1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Sun W, Xie W, Hu K, Yang Z, Han L, Li L, Qi Y, Wei Y. Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers (Basel) 2024; 16:498. [PMID: 38399876 PMCID: PMC10891933 DOI: 10.3390/polym16040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the incidence of bone defects has been increasing year by year. Bone transplantation has become the most needed surgery after a blood transfusion and shows a rising trend. Three-dimensional-printed implants can be arbitrarily shaped according to the defects of tissues and organs to achieve perfect morphological repair, opening a new way for non-traumatic repair and functional reconstruction. In this paper, strontium-doped mineralized collagen was first prepared by an in vitro biomimetic mineralization method and then polylactic acid was homogeneously blended with the mineralized collagen to produce a comprehensive bone repair scaffold by a gas extrusion 3D printing method. Characterization through scanning electron microscopy, X-ray diffraction, and mechanical testing revealed that the strontium-functionalized composite scaffold exhibits an inorganic composition and nanostructure akin to those of human bone tissue. The scaffold possesses uniformly distributed and interconnected pores, with a compressive strength reaching 21.04 MPa. The strontium doping in the mineralized collagen improved the biocompatibility of the scaffold and inhibited the differentiation of osteoclasts to promote bone regeneration. This innovative composite scaffold holds significant promise in the field of bone tissue engineering, providing a forward-thinking solution for prospective bone injury repair.
Collapse
Affiliation(s)
- Weiwei Sun
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wenyu Xie
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Kun Hu
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Zongwen Yang
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Lu Han
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Luhai Li
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yuansheng Qi
- Beijing Engineering Research Center of Printed Electronics, Institute of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Han J, Han SC, Kim YK, Tarafder S, Jeong HJ, Jeong HJ, Chung JY, Lee CH, Oh JH. Bioactive Scaffold With Spatially Embedded Growth Factors Promotes Bone-to-Tendon Interface Healing of Chronic Rotator Cuff Tear in Rabbit Model. Am J Sports Med 2023; 51:2431-2442. [PMID: 37345646 DOI: 10.1177/03635465231180289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
BACKGROUND Functional restoration of the bone-to-tendon interface (BTI) after rotator cuff repair is a challenge. Therefore, numerous biocompatible biomaterials for promoting BTI healing have been investigated. PURPOSE To determine the efficacy of scaffolds with spatiotemporal delivery of growth factors (GFs) to accelerate BTI healing after rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS An advanced 3-dimensional printing technique was used to fabricate bioactive scaffolds with spatiotemporal delivery of multiple GFs targeting the tendon, fibrocartilage, and bone regions. In total, 50 rabbits were used: 2 nonoperated controls and 48 rabbits with induced chronic rotator cuff tears (RCTs). The animals with RCTs were divided into 3 groups: (A) saline injection, (B) scaffold without GF, and (C) scaffold with GF. To induce chronic models, RCTs were left unrepaired for 6 weeks; then, surgical repairs with or without bioactive scaffolds were performed. For groups B and C, each scaffold was implanted between the bony footprint and the supraspinatus tendon. Four weeks after repair, quantitative real-time polymerase chain reaction and immunofluorescence analyses were performed to evaluate early signs of regenerative healing. Histological, biomechanical, and micro-computed tomography analyses were performed 12 weeks after repair. RESULTS Group C had the highest mRNA expression of collagen type I alpha 1, collagen type III alpha 1, and aggrecan. Immunofluorescence analysis showed the formation of an aggrecan+/collagen II+ fibrocartilaginous matrix at the BTI when repaired with scaffold with GFs. Histologic analysis revealed greater collagen fiber continuity, denser collagen fibers, and a more mature tendon-to-bone junction in GF-embedded scaffolds than those in the other groups. Group C demonstrated the highest load-to-failure ratio, and modulus mapping showed that the distribution of the micromechanical properties of the BTI repaired with GF-embedded scaffolds was comparable with that of the native BTI. Micro-computed tomography analysis identified the highest bone mineral density and bone volume/total volume ratio in group C. CONCLUSION Bioactive scaffolds with spatially embedded GFs have significant potential to promote the BTI healing of chronic RCTs in a rabbit model. CLINICAL RELEVANCE The scaffolds with spatiotemporal delivery of GF may serve as an off-the-shelf biomaterial graft to promote the healing of RCTs.
Collapse
Affiliation(s)
- Jian Han
- Department of Orthopaedic Surgery, The First People's Hospital of Huzhou, Huzhou, Zhejiang Province, China
| | - Sheng Chen Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Young Kyu Kim
- Department of Orthopaedic Surgery, Bundang Jesaeng Hospital, Seongnam, Republic of Korea
| | - Solaiman Tarafder
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hun Jin Jeong
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Hyeon Jang Jeong
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Ju Young Chung
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chang H Lee
- Regenerative Engineering Laboratory, Center for Dental and Craniofacial Research, Columbia University Irving Medical Center, New York, New York, USA
| | - Joo Han Oh
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
4
|
Arslan AK, Çelik E, Alkan F, Demirbilek M. GO containing PHBHX bone scaffold: GO concentration and in vitro osteointegration. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Carter A, Popowski K, Cheng K, Greenbaum A, Ligler FS, Moatti A. Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation. Bioelectricity 2021; 3:255-271. [PMID: 35018335 PMCID: PMC8742263 DOI: 10.1089/bioe.2021.0019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Serious bone injuries have devastating effects on the lives of patients including limiting working ability and high cost. Orthopedic implants can aid in healing injuries to an extent that exceeds the natural regenerative capabilities of bone to repair fractures or large bone defects. Autografts and allografts are the standard implants used, but disadvantages such as donor site complications, a limited quantity of transplantable bone, and high costs have led to an increased demand for synthetic bone graft substitutes. However, replicating the complex physiological properties of biological bone, much less recapitulating its complex tissue functions, is challenging. Extensive efforts to design biocompatible implants that mimic the natural healing processes in bone have led to the investigation of piezoelectric smart materials because the bone has natural piezoelectric properties. Piezoelectric materials facilitate bone regeneration either by accumulating electric charge in response to mechanical stress, which mimics bioelectric signals through the direct piezoelectric effect or by providing mechanical stimulation in response to electrical stimulation through the converse piezoelectric effect. Although both effects are beneficial, the converse piezoelectric effect can address bone atrophy from stress shielding and immobility by improving the mechanical response of a healing defect. Mechanical stimulation has a positive impact on bone regeneration by activating cellular pathways that increase bone formation and decrease bone resorption. This review will highlight the potential of the converse piezoelectric effect to enhance bone regeneration by discussing the activation of beneficial cellular pathways, the properties of piezoelectric biomaterials, and the potential for the more effective administration of the converse piezoelectric effect using wireless control.
Collapse
Affiliation(s)
- Amber Carter
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Kristen Popowski
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Ke Cheng
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Visan AI, Popescu-Pelin G, Socol G. Degradation Behavior of Polymers Used as Coating Materials for Drug Delivery-A Basic Review. Polymers (Basel) 2021; 13:1272. [PMID: 33919820 PMCID: PMC8070827 DOI: 10.3390/polym13081272] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
The purpose of the work was to emphasize the main differences and similarities in the degradation mechanisms in the case of polymeric coatings compared with the bulk ones. Combined with the current background, this work reviews the properties of commonly utilized degradable polymers in drug delivery, the factors affecting degradation mechanism, testing methods while offering a retrospective on the evolution of the controlled release of biodegradable polymeric coatings. A literature survey on stability and degradation of different polymeric coatings, which were thoroughly evaluated by different techniques, e.g., polymer mass loss measurements, surface, structural and chemical analysis, was completed. Moreover, we analyzed some shortcomings of the degradation behavior of biopolymers in form of coatings and briefly proposed some solving directions to the main existing problems (e.g., improving measuring techniques resolution, elucidation of complete mathematical analysis of the different degradation mechanisms). Deep studies are still necessary on the dynamic changes which occur to biodegradable polymeric coatings which can help to envisage the future performance of synthesized films designed to be used as medical devices with application in drug delivery.
Collapse
Affiliation(s)
- Anita Ioana Visan
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| | | | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077190 Magurele, Ilfov, Romania;
| |
Collapse
|
7
|
Nanohydroxyapatite incorporated photocrosslinked gelatin methacryloyl/poly(ethylene glycol)diacrylate hydrogel for bone tissue engineering. Prog Biomater 2021; 10:43-51. [PMID: 33768485 DOI: 10.1007/s40204-021-00150-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/09/2021] [Indexed: 10/21/2022] Open
Abstract
The development of novel strategies that aim to augment the regenerative potential of bone is critical for devising better treatment options for bone defects or injuries. Facilitation of bone repair and regeneration utilizing composite hydrogels that simulates bone matrix is emerging as a viable approach in bone tissue engineering. The present study aimed to develop nanohydroxyapatite-incorporated gelatin methacryloyl (GelMA)/poly(ethylene glycol) diacrylate (PEGDA) hydrogel (GMPH hydrogel). A facile blending and photocrosslinking approach was employed to incorporate nanohydroxyapatite into the inter-crosslinked polymeric hydrogel network to obtain an ECM mimicking matrix for assisting bone tissue regeneration. Chemical characterization of GelMA and the GMPH hydrogel was carried out using FTIR and 1H NMR. Physical properties of GMPH, such as gelation, swelling and degradation ratios, and internal morphology, signified the suitability of GMPH hydrogel for tissue engineering. Cell viability assay demonstrated a healthy proliferation of MG63 osteoblast cells in GMPH hydrogel extracted growth medium, indicating the hydrogel's cytocompatibility and suitability for bone tissue engineering. Our study documented the fabrication of a novel GelMA/PEGDA-nanohydroxyapatite hydrogel that possesses ideal physicochemical and biological properties for bone tissue engineering.
Collapse
|
8
|
Meng C, Liu K, Lv Z, Zhang Y, Li J, Luo X, Qiang H, Li K, Liu F, Zhang B, Cui F. Inflammation and immunity gene expression profiling of macrophages on mineralized collagen. J Biomed Mater Res A 2020; 109:1328-1336. [PMID: 33089616 DOI: 10.1002/jbm.a.37124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
Mineralized collagen (MC) is a biomaterial that is commonly used in the treatment of bone defects. However, the inflammatory response after biomaterial implantation is a recurrent problem that requires urgent attention. Our previous studies on MC-macrophage interactions were descriptive but we did not perform an in-depth analysis on a genetic level to investigate the underlying mechanisms. In this study, we cultured RAW264.7 cells on MC or collagen and examined the proliferation of the macrophages by Cell Counting Kit-8 assay. We sequenced the RNA of the cultured cells to discover differential gene expression patterns and found that a total of 1183 genes were differentially expressed between the MC- and collagen-cultured groups, of which 396 genes were upregulated and 787 were downregulated. Gene ontology analysis revealed that biological processes in MC-cultured cells, such as inflammation and innate immunity, were downregulated; whereas nucleosome assembly, megakaryocyte differentiation, and chromatin assembly were upregulated. We identified several pathways associated with immunity that were significantly enriched using the Kyoto Encyclopedia of Genes and Genomes. Furthermore, we validated the differentially expressed genes from RNA sequencing by quantitative real-time polymerase chain reaction. This study provides insight into the macrophage phenotype based on the microenvironment, which is the foundation for the clinical application of MC-based interventions.
Collapse
Affiliation(s)
- Chunxiu Meng
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Kun Liu
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Zhaoyong Lv
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Yujue Zhang
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Jun Li
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Xin Luo
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Huifen Qiang
- College of Materials Science and Engineering of Liaocheng University, Liaocheng, China
| | - Keyi Li
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China.,College of Materials Science and Engineering of Liaocheng University, Liaocheng, China
| | - Bin Zhang
- Depertment of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University and Shandong Provincial Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.,Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng, China
| | - Fuzhai Cui
- Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
9
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
10
|
Zhu J, Yang S, Cai K, Wang S, Qiu Z, Huang J, Jiang G, Wang X, Fang X. Bioactive poly (methyl methacrylate) bone cement for the treatment of osteoporotic vertebral compression fractures. Theranostics 2020; 10:6544-6560. [PMID: 32483469 PMCID: PMC7255031 DOI: 10.7150/thno.44428] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Poly (methyl methacrylate) (PMMA) bone cement is one of the most commonly used biomaterials for augmenting/stabilizing osteoporosis-induced vertebral compression fractures (OVCFs), such as percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP). However, its clinical applications are limited by its poor performance in high compressive modulus and weak bonding to bone. To address these issues, a bioactive composite bone cement was developed for the treatment of osteoporotic vertebral compression fractures, in which mineralized collagen (MC) was incorporated into the PMMA bone cement (MC-PMMA). Methods: The in vitro properties of PMMA and MC-PMMA composite bone cement were determined, including setting time, compressive modulus, adherence, proliferation, and osteogenic differentiation of rat bone mesenchymal stem cells. The in vivo properties of both cements were evaluated in an animal study (36 osteoporotic New Zealand female rabbits divided equally between the two bone cement groups; PVP at L5) and a small-scale and short-term clinical study (12 patients in each of the two bone cement groups; follow-up: 2 years). Results: In terms of value for PMMA bone cement, the handling properties of MC-PMMA bone cement were not significantly different. However, both compressive strength and compressive modulus were found to be significantly lower. In the rabbit model study, at 8 and 12 weeks post-surgery, bone regeneration was more significant in MC-PMMA bone cement (cortical bone thickness, osteoblast area, new bone area, and bone ingrowth %; each significantly higher). In the clinical study, at a follow-up of 2 years, both the Visual Analogue Score and Oswestry Disability Index were significantly reduced when MC-PMMA cement was used. Conclusions: MC-PMMA bone cement demonstrated good adaptive mechanical properties and biocompatibility and may be a promising alternative to commercial PMMA bone cements for the treatment of osteoporotic vertebral fractures in clinical settings. While the present results for MC-PMMA bone cement are encouraging, further study of this cement is needed to explore its viability as an ideal alternative for use in PVP and BKP.
Collapse
Affiliation(s)
- Jinjin Zhu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuhui Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Kaiwen Cai
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhiye Qiu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Junfei Huang
- Shimadzu (China) Co., Ltd. Shenzhen Branch, Shenzhen 518042, China
| | - Guoqiang Jiang
- Department of Spinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo 315020, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang, Hangzhou 310016, China
| |
Collapse
|
11
|
Yousefi AM. A review of calcium phosphate cements and acrylic bone cements as injectable materials for bone repair and implant fixation. J Appl Biomater Funct Mater 2020; 17:2280800019872594. [PMID: 31718388 DOI: 10.1177/2280800019872594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Treatment of bone defects caused by trauma or disease is a major burden on human healthcare systems. Although autologous bone grafts are considered as the gold standard, they are limited in availability and are associated with post-operative complications. Minimally invasive alternatives using injectable bone cements are currently used in certain clinical procedures, such as vertebroplasty and balloon kyphoplasty. Nevertheless, given the high incidence of fractures and pathologies that result in bone voids, there is an unmet need for injectable materials with desired properties for minimally invasive procedures. This paper provides an overview of the most common injectable bone cement materials for clinical use. The emphasis has been placed on calcium phosphate cements and acrylic bone cements, while enabling the readers to compare the opportunities and challenges for these two classes of bone cements. This paper also briefly reviews antibiotic-loaded bone cements used in bone repair and implant fixation, including their efficacy and cost for healthcare systems. A summary of the current challenges and recommendations for future directions has been brought in the concluding section of this paper.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, USA
| |
Collapse
|
12
|
Chen P, Zhou Z, Liu W, Zhao Y, Huang T, Li X, Duan J, Fang J. Preparation and Characterization of Poly(L-lactide-co-glycolide-co-ε-caprolactone) Scaffolds by Thermally Induced Phase Separation. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1735136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ping Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Zhihua Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, P. R. China
- Key Laboratory of Theoretical Organic Chemistry and Functional molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Wenjuan Liu
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Yanmin Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Tianlong Huang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xiaofei Li
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Jianglong Duan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| | - Jianjun Fang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, P. R. China
| |
Collapse
|
13
|
Abstract
Adult stem cells are excellent cell resource for cell therapy and regenerative medicine. Dental pulp stem cells (DPSCs) have been discovered and well known in various application. Here, we reviewed the history of dental pulp stem cell study and the detail experimental method including isolation, culture, cryopreservation, and the differentiation strategy to different cell lineage. Moreover, we discussed the future potential application of the combination of tissue engineering and of DPSC differentiation. This review will help the new learner to quickly get into the DPSC filed.
Collapse
Affiliation(s)
- Xianrui Yang
- Department of Orthodontics, State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Li Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Chengdu, 610072 China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062 Hubei China
| |
Collapse
|
14
|
Luo Y, Chen S, Shi Y, Ma J. 3D printing of strontium-doped hydroxyapatite based composite scaffolds for repairing critical-sized rabbit calvarial defects. ACTA ACUST UNITED AC 2018; 13:065004. [PMID: 30091422 DOI: 10.1088/1748-605x/aad923] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, strontium substituted hydroxyapatite (Sr-HAP) was synthesized using collagen type I and citrate as bi-templates and the obtained nanoparticles with high similarity to natural bone minerals were made into composite scaffolds with interconnected porous structure using a three-dimensional (3D) printing technique. A calcium deficient structure of HAP phase was caused by doping Sr which was verified by Fourier transform infrared, x-ray diffractometer, scanning electron microscopy and transmission electron microscopy. The Sr/(Sr + Ca) molar ratio in Sr-HAP nanoparticles was 5.8% estimated by EDX. Furthermore, both 3D printed scaffolds made of Sr-HAP and HAP had uniform porous structure and porosity of about 60%. Cell culturing indicated that MC3T3-E1 cells could adhere on the surface of the scaffolds and the strontium substitution could enhance cell adhesion, proliferation and alkaline phosphatase activity. The printed composite scaffolds were used to repair critical-sized rabbit calvarial defects with a diameter of 15 mm. The results showed that the Sr-HAP scaffolds had better osteogenic capability and stimulated more new bone formation within 12 weeks. It was suggested that these printed Sr-HAP composite scaffolds possessed high potential as candidates in the application of bone augmentation and regeneration.
Collapse
Affiliation(s)
- Yun Luo
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Barbeck M, Serra T, Booms P, Stojanovic S, Najman S, Engel E, Sader R, Kirkpatrick CJ, Navarro M, Ghanaati S. Analysis of the in vitro degradation and the in vivo tissue response to bi-layered 3D-printed scaffolds combining PLA and biphasic PLA/bioglass components - Guidance of the inflammatory response as basis for osteochondral regeneration. Bioact Mater 2017; 2:208-223. [PMID: 29744431 PMCID: PMC5935508 DOI: 10.1016/j.bioactmat.2017.06.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was the in vitro and in vivo analysis of a bi-layered 3D-printed scaffold combining a PLA layer and a biphasic PLA/bioglass G5 layer for regeneration of osteochondral defects in vivo Focus of the in vitro analysis was on the (molecular) weight loss and the morphological and mechanical variations after immersion in SBF. The in vivo study focused on analysis of the tissue reactions and differences in the implant bed vascularization using an established subcutaneous implantation model in CD-1 mice and established histological and histomorphometrical methods. Both scaffold parts kept their structural integrity, while changes in morphology were observed, especially for the PLA/G5 scaffold. Mechanical properties decreased with progressive degradation, while the PLA/G5 scaffolds presented higher compressive modulus than PLA scaffolds. The tissue reaction to PLA included low numbers of BMGCs and minimal vascularization of its implant beds, while the addition of G5 lead to higher numbers of BMGCs and a higher implant bed vascularization. Analysis revealed that the use of a bi-layered scaffold shows the ability to observe distinct in vivo response despite the physical proximity of PLA and PLA/G5 layers. Altogether, the results showed that the addition of G5 enables to reduce scaffold weight loss and to increase mechanical strength. Furthermore, the addition of G5 lead to a higher vascularization of the implant bed required as basis for bone tissue regeneration mediated by higher numbers of BMGCs, while within the PLA parts a significantly lower vascularization was found optimally for chondral regeneration. Thus, this data show that the analyzed bi-layered scaffold may serve as an ideal basis for the regeneration of osteochondral tissue defects. Additionally, the results show that it might be able to reduce the number of experimental animals required as it may be possible to analyze the tissue response to more than one implant in one experimental animal.
Collapse
Affiliation(s)
| | - Tiziano Serra
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
| | - Patrick Booms
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Sanja Stojanovic
- University of Niš, Faculty of Medicine, Department for Cell and Tissue Engineering, Institute of Biology and Human Genetics, Niš, Serbia
| | - Stevo Najman
- University of Niš, Faculty of Medicine, Department for Cell and Tissue Engineering, Institute of Biology and Human Genetics, Niš, Serbia
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
- Technical University of Catalonia (UPC), Dpt. Materials Science and Metallurgy, Spain
- CIBER en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Robert Sader
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Charles James Kirkpatrick
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| | - Melba Navarro
- Institute for Bioengineering of Catalonia (IBEC), Biomaterials for Regenerative Medicine, Barcelona, Spain
| | - Shahram Ghanaati
- Clinic of Oro-Maxillofacial and Plastic Surgery, FORM-Lab, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
16
|
In vitro degradation of a 3D porous Pennisetum purpureum/PLA biocomposite scaffold. J Mech Behav Biomed Mater 2017; 74:383-391. [DOI: 10.1016/j.jmbbm.2017.06.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
|
17
|
Chu C, Deng J, Sun X, Qu Y, Man Y. Collagen Membrane and Immune Response in Guided Bone Regeneration: Recent Progress and Perspectives. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:421-435. [PMID: 28372518 DOI: 10.1089/ten.teb.2016.0463] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jia Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xianchang Sun
- Yantai Zhenghai Bio-Tech, Laboratory of Shandong Province, Yantai, China
| | - Yili Qu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Zhang L, Mu W, Chen S, Yang D, Xu F, Wu Y. The enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide coated mineralized collagen composite in the treatment of the mandibular defects. Biomed Mater Eng 2017; 27:495-505. [PMID: 27885997 DOI: 10.3233/bme-161603] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The novel synthetic peptide P17-BMP-2 could promote cell attachment and enhance osteogenic capability. A composite, comprising nano-hydroxyapatite, collagen and poly(L-lactide) (nHAC/PLLA), was an efficient scaffold for carrier of P17-BMP-2. Our aim was to investigate whether nHAC/PLLA/P17-BMP-2 accelerates the osteogenesis as a reliable method for mandibular defect healing in this study. The repair capability was assessed by the gross observation, X-ray test and histological observation in four animal experiment groups at 2 week and 4 week after surgery: Group A (control), Group B (nHAC/PLLA treatment), Group C (nHAC/PLLA with 2 mg/g P17-BMP-2 treatment) and Group D (nHAC/PLLA with 10 mg/g P17-BMP-2 treatment). The Lane-Sandhu X-ray scores of the four groups were compared among four groups as well. The results showed that the composites containing the highest content of P17- BMP-2 performed best. Therefore, the nHAC/PLLA with P17-BMP-2 composite can accelerate the osteogenesis for mandibular defect healing and could be an ideal biological material as a bone graft material option for clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China.,Department of Orthopaedics, Liaocheng People's Hospital, Liaocheng Clinical School, Taishan Medical University, Liaocheng, Shandong Province, China
| | - Weidong Mu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Shuangfeng Chen
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Dawei Yang
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Fei Xu
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China
| | - Yaping Wu
- Central Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng, Zhong Yuan Academy of Biological Medicine, Liaocheng University, Shandong Province, China.,Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, G03.550, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
19
|
Sadeghi A, Nokhasteh S, Molavi A, Khorsand-Ghayeni M, Naderi-Meshkin H, Mahdizadeh A. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 66:130-137. [DOI: 10.1016/j.msec.2016.04.073] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/25/2022]
|
20
|
Liao SS, Cui FZ, Zhu Y. Osteoblasts Adherence and Migration through Three-dimensional Porous Mineralized Collagen Based Composite: nHAC/PLA. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911504042643] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoblast cells were separated from the neonatal rat calvaria and co-cultured on a novel mineralized hydroxyapatite/collagen/poly(lactic acid) composite scaffold. By using this static cell culture, a three-dimensional osteoblasts/composite bone-like was constructed in vitro. The culture process was observed by scanning electron microscopy, fluorescence microscopy, confocal laser scanning microscopy, and histological analysis. Cells were observed to spread and proliferate throughout the inner-pores of the scaffold material. After a 12-day culture, the cells had grown into the interior scaffold about 200–400 μm depth of the composite by histological section observation. This mobile behavior of osteoblasts appeared to be similar to the composition and hierarchical structure of bone tissue. The adherence and migration of osteoblast cells in this three-dimensional composite is clinically important for large bone defect repair based on tissue engineering.
Collapse
Affiliation(s)
- S. S. Liao
- Biomaterials Laboratory Department of Material Science & Engineering Tsinghua University, Beijing 100084, China, Department of Dental Materials and Engineering School of Dentistry, Hokkaido University Sapporo 060-8586, Japan
| | - F. Z. Cui
- Biomaterials Laboratory Department of Material Science & Engineering Tsinghua University, Beijing 100084, China
| | - Y. Zhu
- Biomaterials Laboratory Department of Material Science & Engineering Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Zhou DS, Zhao KB, Li Y, Cui FZ, Lee IS. Repair of Segmental Defects with Nano-hydroxyapatite/Collagen/PLA Composite Combined with Mesenchymal Stem Cells. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911506068554] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to investigate and compare the capacity of fresh-frozen allogeneic bone, nano-hydroxyapatite/collagen/PLA (nHAC/PLA) scaffold, and nHAC/PLA scaffold loaded with bone marrow mesenchymal stem cells (BMSCs) in inducing bone formation. A 10mm segmental rabbit radial defect was surgically created. The animals were divided into four groups in which the defect was either left untreated, or filled with the abovementioned three grafts. The animals were euthanized at 2, 4, 6, 8, 12, and 18 weeks. Radiographic and histologic analyses were performed on the harvested tissue. We show that nHAC/PLA composite combined with mesenchymal stem cells could enhance and accelerate bone formation in segmental defects of rabbits. nHAC/PLA composite is an ideal bone graft; implanting nHAC/PLA composite combined with mesenchymal stem cells is a potential method for surgical treatment of bone defects.
Collapse
Affiliation(s)
- D. S. Zhou
- Department of Orthopedics, Shandong Provincial Hospital, Shandong University, Jinan 250021, P.R. China
| | - K. B. Zhao
- Department of Orthopedics, Shandong Provincial Hospital, Shandong University, Jinan 250021, P.R. China
| | - Y. Li
- Biomaterials Laboratory, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - F. Z. Cui
- Biomaterials Laboratory, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, P.R. China,
| | - I. S. Lee
- Institute of Physics and Applied Physics, and Yonsei Center for Nano Technology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
22
|
Kijeńska E, Zhang S, Prabhakaran MP, Ramakrishna S, Swieszkowski W. Nanoengineered biocomposite tricomponent polymer based matrices for bone tissue engineering. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1163561] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wang Y, Van Manh N, Wang H, Zhong X, Zhang X, Li C. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects. Int J Nanomedicine 2016; 11:2053-67. [PMID: 27274235 PMCID: PMC4869647 DOI: 10.2147/ijn.s102844] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ngo Van Manh
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China; Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam
| | - Haorong Wang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xue Zhong
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xu Zhang
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Changyi Li
- School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
24
|
Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int 2016; 2016:6180487. [PMID: 26880976 PMCID: PMC4736569 DOI: 10.1155/2016/6180487] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Aswati Subramanian
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Conor Flavin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Hassane Oudadesse
- Sciences Chimiques, University of Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| |
Collapse
|
25
|
Keceli HG, Akman AC, Bayram C, Nohutcu RM. Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry. NANOBIOMATERIALS IN DENTISTRY 2016:337-387. [DOI: 10.1016/b978-0-323-42867-5.00013-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Xu SJ, Qiu ZY, Wu JJ, Kong XD, Weng XS, Cui FZ, Wang XM. Osteogenic Differentiation Gene Expression Profiling of hMSCs on Hydroxyapatite and Mineralized Collagen. Tissue Eng Part A 2015; 22:170-81. [PMID: 26529501 DOI: 10.1089/ten.tea.2015.0237] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, human mesenchymal stem cells (hMSCs) were cultured on the hydroxyapatite (HA) and mineralized collagen (MC), and their proliferation, adhesion, and differentiation, especially the molecular mechanisms on gene level, were investigated. Proliferation and morphological responses of hMSCs and their osteogenic differentiation were detected by quantitative detection of alkaline phosphatase. Gene expression profilings were examined by microarrays, and the gene expression data were studied through gene ontology terms and pathway analyses. The results showed that MC promoted cell proliferation and osteogenic differentiation of hMSCs. Microarray analysis showed that MC was conducive to express osteogenesis-related genes, such as BMP-2, COL1A1, and CTSK, and stimulate osteogenic differentiation, such as osteoblast differentiation pathway and skeletal system development pathway.
Collapse
Affiliation(s)
- Su-Ju Xu
- 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, China .,2 College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou, China
| | - Zhi-Ye Qiu
- 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, China
| | - Jing-Jing Wu
- 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, China .,3 School of Engineering and Technology, China University of Geosciences , Beijing, China
| | - Xiang-Dong Kong
- 2 College of Life Sciences, Zhejiang Sci-Tech University , Hangzhou, China
| | - Xi-Sheng Weng
- 4 Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, China
| | - Fu-Zhai Cui
- 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, China
| | - Xiu-Mei Wang
- 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University , Beijing, China
| |
Collapse
|
27
|
Biodegradable Mineralized Collagen Plug for the Reconstruction of Craniotomy Burr-Holes: A Report of Three Cases. ACTA ACUST UNITED AC 2015. [DOI: 10.18679/cn11-6030_r.2015.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives In this case report, we describe the design, fabrication and clinical outcomes of a novel bioresorbable, mineralized collagen burr-hole plug for the reconstruction of craniotomy burr-holes. Methods Mineralized collagen burr-hole plugs were fabricated via a biomimetic mineralization process. The biomimetic mineralized collagen has a similar chemical composition and microstructure to natural bone tissue, thereby possessing good biocompatibility and osteoconductivity. The mineralized collagen burr-hole plugs were implanted into three patients, and clinical outcomes were evaluated at one-year follow-ups. Results All bone defects healed very well using the mineralized collagen burr-hole plugs, and there were no adverse reactions at the surgical sites. Conclusions The clinical outcomes indicated that the mineralized collagen was effective for reconstructing burr-holes in the skull after craniotomy.
Collapse
|
28
|
Rodenas-Rochina J, Vidaurre A, Castilla Cortázar I, Lebourg M. Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
29
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
30
|
|
31
|
Influence of Nano-HA Coated Bone Collagen to Acrylic (Polymethylmethacrylate) Bone Cement on Mechanical Properties and Bioactivity. PLoS One 2015; 10:e0129018. [PMID: 26039750 PMCID: PMC4454564 DOI: 10.1371/journal.pone.0129018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 05/04/2015] [Indexed: 12/16/2022] Open
Abstract
Objective This research investigated the mechanical properties and bioactivity of polymethylmethacrylate (PMMA) bone cement after addition of the nano-hydroxyapatite(HA) coated bone collagen (mineralized collagen, MC). Materials & Methods The MC in different proportions were added to the PMMA bone cement to detect the compressive strength, compression modulus, coagulation properties and biosafety. The MC-PMMA was embedded into rabbits and co-cultured with MG 63 cells to exam bone tissue compatibility and gene expression of osteogenesis. Results 15.0%(wt) impregnated MC-PMMA significantly lowered compressive modulus while little affected compressive strength and solidification. MC-PMMA bone cement was biologically safe and indicated excellent bone tissue compatibility. The bone-cement interface crosslinking was significantly higher in MC-PMMA than control after 6 months implantation in the femur of rabbits. The genes of osteogenesis exhibited significantly higher expression level in MC-PMMA. Conclusions MC-PMMA presented perfect mechanical properties, good biosafety and excellent biocompatibility with bone tissues, which has profoundly clinical values.
Collapse
|
32
|
Mechanical Properties and Cytocompatibility Improvement of Vertebroplasty PMMA Bone Cements by Incorporating Mineralized Collagen. MATERIALS 2015. [PMCID: PMC5455539 DOI: 10.3390/ma8052616] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polymethyl methacrylate (PMMA) bone cement is a commonly used bone adhesive and filling material in percutaneous vertebroplasty and percutaneous kyphoplasty surgeries. However, PMMA bone cements have been reported to cause some severe complications, such as secondary fracture of adjacent vertebral bodies, and loosening or even dislodgement of the set PMMA bone cement, due to the over-high elastic modulus and poor osteointegration ability of the PMMA. In this study, mineralized collagen (MC) with biomimetic microstructure and good osteogenic activity was added to commercially available PMMA bone cement products, in order to improve both the mechanical properties and the cytocompatibility. As the compressive strength of the modified bone cements remained well, the compressive elastic modulus could be significantly down-regulated by the MC, so as to reduce the pressure on the adjacent vertebral bodies. Meanwhile, the adhesion and proliferation of pre-osteoblasts on the modified bone cements were improved compared with cells on those unmodified, such result is beneficial for a good osteointegration formation between the bone cement and the host bone tissue in clinical applications. Moreover, the modification of the PMMA bone cements by adding MC did not significantly influence the injectability and processing times of the cement.
Collapse
|
33
|
Wu J, Xu S, Qiu Z, Liu P, Liu H, Yu X, Cui FZ, Chunhua ZR. Comparison of human mesenchymal stem cells proliferation and differentiation on poly(methyl methacrylate) bone cements with and without mineralized collagen incorporation. J Biomater Appl 2015; 30:722-31. [PMID: 25899928 DOI: 10.1177/0885328215582112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(methyl methacrylate) bone cement is widely used in vertebroplasty, joint replacement surgery, and other orthopaedic surgeries, while it also exposed many problems on mechanical property and biocompatibility. Better performance in mechanical match and bone integration is highly desirable. Recently, there reported that incorporation of mineralized collagen into poly(methyl methacrylate) showed positive results in mechanical property and osteointegration ability in vivo. In the present study, we focused on the comparison of osteogenic behavior between mineralized collagen incorporated in poly(methyl methacrylate) and poly(methyl methacrylate). Human marrow mesenchymal stem cells are used in this experiment. Adhesion and proliferation were used to characterize biocompatibility. Activity of alkaline phosphatase was used to assess the differentiation of human marrow mesenchymal stem cells into osteoblasts. Real-time PCR was performed to detect the expression of osteoblast-related markers at messenger RNA level. The results show that osteogenic differentiation on mineralized collagen incorporated in poly(methyl methacrylate) bone cement is more than two times higher than that of poly(methyl methacrylate) after culturing for 21 days. Thus, important mechanism on mineralized collagen incorporation increasing the osteogenetic ability of poly(methyl methacrylate) bone cement may be understood in this concern.
Collapse
Affiliation(s)
- Jingjing Wu
- School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, China Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Suju Xu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhiye Qiu
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Peng Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Yu
- School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, China
| | - Fu-Zhai Cui
- Institute of Regenerative Medical Materials, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Zhao Robert Chunhua
- Chinese Academy of Medical Sciences, Institute of Basic Medical Science, Beijing, China
| |
Collapse
|
34
|
Akbarzadeh R, Minton JA, Janney CS, Smith TA, James PF, Yousefi AM. Hierarchical polymeric scaffolds support the growth of MC3T3-E1 cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:116. [PMID: 25665851 DOI: 10.1007/s10856-015-5453-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering makes use of the principles of biology and engineering to sustain 3D cell growth and promote tissue repair and/or regeneration. In this study, macro/microporous scaffold architectures have been developed using a hybrid solid freeform fabrication/thermally induced phase separation (TIPS) technique. Poly(lactic-co-glycolic acid) (PLGA) dissolved in 1,4-dioxane was used to generate a microporous matrix by the TIPS method. The 3D-bioplotting technique was used to fabricate 3D macroporous constructs made of polyethylene glycol (PEG). Embedding the PEG constructs inside the PLGA solution prior to the TIPS process and subsequent extraction of PEG following solvent removal (1,4-dioaxane) resulted in a macro/microporous structure. These hierarchical scaffolds with a bimodal pore size distribution (<50 and >300 μm) contained orthogonally interconnected macro-channels generated by the extracted PEG. The diameter of the macro-channels was varied by tuning the dispensing parameters of the 3D bioplotter. The in vitro cell culture using murine MC3T3-E1 cell line for 21 days demonstrated that these scaffolds could provide a favorable environment to support cell adhesion and growth.
Collapse
Affiliation(s)
- Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 E High Street, Oxford, OH, 45056, USA
| | | | | | | | | | | |
Collapse
|
35
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
36
|
Balaji Raghavendran HR, Puvaneswary S, Talebian S, Raman Murali M, Vasudevaraj Naveen S, Krishnamurithy G, McKean R, Kamarul T. A comparative study on in vitro osteogenic priming potential of electron spun scaffold PLLA/HA/Col, PLLA/HA, and PLLA/Col for tissue engineering application. PLoS One 2014; 9:e104389. [PMID: 25140798 PMCID: PMC4139278 DOI: 10.1371/journal.pone.0104389] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
A comparative study on the in vitro osteogenic potential of electrospun poly-L-lactide/hydroxyapatite/collagen (PLLA/HA/Col, PLLA/HA, and PLLA/Col) scaffolds was conducted. The morphology, chemical composition, and surface roughness of the fibrous scaffolds were examined. Furthermore, cell attachment, distribution, morphology, mineralization, extracellular matrix protein localization, and gene expression of human mesenchymal stromal cells (hMSCs) differentiated on the fibrous scaffolds PLLA/Col/HA, PLLA/Col, and PLLA/HA were also analyzed. The electrospun scaffolds with a diameter of 200–950 nm demonstrated well-formed interconnected fibrous network structure, which supported the growth of hMSCs. When compared with PLLA/H%A and PLLA/Col scaffolds, PLLA/Col/HA scaffolds presented a higher density of viable cells and significant upregulation of genes associated with osteogenic lineage, which were achieved without the use of specific medium or growth factors. These results were supported by the elevated levels of calcium, osteocalcin, and mineralization (P<0.05) observed at different time points (0, 7, 14, and 21 days). Furthermore, electron microscopic observations and fibronectin localization revealed that PLLA/Col/HA scaffolds exhibited superior osteoinductivity, when compared with PLLA/Col or PLLA/HA scaffolds. These findings indicated that the fibrous structure and synergistic action of Col and nano-HA with high-molecular-weight PLLA played a vital role in inducing osteogenic differentiation of hMSCs. The data obtained in this study demonstrated that the developed fibrous PLLA/Col/HA biocomposite scaffold may be supportive for stem cell based therapies for bone repair, when compared with the other two scaffolds.
Collapse
Affiliation(s)
- Hanumantha Rao Balaji Raghavendran
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (HBR); (TK)
| | - Subramaniam Puvaneswary
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sepehr Talebian
- Department of Mechanical Engineering, Engineering Faculty, University of Malaya, Kuala Lumpur, Malaysia
| | - Malliga Raman Murali
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sangeetha Vasudevaraj Naveen
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - G. Krishnamurithy
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Robert McKean
- The Electrospinning Company Ltd, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, Oxfordshire, United Kingdom
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence in Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Clinical Investigative Centre, Faculty of Medicine, University Malaya Medical Center, Kuala Lumpur, Malaysia
- * E-mail: (HBR); (TK)
| |
Collapse
|
37
|
Lee H, Kim Y, Kim S, Kim G. Mineralized biomimetic collagen/alginate/silica composite scaffolds fabricated by a low-temperature bio-plotting process for hard tissue regeneration: fabrication, characterisation and in vitro cellular activities. J Mater Chem B 2014; 2:5785-5798. [PMID: 32262022 DOI: 10.1039/c4tb00931b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The natural biopolymers, collagen and alginate, have been widely used in various tissue regeneration procedures. However, their low mechanical and osteoinductive properties represent major limitations of their usage as bone tissue regenerative scaffolds. To overcome these deficiencies, biomimetic composite scaffolds were prepared using a mixture of collagen and alginate as a matrix material, and various silica weight fractions as a coating agent. The composite scaffolds were highly porous (porosity > 78%) and consisted of interconnected pores, with a mesh-like structure (strut diameter: 342-389 μm; average pore size: 468-481 μm). After incubation in a simulated body fluid, various levels of bone-like hydroxyapatite (HA) on the surface of the composite scaffolds developed in proportion to the increase in the silica content coating the scaffolds, indicating that the composite scaffolds have osteoinductive properties. The composite scaffolds were characterised in terms of various physical properties (water absorption, biodegradation and mechanical properties, etc.) and biological activities (cell viability, live/dead cells, DAPI/phalloidin analysis, osteogenic gene expression, etc.) using pre-osteoblasts (MC3T3-E1). The mechanical improvement (compressive modulus) of a composite scaffold in compressive mode was ∼2.4-fold in the dry state compared to the collagen/alginate scaffold. Cell proliferation on the composite scaffold was significantly improved by ∼1.3-fold compared to the mineralised collagen/alginate scaffold (control). Osteocalcin levels of the composite scaffold after 28 days in cell culture were significantly enhanced by 3.2-fold compared with the control scaffold. These results suggest that mineralised biomimetic composite scaffolds have potential for use in hard tissue regeneration.
Collapse
Affiliation(s)
- HyeongJin Lee
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea.
| | | | | | | |
Collapse
|
38
|
Zhou C, Ye X, Fan Y, Ma L, Tan Y, Qing F, Zhang X. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Biofabrication 2014; 6:035013. [PMID: 24873777 DOI: 10.1088/1758-5082/6/3/035013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds.
Collapse
Affiliation(s)
- Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Romagnoli C, Brandi ML. Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 2014; 6:144-152. [PMID: 24772241 PMCID: PMC3999772 DOI: 10.4252/wjsc.v6.i2.144] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine.
Collapse
|
40
|
Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine (Lond) 2013; 8:639-53. [DOI: 10.2217/nnm.13.44] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural bone tissue possesses a nanocomposite structure that provides appropriate physical and biological properties. For bone tissue regeneration, it is crucial for the biomaterial to mimic living bone tissue. Since no single type of material is able to mimic the composition, structure and properties of native bone, nanocomposites are the best choice for bone tissue regeneration as they can provide the appropriate matrix environment, integrate desirable biological properties, and provide controlled, sequential delivery of multiple growth factors for the different stages of bone tissue regeneration. This article reviews the composition, structure and properties of advanced nanocomposites for bone tissue regeneration. It covers aspects of interest such as the biomimetic synthesis of bone-like nanocomposites, guided bone regeneration from inert biomaterials and bioactive nanocomposites, and nanocomposite scaffolds for bone tissue regeneration. The design, fabrication, and in vitro and in vivo characterization of such nanocomposites are reviewed.
Collapse
Affiliation(s)
- Nanda Gopal Sahoo
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| | - Yong Zheng Pan
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| | - Lin Li
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Chao Bin He
- Institute of Materials Research & Engineering, 3 Research Link, 117602, Singapore
| |
Collapse
|
41
|
Zhang X, Guo WG, Cui H, Liu HY, Zhang Y, Müller WEG, Cui FZ. In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J Tissue Eng Regen Med 2013; 10:99-107. [PMID: 23364810 DOI: 10.1002/term.1705] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/27/2023]
Abstract
Enhancement of osteogenic capacity was achieved in a mineralized collagen composite, nano-hydroxyapatite/collagen (nHAC), by loading with synthetic peptides derived from BMP-2 residues 32-48 (P17-BMP-2). Rabbit marrow stromal cells (MSCs) were used in vitro to study cell biocompatibility, attachment and differentiation on the mineralized collagen composite by a cell counting kit, scanning electron microscopy (SEM) and real-time reversed transcriptase-polymerase chain reaction analysis (RT-PCR). Optimal peptide dosage (1.0 µg/mL) was obtained by RT-PCR analysis in vitro. In addition, the relative expression level of OPN and OCN was significantly upregulated on P17-BMP-2/nHAC compared with nHAC. In vitro results of P17-BMP-2 release kinetics demonstrated that nHAC released P17-BMP-2 in a controlled and sustained manner. In the rabbit mandibular box-shaped bone defect model, osteogenic capacity of three groups (nHAC, P17-BMP-2/nHAC, rhBMP-2/nHAC) was evaluated. Compared to the nHAC group, bone repair responses in both P17-BMP-2/nHAC and rhBMP-2/nHAC group implants were significantly improved based on histological analysis. The osteogenic response of the P17-BMP-2/nHAC group was similar to that of the rhBMP-2/nHAC group.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Wen-Guang Guo
- Beijing Allgens Medical Science & Technology Company, Beijing, 100085, China
| | - Helen Cui
- Beijing Allgens Medical Science & Technology Company, Beijing, 100085, China
| | - Huan-Ye Liu
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Yang Zhang
- Department of Orthodontics, School of Stomatology, China Medical University, Shenyang, 110001, China
| | - Werner E G Müller
- Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128, Mainz, Germany
| | - Fu-Zhai Cui
- Institute of Regenerative Medical Materials, Department of Materials Science & Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
42
|
Rahimzadeh R, Veshkini A, Sharifi D, Hesaraki S. Value of color Doppler ultrasonography and radiography for the assessment of the cancellous bone scaffold coated with nano-hydroxyapatite in repair of radial bone in rabbit. Acta Cir Bras 2013; 27:148-54. [PMID: 22378370 DOI: 10.1590/s0102-86502012000200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/19/2011] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate the osteo-regenerative capacity of proprietary bone grafting material as a bone defect filler and osteogenetic stimulation to speed up bone healing too. METHODS Eighteen adult male New Zealand white rabbits were anesthetized and a segmental full thickness bone defect of 10 mm in length was created in the middle of the right radial shaft in all rabbits. They were divided into two groups of 9 rabbits. Group I was considered as control and the fractured site was fixed using finger bone plate with 4 screws, whereas the cancellous bone scaffold coated with Nano-Hydroxyapatite was used to fill the gap after fracture fixation in Group II. Radiography, two dimensional and color Doppler ultrasonography were done before and after creating defects and on 0, 15, 30, 60 and 90 days to evaluate local reaction as far as new blood vessels network and callus formation are observed. RESULTS On the radiographs during the whole process, bone repair in Group I was not as perfect as those in Group II samples and trace of internal callus filled the gap incompletely in 60 days in Group I, whereas in Group II internal callus almost was formed on 30 days and in addition intercortical callus was seen supporting to cover and filled the gap completely in this group in 60 day; Sonographic findings confirmed the protrusion of newly formed blood vascular network in 30 days in Group I and from 15 days in Group II and remarkably increased till end of observation period. CONCLUSIONS The nano-hydroxyapatite with more features and shorter in time, made possible the reconstruction of bone tissue and alternative techniques as well as previous bone graft, also radiography and ultrasonography are reliable techniques to trace local reaction at proper time.
Collapse
Affiliation(s)
- Rasoul Rahimzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Sanandaj Branch, Islamic Azad University, Iran.
| | | | | | | |
Collapse
|
43
|
Zustiak SP, Wei Y, Leach JB. Protein-hydrogel interactions in tissue engineering: mechanisms and applications. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:160-71. [PMID: 23150926 DOI: 10.1089/ten.teb.2012.0458] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein-hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel-protein interactions that will advance our ability to control the cell-biomaterial interface.
Collapse
Affiliation(s)
- Silviya P Zustiak
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
44
|
Tagaya M, Motozuka S, Kobayashi T, Ikoma T, Tanaka J. Mechanochemical Preparation of 8-Hydroxyquinoline/Hydroxyapatite Hybrid Nanocrystals and Their Photofunctional Interfaces. Ind Eng Chem Res 2012. [DOI: 10.1021/ie301755z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka,
Niigata 940-2188, Japan
| | - Satoshi Motozuka
- Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku,
Tokyo 152-8550, Japan
- Department
of Mechanical Engineering, Gifu National College of Technology, Kamimakuwa 2236-2, Motosu, Gifu 501-0495, Japan
| | - Takaomi Kobayashi
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka,
Niigata 940-2188, Japan
| | - Toshiyuki Ikoma
- Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku,
Tokyo 152-8550, Japan
| | - Junzo Tanaka
- Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku,
Tokyo 152-8550, Japan
| |
Collapse
|
45
|
Saito E, Liu Y, Migneco F, Hollister SJ. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Acta Biomater 2012; 8:2568-77. [PMID: 22446030 DOI: 10.1016/j.actbio.2012.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/29/2012] [Accepted: 03/14/2012] [Indexed: 01/06/2023]
Abstract
Current developments in computer-aided design (CAD) and solid free-form fabrication (SFF) techniques enable fabrication of scaffolds with precisely designed architectures and mechanical properties. The present study demonstrates the effect of precisely designed three-dimensional scaffold architectures on in vivo degradation. Specifically, three types of porous poly(L-lactic acid) (PLLA) scaffolds with variable pore sizes, strut sizes, porosities, and surface areas fabricated by indirect SFF. In addition, one experimental group of PLLA solid cylinders was fabricated. The scaffolds and cylinders were subcutaneously implanted into mice for 6, 12 and 21 weeks. The solid cylinders exhibited a faster percentage mass loss than all porous scaffolds. Among the porous scaffolds the group with the largest strut size lost percentage mass faster than the other two groups. Strong correlations between surface area and percentage mass loss were found at 12 (R(2)=0.681) and 21 (R(2)=0.671) weeks. Scaffold porosity, however, was not significantly correlated with degradation rate. Changes in molecular weight and crystallinity also resulted in changes in the chemical structures due to degradation, and the solid cylinders had faster crystallization due to more advanced degradation than the porous scaffolds. Scaffold compressive moduli decreased with degradation, but the resulting modulus was still within the lower range of human trabecular bone even after 21 weeks. The loss in compressive moduli, however, was a complex function of both degradation and the initial scaffold architecture. This study suggests that CAD and fabrication, within a given material, can significantly influence scaffold degradation profiles.
Collapse
|
46
|
He H, Yu J, Cao J, E L, Wang D, Zhang H, Liu H. Biocompatibility and Osteogenic Capacity of Periodontal Ligament Stem Cells on nHAC/PLA and HA/TCP Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:179-94. [PMID: 20557694 DOI: 10.1163/092050609x12587018007767] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Huixia He
- a Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Jinhua Yu
- b Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Junkai Cao
- c Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Lingling E
- d Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Dongsheng Wang
- e Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Haizhong Zhang
- f Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| | - Hongchen Liu
- g Institute of Dental Research, Chinese PLA General Hospital and Postgraduate Military Medical School, 28 Fuxing Road, Haidian District, Beijing 100853, P. R. China
| |
Collapse
|
47
|
Liu X, Liu HY, Lian X, Shi XL, Wang W, Cui FZ, Zhang Y. Osteogenesis of mineralized collagen bone graft modified by PLA and calcium sulfate hemihydrate: in vivo study. J Biomater Appl 2012; 28:12-9. [PMID: 22274876 DOI: 10.1177/0885328211433618] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the biocompatibility and bone regeneration performance of nano-hydroxyapatite/collagen/poly(L-lactide) (nHAC/PLA) and nano-hydroxyapatite/collagen/calcium sulfate hemihydrate (nHAC/CSH) as bone-filling materials were evaluated and compared in a critical box-shaped defect model in the mandible of the rabbits. In vivo results indicated that there was significant difference in early bone remodeling between two types of bone substitutes. nHAC/PLA has shown excellent biocompatibility, but no adequate handling properties. The addition of CSH to nHAC provided better manipulability compared to nHAC/PLA. Furthermore, nHAC/CSH possesses superior properties in restoring critical-sized bone defects of maxillofacial region at the early stage of remodeling over nHAC/PLA. Our results suggested that nHAC/CSH could be an alternative to the conventionally used bone tissue engineering materials.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of New Ceramic and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Musib M, Saha S. Nanostructured materials for bone tissue replacement. Nanomedicine (Lond) 2012. [DOI: 10.1533/9780857096449.4.599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
49
|
Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, Pan H, Zou Z, Chen C. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res 2011; 29:1745-52. [PMID: 21500252 DOI: 10.1002/jor.21439] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 03/29/2011] [Indexed: 02/06/2023]
Abstract
An ideal artificial substitute has good biocompatibility properties and is able to provide for rapid bone formation. Bone morphogenetic protein-2 (BMP-2) is considered as one of the most important growth factors for bone regeneration. In this study, a synthetic BMP-2-related peptide (designated P24) corresponding to residues of the knuckle epitope of BMP-2 was introduced into a bioactive scaffold based on nano-hydroxyapatite/collagen/poly(L-lactic acid) (nHAC/PLLA); its in vitro release kinetics was then measured. A 5 mm diameter cranial bone defect was created in the calvariae of 30 rats and randomly implanted with three groups of biomaterials: Group A (nHAC/PLLA alone); Group B (P24/nHAC/PLLA composite); and Group C (recombinant human BMP-2 (rhBMP-2)/nHAC/PLLA composite). The P24/nHAC/PLLA implants significantly stimulated bone growth similarly to the rhBMP-2/nHAC/PLLA implants based on the radiographic and three-dimensional CT evaluation and histological examination, thereby confirming the enhanced bone healing rate of these compounds compared with the stand-alone nHAC/PLLA scaffold material. The osteoinductive ability of 3 mg P24 was similar to that of 1 µg rhBMP-2. P24/nHAC/PLLA is a promising scaffold biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- Jingfeng Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tagaya M, Yamazaki T, Tsuya D, Sugimoto Y, Hanagata N, Ikoma T. Nano/microstructural effect of hydroxyapatite nanocrystals on hepatocyte cell aggregation and adhesion. Macromol Biosci 2011; 11:1586-93. [PMID: 22052565 DOI: 10.1002/mabi.201100182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/04/2011] [Indexed: 11/08/2022]
Abstract
Hepatocyte cell aggregation and adhesion to HAp nanocrystals covered with SU-8 polymer micropatterns by nano/microfabrication techniques is demonstrated. The surface roughness and wettability of the HAp nanocrystals are significantly different from those of the SU-8 polymer. QCM-D and microscopic observation clearly reveal that the cells realize the surface properties to form aggregation and preferentially adhere to the HAp nanocrystals at 2 h after seeding, indicating the importance of the microstructures as well as the interfacial phenomena at a nanometer scale.
Collapse
Affiliation(s)
- Motohiro Tagaya
- Department of Metallurgy and Ceramics Science, Graduate School of Science & Engineering, Tokyo Institute of Technology, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|