1
|
Karki P, Ke Y, Zhang C, Promnares K, Li Y, Williams CH, Hong CC, Birukov KG, Birukova AA. Inhibition of proton sensor GPR68 suppresses endothelial dysfunction and acute lung injury caused by Staphylococcus aureus bacterial particles. FASEB J 2025; 39:e70333. [PMID: 39907683 PMCID: PMC11797537 DOI: 10.1096/fj.202401947r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/21/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025]
Abstract
Lung bacterial infections, including hospital-acquired pneumonia, remain a serious problem for public health. Endothelial cell (EC) exposure to heat-killed Staphylococcus aureus (HKSA) represents a clinical scenario of high titers of killed bacterial particles present in the host after antibiotic therapy, which triggers inflammatory cascades, cytokine storms, and EC dysfunction leading to acute lung injury (ALI). GPR68 is a member of the proton-sensing G protein-coupled receptor family. Acting as a pH sensor, GPR68 becomes activated upon pH reduction and contributes to pathologic cell responses by activating ER stress and unfolded protein response. This study investigated the role of GPR68 in HKSA-induced EC dysfunction and HKSA-induced ALI. HKSA robustly increased GPR68 mRNA levels in human pulmonary EC and directly stimulated GPR68 activity. A selective GPR68 small molecule inhibitor, OGM-8345, attenuated HKSA-induced EC permeability and protected cell junction integrity. OGM-8345 inhibited HKSA-induced activation of inflammatory genes TNF-α, IL-6, IL-8, IL-1β, and CXCL5 and decreased cytokine secretion by HKSA-challenged EC. Co-treatment with the GPR68 activator Ogerin or medium acidification to pH 6.5 augmented HKSA-induced EC dysfunction, which was rescued by OGM-8345. Intratracheal HKSA injection increased vascular leak and lung inflammation in mice which were monitored by lung Evans blue extravasation, increased cell and protein count in bronchoalveolar lavage, and mRNA expression of inflammatory genes. ALI and barrier dysfunction was attenuated by OGM-8345. We show for the first time the role of GPR68 in mediating HKSA-induced lung injury and the strong potential for OGM-8345 as a therapeutic treatment of bacterial pathogen-induced ALI associated with tissue acidification.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Yunbo Ke
- Department of AnesthesiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Chen‐Ou Zhang
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kamoltip Promnares
- Department of AnesthesiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Yue Li
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Charles H. Williams
- Division of Cardiovascular Medicine, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Present address:
Department of MedicineMichigan State University College of Human MedicineEast LansingMichiganUSA
| | - Charles C. Hong
- Division of Cardiovascular Medicine, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
- Present address:
Department of MedicineMichigan State University College of Human MedicineEast LansingMichiganUSA
| | - Konstantin G. Birukov
- Department of AnesthesiologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Anna A. Birukova
- Division of Pulmonary and Critical Care, Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
2
|
Alissa A, Alrashed MA, Alshaya AI, Al Sulaiman K, Alharbi S. Reevaluating vitamin C in sepsis and septic shock: a potential benefit in severe cases? Front Med (Lausanne) 2024; 11:1476242. [PMID: 39540046 PMCID: PMC11558524 DOI: 10.3389/fmed.2024.1476242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024] Open
Abstract
Vitamin C (Ascorbic acid) has evolved as an emergent co-intervention for sepsis and septic shock patients. Multiple studies discussed the pathophysiological value of vitamin C to reserve endothelial functionality and improve microcirculatory flow in these patients. Nevertheless, most randomized clinical trials failed to show the clinical impact of adding vitamin C to sepsis and septic shock. Pneumonia is the most common infection to induce sepsis and septic shock, which could be an acute respiratory distress syndrome. Preliminary in-vitro data support the role of vitamin C in mitigating the risk of acute respiratory distress syndrome (ARDS) development. This review aims to compare and contrast these trials and explore differences in their patients' populations, methodologies, and outcomes, emphasizing pneumonia-induced sepsis and septic shock.
Collapse
Affiliation(s)
- Abdulrahman Alissa
- Pharmaceutical Care Services, King Abdullah Bin Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mohammed A. Alrashed
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Abdulrahman I. Alshaya
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Khalid Al Sulaiman
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Saudi Critical Care Pharmacy Research (SCAPE) Platform, Riyadh, Saudi Arabia
- Saudi Society for Multidisciplinary Research Development and Education (SCAPE Society), Riyadh, Saudi Arabia
| | - Shmeylan Alharbi
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Kutumova EO, Akberdin IR, Egorova VS, Kolesova EP, Parodi A, Pokrovsky VS, Zamyatnin, Jr AA, Kolpakov FA. Physiologically based pharmacokinetic model for predicting the biodistribution of albumin nanoparticles after induction and recovery from acute lung injury. Heliyon 2024; 10:e30962. [PMID: 38803942 PMCID: PMC11128879 DOI: 10.1016/j.heliyon.2024.e30962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin Medical Research Center of Oncology, 115522, Moscow, Russia
- Patrice Lumumba People's Friendship University, 117198, Moscow, Russia
| | - Andrey A. Zamyatnin, Jr
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Fedor A. Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| |
Collapse
|
4
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
5
|
Kryvenko V, Vadász I. Alveolar-capillary endocytosis and trafficking in acute lung injury and acute respiratory distress syndrome. Front Immunol 2024; 15:1360370. [PMID: 38533500 PMCID: PMC10963603 DOI: 10.3389/fimmu.2024.1360370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality but lacks specific therapeutic options. Diverse endocytic processes play a key role in all phases of acute lung injury (ALI), including the initial insult, development of respiratory failure due to alveolar flooding, as a consequence of altered alveolar-capillary barrier function, as well as in the resolution or deleterious remodeling after injury. In particular, clathrin-, caveolae-, endophilin- and glycosylphosphatidyl inositol-anchored protein-mediated endocytosis, as well as, macropinocytosis and phagocytosis have been implicated in the setting of acute lung damage. This manuscript reviews our current understanding of these endocytic pathways and subsequent intracellular trafficking in various phases of ALI, and also aims to identify potential therapeutic targets for patients with ARDS.
Collapse
Affiliation(s)
- Vitalii Kryvenko
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine, Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- The Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
6
|
Laterre PF, Sánchez García M, van der Poll T, Wittebole X, Martínez-Sagasti F, Hernandez G, Ferrer R, Caballero J, Cadogan KA, Sullivan A, Zhang B, de la Rosa O, Lombardo E, François B. The safety and efficacy of stem cells for the treatment of severe community-acquired bacterial pneumonia: A randomized clinical trial. J Crit Care 2024; 79:154446. [PMID: 37918129 DOI: 10.1016/j.jcrc.2023.154446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
PURPOSE Evaluate the safety profile of expanded allogeneic adipose-derived mesenchymal stem cell (eASC) for the treatment of severe community-acquired bacterial pneumonia (CABP). MATERIALS AND METHODS Randomized, multicenter, double-blind, placebo-controlled, phase 1b/2a trial. Patients with severe CABP were enrolled to receive intravenous infusions of Cx611 or placebo. The primary objective was safety including hypersensitivity reactions, thromboembolic events, and immunological responses to Cx611. The secondary endpoints included the clinical cure rate, ventilation-free days, and overall survival (Day 90). RESULTS Eighty-three patients were randomized and received infusions (Cx611: n = 42]; placebo: n = 41]. The mean age was similar (Cx611: 61.1 [11.2] years; placebo: 63.4 [10.4] years). The number of AEs and treatment-emergent AEs were similar (243; 184 and 2; 1) in Cx611 and placebo respectively. Hypersensitivity reactions or thromboembolic events were similar (Cx611: n = 9; placebo: n = 12). Each study arm had similar anti-HLA antibody/DSA levels at Day 90. The clinical cure rate (Cx611: 86.7%; placebo: 93.8%), mean number of ventilator-free days (Cx611: 12.2 [10.29] days; placebo: 15.4 [10.75] days), and overall survival (Cx611: 71.5%; placebo: 77.0%) did not differ between study arms. CONCLUSION Cx611 was well tolerated in severe CABP. These data provide insights for future stem cell clinical study designs, endpoints and sample size calculation. TRIAL REGISTRATION NCT03158727 (retrospectively registered: May 09, 2017). Full study protocol: https://clinicaltrials.gov/ProvidedDocs/27/NCT03158727/Prot_000.pdf.
Collapse
Affiliation(s)
| | | | - Tom van der Poll
- Amsterdam University Medical Centers, University of Amsterdam, Center of Experimental and Molecular Medicine and Division of Infectious Diseases, Amsterdam, Netherlands
| | - Xavier Wittebole
- Department of Intensive Care Medicine, Cliniques universitaires Saint-Luc, Université Catholique de Louvain, UCLouvain, Brussels, Belgium
| | | | - Gonzalo Hernandez
- Intensive Care Department, Toledo University Hospital, Toledo, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain; Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Jesus Caballero
- Intensive Care Department, Arnau de Vilanova University Hospital, Lleida, Spain; Grup de Recerca Medicina Intensiva, Institut de Recerca Biomèdica de Lleida Fundació Dr Pifarré, IRB Lleida, Lleida, Spain
| | | | | | | | - Olga de la Rosa
- Takeda Madrid, Cell Therapy Technology Center, Tres Cantos, Spain
| | | | - Bruno François
- Intensive care unit and Inserm CIC 1435 & UMR 1092, Limoges University Hospital, Limoges, France.
| |
Collapse
|
7
|
Zhang J, Guo Y, Mak M, Tao Z. Translational medicine for acute lung injury. J Transl Med 2024; 22:25. [PMID: 38183140 PMCID: PMC10768317 DOI: 10.1186/s12967-023-04828-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Acute lung injury (ALI) is a complex disease with numerous causes. This review begins with a discussion of disease development from direct or indirect pulmonary insults, as well as varied pathogenesis. The heterogeneous nature of ALI is then elaborated upon, including its epidemiology, clinical manifestations, potential biomarkers, and genetic contributions. Although no medication is currently approved for this devastating illness, supportive care and pharmacological intervention for ALI treatment are summarized, followed by an assessment of the pathophysiological gap between human ALI and animal models. Lastly, current research progress on advanced nanomedicines for ALI therapeutics in preclinical and clinical settings is reviewed, demonstrating new opportunities towards developing an effective treatment for ALI.
Collapse
Affiliation(s)
- Jianguo Zhang
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Yumeng Guo
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Michael Mak
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA
| | - Zhimin Tao
- Department of Emergency Medicine, The Affiliated Hospital, Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, 06520, USA.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
8
|
Yudhawati R, Shimizu K. PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-β-Catenin Signaling Pathway. Int J Mol Sci 2023; 24:ijms24087299. [PMID: 37108459 PMCID: PMC10138595 DOI: 10.3390/ijms24087299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Acute respiratory distress syndrome is an acute respiratory failure caused by cytokine storms; highly pathogenic influenza A virus infection can induce cytokine storms. The innate immune response is vital in this cytokine storm, acting by activating the transcription factor NF-κB. Tissue injury releases a danger-associated molecular pattern that provides positive feedback for NF-κB activation. Exogenous mesenchymal stem cells can also modulate immune responses by producing potent immunosuppressive substances, such as prostaglandin E2. Prostaglandin E2 is a critical mediator that regulates various physiological and pathological processes through autocrine or paracrine mechanisms. Activation of prostaglandin E2 results in the accumulation of unphosphorylated β-catenin in the cytoplasm, which subsequently reaches the nucleus to inhibit the transcription factor NF-κB. The inhibition of NF-κB by β-catenin is a mechanism that reduces inflammation.
Collapse
Affiliation(s)
- Resti Yudhawati
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga-Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-Emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60286, Indonesia
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
9
|
Discriminating Acute Respiratory Distress Syndrome from other forms of respiratory failure via iterative machine learning. INTELLIGENCE-BASED MEDICINE 2023; 7:100087. [PMID: 36624822 PMCID: PMC9812471 DOI: 10.1016/j.ibmed.2023.100087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023]
Abstract
Acute Respiratory Distress Syndrome (ARDS) is associated with high morbidity and mortality. Identification of ARDS enables lung protective strategies, quality improvement interventions, and clinical trial enrolment, but remains challenging particularly in the first 24 hours of mechanical ventilation. To address this we built an algorithm capable of discriminating ARDS from other similarly presenting disorders immediately following mechanical ventilation. Specifically, a clinical team examined medical records from 1263 ICU-admitted, mechanically ventilated patients, retrospectively assigning each patient a diagnosis of "ARDS" or "non-ARDS" (e.g., pulmonary edema). Exploiting data readily available in the clinical setting, including patient demographics, laboratory test results from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology reports, we applied an iterative pre-processing and machine learning framework. The resulting model successfully discriminated ARDS from non-ARDS causes of respiratory failure (AUC = 0.85) among patients meeting Berlin criteria for severe hypoxia. This analysis also highlighted novel patient variables that were informative for identifying ARDS in ICU settings.
Collapse
|
10
|
Liang P, Wang L, Yang S, Pan X, Li J, Zhang Y, Liang Y, Li J, Zhou B. 5-Methoxyflavone alleviates LPS-mediated lung injury by promoting Nrf2-mediated the suppression of NOX4/TLR4 axis in bronchial epithelial cells and M1 polarization in macrophages. J Inflamm (Lond) 2022; 19:24. [PMID: 36451220 PMCID: PMC9713965 DOI: 10.1186/s12950-022-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) arises from sepsis or bacterial infection, which are life-threatening respiratory disorders that cause the leading cause of death worldwide. 5-Methoxyflavone, a methylated flavonoid, is gaining increased attention for its various health benefits. In the current study, we investigated the potential effects of 5-methoxyflavone against LPS-mediated ALI and elucidated the corresponding possible mechanism. METHODS A mouse model with ALI was established by intratracheal instillation of LPS, and lung pathological changes, signaling pathway related proteins and apoptosis in lung tissues were estimated by H&E staining, immunofluorescence and TUNEL assay, respectively. Cell viability was evaluated by MTT assay; protein levels of pro-inflammatory mediators were measured by ELISA assay; levels of ROS and M1 macrophage polarization were assayed by flow cytometry; the expression of Nrf2 signaling, NOX4/TLR4 axis and P-STAT1 were detected by western blotting. RESULTS Our results showed that 5-methoxyflavone treatment inhibited LPS-induced expression of NOX4 and TLR4 as well as the activation of downstream signaling (NF-κB and P38 MAPK), which was accompanied by markedly decreased ROS levels and pro-inflammatory cytokines (IL-6, TNF-α, MCP-1, and IL-8) in BEAS-2B cells. Moreover, we revealed that these effects of 5-methoxyflavone were related to its Nrf2 activating property, and blockade of Nrf2 prevented its inhibitory effects on NOX4/TLR4/NF-κB/P38 MAPK signaling, thus abrogating the anti-inflammatory effects of 5-methoxyflavone. Besides, the Nrf2 activating property of 5-methoxyflavone in RAW264.7 cells led to inhibition of LPS/IFN-γ-mediated STAT1 signaling, resulting in suppression of LPS/IFN-γ-induced M1 macrophage polarization and the repolarization of M2 macrophages to M1. In a mouse model of LPS-induced ALI, 5-methoxyflavone administration ameliorated LPS-mediated lung pathological changes, the increased lung index (lung/body weight ratio), and epithelial cell apoptosis. Meanwhile, we found 5-methoxyflavone effectively suppressed the hyperactive signaling pathways and the production of excessive pro-inflammatory mediators. Moreover, 5-methoxyflavone reduced LPS-mediated M1 macrophage polarization associated with elevated P-STAT1 activation in the lung tissues. In addition, 5-methoxyflavone improved the survival of LPS-challenged mice. CONCLUSION These results indicated that 5-methoxyflavone might be suitable for the development of a novel drug for ALI therapeutic.
Collapse
Affiliation(s)
- Panqiao Liang
- grid.478001.aCenter of Stem Cell and Regenerative Medicine, The People’s Hospital of Gaozhou, Gaozhou, 525200, China ,grid.410737.60000 0000 8653 1072Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 511436 China
| | | | - Sushan Yang
- grid.478001.aDepartment of Clinical Laboratory, The People’s Hospital of Gaozhou, Gaozhou, 525200 China
| | | | - Jiashun Li
- grid.284723.80000 0000 8877 7471Department of Respiratory, Affiliated Huadu Hospital, Southern Medical University (People’s Hospital of Huadu District), Huadu, 510800 China
| | - Yuehan Zhang
- grid.478001.aCenter of Stem Cell and Regenerative Medicine, The People’s Hospital of Gaozhou, Gaozhou, 525200, China
| | - Yueyun Liang
- grid.478001.aDepartment of Anesthesiology, The People’s Hospital of Gaozhou, Gaozhou, 525200 China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China ,grid.410737.60000 0000 8653 1072Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong China
| | - Beixian Zhou
- grid.478001.aCenter of Stem Cell and Regenerative Medicine, The People’s Hospital of Gaozhou, Gaozhou, 525200, China
| |
Collapse
|
11
|
Alhoufie ST, Alhhazmi AA, Mahallawi WH, Alfarouk KO, Ibrahim NA. Serostatus and Epidemiological Characteristics for Atypical Pneumonia Causative Bacteria among Healthy Individuals in Medina, Saudi Arabia, a Retrospective Study. Healthcare (Basel) 2022; 10:healthcare10112316. [PMID: 36421640 PMCID: PMC9690272 DOI: 10.3390/healthcare10112316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Community-acquired atypical pneumonia is generally a mild and self-limiting infection. Still, it may lead to hospitalization and progressive clinical complications in some cases, particularly among the elderly and individuals with chronic diseases. Chlamydia pneumoniae, Legionella pneumophila, and Mycoplasma pneumoniae are the community’s main causative agents of atypical pneumonia. However, most published studies evaluated their incidence in the hospital setting, and little is known about their prevalence among healthy individuals. This work aims to assess the seroprevalence of these bacteria among healthy people to determine the status of immunity against these bacteria in the community. Methodology: Two hundred and eighty-three serum samples from a multicenter in Medina, Saudi Arabia, were collected in this study. Serum samples were subjected to indirect enzyme-linked immunosorbent assays (ELISAs) to detect IgG antibodies against C. pneumoniae, L. pneumophila, and M. pneumoniae to investigate the seroprevalence of these bacteria and their distribution among different genders and age groups of healthy people. Results: IgG seropositivity for at least one of the three atypical pneumonia-causative bacteria occurred in 85.8% (n= 243/283) of the sample population. IgG seropositivity for C. pneumoniae occurred in 80.6% (228/283) of the population, followed by 37.5% for L. pneumophila and 23% for M. pneumoniae (66/283). In addition, the IgG seropositivity rates for the three bacteria were observed predominantly among male participants. Furthermore, no significant difference in IgG seropositivity distribution occurred between different age groups of healthy people for C. pneumoniae, L. pneumophila and M. pneumoniae. Conclusions: The current study found that C. pneumoniae, L. pneumophila, and M. pneumoniae tended to be highly prevalent among healthy people and more common among males than females. Additionally, their pattern of distribution among healthy individuals seemed to be predominant among young adults (aged 20−40 years), which differs from their predominant distribution among elderly patients in hospital settings (>50 years).
Collapse
Affiliation(s)
- Sari T. Alhoufie
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia
- Correspondence:
| | - Areej A. Alhhazmi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia
| | - Waleed H. Mahallawi
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia
| | - Khalid O. Alfarouk
- Zamzam Research Center, Zamzam Medical College, Khartoum 11123, Sudan
- Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Nadir A. Ibrahim
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Al-Madinah Al-Munwarah 42353, Saudi Arabia
| |
Collapse
|
12
|
Verma AK, McKelvey M, Uddin MB, Palani S, Niu M, Bauer C, Shao S, Sun K. IFN-γ transforms the transcriptomic landscape and triggers myeloid cell hyperresponsiveness to cause lethal lung injury. Front Immunol 2022; 13:1011132. [PMID: 36203588 PMCID: PMC9530332 DOI: 10.3389/fimmu.2022.1011132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) is an inflammatory disease that is associated with high mortality but no specific treatment. Our understanding of initial events that trigger ARDS pathogenesis is limited. We have developed a mouse model of inflammatory lung injury by influenza and methicillin-resistant Staphylococcus aureus (MRSA) coinfection plus daily antibiotic therapy. Using this pneumonic ARDS model, here we show that IFN-γ receptor signaling drives inflammatory cytokine storm and lung tissue damage. By single-cell RNA sequencing (scRNA-seq) analysis, we demonstrate that IFN-γ signaling induces a transcriptional shift in airway immune cells, particularly by upregulating macrophage and monocyte expression of genes associated with inflammatory diseases. Further evidence from conditional knockout mouse models reveals that IFN-γ receptor signaling in myeloid cells, particularly CD11c+ mononuclear phagocytes, directly promotes TNF-α hyperproduction and inflammatory lung damage. Collectively, the findings from this study, ranging from cell-intrinsic gene expression to overall disease outcome, demonstrate that influenza-induced IFN-γ triggers myeloid cell hyperresponsiveness to MRSA, thereby leading to excessive inflammatory response and lethal lung damage during coinfection.
Collapse
Affiliation(s)
- Atul K. Verma
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael McKelvey
- Department of Experimental Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Md Bashir Uddin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunil Palani
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Meng Niu
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shengjun Shao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Keer Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Keer Sun,
| |
Collapse
|
13
|
Hybrid Bayesian Network-Based Modeling: COVID-19-Pneumonia Case. J Pers Med 2022; 12:jpm12081325. [PMID: 36013274 PMCID: PMC9409816 DOI: 10.3390/jpm12081325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The primary goal of this paper is to develop an approach for predicting important clinical indicators, which can be used to improve treatment. Using mathematical predictive modeling algorithms, we examined the course of COVID-19-based pneumonia (CP) with inpatient treatment. Algorithms used include dynamic and ordinary Bayesian networks (OBN and DBN), popular ML algorithms, the state-of-the-art auto ML approach and our new hybrid method based on DBN and auto ML approaches. Predictive targets include treatment outcomes, length of stay, dynamics of disease severity indicators, and facts of prescribed drugs for different time intervals of observation. Models are validated using expert knowledge, current clinical recommendations, preceding research and classic predictive metrics. The characteristics of the best models are as follows: MAE of 3.6 days of predicting LOS (DBN plus FEDOT auto ML framework), 0.87 accuracy of predicting treatment outcome (OBN); 0.98 F1 score for predicting facts of prescribed drug (DBN). Moreover, the advantage of the proposed approach is Bayesian network-based interpretability, which is very important in the medical field. After the validation of other CP datasets for other hospitals, the proposed models can be used as part of the decision support systems for improving COVID-19-based pneumonia treatment. Another important finding is the significant differences between COVID-19 and non-COVID-19 pneumonia.
Collapse
|
14
|
Wang R, Feng R, Xia C, Ruan F, Luo P, Guo J. Early detection of gram‑negative bacteria using metagenomic next‑generation sequencing in acute respiratory distress syndrome: A case report. Exp Ther Med 2022; 24:573. [PMID: 35949316 PMCID: PMC9353542 DOI: 10.3892/etm.2022.11510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is an effective method that can be used for the identification of early pathogens in patients with suspected severe pneumonia. However, the potential of mNGS for evaluating the prognosis of acute respiratory distress syndrome (ARDS) in patients with severe pneumonia remains unclear. In the present report, hospital-acquired gram-negative bacteria infections were detected in a case using metagenomic next-generation sequencing (mNGS) in a sample of bronchoalveolar fluid. This was obtained from a 58-year-old male patient with traumatic wet lung after a neurosurgery. According to the results, of which the profiles of the resistance genes were detected by mNGS, drugs designed to control infection were adjusted, namely to polymyxin B (500,000 U/12 h), azithromycin (0.5 g/24 h) and ganciclovir (0.25 g/12 h). Following adjusting treatment for 8 days, the symptoms of lung infection and hypoxemia were markedly improved, resulting in the patient being transferred out of the intensive care unit 15 days after treatment. To conclude, observations from the present report suggest that mNGS is a useful method for the early identification of pathogens in patients with pneumonia caused by ARDS. However, further studies are required to identify the complementary role of mNGS in supporting conventional microbiological methods in routine clinical practice.
Collapse
Affiliation(s)
- Rong Wang
- Department of Critical Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China
| | - Rong Feng
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Chaoran Xia
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Fangying Ruan
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Peng Luo
- Shanghai Topgen Biomedical Technology Co., Ltd., Shanghai 201318, P.R. China
| | - Jun Guo
- Department of Critical Medicine, Union Jiangbei Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430100, P.R. China
| |
Collapse
|
15
|
Porta L, Huang SS, Wei C, Su CH, Hsu WT, Sheng WH, Lee CC. Effect of methylprednisolone treatment on COVID-19: An inverse probability of treatment weighting analysis. PLoS One 2022; 17:e0266901. [PMID: 35714141 PMCID: PMC9205494 DOI: 10.1371/journal.pone.0266901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Objectives
While corticosteroids have been hypothesized to exert protective benefits in patients infected with SARS-CoV-2, data remain mixed. This study sought to investigate the outcomes of methylprednisone administration in an Italian cohort of hospitalized patients with confirmed SARS-CoV-2 infection.
Methods
Patients with confirmatory testing for SARS-CoV-2 were retrospectively enrolled from a tertiary university hospital in Milan, Italy from March 1st to April 30th, 2020 and divided into two groups by administration of corticosteroids. Methylprednisolone was administered to patients not responding to pharmacological therapy and ventilatory support at 0.5-1mg/kg/day for 4 to 7 days. Inverse probability of treatment weighting (IPTW) was used to adjust for baseline differences between the steroid and non-steroid cohorts via inverse probability of treatment weight. Primary outcomes included acute respiratory failure (ARF), shock, and 30-day mortality among surviving patients.
Results
Among 311 patients enrolled, 71 patients received steroids and 240 did not receive steroids. The mean age was 63.1 years, 35.4% were female, and hypertension, diabetes, heart disease, and chronic pulmonary disease were present in 3.5%, 1.3%, 14.8% and 12.2% respectively. Crude analysis revealed no statistically significant reduction in the incidence of 30-day mortality (36,6% vs 21,7%; OR, 2.09; 95% CI, 1.18–3.70; p = 0.011), shock (2.8% vs 4.6%; OR, 0.60; 95% CI = 0.13–2.79; p = 0.514) or ARF (12.7% vs 15%; OR, 0.82; 95% CI = 0.38–1.80; p = 0.625) between the steroid and non-steroid groups. After IPTW analysis, the steroid-group had lower incidence of shock (0.9% vs 4.1%; OR, 0.21; 95% CI,0.06–0.77; p = 0.010), ARF (6.6% vs 16.0%; OR, 0.37; 95% CI, 0.22–0.64; p<0.001) and 30-day mortality (20.3% vs 22.8%; OR 0.86; 95% CI, 0.59–1.26 p = 0.436); even though, for the latter no statistical significance was reached. Steroid use was also associated with increased length of hospital stay both in crude and IPTW analyses. Subgroup analysis revealed that patients with cardiovascular comorbidities or chronic lung diseases were more likely to be steroid responsive. No significant survival benefit was seen after steroid treatment.
Conclusions
Physicians should avoid routine methylprednisolone use in SARS-CoV-2 patients, since it does not reduce 30-day mortality. However, they must consider its use for severe patients with cardiovascular or respiratory comorbidities in order to reduce the incidence of either shock or acute respiratory failure.
Collapse
Affiliation(s)
- Lorenzo Porta
- School of Medicine and Surgery, Department of Emergency Medicine, Università degli studi di Milano Bicocca, Milano, Italy
| | - Sih-Shiang Huang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen Wei
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Internal Medicine, Stanford Health Care, Stanford, CA, United States of America
| | - Chin-Hua Su
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Ting Hsu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Chang Lee
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
- The Centre for Intelligent Healthcare, National Taiwan University Hospital, Taipei, Taiwan
- Byers Center for Biodesign, Stanford University, Stanford, CA, United States of America
- * E-mail: ,
| |
Collapse
|
16
|
Rashid M, Ramakrishnan M, Muthu DS, Chandran VP, Thunga G, Kunhikatta V, Shanbhag V, Acharya RV, Nair S. Factors affecting the outcomes in patients with acute respiratory distress syndrome in a tertiary care setting. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2022; 13:100972. [PMID: 37309426 PMCID: PMC10250822 DOI: 10.1016/j.cegh.2022.100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose The clinical profile and factors affecting outcomes in acute respiratory distress syndrome (ARDS) from adequately sample-sized Indian studies are still lacking. We aimed to investigate the clinical profile, treatment pattern, outcomes; and to assess factors affecting non-recovery in ARDS patients. Patients and methods A retrospective observational study was conducted among adult ARDS patients admitted during five year period (January 2014-December 2018) in a South Indian tertiary care setting. The relevant data were collected from the medical records to the data collection form. The univariate and multivariate logistic regression analyses were conducted to identify the predictors of outcomes using SPSS v20. Results A total of 857 participants including 496 males and 361 females with a mean age of 46.86 ± 15.81 years were included in this study. Fever (70.9%), crepitation (58.3%), breathlessness (56.9%), and cough (45%) were the major clinical presentation. Hypertension (25.2%), kidney disease (23.8%), and diabetes (22.3%) were the major comorbidities; and sepsis (37.6%), pneumonia (33.3%), and septic shock (27.5%) were the major etiological factors observed. Antibiotics and steroids were administered to 97.9% and 52.3% of the population, respectively. The recovery rate was 47.49%. The patients with scrub typhus, dengue, pancreatitis, and oxygen supplementation had significantly lower mortality. The factors such as advanced age, sepsis, septic shock, liver diseases, and ventilation requirements were observed to be the independent predictors of non-recovery in ARDS patients. Conclusion A comparable recovery rate was observed in our population. Advanced age, sepsis, septic shock, liver diseases, and ventilation requirements were the independent predictors of non-recovery.
Collapse
Affiliation(s)
- Muhammed Rashid
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Manasvini Ramakrishnan
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Deepa Sudalai Muthu
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Viji Pulikkel Chandran
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Girish Thunga
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vijayanarayana Kunhikatta
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vishal Shanbhag
- Department of Critical Care Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Raviraja V Acharya
- Department of Medicine, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreedharan Nair
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| |
Collapse
|
17
|
Nagre N, Nicholson G, Cong X, Lockett J, Pearson AC, Chan V, Kim WK, Vinod KY, Catravas JD. Activation of cannabinoid-2 receptor protects against Pseudomonas aeruginosa induced acute lung injury and inflammation. Respir Res 2022; 23:326. [PMID: 36463179 PMCID: PMC9719649 DOI: 10.1186/s12931-022-02253-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Bacterial pneumonia is a major risk factor for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Pseudomonas aeruginosa (PA), an opportunistic pathogen with an increasing resistance acquired against multiple drugs, is one of the main causative agents of ALI and ARDS in diverse clinical settings. Given the anti-inflammatory role of the cannabinoid-2 receptor (CB2R), the effect of CB2R activation in the regulation of PA-induced ALI and inflammation was tested in a mouse model as an alternative to conventional antibiotic therapy. METHODS In order to activate CB2R, a selective synthetic agonist, JWH133, was administered intraperitoneally (i.p.) to C57BL/6J mice. Furthermore, SR144528 (a selective CB2R antagonist) was administered in combination with JWH133 to test the specificity of the CB2R-mediated effect. PA was administered intratracheally (i.t.) for induction of pneumonia in mice. At 24 h after PA exposure, lung mechanics were measured using the FlexiVent system. The total cell number, protein content, and neutrophil population in the bronchoalveolar lavage fluid (BALF) were determined. The bacterial load in the whole lung was also measured. Lung injury was evaluated by histological examination and PA-induced inflammation was assessed by measuring the levels of BALF cytokines and chemokines. Neutrophil activation (examined by immunofluorescence and immunoblot) and PA-induced inflammatory signaling (analyzed by immunoblot) were also studied. RESULTS CB2R activation by JWH133 was found to significantly reduce PA-induced ALI and the bacterial burden. CB2R activation also suppressed the PA-induced increase in immune cell infiltration, neutrophil population, and inflammatory cytokines. These effects were abrogated by a CB2R antagonist, SR144528, further confirming the specificity of the CB2R-mediated effects. CB2R-knock out (CB2RKO) mice had a significantly higher level of PA-induced inflammation as compared to that in WT mice. CB2R activation diminished the excess activation of neutrophils, whereas mice lacking CB2R had elevated neutrophil activation. Pharmacological activation of CB2R significantly reduced the PA-induced NF-κB and NLRP3 inflammasome activation, whereas CB2KO mice had elevated NLRP3 inflammasome. CONCLUSION Our findings indicate that CB2R activation ameliorates PA-induced lung injury and inflammation, thus paving the path for new therapeutic avenues against PA pneumonia.
Collapse
Affiliation(s)
- Nagaraja Nagre
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Gregory Nicholson
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Xiaofei Cong
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Janette Lockett
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Andrew C. Pearson
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Vincent Chan
- grid.255414.30000 0001 2182 3733Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - Woong-Ki Kim
- grid.255414.30000 0001 2182 3733Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507 USA
| | - K. Yaragudri Vinod
- grid.250263.00000 0001 2189 4777Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA ,grid.137628.90000 0004 1936 8753Department of Child and Adolescent Psychiatry, New York University Langone Health, New York, NY USA
| | - John D. Catravas
- grid.261368.80000 0001 2164 3177Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508 USA ,grid.261368.80000 0001 2164 3177School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA 23508 USA
| |
Collapse
|
18
|
Mycoplasma pneumoniae and Chlamydia pneumoniae Coinfection with Acute Respiratory Distress Syndrome: A Case Report. Diagnostics (Basel) 2021; 12:diagnostics12010048. [PMID: 35054214 PMCID: PMC8775183 DOI: 10.3390/diagnostics12010048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Community-acquired pneumonia caused by Mycoplasma pneumoniae or Chlamydia pneumoniae is usually mild. Mycoplasma pneumoniae-related and C. pneumoniae-related acute respiratory distress syndromes (ARDSs) are rare. Moreover, to our knowledge, there are no published reports on ARDS caused by M. pneumoniae and C. pneumoniae coinfection. Here, we report a case of an immunocompetent young woman who was co-infected with M. pneumoniae and C. pneumoniae and was started on treatment with piperacillin and clarithromycin. Two days later, she developed ARDS. She recovered rapidly following a change of antibiotic treatment to levofloxacin and was discharged on day 12. We conducted exome sequencing followed by alternative filtering to search for candidate ARDS-related genes. We identified an intronic variant of unknown significance within leucine-rich repeat-containing 16A (LRRC16A), a gene previously identified as a significant locus for platelet count with a possible role in ARDS. This is a rare case of ARDS in a young adult caused by M. pneumoniae and C. pneumoniae coinfection. This case suggests that ARDS in young adults may be correlated with variants in LRRC16A. This requires confirmation by further case reports.
Collapse
|
19
|
Zhou Y, Xu X, Wei H. Complex Pathophysiological Mechanisms and the Propose of the Three-Dimensional Schedule For Future COVID-19 Treatment. Front Immunol 2021; 12:716940. [PMID: 34745094 PMCID: PMC8564179 DOI: 10.3389/fimmu.2021.716940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
At present, the global COVID-19 epidemic is still in a state of anxiety, and increasing the cure rate of critically ill patients is an important means to defeat the virus. From an immune perspective, ARDS driven by an inflammatory storm is still the direct cause of death in severe COVID-19 patients. Although some experience has been gained in the treatment of COVID-19, and intensive COVID-19 vaccination has been carried out recently, it is still effective to save lives to develop more effective programs to alleviate the inflammatory storm and ARDS in patients with SARS-CoV-2 or emerging variants of SARS-CoV-2. In reorganizing the ARDS-related inflammatory storm formation program in COVID-19 patients, we highlighted the importance of the vicious circle of inflammatory cytokines and inflammatory cell death, which is aggravated by blood circulation to form multi-system inflammation. Summarizes the interlocking and crisscrossing of inflammatory response and inflammatory cell death mechanisms including NETs, pyrolysis, apoptosis and PANoptosis in severe COVID-19. More importantly, in response to the inflammatory storm formation program we described, and on the premise of following ethical and clinical experimental norms, we propose a three-dimensional integrated program for future research based on boosting antiviral immune response at the initial stage, inhibiting inflammatory cytokine signaling at the exacerbation stage and inhibiting cell death before it's worse to prevent and alleviate ARDS.
Collapse
Affiliation(s)
- Yonggang Zhou
- Institute of Gerontology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Xiuxiu Xu
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Gerontology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Hafner M, Paukner S, Wicha WW, Hrvačić B, Cedilak M, Faraho I, Gelone SP. Anti-inflammatory activity of lefamulin versus azithromycin and dexamethasone in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia mouse model. PLoS One 2021; 16:e0237659. [PMID: 34587166 PMCID: PMC8480901 DOI: 10.1371/journal.pone.0237659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Several antibiotics demonstrate both antibacterial and anti-inflammatory/immunomodulatory activities and are used to treat inflammatory pulmonary disorders. Lefamulin is a pleuromutilin antibiotic approved to treat community-acquired bacterial pneumonia (CABP). This study evaluated lefamulin anti-inflammatory effects in vivo and in vitro in a lipopolysaccharide-induced lung neutrophilia model in which mouse airways were challenged with intranasal lipopolysaccharide. Lefamulin and comparators azithromycin and dexamethasone were administered 30min before lipopolysaccharide challenge; neutrophil infiltration into BALF and inflammatory mediator induction in lung homogenates were measured 4h postchallenge. Single subcutaneous lefamulin doses (10‒140mg/kg) resulted in dose-dependent reductions of BALF neutrophil cell counts, comparable to or more potent than subcutaneous azithromycin (10‒100mg/kg) and oral/intraperitoneal dexamethasone (0.5/1mg/kg). Lipopolysaccharide-induced pro-inflammatory cytokine (TNF-α, IL-6, IL-1β, and GM-CSF), chemokine (CXCL-1, CXCL-2, and CCL-2), and MMP-9 levels were significantly and dose-dependently reduced in mouse lung tissue with lefamulin; effects were comparable to or more potent than with dexamethasone or azithromycin. Pharmacokinetic analyses confirmed exposure-equivalence of 30mg/kg subcutaneous lefamulin in mice to a single clinical lefamulin dose to treat CABP in humans (150mg intravenous/600mg oral). In vitro, neither lefamulin nor azithromycin had any relevant influence on lipopolysaccharide-induced cytokine/chemokine levels in J774.2 mouse macrophage or human peripheral blood mononuclear cell supernatants, nor were any effects observed on IL-8‒induced human neutrophil chemotaxis. These in vitro results suggest that impediment of neutrophil infiltration by lefamulin in vivo may not occur through direct interaction with macrophages or neutrophilic chemotaxis. This is the first study to demonstrate inhibition of neutrophilic lung infiltration and reduction of pro-inflammatory cytokine/chemokine concentrations by clinically relevant lefamulin doses. This anti-inflammatory activity may be beneficial in patients with acute respiratory distress syndrome, cystic fibrosis, or severe inflammation-mediated lung injury, similar to glucocorticoid (eg, dexamethasone) activity. Future lefamulin anti-inflammatory/immunomodulatory activity studies are warranted to further elucidate mechanism of action and evaluate clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven P. Gelone
- Nabriva Therapeutics US, Inc., Fort Washington, Pennsylvania, United States of America
| |
Collapse
|
21
|
Kotas ME, Thompson BT. Toward Optimal Acute Respiratory Distress Syndrome Outcomes: Recognizing the Syndrome and Identifying Its Causes. Crit Care Clin 2021; 37:733-748. [PMID: 34548131 PMCID: PMC8449137 DOI: 10.1016/j.ccc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, Box 0111, San Francisco, CA 94143, USA
| | - B Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Current diagnostic approaches to detect two important betacoronaviruses: Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathol Res Pract 2021; 225:153565. [PMID: 34333398 PMCID: PMC8305226 DOI: 10.1016/j.prp.2021.153565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two common betacoronaviruses, which are still causing transmission among the human population worldwide. The major difference between the two coronaviruses is that MERS-CoV is now causing sporadic transmission worldwide, whereas SARS-CoV-2 is causing a pandemic outbreak globally. Currently, different guidelines and reports have highlighted several diagnostic methods and approaches which could be used to screen and confirm MERS-CoV and SARS-CoV-2 infections. These methods include clinical evaluation, laboratory diagnosis (nucleic acid-based test, protein-based test, or viral culture), and radiological diagnosis. With the presence of these different diagnostic approaches, it could cause a dilemma to the clinicians and diagnostic laboratories in selecting the best diagnostic strategies to confirm MERS-CoV and SARS-CoV-2 infections. Therefore, this review aims to provide an up-to-date comparison of the advantages and limitations of different diagnostic approaches in detecting MERS-CoV and SARS-CoV-2 infections. This review could provide insights for clinicians and scientists in detecting MERS-CoV and SARS-CoV-2 infections to help combat the transmission of these coronaviruses.
Collapse
|
23
|
Zhang LS, Yu Y, Yu H, Han ZC. Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World J Stem Cells 2021; 13:1058-1071. [PMID: 34567425 PMCID: PMC8422925 DOI: 10.4252/wjsc.v13.i8.1058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/10/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
The ongoing outbreak of coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 has become a sudden public emergency of international concern and seriously threatens millions of people’s life health. Two current studies have indicated a favorable role for mesenchymal stem/stromal cells (MSCs) in clinical remission of COVID-19 associated pulmonary diseases, yet the systematical elaboration of the therapeutics and underlying mechanism is far from satisfaction. In the present review, we summarize the therapeutic potential of MSCs in COVID-19 associated pulmonary diseases such as pneumonia induced acute lung injury, acute respiratory distress syndrome, and pulmonary fibrosis. Furthermore, we review the underlying mechanism of MSCs including direct- and trans-differentiation, autocrine and paracrine anti-inflammatory effects, homing, and neovascularization, as well as constitutive microenvironment. Finally, we discuss the prospects and supervision of MSC-based cytotherapy for COVID-19 management before large-scale application in clinical practice. Collectively, this review supplies overwhelming new references for understanding the landscapes of MSCs in the remission of COVID-19 associated pulmonary diseases.
Collapse
Affiliation(s)
- Lei-Sheng Zhang
- Qianfoshan Hospital & The First Affiliated Hospital, Shandong First Medical University, Jinan 250014, Shandong Province, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- School of Medicine, Nankai University, Tianjin 300071, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
| | - Yi Yu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hao Yu
- School of Medicine, Nankai University, Tianjin 300071, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| | - Zhong-Chao Han
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin 300457, China
| |
Collapse
|
24
|
Verma AK, Bauer C, Palani S, Metzger DW, Sun K. IFN-γ Drives TNF-α Hyperproduction and Lethal Lung Inflammation during Antibiotic Treatment of Postinfluenza Staphylococcus aureus Pneumonia. THE JOURNAL OF IMMUNOLOGY 2021; 207:1371-1376. [PMID: 34380647 DOI: 10.4049/jimmunol.2100328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023]
Abstract
Inflammatory cytokine storm is a known cause for acute respiratory distress syndrome. In this study, we have investigated the role of IFN-γ in lethal lung inflammation using a mouse model of postinfluenza methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. To mimic the clinical scenario, animals were treated with antibiotics for effective bacterial control following MRSA superinfection. However, antibiotic therapy alone is not sufficient to improve survival of wild-type animals in this lethal acute respiratory distress syndrome model. In contrast, antibiotics induce effective protection in mice deficient in IFN-γ response. Mechanistically, we show that rather than inhibiting bacterial clearance, IFN-γ promotes proinflammatory cytokine response to cause lethal lung damage. Neutralization of IFN-γ after influenza prevents hyperproduction of TNF-α, and thereby protects against inflammatory lung damage and animal mortality. Taken together, the current study demonstrates that influenza-induced IFN-γ drives a stepwise propagation of inflammatory cytokine response, which ultimately results in fatal lung damage during secondary MRSA pneumonia, despite of antibiotic therapy.
Collapse
Affiliation(s)
- Atul K Verma
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Christopher Bauer
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Sunil Palani
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| | - Dennis W Metzger
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY
| | - Keer Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; .,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX; and
| |
Collapse
|
25
|
Zhu Y, Ge X, Xie D, Wang S, Chen F, Pan S. Clinical Strains of Pseudomonas aeruginosa Secrete LasB Elastase to Induce Hemorrhagic Diffuse Alveolar Damage in Mice. J Inflamm Res 2021; 14:3767-3780. [PMID: 34393497 PMCID: PMC8354736 DOI: 10.2147/jir.s322960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are most often caused by bacterial pneumonia and characterized by severe dyspnea and high mortality. Knowledge about the lung injury effects of current clinical bacterial strains is lacking. The aim of this study was to investigate the ability of representative pathogenic bacteria isolated from patients to cause ALI/ARDS in mice and identify the major virulence factor. Methods Seven major bacterial species were isolated from clinical sputum and unilaterally instilled into the mouse airway. A histology study was performed to determine the lung injury effect. Virulence genes were examined by PCR. Sequence types of P. aeruginosa strains were identified by MLST. LC-MS/MS was used to analysis the bacterial exoproducts proteome. LasB was purified through a DEAE-cellulose column, and its toxicity was tested both in vitro and in vivo. Results Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus agalactiae, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli were randomly separated and tested 3 times. Among them, gram-negative bacteria have much more potential to cause acute lung injury than gram-positive bacteria. However, P. aeruginosa is the only pathogen that induces diffuse alveolar damage, hemorrhage and hyaline membranes in the lungs of mice. The lung injury effect is associated with the excreted LasB elastase. Purified LasB recapitulated lung injury similar to P. aeruginosa infection in vivo. We found that this was due to the powerful degradation effect of LasB on the extracellular matrix of the lung and key proteins in the coagulation cascade without inducing obvious cellular apoptosis. We also report for the first time that LasB could induce DIC-like coagulopathy in vitro. Conclusion P. aeruginosa strains are most capable of inducing ALI/ARDS in mice among major clinical pathogenic bacteria tested, and this ability is specifically attributed to their LasB production.
Collapse
Affiliation(s)
- Yajie Zhu
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xiaoli Ge
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Di Xie
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Shangyuan Wang
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Feng Chen
- Division of Medical Microbiology, Department of Clinical Laboratory, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Shuming Pan
- Department of Emergency Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| |
Collapse
|
26
|
Paley EL. Towards Understanding COVID-19: Molecular Insights, Co-infections, Associated Disorders, and Aging. J Alzheimers Dis Rep 2021; 5:571-600. [PMID: 34514341 PMCID: PMC8385430 DOI: 10.3233/adr-210010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND COVID-19 can be related to any diseases caused by microbial infection(s) because 1) co-infection with COVID-19-related virus and other microorganism(s) and 2) because metabolites produced by microorganisms such as bacteria, fungi, and protozoan can be involved in necrotizing pneumonia and other necrotizing medical conditions observed in COVID-19. OBJECTIVE By way of illustration, the microbial metabolite of aromatic amino acid tryptophan, a biogenic amine tryptamine inducing neurodegeneration in cell and animal models, also induces necrosis. METHODS This report includes analysis of COVID-19 positivity by zip codes in Florida and relation of the positivity to population density, possible effect of ecological and social factors on spread of COVID-19, autopsy analysis of COVID-19 cases from around the world, serum metabolomics analysis, and evaluation of autoantigenome related to COVID-19. RESULTS In the present estimations, COVID-19 positivity percent per zip code population varied in Florida from 4.65% to 44.3% (February 2021 data). COVID-19 analysis is partially included in my book Microbial Metabolism and Disease (2021). The autoantigenome related to COVID-19 is characterized by alterations in protein biosynthesis proteins including aminoacyl-tRNA synthetases. Protein biosynthesis alteration is a feature of Alzheimer's disease. Serum metabolomics of COVID-19 positive patients show alteration in shikimate pathway metabolism, which is associated with the presence of Alzheimer's disease-associated human gut bacteria. CONCLUSION Such alterations in microbial metabolism and protein biosynthesis can lead to toxicity and neurodegeneration as described earlier in my book Protein Biosynthesis Interference in Disease (2020).
Collapse
Affiliation(s)
- Elena L. Paley
- Expert BioMed, Inc. and Nonprofit Public Charity Stop Alzheimers Corp., Miami-Dade, FL, USA
| |
Collapse
|
27
|
Meikle CKS, Creeden JF, McCullumsmith C, Worth RG. SSRIs: Applications in inflammatory lung disease and implications for COVID-19. Neuropsychopharmacol Rep 2021; 41:325-335. [PMID: 34254465 PMCID: PMC8411309 DOI: 10.1002/npr2.12194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have anti-inflammatory properties that may have clinical utility in treating severe pulmonary manifestations of COVID-19. SSRIs exert anti-inflammatory effects at three mechanistic levels: (a) inhibition of proinflammatory transcription factor activity, including NF-κB and STAT3; (b) downregulation of lung tissue damage and proinflammatory cell recruitment via inhibition of cytokines, including IL-6, IL-8, TNF-α, and IL-1β; and (c) direct suppression inflammatory cells, including T cells, macrophages, and platelets. These pathways are implicated in the pathogenesis of COVID-19. In this review, we will compare the pathogenesis of lung inflammation in pulmonary diseases including COVID-19, ARDS, and chronic obstructive pulmonary disease (COPD), describe the anti-inflammatory properties of SSRIs, and discuss the applications of SSRIS in treating COVID-19-associated inflammatory lung disease.
Collapse
Affiliation(s)
- Claire Kyung Sun Meikle
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.,Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Cheryl McCullumsmith
- Department of Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Randall G Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
28
|
Kiener M, Roldan N, Machahua C, Sengupta A, Geiser T, Guenat OT, Funke-Chambour M, Hobi N, Kruithof-de Julio M. Human-Based Advanced in vitro Approaches to Investigate Lung Fibrosis and Pulmonary Effects of COVID-19. Front Med (Lausanne) 2021; 8:644678. [PMID: 34026781 PMCID: PMC8139419 DOI: 10.3389/fmed.2021.644678] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused considerable socio-economic burden, which fueled the development of treatment strategies and vaccines at an unprecedented speed. However, our knowledge on disease recovery is sparse and concerns about long-term pulmonary impairments are increasing. Causing a broad spectrum of symptoms, COVID-19 can manifest as acute respiratory distress syndrome (ARDS) in the most severely affected patients. Notably, pulmonary infection with Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the causing agent of COVID-19, induces diffuse alveolar damage (DAD) followed by fibrotic remodeling and persistent reduced oxygenation in some patients. It is currently not known whether tissue scaring fully resolves or progresses to interstitial pulmonary fibrosis. The most aggressive form of pulmonary fibrosis is idiopathic pulmonary fibrosis (IPF). IPF is a fatal disease that progressively destroys alveolar architecture by uncontrolled fibroblast proliferation and the deposition of collagen and extracellular matrix (ECM) proteins. It is assumed that micro-injuries to the alveolar epithelium may be induced by inhalation of micro-particles, pathophysiological mechanical stress or viral infections, which can result in abnormal wound healing response. However, the exact underlying causes and molecular mechanisms of lung fibrosis are poorly understood due to the limited availability of clinically relevant models. Recently, the emergence of SARS-CoV-2 with the urgent need to investigate its pathogenesis and address drug options, has led to the broad application of in vivo and in vitro models to study lung diseases. In particular, advanced in vitro models including precision-cut lung slices (PCLS), lung organoids, 3D in vitro tissues and lung-on-chip (LOC) models have been successfully employed for drug screens. In order to gain a deeper understanding of SARS-CoV-2 infection and ultimately alveolar tissue regeneration, it will be crucial to optimize the available models for SARS-CoV-2 infection in multicellular systems that recapitulate tissue regeneration and fibrotic remodeling. Current evidence for SARS-CoV-2 mediated pulmonary fibrosis and a selection of classical and novel lung models will be discussed in this review.
Collapse
Affiliation(s)
- Mirjam Kiener
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Nuria Roldan
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Carlos Machahua
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Arunima Sengupta
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Thomas Geiser
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olivier Thierry Guenat
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Organs-on-Chip Technologies, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nina Hobi
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research DBMR, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Alveolix AG, Swiss Organs-on-Chip Innovation, Bern, Switzerland
- Organoid Core, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
29
|
Letsiou E, Teixeira Alves LG, Fatykhova D, Felten M, Mitchell TJ, Müller-Redetzky HC, Hocke AC, Witzenrath M. Microvesicles released from pneumolysin-stimulated lung epithelial cells carry mitochondrial cargo and suppress neutrophil oxidative burst. Sci Rep 2021; 11:9529. [PMID: 33953279 PMCID: PMC8100145 DOI: 10.1038/s41598-021-88897-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/13/2021] [Indexed: 01/16/2023] Open
Abstract
Microvesicles (MVs) are cell-derived extracellular vesicles that have emerged as markers and mediators of acute lung injury (ALI). One of the most common pathogens in pneumonia-induced ALI is Streptococcus pneumoniae (Spn), but the role of MVs during Spn lung infection is largely unknown. In the first line of defense against Spn and its major virulence factor, pneumolysin (PLY), are the alveolar epithelial cells (AEC). In this study, we aim to characterize MVs shed from PLY-stimulated AEC and explore their contribution in mediating crosstalk with neutrophils. Using in vitro cell and ex vivo (human lung tissue) models, we demonstrated that Spn in a PLY-dependent manner stimulates AEC to release increased numbers of MVs. Spn infected mice also had higher levels of epithelial-derived MVs in their alveolar compartment compared to control. Furthermore, MVs released from PLY-stimulated AEC contain mitochondrial content and can be taken up by neutrophils. These MVs then suppress the ability of neutrophils to produce reactive oxygen species, a critical host-defense mechanism. Taken together, our results demonstrate that AEC in response to pneumococcal PLY release MVs that carry mitochondrial cargo and suggest that these MVs regulate innate immune responses during lung injury.
Collapse
Affiliation(s)
- E Letsiou
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany. .,Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - L G Teixeira Alves
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - D Fatykhova
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - M Felten
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - T J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - H C Müller-Redetzky
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - A C Hocke
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.,German Center for Lung Research, (DZL), Berlin, Germany
| | - M Witzenrath
- Division of Pulmonary Inflammation, and Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany.,German Center for Lung Research, (DZL), Berlin, Germany
| |
Collapse
|
30
|
Peñaloza HF, Olonisakin TF, Bain WG, Qu Y, van der Geest R, Zupetic J, Hulver M, Xiong Z, Newstead MW, Zou C, Alder JK, Ybe JA, Standiford TJ, Lee JS. Thrombospondin-1 Restricts Interleukin-36γ-Mediated Neutrophilic Inflammation during Pseudomonas aeruginosa Pulmonary Infection. mBio 2021; 12:e03336-20. [PMID: 33824208 PMCID: PMC8092289 DOI: 10.1128/mbio.03336-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-36γ (IL-36γ), a member of the IL-1 cytokine superfamily, amplifies lung inflammation and impairs host defense during acute pulmonary Pseudomonas aeruginosa infection. To be fully active, IL-36γ is cleaved at its N-terminal region by proteases such as neutrophil elastase (NE) and cathepsin S (CatS). However, it remains unclear whether limiting extracellular proteolysis restrains the inflammatory cascade triggered by IL-36γ during P. aeruginosa infection. Thrombospondin-1 (TSP-1) is a matricellular protein with inhibitory activity against NE and the pathogen-secreted Pseudomonas elastase LasB-both proteases implicated in amplifying inflammation. We hypothesized that TSP-1 tempers the inflammatory response during lung P. aeruginosa infection by inhibiting the proteolytic environment required for IL-36γ activation. Compared to wild-type (WT) mice, TSP-1-deficient (Thbs1-/-) mice exhibited a hyperinflammatory response in the lungs during P. aeruginosa infection, with increased cytokine production and an unrestrained extracellular proteolytic environment characterized by higher free NE and LasB, but not CatS activity. LasB cleaved IL-36γ proximally to M19 at a cleavage site distinct from those generated by NE and CatS, which cleave IL-36γ proximally to Y16 and S18, respectively. N-terminal truncation experiments in silico predicted that the M19 and the S18 isoforms bind the IL-36R complex almost identically. IL-36γ neutralization ameliorated the hyperinflammatory response and improved lung immunity in Thbs1-/- mice during P. aeruginosa infection. Moreover, administration of cleaved IL-36γ induced cytokine production and neutrophil recruitment and activation that was accentuated in Thbs1-/- mice lungs. Collectively, our data show that TSP-1 regulates lung neutrophilic inflammation and facilitates host defense by restraining the extracellular proteolytic environment required for IL-36γ activation.IMPORTANCEPseudomonas aeruginosa pulmonary infection can lead to exaggerated neutrophilic inflammation and tissue destruction, yet host factors that regulate the neutrophilic response are not fully known. IL-36γ is a proinflammatory cytokine that dramatically increases in bioactivity following N-terminal processing by proteases. Here, we demonstrate that thrombospondin-1, a host matricellular protein, limits N-terminal processing of IL-36γ by neutrophil elastase and the Pseudomonas aeruginosa-secreted protease LasB. Thrombospondin-1-deficient mice (Thbs1-/-) exhibit a hyperinflammatory response following infection. Whereas IL-36γ neutralization reduces inflammatory cytokine production, limits neutrophil activation, and improves host defense in Thbs1-/- mice, cleaved IL-36γ administration amplifies neutrophilic inflammation in Thbs1-/- mice. Our findings indicate that thrombospondin-1 guards against feed-forward neutrophilic inflammation mediated by IL-36γ in the lung by restraining the extracellular proteolytic environment.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tolani F Olonisakin
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William G Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanyan Qu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jill Zupetic
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Newstead
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Theodore J Standiford
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Extrapancreatic and pancreatic infection in acute pancreatitis. Eur J Gastroenterol Hepatol 2021; 33:598-599. [PMID: 33657607 DOI: 10.1097/meg.0000000000002125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
32
|
Sahu AK, Sreepadmanabh M, Rai M, Chande A. SARS-CoV-2: phylogenetic origins, pathogenesis, modes of transmission, and the potential role of nanotechnology. Virusdisease 2021; 32:1-12. [PMID: 33644261 PMCID: PMC7897733 DOI: 10.1007/s13337-021-00653-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has elicited a rapid response from the scientific community with significant advances in understanding the causative pathogen (SARS-CoV-2). Mechanisms of viral transmission and pathogenesis, as well as structural and genomic details, have been reported, which are essential in guiding containment, treatment, and vaccine development efforts. Here, we present a concise review of the recent research in these domains and an exhaustive analysis of the genomic origins of SARS-CoV-2. Particular emphasis has been placed on the pathology and disease progression of COVID-19 as documented by recent clinical studies, in addition to the characteristic immune responses involved therein. Furthermore, we explore the potential of nanomaterials and nanotechnology to develop diagnostic tools, drug delivery systems, and personal protective equipment design within the ongoing pandemic context. We present this as a ready resource for researchers to gain succinct, up-to-date insights on SARS-CoV-2.
Collapse
Affiliation(s)
- Amit Kumar Sahu
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - M. Sreepadmanabh
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, Maharashtra 444602 India
| | - Ajit Chande
- Molecular Virology Laboratory, Indian Institute of Science Education and Research (IISER) Bhopal, Indore By-Pass Road, Bhopal, 462066 India
| |
Collapse
|
33
|
Fröhlich E. Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases-Intravenous Administration versus Inhalation. Pharmaceutics 2021; 13:232. [PMID: 33562240 PMCID: PMC7915745 DOI: 10.3390/pharmaceutics13020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr 24, 8010 Graz, Austria; ; Tel.: +43-316-385-73011
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
34
|
Gardner L. Prone Positioning in Patients With Acute Respiratory Distress Syndrome and Other Respiratory Conditions: Challenges, Complications, and Solutions. PATIENT SAFETY 2020. [DOI: 10.33940/data/2020.12.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) and respiratory failure are characterized by hypoxemia, i.e., low levels of blood oxygen. Infections such as influenza and COVID-19 can lead to ARDS or respiratory failure. Treatment is through supportive measures. In severe cases, patients receive oxygen through a ventilator and, when appropriate, are placed in a prone position for an extended period. A retrospective review of events submitted to the Pennsylvania Patient Safety Reporting System (PA-PSRS) identified 98 prone position–related events in patients with ARDS, respiratory failure, distress, and pneumonia from January 1, 2010, through June 30, 2020; 30 events were associated with COVID-19. Skin integrity injuries accounted for 83.7% (82 of 98) of the events. The remaining events, 16.3% (16 of 98), involved unplanned extubations, cardiac arrests, displaced lines, enteral feedings, medication errors, a dental issue, and posterior ischemic optic neuropathy.
Collapse
|
35
|
Monji F, Al-Mahmood Siddiquee A, Hashemian F. Can pentoxifylline and similar xanthine derivatives find a niche in COVID-19 therapeutic strategies? A ray of hope in the midst of the pandemic. Eur J Pharmacol 2020; 887:173561. [PMID: 32946870 PMCID: PMC7490668 DOI: 10.1016/j.ejphar.2020.173561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
COVID-19 pandemic presents an unprecedented challenge to identify effective drugs for treatment. Despite multiple clinical trials using different agents, there is still a lack of specific treatment for COVID-19. Having the potential role in suppressing inflammation, immune modulation, antiviral and improving respiratory symptoms, this review discusses the potential role of methylxanthine drugs like pentoxifylline and caffeine in the management of COVID-19 patients. COVID-19 pathogenesis for clinical features like severe pneumonia, acute lung injury (ALI) / acute respiratory distress syndrome (ARDS), and multi-organ failures are excessive inflammation, oxidation, and cytokine storm by the exaggerated immune response. Drugs like pentoxifylline have already shown improvement of the symptoms of ARDS and caffeine has been in clinical use for decades to treat apnea of prematurity (AOP) in preterm infants and improve respiratory function. Pentoxifylline is well-known anti-inflammatory and anti-oxidative molecules that have already shown to suppress Tumor Necrosis Factor (TNF-α) as well as other inflammatory cytokines in pulmonary diseases, and this may be beneficial for better clinical outcomes in COVID-19 patients. Pentoxifylline enhances blood flow, improves microcirculation and tissue oxygenation, and caffeine also efficiently improves tissue oxygenation, asthma, decreases pulmonary hypertension and an effective analgesic. There are significant shreds of evidence that proved the properties of pentoxifylline and caffeine against virus-related diseases as well. Along with the aforementioned evidences and high safety profiles, both pentoxifylline and caffeine offer a glimpse of considerations for future use as a potential adjuvant to COVID-19 treatment. However, additional clinical studies are required to confirm this speculation.
Collapse
Affiliation(s)
- Faezeh Monji
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran.
| | | | - Farshad Hashemian
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
36
|
Yudhawati R, Amin M, Rantam FA, Prasetya RR, Dewantari JR, Nastri AM, Poetranto ED, Wulandari L, Lusida MI, Koesnowidagdo S, Soegiarto G, Shimizu YK, Mori Y, Shimizu K. Bone marrow-derived mesenchymal stem cells attenuate pulmonary inflammation and lung damage caused by highly pathogenic avian influenza A/H5N1 virus in BALB/c mice. BMC Infect Dis 2020; 20:823. [PMID: 33176722 PMCID: PMC7656227 DOI: 10.1186/s12879-020-05525-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 10/16/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The highly pathogenic avian influenza A/H5N1 virus is one of the causative agents of acute lung injury (ALI) with high mortality rate. Studies on therapeutic administration of bone marrow-derived mesenchymal stem cells (MSCs) in ALI caused by the viral infection have been limited in number and have shown conflicting results. The aim of the present investigation is to evaluate the therapeutic potential of MSC administration in A/H5N1-caused ALI, using a mouse model. METHODS MSCs were prepared from the bone marrow of 9 to 12 week-old BALB/c mice. An H5N1 virus of A/turkey/East Java/Av154/2013 was intranasally inoculated into BALB/c mice. On days 2, 4, and 6 after virus inoculation, MSCs were intravenously administered into the mice. To evaluate effects of the treatment, we examined for lung alveolar protein as an indicator for lung injury, PaO2/FiO2 ratio for lung functioning, and lung histopathology. Expressions of NF-κB, RAGE (transmembrane receptor for damage associated molecular patterns), TNFα, IL-1β, Sftpc (alveolar cell type II marker), and Aqp5+ (alveolar cell type I marker) were examined by immunohistochemistry. In addition, body weight, virus growth in lung and brain, and duration of survival were measured. RESULTS The administration of MSCs lowered the level of lung damage in the virus-infected mice, as shown by measuring lung alveolar protein, PaO2/FiO2 ratio, and histopathological score. In the MSC-treated group, the expressions of NF-κB, RAGE, TNFα, and IL-1β were significantly suppressed in comparison with a mock-treated group, while those of Sftpc and Aqp5+ were enhanced. Body weight, virus growth, and survival period were not significantly different between the groups. CONCLUSION The administration of MSCs prevented further lung injury and inflammation, and enhanced alveolar cell type II and I regeneration, while it did not significantly affect viral proliferation and mouse morbidity and mortality. The results suggested that MSC administration was a promissing strategy for treatment of acute lung injuries caused by the highly pathogenic avian influenza A/H5N1 virus, although further optimization and combination use of anti-viral drugs will be obviously required to achieve the goal of reducing mortality.
Collapse
Affiliation(s)
- Resti Yudhawati
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia. .,Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia.
| | - Muhammad Amin
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Fedik A Rantam
- Department of Virology and Immunology, Faculty of Veterinary Medicine / Stem Cell Research and Development Center, Airlangga University, Surabaya, Indonesia
| | - Rima R Prasetya
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Jezzy R Dewantari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Aldise M Nastri
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Emmanuel D Poetranto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Laksmi Wulandari
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Maria I Lusida
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Soetjipto Koesnowidagdo
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Gatot Soegiarto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Yohko K Shimizu
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazufumi Shimizu
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia. .,Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan.
| |
Collapse
|
37
|
A Potential Chinese Medicine Granule Suppressing ARDS of COVID-19: Keguan-1. Chin J Integr Med 2020; 26:803-804. [PMID: 33017033 PMCID: PMC7533665 DOI: 10.1007/s11655-020-3437-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
|
38
|
Exploring an Integrative Therapy for Treating COVID-19: A Randomized Controlled Trial. Chin J Integr Med 2020; 26:648-655. [PMID: 32676976 PMCID: PMC7364292 DOI: 10.1007/s11655-020-3426-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
Objectives To develop a new Chinese medicine (CM)-based drug and to evaluate its safety and effect for suppressing acute respiratory distress syndrome (ARDS) in COVID-19 patients. Methods A putative ARDS-suppressing drug Keguan-1 was first developed and then evaluated by a randomized, controlled two-arm trial. The two arms of the trial consist of a control therapy (alpha interferon inhalation, 50 µg twice daily; and lopinavir/ritonavir, 400 and 100 mg twice daily, respectively) and a testing therapy (control therapy plus Keguan-1 19.4 g twice daily) by random number table at 1:1 ratio with 24 cases each group. After 2-week treatment, adverse events, time to fever resolution, ARDS development, and lung injury on newly diagnosed COVID-19 patients were assessed. Results An analysis of the data from the first 30 participants showed that the control arm and the testing arm did not exhibit any significant differences in terms of adverse events. Based on this result, the study was expanded to include a total of 48 participants (24 cases each arm). The results show that compared with the control arm, the testing arm exhibited a significant improvement in time to fever resolution (P=0.035), and a significant reduction in the development of ARDS (P=0.048). Conclusions Keguan-1-based integrative therapy was safe and superior to the standard therapy in suppressing the development of ARDS in COVID-19 patients. (Trial registration No. NCT 04251871 at www.clinicaltrials.gov) Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s11655-020-3426-7.
Collapse
|
39
|
McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, Alcorn T, Dapkins IP, Sharif I, Vurmaz D, Modak SS, Srinivasan K, Warhadpande S, Shrivastav R, McDevitt JT. Clinical decision support tool and rapid point-of-care platform for determining disease severity in patients with COVID-19. LAB ON A CHIP 2020; 20:2075-2085. [PMID: 32490853 PMCID: PMC7360344 DOI: 10.1039/d0lc00373e] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). Although this analysis represents patients with cardiac comorbidities (hypertension), the inclusion of biomarkers from other pathophysiologies implicated in COVID-19 (e.g., D-dimer for thrombotic events, CRP for infection or inflammation, and PCT for bacterial co-infection and sepsis) may improve future predictions for a more general population. These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.
Collapse
Affiliation(s)
- Michael P McRae
- Department of Biomaterials, Bioengineering Institute, New York University, 433 First Avenue, Room 820, New York, NY 10010-4086, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Har-Noy M, Or R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J Transl Med 2020; 18:196. [PMID: 32398026 PMCID: PMC7215129 DOI: 10.1186/s12967-020-02363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND We present the rationale for a novel allo-priming approach to serve the elderly as a universal anti-virus vaccine, as well serving to remodel the aging immune system in order to reverse immunosenescence and inflammaging. This approach has the potential to protect the most vulnerable from disease and provide society an incalculable economic benefit. Allo-priming healthy elderly adults is proposed to provide universal protection from progression of any type of viral infection, including protection against progression of the current outbreak of COVID-19 infection, and any future variants of the causative SARS-CoV-2 virus or the next 'Disease X'. Allo-priming is an alternative approach for the COVID-19 pandemic that provides a back-up in case vaccination strategies to elicit neutralizing antibody protection fails or fails to protect the vulnerable elderly population. The allo-priming is performed using activated, intentionally mismatched, ex vivo differentiated and expanded living Th1-like cells (AlloStim®) derived from healthy donors currently in clinical use as an experimental cancer vaccine. Multiple intradermal injections of AlloStim® creates a dominate titer of allo-specific Th1/CTL memory cells in circulation, replacing the dominance of exhausted memory cells of the aged immune system. Upon viral encounter, by-stander activation of the allo-specific memory cells causes an immediate release of IFN-ϒ, leading to development of an "anti-viral state", by-stander activation of innate cellular effector cells and activation of cross-reactive allo-specific CTL. In this manner, the non-specific activation of allo-specific Th1/CTL initiates a cascade of spatial and temporal immune events which act to limit the early viral titer. The release of endogenous heat shock proteins (HSP) and DAMP from lysed viral-infected cells, in the context of IFN-ϒ, creates of conditions for in situ vaccination leading to viral-specific Th1/CTL immunity. These viral-specific Th1/CTL provide sterilizing immunity and memory for protection from disease recurrence, while increasing the pool of Th1/CTL in circulation capable of responding to the next viral encounter. CONCLUSION Allo-priming has potential to provide universal protection from viral disease and is a strategy to reverse immunosenescence and counter-regulate chronic inflammation (inflammaging). Allo-priming can be used as an adjuvant for anti-viral vaccines and as a counter-measure for unknown biological threats and bio-economic terrorism.
Collapse
Affiliation(s)
- Michael Har-Noy
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel. .,Immunovative Therapies, Ltd, Malcha Technology Park, B1/F1, 9695101, Jerusalem, Israel. .,Mirror Biologics, Inc., 4824 E Baseline Rd #113, Phoenix, AZ, USA.
| | - Reuven Or
- Cancer Immunotherapy and Immunobiology Center, Hadassah-Hebrew University Medical Center, 9112001, Jerusalem, Israel
| |
Collapse
|
41
|
McRae MP, Simmons GW, Christodoulides NJ, Lu Z, Kang SK, Fenyo D, Alcorn T, Dapkins IP, Sharif I, Vurmaz D, Modak SS, Srinivasan K, Warhadpande S, Shrivastav R, McDevitt JT. Clinical Decision Support Tool and Rapid Point-of-Care Platform for Determining Disease Severity in Patients with COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.04.16.20068411. [PMID: 32511607 PMCID: PMC7276034 DOI: 10.1101/2020.04.16.20068411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
SARS-CoV-2 is the virus that causes coronavirus disease (COVID-19) which has reached pandemic levels resulting in significant morbidity and mortality affecting every inhabited continent. The large number of patients requiring intensive care threatens to overwhelm healthcare systems globally. Likewise, there is a compelling need for a COVID-19 disease severity test to prioritize care and resources for patients at elevated risk of mortality. Here, an integrated point-of-care COVID-19 Severity Score and clinical decision support system is presented using biomarker measurements of C-reactive protein (CRP), N-terminus pro B type natriuretic peptide (NT-proBNP), myoglobin (MYO), D-dimer, procalcitonin (PCT), creatine kinase-myocardial band (CK-MB), and cardiac troponin I (cTnI). The COVID-19 Severity Score combines multiplex biomarker measurements and risk factors in a statistical learning algorithm to predict mortality. The COVID-19 Severity Score was trained and evaluated using data from 160 hospitalized COVID-19 patients from Wuhan, China. Our analysis finds that COVID-19 Severity Scores were significantly higher for the group that died versus the group that was discharged with median (interquartile range) scores of 59 (40-83) and 9 (6-17), respectively, and area under the curve of 0.94 (95% CI 0.89-0.99). These promising initial models pave the way for a point-of-care COVID-19 Severity Score system to impact patient care after further validation with externally collected clinical data. Clinical decision support tools for COVID-19 have strong potential to empower healthcare providers to save lives by prioritizing critical care in patients at high risk for adverse outcomes.
Collapse
Affiliation(s)
- Michael P McRae
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Glennon W Simmons
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | | | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Stella K Kang
- Departments of Radiology, Population Health New York University School of Medicine, New York, NY, USA
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | | | - Isaac P Dapkins
- Department of Population Health and Internal Medicine, New York University School of Medicine, New York, NY, USA
| | - Iman Sharif
- Departments of Pediatrics and Population Health, New York University School of Medicine, New York, NY, USA
| | - Deniz Vurmaz
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, New York University, New York, NY, USA
| | - Sayli S Modak
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Kritika Srinivasan
- Departments of Biomaterials, Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Shruti Warhadpande
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - Ravi Shrivastav
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| | - John T McDevitt
- Department of Biomaterials, Bioengineering Institute, New York University, New York, NY, USA
| |
Collapse
|
42
|
Huang F, Zhang C, Liu Q, Zhao Y, Zhang Y, Qin Y, Li X, Li C, Zhou C, Jin N, Jiang C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog 2020; 16:e1008341. [PMID: 32176725 PMCID: PMC7075543 DOI: 10.1371/journal.ppat.1008341] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Infection with avian influenza A H5N1 virus results in acute lung injury (ALI) and has a high mortality rate (52.79%) because there are limited therapies available for treatment. Drug repositioning is an economical approach to drug discovery. We developed a method for drug repositioning based on high-throughput RNA sequencing and identified several drugs as potential treatments for avian influenza A H5N1 virus. Using high-throughput RNA sequencing, we identified a total of 1,233 genes differentially expressed in A549 cells upon H5N1 virus infection. Among these candidate genes, 79 drug targets (corresponding to 59 approved drugs) overlapped with the DrugBank target database. Twenty-two of the 41 commercially available small-molecule drugs reduced H5N1-mediated cell death in cultured A549 cells, and fifteen drugs that protected A549 cells when administered both pre- and post-infection were tested in an H5N1-infection mouse model. The results showed significant alleviation of acute lung injury by amitriptyline HCl (an antidepressant drug), flavin adenine dinucleotide (FAD; an ophthalmic agent for vitamin B2 deficiency), azacitidine (an anti-neoplastic drug) and calcitriol (an active form of vitamin D). All four agents significantly reduced the infiltrating cell count and decreased the lung injury score in H5N1 virus-infected mice based on lung histopathology, significantly improved mouse lung edema by reducing the wet-to-dry weight ratio of lung tissue and significantly improved the survival of H5N1 virus-infected mice. This study not only identifies novel potential therapies for influenza H5N1 virus-induced lung injury but also provides a highly effective and economical screening method for repurposing drugs that may be generalizable for the prevention and therapy of other diseases. Highly pathogenic avian influenza (HPAI) A virus H5N1 causes acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), with mortality as high as 52.79%. No vaccine for HPAI virus is available, and current treatments for influenza A H5N1 virus-induced ALI have limitations. Drug repurposing may be an effective approach for developing novel therapeutic strategies. In this study, we identified 4 drugs, the antidepressant amitriptyline HCl, the ophthalmic flavin adenine dinucleotide, the anti-neoplastic azacitidine and the vitamin D-deficiency treatment calcitriol, as being highly effective for the treatment of H5N1 virus-induced ALI using a transcriptomic-based high-throughput repurposing drug screening. These approved drugs might constitute novel potential remedies for treating influenza H5N1 virus infection, and this screening method may be generalizable for drug repositioning to identify new indications for other diseases.
Collapse
Affiliation(s)
- Fengming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuqing Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuhao Qin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao Li
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Chang Li
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- * E-mail: (CZ); (NJ); (CJ)
| | - Ningyi Jin
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (CZ); (NJ); (CJ)
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
- * E-mail: (CZ); (NJ); (CJ)
| |
Collapse
|
43
|
Scheraga RG, Abraham S, Grove LM, Southern BD, Crish JF, Perelas A, McDonald C, Asosingh K, Hasday JD, Olman MA. TRPV4 Protects the Lung from Bacterial Pneumonia via MAPK Molecular Pathway Switching. THE JOURNAL OF IMMUNOLOGY 2020; 204:1310-1321. [PMID: 31969384 DOI: 10.4049/jimmunol.1901033] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022]
Abstract
Mechanical cell-matrix interactions can drive the innate immune responses to infection; however, the molecular underpinnings of these responses remain elusive. This study was undertaken to understand the molecular mechanism by which the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), alters the in vivo response to lung infection. For the first time, to our knowledge, we show that TRPV4 protects the lung from injury upon intratracheal Pseudomonas aeruginosa in mice. TRPV4 functions to enhance macrophage bacterial clearance and downregulate proinflammatory cytokine secretion. TRPV4 mediates these effects through a novel mechanism of molecular switching of LPS signaling from predominant activation of the MAPK, JNK, to that of p38. This is accomplished through the activation of the master regulator of inflammation, dual-specificity phosphatase 1. Further, TRPV4's modulation of the LPS signal is mechanosensitive in that both upstream activation of p38 and its downstream biological consequences depend on pathophysiological range extracellular matrix stiffness. We further show the importance of TRPV4 on LPS-induced activation of macrophages from healthy human controls. These data are the first, to our knowledge, to demonstrate new roles for macrophage TRPV4 in regulating innate immunity in a mechanosensitive manner through the modulation of dual-specificity phosphatase 1 expression to mediate MAPK activation switching.
Collapse
Affiliation(s)
- Rachel G Scheraga
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Susamma Abraham
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Lisa M Grove
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Brian D Southern
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - James F Crish
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | | | - Christine McDonald
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jeffrey D Hasday
- Department of Pulmonary and Critical Care, University of Maryland, Baltimore, MD 21201
| | - Mitchell A Olman
- Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195; .,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| |
Collapse
|
44
|
Abstract
Acute respiratory distress syndrome (ARDS) was first described in 1967 by Ashbaugh and colleagues. Acute respiratory distress syndrome is a clinical syndrome, not a disease, and has no ideal definition or gold standard diagnostic test. There are multiple causes and different pathways of pathogenesis as well as various histological findings. Given these variations, there are many clinical entities that can get confused with ARDS. These entities are discussed in this article as "Mimics of ARDS." It imperative to correctly identify ARDS and distinguish it from other diseases to implement correct management strategy.
Collapse
|
45
|
Li R, Wang L. Baicalin inhibits influenza virus A replication via activation of type I IFN signaling by reducing miR‑146a. Mol Med Rep 2019; 20:5041-5049. [PMID: 31638222 PMCID: PMC6854550 DOI: 10.3892/mmr.2019.10743] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/26/2019] [Indexed: 12/26/2022] Open
Abstract
Influenza virus A (IVA) is one of the predominant causative agents of the seasonal flu and has become an important cause of morbidity worldwide. Great efforts have been paid to develop vaccines against IVA. However, due to antigenic drift in influenza virus A and rapid emergence of drug-resistant strains, current available vaccines or anti-IVA chemotherapeutics are consistently inefficient. Hence, various more broadly effective drugs have become important for the prevention and treatment of IVA. Of these drugs, baicalin, a flavonoid isolated from Radix Scutellaria, is a promising example. However, little is known in regards to its pharmacological mechanism. Here, it was demonstrated that baicalin inhibits the H1N1 and H3N2 viruses in A549 cells. Subsequently, it was found that miR-146a was markedly downregulated by treatment of baicalin. Additionally, further experiments revealed that miR-146a was able to promote the replication of H1N1 and H3N2 by targeting TNF receptor-associated factor 6 (TRAF6), a pivotal adaptor in the interferon (IFN) production signaling pathway, to downregulate type I IFN production, and enrichment of miR-146a eliminated the anti-IVA effects of baicalin on the H1N1 and H3N2 viruses. Additionally, in vivo experiments demonstrated that baicalin could protect mice during H1N1 infection. Taken together, our findings firstly illustrated the anti-IVA molecular mechanism of baicalin and provide new evidence for targeting miRNAs to prevent and treat viral infection, such as the H1N1 and H3N2 viruses.
Collapse
Affiliation(s)
- Rui Li
- Department of Traditional Chinese Medicine, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, P.R. China
| | - Lianxin Wang
- Institute of Basic Research of Traditional Chinese Medicine in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
46
|
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J 2019; 33:13294-13309. [PMID: 31530014 DOI: 10.1096/fj.201901047rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is associated with reduced lung compliance and hypoxemia. Curcumin exhibits potent anti-inflammatory properties but has poor solubility and rapid plasma clearance. To overcome these physiochemical limitations and uncover the full therapeutic potential of curcumin in lung inflammation, in this study we utilized a novel water-soluble curcumin formulation (CDC) and delivered it directly into the lungs of C57BL/6 mice inoculated with a lethal dose of Klebsiella pneumoniae (KP). Administration of CDC led to a significant reduction in mortality, in bacterial presence within blood and lungs, as well as in lung injury, inflammation, and oxidative stress. The expression of Klebsiella hemolysin gene; TNF-α; IFN-β; nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; hypoxia-inducible factor 1/2α; and NF-κB were also decreased following CDC treatment, suggesting modulation of the inflammasome complex and hypoxia signaling pathways as an underlying mechanism by which CDC reduces the severity of pneumonia. On a cellular level, CDC led to diminished cell death, improved viability, and protection of human lung epithelial cells in vitro. Overall, our studies demonstrate that CDC administration improves cell survival and reduces injury, inflammation, and mortality in a murine model of lethal gram-negative pneumonia. CDC, therefore, has promising anti-inflammatory potential in pneumonia and likely other inflammatory lung diseases, demonstrating the importance of optimizing the physicochemical properties of active natural products to optimize their clinical application.-Zhang, B., Swamy, S., Balijepalli, S., Panicker, S., Mooliyil, J., Sherman, M. A., Parkkinen, J., Raghavendran, K., Suresh, M. V. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sreehari Panicker
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Sherman
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Jaakko Parkkinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
47
|
Lesur O, Chagnon F, Lebel R, Lepage M. In Vivo Endomicroscopy of Lung Injury and Repair in ARDS: Potential Added Value to Current Imaging. J Clin Med 2019; 8:jcm8081197. [PMID: 31405200 PMCID: PMC6723156 DOI: 10.3390/jcm8081197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Standard clinical imaging of the acute respiratory distress syndrome (ARDS) lung lacks resolution and offers limited possibilities in the exploration of the structure-function relationship, and therefore cannot provide an early and clear discrimination of patients with unexpected diagnosis and unrepair profile. The current gold standard is open lung biopsy (OLB). However, despite being able to reveal precise information about the tissue collected, OLB cannot provide real-time information on treatment response and is accompanied with a complication risk rate up to 25%, making longitudinal monitoring a dangerous endeavor. Intravital probe-based confocal laser endomicroscopy (pCLE) is a developing and innovative high-resolution imaging technology. pCLE offers the possibility to leverage multiple and specific imaging probes to enable multiplex screening of several proteases and pathogenic microorganisms, simultaneously and longitudinally, in the lung. This bedside method will ultimately enable physicians to rapidly, noninvasively, and accurately diagnose degrading lung and/or fibrosis without the need of OLBs. OBJECTIVES AND METHODS To extend the information provided by standard imaging of the ARDS lung with a bedside, high-resolution, miniaturized pCLE through the detailed molecular imaging of a carefully selected region-of-interest (ROI). To validate and quantify real-time imaging to validate pCLE against OLB. RESULTS Developments in lung pCLE using fluorescent affinity- or activity-based probes at both preclinical and clinical (first-in-man) stages are ongoing-the results are promising, revealing correlations with OLBs in problematic ARDS. CONCLUSION It can be envisaged that safe, high-resolution, noninvasive pCLE with activatable fluorescence probes will provide a "virtual optical biopsy" and will provide decisive information in selected ARDS patients at the bedside.
Collapse
Affiliation(s)
- Olivier Lesur
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Frédéric Chagnon
- Intensive Care and Pneumology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center (CIMS), Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Nuclear Medicine and Radiobiology Departments, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
48
|
Sun Y, Jiang J, Tien P, Liu W, Li J. IFN-λ: A new spotlight in innate immunity against influenza virus infection. Protein Cell 2019; 9:832-837. [PMID: 29332267 PMCID: PMC6160391 DOI: 10.1007/s13238-017-0503-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Yeping Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingwen Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Po Tien
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
49
|
Zhang RH, Zhang HL, Li PY, Gao JP, Luo Q, Liang T, Wang XJ, Hao YQ, Xu T, Li CH, Wang CL, Zhang HC, Xu MJ, Tian SF. Autophagy is involved in the acute lung injury induced by H9N2 influenza virus. Int Immunopharmacol 2019; 74:105737. [PMID: 31288152 DOI: 10.1016/j.intimp.2019.105737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
Influenza A virus usually leads to economic loss to breeding farms and pose a serious threat to human health. Virus infecting tissues directly and influenza virus-induced excessive production of inflammatory factors play the key role in pathogenesis of the disease, but the mechanism is not well clarified. Here, the role of autophagy was investigated in H9N2 influenza virus-triggered inflammation. The results showed that autophagy was induced by H9N2 virus in A549 cells and in mice. Inhibiting autophagy by an autophagy inhibitor (3-methyladenine, 3-MA) or knockdown of Atg5(autophagy-related gene) by Atg5 siRNA significantly suppressed H9N2 virus replication, H9N2 virus-triggered inflammatory cytokines and chemokines, including IL-1β, TNF-α, IL-8, and CCL5 in vitro and in vivo, and suppressed H9N2 virus-triggered acute lung injury as indicated as accumulative mortality of mice, inflammatory cellular infiltrate and interstitial edema, thickening of the alveolar walls in mice lung tissues, increased inflammatory cytokines and chemokines, increased W/D ratio in mice. Moreover, autophagy mediated inflammatory responses through Akt-mTOR, NF-κB and MAPKs signaling pathways. Our data showed that autophagy was essential in H9N2 influenza virus-triggered inflammatory responses, and autophagy could be target to treat influenza virus-caused lung inflammation.
Collapse
Affiliation(s)
- Rui-Hua Zhang
- Department of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China; Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Hong-Liang Zhang
- Department of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Pei-Yao Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Jing-Ping Gao
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Qiang Luo
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Ting Liang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Xue-Jing Wang
- The Animal Husbandry and Veterinary Institute of Heibei, Baoding 071001, PR China
| | - Yong-Qing Hao
- Department of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, PR China.
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China.
| | - Chun-Hong Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Cun-Lian Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Hui-Chen Zhang
- He He Animal Husbandry Development Co. Ltd, Zhenlai 137300, PR China
| | - Ming-Ju Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| | - Shu-Fei Tian
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, HeBei North University, Zhangjiakou 075131, PR China
| |
Collapse
|
50
|
Pfortmueller CA, Barbani MT, Schefold JC, Hage E, Heim A, Zimmerli S. Severe acute respiratory distress syndrome (ARDS) induced by human adenovirus B21: Report on 2 cases and literature review. J Crit Care 2019; 51:99-104. [PMID: 30798099 PMCID: PMC7172394 DOI: 10.1016/j.jcrc.2019.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/29/2018] [Accepted: 02/12/2019] [Indexed: 01/01/2023]
Abstract
Severe pneumonia and ARDS caused by human adenovirus B21 infections (HAdV-B21) is a rare, but a devastating disease with rapid progression to multiorgan failure and death. However, only a few cases were reported so far. Infections appear associated with increased disease severity and higher mortality in infected critically ill patients. Possible factors contributing to infection are underlying psychiatric disease resulting in institutionalization of respective patients, and polytoxicomania. Controlled data on the therapy of severe adenovirus infections are lacking and remains experimental. In conclusion, data on HAdV-B21 infections causing severe pneumonia or ARDS are scarce. Controlled clinical trials on the therapy of adenovirus pneumonia are non existent and thus there is no established therapy so far. ICU physicians should be aware of this potentially devastating disease and further studies are needed.
Collapse
MESH Headings
- Adenovirus Infections, Human/complications
- Adenovirus Infections, Human/diagnosis
- Adenovirus Infections, Human/diagnostic imaging
- Adenovirus Infections, Human/virology
- Adenoviruses, Human/genetics
- Adenoviruses, Human/isolation & purification
- Adult
- Diagnosis, Differential
- Female
- Humans
- Male
- Middle Aged
- Pneumonia, Viral/complications
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/diagnostic imaging
- Pneumonia, Viral/virology
- Respiratory Distress Syndrome/complications
- Respiratory Distress Syndrome/diagnosis
- Respiratory Distress Syndrome/diagnostic imaging
- Respiratory Distress Syndrome/virology
Collapse
Affiliation(s)
- Carmen Andrea Pfortmueller
- Department of Intensive Care, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland.
| | - Maria Teresa Barbani
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, 3010 Bern, Switzerland.
| | - Joerg Christian Schefold
- Department of Intensive Care, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland.
| | - Elias Hage
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Albert Heim
- Institute of Virology, Hannover Medical School, Hannover, Germany.
| | - Stefan Zimmerli
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, 3010 Bern, Switzerland; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010 Bern, Switzerland.
| |
Collapse
|