryonic days13-14 produced dose-dependent chimerism. High-dose adult bone marrow (BM) cells maintained 0.2-3.1% chimerism over ~24 weeks and treated heterozygotes (HET) demonstrated higher chimerism than wild-type (WT) pups (1.6% vs. 0.7%). Fetalliver (FL) cells produced higher chimerism than BM when transplanted at thesame doses, maintaining 1.8-2.4% chimerism over ~32 weeks. We boosted transplanted mice postnatally with BM cells after busulfan conditioning. Engraftment was maintained at >1% only in chimeras. IUHCT-treated nonchimeras and non-IUHCT mice showed microchimerism or no chimerism. Improved engraftment was observed with a higher initial chimerism, in HET mice and with the addition of fludarabine. Chimeric HET mice expressed 2.2-15.1% engraftment with eventual decline at 24 weeks (vs. <1% in nonchimeras) and demonstrated improved hematological indices and smaller spleens compared with untreated HETmice. Intravenous delivery of GLOBE lentiviral-vector expressing human β-globin (HBB) resulted in a vector concentration of 0.001-0.6 copies/cell. Most hematological indices were higher in treated than untreated HET mice, including hemoglobin and mean corpuscular volume, but were still lower than in WT. Therefore, direct IUGT and IUHCT strategies can be used to achieve hematological improvement but require further dose optimization. IUHCT will be useful combined with postnatal transplantation to further enhance engraftment.
Collapse
Affiliation(s)
- Niraja M Dighe
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Kang Wei Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Lay Geok Tan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Steven S W Shaw
- College of Medicine, Chang Gung University, 33302 Taoyuan, Taiwan, China; Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom
| | - Dedy Sandikin
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Nuryanti Johana
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Yi-Wan Tan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore
| | - Arijit Biswas
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Mahesh Choolani
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, WC1E 6AU London, United Kingdom; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, SE1 9RT London, United Kingdom
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore, Singapore; Cancer and Stem Cell Program, Duke-NUS Graduate Medical School, 169857 Singapore, Singapore
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore, Singapore.
| |
Collapse
|
21
|
Hurdles Associated with the Translational Use of Genetically Modified Cells. CURRENT STEM CELL REPORTS 2018; 4:39-45. [PMID: 33381387 DOI: 10.1007/s40778-018-0115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Purpose of Review Recent advancements in the use of genetically modified hematopoietic stem cells (HSCs) and the emergent use of chimeric antigen receptor (CAR) T-cell immunotherapy has highlighted issues associated with the use of genetically engineered cellular products. This review explores some of the challenges linked with translating the use of genetically modified cells. Recent Findings The use of genetically modified HSCs for ADA-SCID now has European approval and the U.S. Food and Drug Administration recently approved the use of CAR-T cells for relapsed/refractory B-cell acute lymphoblastic leukemia. Current good manufacturing processes have now been developed for the collection, expansion, storage, modification, and administration of genetically modified cells. Summary Genetically engineered cells can be used for several therapeutic purposes. However, significant challenges remain in making these cellular therapeutics readily available. A better understanding of this technology along with improvements in the manufacturing process is allowing the translation process to become more standardized.
Collapse
|
22
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of Choroidal Neovascularization in Mice by Subretinal Delivery of Multigenic Lentiviral Vectors Encoding Anti-Angiogenic MicroRNAs. Hum Gene Ther Methods 2018; 28:222-233. [PMID: 28817343 DOI: 10.1089/hgtb.2017.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentivirus-based vectors have been used for the development of potent gene therapies. Here, application of a multigenic lentiviral vector (LV) producing multiple anti-angiogenic microRNAs following subretinal delivery in a laser-induced choroidal neovascularization (CNV) mouse model is presented. This versatile LV, carrying back-to-back RNApolII-driven expression cassettes, enables combined expression of microRNAs targeting vascular endothelial growth factor A (Vegfa) mRNA and fluorescent reporters. In addition, by including a vitelliform macular dystrophy 2 (VMD2) promoter, expression of microRNAs is restricted to the retinal pigment epithelial (RPE) cells. Six days post injection (PI), robust and widespread fluorescent signals of eGFP are already observed in the retina by funduscopy. The eGFP expression peaks at day 21 PI and persists with stable expression for at least 9 months. In parallel, prominent AsRED co-expression, encoded from the VMD2-driven microRNA expression cassette, is evident in retinal sections and flat-mounts, revealing RPE-specific expression of microRNAs. Furthermore, LV-delivered microRNAs targeting the Vegfa gene in RPE cells reduced the size of laser-induced CNV in mice 28 days PI, as a consequence of diminished VEGF levels, suggesting that LVs delivered locally are powerful tools in the development of gene therapy-based strategies for treatment of age-related macular degeneration.
Collapse
Affiliation(s)
| | | | | | - Tina Storm
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Aagaard
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Toke Bek
- 2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| | | | - Thomas Juhl Corydon
- 1 Department of Biomedicine, Aarhus University, Aarhus, Denmark .,2 Department of Ophthalmology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
23
|
Williams DA. Principles of Cell-Based Genetic Therapies. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00098-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
24
|
NADPH Oxidase Deficiency: A Multisystem Approach. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4590127. [PMID: 29430280 PMCID: PMC5753020 DOI: 10.1155/2017/4590127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
The immune system is a complex system able to recognize a wide variety of host agents, through different biological processes. For example, controlled changes in the redox state are able to start different pathways in immune cells and are involved in the killing of microbes. The generation and release of ROS in the form of an “oxidative burst” represent the pivotal mechanism by which phagocytic cells are able to destroy pathogens. On the other hand, impaired oxidative balance is also implicated in the pathogenesis of inflammatory complications, which may affect the function of many body systems. NADPH oxidase (NOX) plays a pivotal role in the production of ROS, and the defect of its different subunits leads to the development of chronic granulomatous disease (CGD). The defect of the different NOX subunits in CGD affects different organs. In this context, this review will be focused on the description of the effect of NOX2 deficiency in different body systems. Moreover, we will also focus our attention on the novel insight in the pathogenesis of immunodeficiency and inflammation-related manifestations and on the protective role of NOX2 deficiency against the development of atherosclerosis.
Collapse
|
25
|
Salamin O, Kuuranne T, Saugy M, Leuenberger N. Loop-mediated isothermal amplification (LAMP) as an alternative to PCR: A rapid on-site detection of gene doping. Drug Test Anal 2017; 9:1731-1737. [PMID: 29045058 DOI: 10.1002/dta.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Innovation in medical research has been diverted at multiple occasions to enhance human performance. The predicted great progress in gene therapy has raised some concerns regarding its misuse in the world of sports (gene doping) for several years now. Even though there is no evidence that gene doping has ever been used in sports, the continuous improvement of gene therapy techniques increases the likelihood of abuse. Therefore, since 2004, efforts have been invested by the anti-doping community and WADA for the development of detection methods. Several nested PCR and qPCR-based strategies exploiting the absence of introns in the transgenic DNA have been proposed for the long-term detection of transgene in blood. Despite their great sensitivity, those protocols are hampered by limitations of the techniques that can be cumbersome and costly. The purpose of this perspective is to describe a new approach based on loop-mediated isothermal amplification (LAMP) for the detection of gene doping. This protocol enables a rapid and simple method to amplify nucleic acids with a high sensitivity and specificity and with a simple visual detection of the results. LAMP is already being used in clinical application for the detection of viruses or mutations. Therefore, this technique has the potential to be further developed for the detection of foreign genetic material in elite athletes. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Olivier Salamin
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| | - Martial Saugy
- Center of Research and Expertise in anti-Doping sciences - REDs, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Leuenberger
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Lausanne and Geneva, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Ch. des Croisettes 22, 1066 Epalinges, Switzerland
| |
Collapse
|
26
|
High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:1-8. [PMID: 29499925 PMCID: PMC5723376 DOI: 10.1016/j.omtn.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/22/2023]
Abstract
The CRISPR/Cas9 prokaryotic adaptive immune system and its swift repurposing for genome editing enables modification of any prespecified genomic sequence with unprecedented accuracy and efficiency, including targeted gene repair. We used the CRISPR/Cas9 system for targeted repair of patient-specific point mutations in the Cytochrome b-245 heavy chain gene (CYBB), whose inactivation causes chronic granulomatous disease (XCGD)—a life-threatening immunodeficiency disorder characterized by the inability of neutrophils and macrophages to produce microbicidal reactive oxygen species (ROS). We show that frameshift mutations can be effectively repaired in hematopoietic cells by non-integrating lentiviral vectors carrying RNA-guided Cas9 endonucleases (RGNs). Because about 25% of most inherited blood disorders are caused by frameshift mutations, our results suggest that up to a quarter of all patients suffering from monogenic blood disorders could benefit from gene therapy employing personalized, donor template-free RGNs.
Collapse
|
27
|
Mohanlal R, Qiu Y, Zheng M, Mirkou A, Sridharan K, Keir C. Long-Term Safety Follow-Up of Subjects Previously Treated with Non-Replicating Retroviral Vector-Based Gene Therapies. Mol Diagn Ther 2017; 20:591-602. [PMID: 27435702 PMCID: PMC5107205 DOI: 10.1007/s40291-016-0229-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective Our objective was to evaluate the life-long safety profile of gene therapy using retroviral (non-replicating) vectors (nRCR), or cell products in 127 subjects with hemophilia, human immunodeficiency virus (HIV), or cancer, previously treated with such gene therapy. Methods We assessed the occurrence of serious adverse events (SAEs), deaths and presence of replication competent retrovirus (RCR). Results A total of 23 subjects remained until the data cut-off date of 31 July 2013 and provided safety information of up to 18 years. Of the 104 subjects who discontinued, the primary reason was loss to follow-up (47.2 %; n = 60). The follow-up period for the 60 subjects lost to follow-up was 7–10 years. A total of 41 subjects experienced at least one SAE, and 15 subjects died. We reviewed SAEs and cause of death (none related to the active therapy), but no evidence was found for safety signals related to new malignancy or neurologic, rheumatological, autoimmune, or hematologic disorder. RCR results were negative, indicating no evidence for in vivo vector persistence. Conclusion Despite the loss of follow-up, which is the limiting factor in this long-term safety trial, the findings from this long-term follow-up study are encouraging.
Collapse
Affiliation(s)
- Ramon Mohanlal
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Yuhong Qiu
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Ming Zheng
- Novartis Oncology, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Asmae Mirkou
- Novartis Oncology, Novartis Pharma AG, Basel, Switzerland
| | - Kanaka Sridharan
- Cell and Gene Therapies Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Christopher Keir
- Cell and Gene Therapies Unit, Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA.
| |
Collapse
|
28
|
Gene therapy research in Asia. Gene Ther 2017; 24:572-577. [DOI: 10.1038/gt.2017.62] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
|
29
|
Cohen-Haguenauer O. European Society for Gene and Cell Therapy-Inaugural Learned Society in the Field Worldwide: A Vision on Its Birth, Life, and Prospects for Sustainability. Hum Gene Ther 2017; 28:941-950. [PMID: 28859532 DOI: 10.1089/hum.2017.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Odile Cohen-Haguenauer
- Department of Clinical Oncology, Hôpital Saint-Louis, Faculté de Médecine et Université Paris Diderot , Paris, France
| |
Collapse
|
30
|
Askou AL, Benckendorff JNE, Holmgaard A, Storm T, Aagaard L, Bek T, Mikkelsen JG, Corydon TJ. Suppression of choroidal neovascularization in mice by subretinal delivery of multigenic lentiviral vectors encoding anti-angiogenic microRNAs. Hum Gene Ther Methods 2017. [DOI: 10.1089/hum.2017.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | | | | | - Tina Storm
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Lars Aagaard
- Aarhus University, Department of Biomedicine, Aarhus C, Denmark
| | - Toke Bek
- Aarhus University Hospital, Department of Ophthalmology, Aarhus C, Denmark
| | | | - Thomas Juhl Corydon
- Aarhus University, Department of Biomedicine, Wilhelm Meyers Alle, Aarhus C, Denmark, 8000
| |
Collapse
|
31
|
Penati R, Fumagalli F, Calbi V, Bernardo ME, Aiuti A. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis 2017; 40:543-554. [PMID: 28560469 PMCID: PMC5500670 DOI: 10.1007/s10545-017-0052-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/10/2023]
Abstract
Lysosomal storage diseases (LSDs) are rare inherited metabolic disorders characterized by a dysfunction in lysosomes, leading to waste material accumulation and severe organ damage. Enzyme replacement therapy (ERT) and haematopoietic stem cell transplant (HSCT) have been exploited as potential treatments for LSDs but pre-clinical and clinical studies have shown in some cases limited efficacy. Intravenous ERT is able to control the damage of visceral organs but cannot prevent nervous impairment. Depending on the disease type, HSCT has important limitations when performed for early variants, unless treatment occurs before disease onset. In the attempt to overcome these issues, gene therapy has been proposed as a valuable therapeutic option, either ex vivo, with target cells genetically modified in vitro, or in vivo, by inserting the genetic material with systemic or intra-parenchymal, in situ administration. In particular, the use of autologous haematopoietic stem cells (HSC) transduced with a viral vector containing a healthy copy of the mutated gene would allow supra-normal production of the defective enzyme and cross correction of target cells in multiple tissues, including the central nervous system. This review will provide an overview of the most recent scientific advances in HSC-based gene therapy approaches for the treatment of LSDs with particular focus on metachromatic leukodystrophy (MLD) and mucopolysaccharidosis type I (MPS-I).
Collapse
Affiliation(s)
- Rachele Penati
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Fumagalli
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Calbi
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Ester Bernardo
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Unit of Pediatric Immunohematology and Stem Cell Program, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
32
|
Basso-Ricci L, Scala S, Milani R, Migliavacca M, Rovelli A, Bernardo ME, Ciceri F, Aiuti A, Biasco L. Multiparametric Whole Blood Dissection: A one-shot comprehensive picture of the human hematopoietic system. Cytometry A 2017; 91:952-965. [PMID: 28609016 PMCID: PMC5697613 DOI: 10.1002/cyto.a.23148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022]
Abstract
Human hematopoiesis is a complex and dynamic system where morphologically and functionally diverse mature cell types are generated and maintained throughout life by bone marrow (BM) Hematopoietic Stem/Progenitor Cells (HSPC). Congenital and acquired hematopoietic disorders are often diagnosed through the detection of aberrant frequency or composition of hematopoietic cell populations. We here describe a novel protocol, called “Whole Blood Dissection” (WBD), capable of analyzing in a single test‐tube, hematopoietic progenitors and all major mature cell lineages composing either BM or peripheral blood (PB) through a multiparametric flow‐cytometry analysis. WBD allows unambiguously identifying in the same tube up to 23 different blood cell types including HSPC subtypes and all the major myeloid and lymphoid lineage compartments at different stages of maturation, through a combination of 17 surface and 1 viability cell markers. We assessed the efficacy of WBD by analyzing BM and PB samples from adult (n = 8) and pediatric (n = 9) healthy donors highlighting age‐related shift in cell composition. We also tested the capability of WBD on detecting aberrant hematopoietic cell composition in clinical samples of patients with primary immunodeficiency or leukemia unveiling expected and novel hematopoietic unbalances. Overall, WBD allows unambiguously identifying >99% of the cell subpopulations composing a blood sample in a reproducible, standardized, cost‐, and time‐efficient manner. This tool has a wide range of potential pre‐clinical and clinical applications going from the characterization of hematopoietic disorders to the monitoring of hematopoietic reconstitution in patients after transplant or gene therapy. © 2017 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
Affiliation(s)
- Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Raffaella Milani
- Cytometry Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Migliavacca
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,San Raffaele Scientific Institute, Pediatric Immunohematology and Bone Marrow Transplantation Unit, Milan, Italy
| | - Attilio Rovelli
- BMT Unit, Pediatric Department, Milano-Bicocca University, MBBM Foundation, Monza, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,San Raffaele Scientific Institute, Pediatric Immunohematology and Bone Marrow Transplantation Unit, Milan, Italy
| | - Fabio Ciceri
- San Raffaele Scientific Institute, Hematology and Bone Marrow Transplantation Unit, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy.,San Raffaele Scientific Institute, Pediatric Immunohematology and Bone Marrow Transplantation Unit, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute, Milan, 20132, Italy
| |
Collapse
|
33
|
Mahlaoui N, Warnatz K, Jones A, Workman S, Cant A. Advances in the Care of Primary Immunodeficiencies (PIDs): from Birth to Adulthood. J Clin Immunol 2017; 37:452-460. [PMID: 28523402 PMCID: PMC5489581 DOI: 10.1007/s10875-017-0401-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiencies (PIDs) are a widely heterogeneous group of inherited defects of the immune system consisting of many clinical phenotypes with at least 300 underlying genetic deficits currently known. Patients with PIDs can present with, or develop during the course of their life, a susceptibility to recurrent and chronic infection along with autoimmune, allergic, inflammatory, and/or proliferative disorders, all potentially leading to end-organ damage. In recent years, a combination of basic and clinical research has greatly improved understanding of the underlying immunological and genetic defects in PIDs, leading to improved diagnosis, classification, and treatment approaches. In this review, we consider some of the key understandings that should direct diagnostic and treatment approaches in PID and offer insights into current and emerging management approaches and the lifelong care of patients from childhood through to adulthood.
Collapse
Affiliation(s)
- Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,Pediatric Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris, France. .,Sorbonne Paris Cité, Imagine Institute, Paris Descartes University, Paris, France.
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alison Jones
- Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sarita Workman
- Department of Immunology, Royal Free London NHS Foundation Trust, 2nd Floor, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Andrew Cant
- Great North Children's Hospital, & Institute for Cellular Medicine University of Newcastle, Newcastle upon Tyne, NE4 1LP, UK
| |
Collapse
|
34
|
El Ashkar S, Van Looveren D, Schenk F, Vranckx LS, Demeulemeester J, De Rijck J, Debyser Z, Modlich U, Gijsbers R. Engineering Next-Generation BET-Independent MLV Vectors for Safer Gene Therapy. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624199 PMCID: PMC5415309 DOI: 10.1016/j.omtn.2017.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retroviral vectors have shown their curative potential in clinical trials correcting monogenetic disorders. However, therapeutic benefits were compromised due to vector-induced dysregulation of cellular genes and leukemia development in a subset of patients. Bromodomain and extraterminal domain (BET) proteins act as cellular cofactors that tether the murine leukemia virus (MLV) pre-integration complex to host chromatin via interaction with the MLV integrase (IN) and thereby define the typical gammaretroviral integration distribution. We engineered next-generation BET-independent (Bin) MLV vectors to retarget their integration to regions where they are less likely to dysregulate nearby genes. We mutated MLV IN to uncouple BET protein interaction and fused it with chromatin-binding peptides. The addition of the CBX1 chromodomain to MLV INW390A efficiently targeted integration away from gene regulatory elements. The retargeted vector produced at high titers and efficiently transduced CD34+ hematopoietic stem cells, while fewer colonies were detected in a serial colony-forming assay, a surrogate test for genotoxicity. Our findings underscore the potential of the engineered vectors to reduce the risk of insertional mutagenesis without compromising transduction efficiency. Ultimately, combined with other safety features in vector design, next-generation BinMLV vectors can improve the safety of gammaretroviral vectors for gene therapy.
Collapse
Affiliation(s)
- Sara El Ashkar
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Dominique Van Looveren
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Franziska Schenk
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Lenard S Vranckx
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jonas Demeulemeester
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Jan De Rijck
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Drug Discovery, Department of Pharmaceutical and Pharmacological Sciences, 3000 Leuven, KU Leuven, Belgium
| | - Ute Modlich
- RG Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
35
|
Wang X, Rivière I. Genetic Engineering and Manufacturing of Hematopoietic Stem Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:96-105. [PMID: 28480310 PMCID: PMC5415326 DOI: 10.1016/j.omtm.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The marketing approval of genetically engineered hematopoietic stem cells (HSCs) as the first-line therapy for the treatment of severe combined immunodeficiency due to adenosine deaminase deficiency (ADA-SCID) is a tribute to the substantial progress that has been made regarding HSC engineering in the past decade. Reproducible manufacturing of high-quality, clinical-grade, genetically engineered HSCs is the foundation for broadening the application of this technology. Herein, the current state-of-the-art manufacturing platforms to genetically engineer HSCs as well as the challenges pertaining to production standardization and product characterization are addressed in the context of primary immunodeficiency diseases (PIDs) and other monogenic disorders.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
36
|
Qian W, Wang Y, Li RF, Zhou X, Liu J, Peng DZ. Prolonged Integration Site Selection of a Lentiviral Vector in the Genome of Human Keratinocytes. Med Sci Monit 2017; 23:1116-1122. [PMID: 28255155 PMCID: PMC5347986 DOI: 10.12659/msm.903094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Lentiviral vectors have been successfully used for human skin cell gene transfer studies. Defining the selection of integration sites for retroviral vectors in the host genome is crucial in risk assessment analysis of gene therapy. However, genome-wide analyses of lentiviral integration sites in human keratinocytes, especially after prolonged growth, are poorly understood. Material/Methods In this study, 874 unique lentiviral vector integration sites in human HaCaT keratinocytes after long-term culture were identified and analyzed with the online tool GTSG-QuickMap and SPSS software. Results The data indicated that lentiviral vectors showed integration site preferences for genes and gene-rich regions. Conclusions This study will likely assist in determining the relative risks of the lentiviral vector system and in the design of a safe lentiviral vector system in the gene therapy of skin diseases.
Collapse
Affiliation(s)
- Wei Qian
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| | - Yong Wang
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| | - Rui-Fu Li
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| | - Xin Zhou
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| | - Jing Liu
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| | - Dai-Zhi Peng
- Institute of Burn Research, Southwest Hospital and Tissue Engineering Research Unit, State Key Laboratory of Trauma, Burns, and Combined Injury, 3rd Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
37
|
Latorre-Rey LJ, Wintterle S, Dütting S, Kohlscheen S, Abel T, Schenk F, Wingert S, Rieger MA, Nieswandt B, Heinz N, Modlich U. Targeting expression to megakaryocytes and platelets by lineage-specific lentiviral vectors. J Thromb Haemost 2017; 15:341-355. [PMID: 27930847 DOI: 10.1111/jth.13582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/15/2022]
Abstract
Essentials Platelet phenotypes can be modified by lentiviral transduction of hematopoietic stem cells. Megakaryocyte-specific lentiviral vectors were tested in vitro and in vivo for restricted expression. The glycoprotein 6 vector expressed almost exclusively in megakaryocytes. The platelet factor 4 vector was the strongest but with activity in hematopoietic stem cells. SUMMARY Background Lentiviral transduction and transplantation of hematopoietic stem cells (HSCs) can be utilized to modify the phenotype of megakaryocytes and platelets. As the genetic modification in HSCs is transmitted onto all hematopoietic progenies, transgene expression from the vector should be restricted to megakaryocytes to avoid un-physiologic effects by ectopic transgene expression. This can be achieved by lentiviral vectors that control expression by lineage-specific promoters. Methods In this study, we introduced promoters of megakaryocyte/platelet-specific genes, namely human glycoprotein 6 (hGP6) and hGP9, into third generation lentiviral vectors and analyzed their functionality in vitro and in vivo in bone marrow transplantation assays. Their specificity and efficiency of expression was compared with lentiviral vectors utilizing the promoters of murine platelet factor 4 (mPf4) and hGP1BA, both with strong activity in megakaryocytes (MKs) used in earlier studies, and the ubiquitously expressing phosphoglycerate kinase (hPGK) and spleen focus forming virus (SFFV) enhancer/promoters. Results Expression from the mPf4 vector in MKs and platelets was the strongest similar to expression from the viral SFFV promoter, however, the mPf4 vector, also exhibited considerable off-target expression in hematopoietic stem and progenitor cells. In contrast, the newly generated hGP6 vector was highly specific to megakaryocytes and platelets. The specificity was also retained when reducing the promoter size to 350 bp, making it a valuable new tool for lentiviral expression in MKs/platelets. Conclusion MK-specific vectors express preferentially in the megakaryocyte lineage. These vectors can be applied to develop murine models to study megakaryocyte and platelet function, or for gene therapy targeting proteins to platelets.
Collapse
Affiliation(s)
- L J Latorre-Rey
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wintterle
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - S Dütting
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - S Kohlscheen
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - T Abel
- Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institute, Langen, Germany
| | - F Schenk
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - S Wingert
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - M A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - B Nieswandt
- Department of Experimental Biomedicine-Vascular Medicine, University Hospital and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - N Heinz
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| | - U Modlich
- Research Groups for Gene Modification in Stem Cells, LOEWE Center for Cell and Gene Therapy Frankfurt/Main, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
38
|
Holic N, Frin S, Seye AK, Galy A, Fenard D. Improvement of De Novo Cholesterol Biosynthesis Efficiently Promotes the Production of Human Immunodeficiency Virus Type 1-Derived Lentiviral Vectors. Hum Gene Ther Methods 2016; 28:67-77. [PMID: 28042946 DOI: 10.1089/hgtb.2016.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The use of lentiviral vectors (LVs) for gene transfer in research, technological, or clinical applications requires the production of large amounts of vector. Mass production of clinical-grade LVs remains a challenge and limits certain perspectives for therapeutic use. Some improvements in LV production protocols have been possible by acting on multiple steps of the production process. The addition of animal-derived cholesterol to the culture medium of producer cells is known to increase the infectivity of LVs. To avoid the use of this animal-derived product in clinical settings, an alternative approach is to increase de novo the production of cholesterol by overexpressing a crucial cholesterogenic enzyme, namely, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). This project evaluates the impact of such an approach on the production, infectivity, and stability of LVs. We demonstrated that the overexpression of human HMGCR isoform 1 (hHMGCR1) in LV producer cells efficiently increased de novo cholesterol biosynthesis and enhanced by 2- to 3-fold the physical and infectious titers of LVs. We also observed that LVs produced in hHMGCR1-overexpressing cells were comparable in stability to LVs produced under classical conditions and were capable of transducing human CD34+ hematopoietic stem/progenitor cells efficiently. Interestingly, we also showed that LV production in the absence of fetal calf serum (FCS) but under hHMGCR1-overexpressing conditions allowed a viral production yield comparable to that achieved under classical conditions in high FCS content, leading the way to the establishment of new LV production protocols on adherent cells without serum.
Collapse
Affiliation(s)
- Nathalie Holic
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| | - Sophie Frin
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
| | - Ababacar K Seye
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
| | - Anne Galy
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| | - David Fenard
- 1 Généthon , Evry, France
- 2 INSERM , UMR_S951, Généthon, Evry, France
- 3 Université Evry Val d'Essonne , UMR_S951, Evry, France
| |
Collapse
|
39
|
Calos MP. Genome Editing Techniques and Their Therapeutic Applications. Clin Pharmacol Ther 2016; 101:42-51. [PMID: 27783398 DOI: 10.1002/cpt.542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Fueled by advances in the field of genetics, the methods available to edit DNA sequences in living cells have continued to develop steadily. These technologies directly impact the fields of gene and cell therapy, where changes in the DNA sequence of target cells offer a route to correct genetic diseases and manipulate disorders like cancer. We review here the expanding menu of genome editing techniques and how they are being applied to therapeutic targets. The methods encompass a myriad of approaches to modify the covalent structure of DNA, including the targeted creation of double-strand breaks that can catalyze genomic changes, as well as the use of retroviruses and transposons to mediate gene addition, recombinases for sequence-specific gene addition and deletion, and base repair for direct sequence changes. The continued growth of the exciting field of genome editing is opening new possibilities for therapeutic intervention.
Collapse
Affiliation(s)
- M P Calos
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
40
|
Rossi L, Pierigè F, Antonelli A, Bigini N, Gabucci C, Peiretti E, Magnani M. Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution. Adv Drug Deliv Rev 2016; 106:73-87. [PMID: 27189231 DOI: 10.1016/j.addr.2016.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
Abstract
Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.
Collapse
|
41
|
Robert MA, Lytvyn V, Deforet F, Gilbert R, Gaillet B. Virus-Like Particles Derived from HIV-1 for Delivery of Nuclear Proteins: Improvement of Production and Activity by Protein Engineering. Mol Biotechnol 2016; 59:9-23. [PMID: 27830536 DOI: 10.1007/s12033-016-9987-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Virus-like particles (VLPs) derived from retroviruses and lentiviruses can be used to deliver recombinant proteins without the fear of causing insertional mutagenesis to the host cell genome. In this study we evaluate the potential of an inducible lentiviral vector packaging cell line for VLP production. The Gag gene from HIV-1 was fused to a gene encoding a selected protein and it was transfected into the packaging cells. Three proteins served as model: the green fluorescent protein and two transcription factors-the cumate transactivator (cTA) of the inducible CR5 promoter and the human Krüppel-like factor 4 (KLF4). The sizes of the VLPs were 120-150 nm in diameter and they were resistant to freeze/thaw cycles. Protein delivery by the VLPs reached up to 100% efficacy in human cells and was well tolerated. Gag-cTA triggered up to 1100-fold gene activation of the reporter gene in comparison to the negative control. Protein engineering was required to detect Gag-KLF4 activity. Thus, insertion of the VP16 transactivation domain increased the activity of the VLPs by eightfold. An additional 2.4-fold enhancement was obtained by inserting nuclear export signal. In conclusion, our platform produced VLPs capable of efficient protein transfer, and it was shown that protein engineering can be used to improve the activity of the delivered proteins as well as VLP production.
Collapse
Affiliation(s)
- Marc-André Robert
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada.,National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Viktoria Lytvyn
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Francis Deforet
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Rénald Gilbert
- National Research Council Canada, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada.,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada
| | - Bruno Gaillet
- Département de génie chimique, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. .,Regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, PROTEO, Québec, QC, Canada. .,Réseau de thérapie cellulaire et tissulaire du FRQS, ThéCell, Québec, QC, Canada.
| |
Collapse
|
42
|
Bone marrow-derived CD34 - fraction: A rich source of mesenchymal stromal cells for clinical application. Cytotherapy 2016; 18:1560-1563. [PMID: 27742233 DOI: 10.1016/j.jcyt.2016.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/07/2023]
|
43
|
Bernardo ME, Aiuti A. The Role of Conditioning in Hematopoietic Stem-Cell Gene Therapy. Hum Gene Ther 2016; 27:741-748. [DOI: 10.1089/hum.2016.103] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy, SR-TIGET; Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, SR-TIGET; Pediatric Immunohematology, San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
44
|
Swamy MN, Wu H, Shankar P. Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 2016; 103:174-186. [PMID: 27013255 PMCID: PMC4935623 DOI: 10.1016/j.addr.2016.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) provides a powerful tool to silence specific gene expression and has been widely used to suppress host factors such as CCR5 and/or viral genes involved in HIV-1 replication. Newer nuclease-based gene-editing technologies, such as zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, also provide powerful tools to ablate specific genes. Because of differences in co-receptor usage and the high mutability of the HIV-1 genome, a combination of host factors and viral genes needs to be suppressed for effective prevention and treatment of HIV-1 infection. Whereas the continued presence of small interfering/short hairpin RNA (si/shRNA) mediators is needed for RNAi to be effective, the continued expression of nucleases in the gene-editing systems is undesirable. Thus, RNAi provides the only practical way for expression of multiple silencers in infected and uninfected cells, which is needed for effective prevention/treatment of infection. There have been several advances in the RNAi field in terms of si/shRNA design, targeted delivery to HIV-1 susceptible cells, and testing for efficacy in preclinical humanized mouse models. Here, we comprehensively review the latest advances in RNAi technology towards prevention and treatment of HIV-1.
Collapse
Affiliation(s)
- Manjunath N Swamy
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| | - Haoquan Wu
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Premlata Shankar
- Center of Emphasis in Infectious Disease, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA.
| |
Collapse
|
45
|
Fellows MD. Targeting safety in the clinic for precise genome editing using CRISPR: a genotoxicologist's perspective. Per Med 2016; 13:279-282. [PMID: 29749810 DOI: 10.2217/pme-2016-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Mick D Fellows
- AstraZeneca Innovative Medicines & Early Development Darwin Building 310, Milton Science Park, Cambridge, CB4 OWG, UK
| |
Collapse
|
46
|
Current status of ex vivo gene therapy for hematological disorders: a review of clinical trials in Japan around the world. Int J Hematol 2016; 104:42-72. [PMID: 27289360 DOI: 10.1007/s12185-016-2030-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 12/20/2022]
Abstract
Gene therapies are classified into two major categories, namely, in vivo and ex vivo. Clinical trials of human gene therapy began with the ex vivo techniques. Based on the initial successes of gene-therapy clinical trials, these approaches have spread worldwide. The number of gene therapy trials approved worldwide increased gradually starting in 1989, reaching 116 protocols per year in 1999, and a total of 2210 protocols had been approved by 2015. Accumulating clinical evidence has demonstrated the safety and benefits of several types of gene therapy, with the exception of serious adverse events in several clinical trials. These painful experiences were translated backward to basic science, resulting in the development of several new technologies that have influenced the recent development of ex vivo gene therapy in this field. To date, six gene therapies have been approved in a limited number of countries worldwide. In Japan, clinical trials of gene therapy have developed under the strong influence of trials in the US and Europe. Since the initial stages, 50 clinical trials have been approved by the Japanese government. In this review, the history and current status of clinical trials of ex vivo gene therapy for hematological disorders are introduced and discussed.
Collapse
|
47
|
Biasco L, Pellin D, Scala S, Dionisio F, Basso-Ricci L, Leonardelli L, Scaramuzza S, Baricordi C, Ferrua F, Cicalese MP, Giannelli S, Neduva V, Dow DJ, Schmidt M, Von Kalle C, Roncarolo MG, Ciceri F, Vicard P, Wit E, Di Serio C, Naldini L, Aiuti A. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell 2016; 19:107-19. [PMID: 27237736 PMCID: PMC4942697 DOI: 10.1016/j.stem.2016.04.016] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPCs) are capable of supporting the lifelong production of blood cells exerting a wide spectrum of functions. Lentiviral vector HSPC gene therapy generates a human hematopoietic system stably marked at the clonal level by vector integration sites (ISs). Using IS analysis, we longitudinally tracked >89,000 clones from 15 distinct bone marrow and peripheral blood lineages purified up to 4 years after transplant in four Wiskott-Aldrich syndrome patients treated with HSPC gene therapy. We measured at the clonal level repopulating waves, populations' sizes and dynamics, activity of distinct HSPC subtypes, contribution of various progenitor classes during the early and late post-transplant phases, and hierarchical relationships among lineages. We discovered that in-vitro-manipulated HSPCs retain the ability to return to latency after transplant and can be physiologically reactivated, sustaining a stable hematopoietic output. This study constitutes in vivo comprehensive tracking in humans of hematopoietic clonal dynamics during the early and late post-transplant phases.
Hematopoietic reconstitution occurs in two distinct clonal waves A few thousand HSPC clones stably sustain multilineage blood cell production Steady-state hematopoiesis after transplant is maintained by both HSCs and MPPs Natural killer clones have closer relationships to myeloid cells than to lymphoid cells
Collapse
Affiliation(s)
- Luca Biasco
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy.
| | | | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Francesca Dionisio
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Lorena Leonardelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Cristina Baricordi
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefania Giannelli
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy
| | - Victor Neduva
- Target Sciences, GlaxoSmithKline R&D, Stevenage, Herts SG1 2NY, UK
| | - David J Dow
- Target Sciences, GlaxoSmithKline R&D, Stevenage, Herts SG1 2NY, UK
| | - Manfred Schmidt
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Christof Von Kalle
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Maria Grazia Roncarolo
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy; Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Fabio Ciceri
- Pediatric Immunohematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Vicard
- Department of Economy, University Roma Tre, 00154 Rome, Italy
| | - Ernst Wit
- Johann Bernoulli Institute, University of Groningen, 9700 AB Groningen, the Netherlands
| | - Clelia Di Serio
- CUSSB, Vita-Salute University, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (TIGET), 20132 Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplant Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
48
|
Kumar SRP, Markusic DM, Biswas M, High KA, Herzog RW. Clinical development of gene therapy: results and lessons from recent successes. Mol Ther Methods Clin Dev 2016; 3:16034. [PMID: 27257611 PMCID: PMC4879992 DOI: 10.1038/mtm.2016.34] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/28/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023]
Abstract
Therapeutic gene transfer holds the promise of providing lasting therapies and even cures for diseases that were previously untreatable or for which only temporary or suboptimal treatments were available. For some time, clinical gene therapy was characterized by some impressive but rare examples of successes and also several setbacks. However, effective and long-lasting treatments are now being reported from gene therapy trials at an increasing pace. Positive outcomes have been documented for a wide range of genetic diseases (including hematological, immunological, ocular, and neurodegenerative and metabolic disorders) and several types of cancer. Examples include restoration of vision in blind patients, eradication of blood cancers for which all other treatments had failed, correction of hemoglobinopathies and coagulation factor deficiencies, and restoration of the immune system in children born with primary immune deficiency. To date, about 2,000 clinical trials for various diseases have occurred or are in progress, and many more are in the pipeline. Multiple clinical studies reported successful treatments of pediatric patients. Design of gene therapy vectors and their clinical development are advancing rapidly. This article reviews some of the major successes in clinical gene therapy of recent years.
Collapse
Affiliation(s)
- Sandeep RP Kumar
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - David M Markusic
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | - Moanaro Biswas
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| | | | - Roland W Herzog
- Department of Pediatrics and Powell Gene Therapy Center, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
49
|
Hematopoietic Stem Cell Transplantation for Primary Immune Deficiency Disorders. Indian J Pediatr 2016; 83:450-4. [PMID: 26920397 DOI: 10.1007/s12098-015-2012-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/23/2015] [Indexed: 10/22/2022]
Abstract
Hematopoietic stem cell transplantation provides a curative option for children with primary immune deficiency disorders. Increased awareness and rapid diagnosis of these conditions has resulted in early referral and the chance to offer a curative option for affected children. Management of these children involves a multidisciplinary team including infectious disease specialists and intensivists. The use of reduced intensity conditioning chemotherapy, advances in detection and therapy of viral and fungal infections, optimal supportive care and techniques in stem cell processing, including T cell depletion has enabled doctors to transplant children with co-morbid conditions and no matched donors. Transplantation for these children has also brought in deep insights into the world of immunology and infectious diseases.
Collapse
|
50
|
Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood 2016; 128:45-54. [PMID: 27129325 DOI: 10.1182/blood-2016-01-688226] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/14/2016] [Indexed: 12/16/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.
Collapse
|