1
|
Cimini E, Tartaglia E, Messina F, Coppola A, Mazzotta V, Tempestilli M, Matusali G, Notari S, Mondi A, Prota G, Oliva A, Fontana C, Girardi E, Maggi F, Antinori A. Vδ2 T-cells response in people with Mpox infection: a three-month longitudinal assessment. Emerg Microbes Infect 2025; 14:2455585. [PMID: 39817429 PMCID: PMC11792154 DOI: 10.1080/22221751.2025.2455585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
The first evidence that Orthopoxvirus induced the expansion in vivo and the recall of effector innate Vδ2 T-cells was described in a macaque model. Although, an engagement of αβ T-cells specific response in patients infected with human monkeypox (Mpox) was demonstrated, little is known about the role of γδ T-cells during Mpox infection. IFN-γ-producing γδ T-cells in the resistance to poxviruses may a key role in inducing a protective type 1 memory immunity. We analyzed the kinetics of Vδ2 T-cell response from the acute phase up to three months after Mpox infection. Fourteen MSM subjects (5 PWH, 35.7%) were enrolled in a longitudinal study from May to July 2022. Blood samples were collected in the early phase of infection (T1, T2) and at 3 months (T3M) post-symptom onset. Vδ2 T-cell profiles (CD45RA/CCR7), activation/exhaustion markers (CD38/HLA-DR/CD57/PD-1/TIM-3), cytokine production (IFN-γ/TNF-α) and CD107a expression were assessed by multiparametric flow cytometry. Ten healthy donors (HD) were used as a control group. At T1, Vδ2 T-cell frequency of patients decreased, and effector memory Vδ2 T-cells increased with respect to HD. Activation/exhaustion markers were higher than HD. Vδ2 functionality decreased at T1 related to HD, and it was associated with CD38 and HLA-DR higher expression as well as TIM-3. Vδ2 T-cells restored their profile at T3M. The presence of effector/activated Vδ2 T-cells in the early stages of Mpox infection and their capability to activate quickly, producing pro-inflammatory cytokines, may be useful to enhance the early adaptive response to human Mpox, maintaining a protective memory/effector T-cell response.
Collapse
Affiliation(s)
- Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Eleonora Tartaglia
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Francesco Messina
- Microbiology Laboratory and Biobank, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Andrea Coppola
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Valentina Mazzotta
- HIV/AIDS Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Massimo Tempestilli
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Stefania Notari
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Annalisa Mondi
- HIV/AIDS Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Gianluca Prota
- Microbiology Laboratory and Biobank, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Oliva
- HIV/AIDS Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Carla Fontana
- Microbiology Laboratory and Biobank, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| | - Andrea Antinori
- HIV/AIDS Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, Rome, Italy
| |
Collapse
|
2
|
Wiecken M, Machiraju D, Chakraborty S, Mayr EM, Lenoir B, Eurich R, Richter J, Pfarr N, Halama N, Hassel JC. The immune checkpoint LAG-3 is expressed by melanoma cells and correlates with clinical progression of the melanoma. Oncoimmunology 2025; 14:2430066. [PMID: 39716918 DOI: 10.1080/2162402x.2024.2430066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024] Open
Abstract
Immune checkpoint blockers have substantially improved prognosis of melanoma patients, nevertheless, resistance remains a significant problem. Here, intrinsic and extrinsic factors in the tumor microenvironment are discussed, including the expression of alternative immune checkpoints such as lymphocyte activation gene 3 (LAG-3) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3). While most studies focus on immune cell expression of these proteins, we investigated their melanoma cell intrinsic expression by immunohistochemistry in melanoma metastases of 60 patients treated with anti-programmed cell death protein 1 (PD-1) and/or anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) therapy, and correlated it with the expression of potential ligands, RNA sequencing data and clinical outcome. LAG-3 and TIM-3 were commonly expressed in melanoma cells. In the stage IV cohort, expression of LAG-3 was associated with M1 stage (p < 0.001) and previous exposure to immune checkpoint inhibitors (p = 0.029). Moreover, in the anti-PD-1 monotherapy treatment group patients with high LAG-3 expression by tumor cells tended to have a shorter progression-free survival (p = 0.088), whereas high expression of TIM-3 was associated with a significantly longer overall survival (p = 0.007). In conclusion, we provide a systematic analysis of melanoma cell intrinsic LAG-3 and TIM-3 expression, highlighting potential implications of their expression on patient survival.
Collapse
Affiliation(s)
- Melanie Wiecken
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Devayani Machiraju
- Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Shounak Chakraborty
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Eva-Maria Mayr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Bénédicte Lenoir
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
| | - Rosa Eurich
- German Cancer Research Center (DKFZ) Heidelberg, Clinical Cooperation Unit "Applied Tumor Immunity"(TME unit), Heidelberg, Germany
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
| | - Jasmin Richter
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Niels Halama
- German Cancer Research Center (DKFZ) Heidelberg, Division of Translational Immunotherapy, Heidelberg, Germany
- Department of Medical Oncology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica C Hassel
- Heidelberg University, Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Lopez GL, Adda-Bouchard Y, Laulhé X, Chamberlain G, Bourguignon L, Charpentier T, Cyr DG, Lamarre A. Short-term oral exposure to nanoplastics does not significantly impact the antiviral immune response of the mouse. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137316. [PMID: 39854993 DOI: 10.1016/j.jhazmat.2025.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The increasing prevalence of nanoplastics (NPs) in the environment, particularly polystyrene (PS) nanoparticles, raises concerns regarding their potential impact on human and animal health. Given their small size, NPs can cross biological barriers and accumulate in organs, including those critical for immune functions. This study investigates the effects of short-term oral exposure to 100 and 500 nm PS NPs on the adaptive immune responses during viral infections in vivo, using vesicular stomatitis virus (VSV) and lymphocytic choriomeningitis virus (LCMV) as models. Male and female C57BL/6 mice were orally exposed to PS NP for a period of 28 days, during which they were infected with either VSV or LCMV to study the humoral and cellular responses, respectively. The humoral responses were assessed by measuring total and VSV-specific antibody levels, and splenic immune populations. T cell phenotypes, activation, exhaustion and functionality towards LCMV epitopes were studied as readouts of the cellular responses. Our results demonstrate that short-term NP exposure does not significantly affect the generation or neutralizing capacity of antibodies against VSV, nor the cellular responses directed against LCMV. These findings indicate that, under these conditions, PS NP exposure does not significantly compromise the adaptive immune responses during viral infections, underscoring the value of in vivo models.
Collapse
Affiliation(s)
- Guillaume L Lopez
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Yasmine Adda-Bouchard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Xavier Laulhé
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Gabriel Chamberlain
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Léa Bourguignon
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Tania Charpentier
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Daniel G Cyr
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada.
| |
Collapse
|
4
|
Lin YZ, Liu CH, Wu WR, Liao TY, Lee CC, Li HW, Chung FC, Shen YC, Zhuo GY, Liu LC, Cheng WC, Wang SC. Memory-promoting function of miR-379-5p attenuates CD8 + T cell exhaustion by targeting immune checkpoints. J Immunother Cancer 2025; 13:e010363. [PMID: 40221151 PMCID: PMC11997822 DOI: 10.1136/jitc-2024-010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/16/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are epigenetic regulators of T cell maturation and exhaustion. However, the mechanisms by which miRNAs influence T cell function in tumor environments remain unclear. This study focuses on miR-379-5p, which counteracts T cell exhaustion and enhances antitumor responses. METHODS Native CD8+ T cells were isolated from the blood of healthy donors and subjected to chronic stimulation to induce exhaustion. RNA sequencing and miRNA sequencing were performed to identify differentially expressed miRNAs. These miRNAs underwent bioinformatics analyses, including DESeq enrichment, immune cell infiltration assessment, and patient prognostic outcomes in The Cancer Genome Atlas data sets to assess their potential involvement in T cell exhaustion and antitumor immunity. The biological functions of miRNA on T cell differentiation, cytotoxic killing, and immune checkpoint regulation were investigated using in vitro assays, OT-I B16F10-OVA models, and patient-derived tumor organoids. RESULTS MiR-379-5p is downregulated in exhausted T cells and negatively associated with exhausted tumor-infiltrating lymphocytes in advanced tumors. It correlates positively with better survival outcomes in breast cancer, cervical cancer and melanoma. In CD8+ T cells, miR-379-5p reduces the expression of immune checkpoint proteins T cell immunoglobulin and mucin-domain containing-3 (TIM3) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) by targeting their 3' untranslated region. Overexpression of miR-379-5p in CD8+ T cell promotes differentiation into memory-like T effector cells and enhances cytotoxic killing of cancer cells. The transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) with increased expression in exhausted T cells and negatively regulates miR-379, restoring immune checkpoint expression and suppressing cancer-killing ability. In contrast, OT-I T cells expressing ectopic miR-379-5p show increased cytotoxicity against B16F10-OVA tumors in mice. Autologous T cells isolated from patients with breast cancer transduced with miR-379-5p significantly improve killing of tumor organoids derived from the same patients. CONCLUSIONS MiR-379-5p acts as an epigenetic tumor suppressor by enhancing CD8+ T cell effector functions and suppressing T cell exhaustion. MiR-379-5p could represent a novel marker and strategy for cancer immunotherapy, offering promising avenues for enhancing antitumor immune responses.
Collapse
Affiliation(s)
- You-Zhe Lin
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Hsin Liu
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Wan-Rong Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Ting-Yi Liao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chuan-Chun Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hong-Wei Li
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
| | - Feng-Chi Chung
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Yi-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Liang-Chih Liu
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Chung Cheng
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
| | - Shao-Chun Wang
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Cancer Biology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
5
|
Moës B, Krueger J, Kazanova A, Liu C, Gao Y, Ponnoor NA, Castoun-Puckett L, Lazo ACO, Huong L, Cabald AL, Tu TH, Rudd CE. GSK-3 regulates CD4-CD8 cooperation needed to generate super-armed CD8+ cytolytic T cells against tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642085. [PMID: 40161618 PMCID: PMC11952298 DOI: 10.1101/2025.03.08.642085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
While immune checkpoint blockade (ICB) has revolutionized cancer treatment, the key T-cell signaling pathways responsible for its potency remain unclear. GSK-3 is an inhibitory kinase that is most active in resting T-cells. In this study, we demonstrate that GSK-3 facilitates PD-1 blockade, an effect seen by modulating CD4 T-cell help for CD8+ CTL responses against ICB resistant tumors. We show that GSK-3 controls metabolic reprogramming towards glycolysis and synergizes with PD-1 to induce a transcriptional program that reduces suppressive CD4+ Treg numbers while generating super-armed effector-memory CD8+ CTLs that express an unprecedented 7/9 granzymes from the genome. Crucially, we found that GSK-3 cooperates with PD-1 blockade to determine the dependency of CD8+ CTLs on help from CD4+ T-cells. Our study unravels a novel cooperative PD-1 blockade-dependent signaling pathway that potentiates CTL responses against tumors, offering a new strategy to overcome immunotherapy resistance by modulating CD4+ helper and CD8+ cytotoxic functions. Significance This study demonstrates for the first time that GSK-3 controls the crosstalk between CD4+ and CD8+ T cells, synergizing with anti-PD-1 therapy to overcome resistance to checkpoint blockade and to generate super-armed CD8+ effector cells in cancer immunotherapy. This newly uncovered GSK-3-dependent CD4-CD8 T-cell crosstalk mechanism presents a new approach to enhance anti-PD-1 immunotherapy.
Collapse
|
6
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Yang J, Yamashita-Kanemaru Y, Morris BI, Contursi A, Trajkovski D, Xu J, Patrascan I, Benson J, Evans AC, Conti AG, Al-Deka A, Dahmani L, Avdic-Belltheus A, Zhang B, Okkenhaug H, Whiteside SK, Imianowski CJ, Wesolowski AJ, Webb LV, Puccio S, Tacconelli S, Bruno A, Di Berardino S, De Michele A, Welch HCE, Yu IS, Lin SW, Mitra S, Lugli E, van der Weyden L, Okkenhaug K, Saeb-Parsy K, Patrignani P, Adams DJ, Roychoudhuri R. Aspirin prevents metastasis by limiting platelet TXA 2 suppression of T cell immunity. Nature 2025; 640:1052-1061. [PMID: 40044852 DOI: 10.1038/s41586-025-08626-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 01/08/2025] [Indexed: 04/13/2025]
Abstract
Metastasis is the spread of cancer cells from primary tumours to distant organs and is the cause of 90% of cancer deaths globally1,2. Metastasizing cancer cells are uniquely vulnerable to immune attack, as they are initially deprived of the immunosuppressive microenvironment found within established tumours3. There is interest in therapeutically exploiting this immune vulnerability to prevent recurrence in patients with early cancer at risk of metastasis. Here we show that inhibitors of cyclooxygenase 1 (COX-1), including aspirin, enhance immunity to cancer metastasis by releasing T cells from suppression by platelet-derived thromboxane A2 (TXA2). TXA2 acts on T cells to trigger an immunosuppressive pathway that is dependent on the guanine exchange factor ARHGEF1, suppressing T cell receptor-driven kinase signalling, proliferation and effector functions. T cell-specific conditional deletion of Arhgef1 in mice increases T cell activation at the metastatic site, provoking immune-mediated rejection of lung and liver metastases. Consequently, restricting the availability of TXA2 using aspirin, selective COX-1 inhibitors or platelet-specific deletion of COX-1 reduces the rate of metastasis in a manner that is dependent on T cell-intrinsic expression of ARHGEF1 and signalling by TXA2 in vivo. These findings reveal a novel immunosuppressive pathway that limits T cell immunity to cancer metastasis, providing mechanistic insights into the anti-metastatic activity of aspirin and paving the way for more effective anti-metastatic immunotherapies.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | | | | | - Annalisa Contursi
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Daniel Trajkovski
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Jingru Xu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Jayme Benson
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Alberto G Conti
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Aws Al-Deka
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Layla Dahmani
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Baojie Zhang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Stefania Tacconelli
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Annalisa Bruno
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- A. B. Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Sara Di Berardino
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessandra De Michele
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Wha Lin
- Department of Clinical Laboratory Science and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Suman Mitra
- Inserm UMR1277, CNRS UMR9020-CANTHER, Université de Lille, Lille University Hospital, Lille, France
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Paola Patrignani
- Systems Pharmacology and Translational Therapeutics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | |
Collapse
|
8
|
Nair R, Somasundaram V, Kuriakose A, Krishn SR, Raben D, Salazar R, Nair P. Deciphering T-cell exhaustion in the tumor microenvironment: paving the way for innovative solid tumor therapies. Front Immunol 2025; 16:1548234. [PMID: 40236693 PMCID: PMC11996672 DOI: 10.3389/fimmu.2025.1548234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/17/2025] Open
Abstract
In solid tumors, the tumor microenvironment (TME) is a complex mix of tumor, immune, stromal cells, fibroblasts, and the extracellular matrix. Cytotoxic T lymphocytes (CTLs) constitute a fraction of immune cells that may infiltrate into the TME. The primary function of these T-cells is to detect and eliminate tumor cells. However, due to the immunosuppressive factors present in the TME primarily mediated by Myeloid-Derived Suppressor Cells (MDSCs), Tumor associated macrophages (TAMs), Cancer Associated Fibroblasts (CAFs) as well as the tumor cells themselves, T-cells fail to differentiate into effector cells or become dysfunctional and are unable to eliminate the tumor. In addition, chronic antigen stimulation within the TME also leads to a phenomenon, first identified in chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, where the T-cells become exhausted and lose their effector functions. Exhausted T-cells (Tex) are characterized by the presence of remarkably conserved inhibitory receptors, transcription and signaling factors and the downregulation of key effector molecules. Tex cells have been identified in various malignancies, including melanoma, colorectal and hepatocellular cancers. Recent studies have indicated novel strategies to reverse T-cell exhaustion. These include checkpoint inhibitor blockade targeting programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin-domain containing-3 (Tim-3), cytotoxic T-lymphocyte associated protein 4 (CTLA-4), or combinations of different immune checkpoint therapies (ICTs) or combination of ICTs with cytokine co-stimulation. In this review, we discuss aspects of T-cell dysfunction within the TME with a focus on T-cell exhaustion. We believe that gaining insight into the mechanisms of T-cell exhaustion within the TME of human solid tumors will pave the way for developing therapeutic strategies to target and potentially re-invigorate exhausted T-cells in cancer.
Collapse
Affiliation(s)
- Reshmi Nair
- Syngene International Limited, Bengaluru, India
| | | | | | | | - David Raben
- Bicara Therapeutics, Boston, MA, United States
| | | | - Pradip Nair
- Syngene International Limited, Bengaluru, India
| |
Collapse
|
9
|
Balçık OY, Yılmaz F. FOXP3/TLS; a prognostic marker in patients with bladder carcinoma without muscle invasion. Urol Oncol 2025; 43:268.e9-268.e26. [PMID: 39668105 DOI: 10.1016/j.urolonc.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE Bladder carcinoma (BC) is a common type of cancer. Approximately 20% of BC patients have non-muscle invasive bladder cancer (NMIBC). Despite adequate BCG treatment, recurrence occurs in approximately 40% of the patients. There is no adequate prognostic marker for recurrence in a group of patients. Forkhead box P3 (FOXP3) is a regulatory T cell marker that sometimes exhibits anti-tumoral effects and can be used as a tumor marker. T-cell immunoglobulin and mucin domain 3 (TIM-3) is an immune checkpoint inhibitor of T cells. Tertiary lymphoid structures (TLS) increase malignancy and inflammation in non-lymphoid organs. Therefore, we aimed to evaluate the prognostic value of FOXP3, TIM-3, and TLS in patients with NMIBC. METHODS Patients with pathologically confirmed NMIBC were included in this study. Stromal and intraepithelial cells were evaluated separately using immunohistochemistry, and FOXP3, TIM-3, TLS, FOXP3/TLS, and TIM-3/TLS were calculated and noted. The cutoff value was determined using ROC analysis. Recurrence-free survival (RFS) and overall survival (OS) were evaluated using univariate and multivariate Cox proportional hazard analyses. RESULTS The study included ninety-six patients. FOXP3/TLS high group had a better RFS than FOXP3/TLS low group (P = 0.001; HR, 0.079; 95% CI, 0.019-0.337). This was also significant in the multivariate analysis (P = 0.018; HR, 0.125; 95% CI, 0.022-0.705). In the group receiving BCG, FOXP3/TLS, FOXP3-TLS, TIM-3-TLS and TIM-3/TLS elevation were lower in patients with relapse than in patients without relapse and were statistically significant. Combined TIM-3 and FOXP3 elevation was found to be good prognostic regardless of whether it was found in intraepithelial, stromal or TLS. CONCLUSION FOXP3/TLS elevation is a good prognostic and predictive marker in all non-muscle invasive bladder cancer cases and in the subgroup receiving BCG. Elevation of FOXP3-TLS, TIM-3-TLS, and TIM-3/TLS is associated with longer RFS in patients receiving BCG. Combined TIM-3 and FOXP3 elevation is indicative of a low recurrence rate in NMIBC.
Collapse
Affiliation(s)
| | - Fatih Yılmaz
- Mardin Training and Research Hospital, Pathology Laboratory, Mardin, Turkey.
| |
Collapse
|
10
|
Liu XH, Wang GR, Zhong NN, Wang WY, Liu B, Li Z, Bu LL. Multi-omics in immunotherapy research for HNSCC: present situation and future perspectives. NPJ Precis Oncol 2025; 9:93. [PMID: 40158059 PMCID: PMC11954913 DOI: 10.1038/s41698-025-00886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, significantly impacting patient survival and quality of life. The recent emergence of immunotherapy has provided new hope for HNSCC patients, improving survival rates; however, only 15%-20% of patients benefit, and side effects are inevitable. With advancements in omics technologies and the growing prevalence of bioinformatics research, the immune microenvironment of HNSCC has become increasingly well understood, and the molecular mechanisms underlying immunotherapy responses continue to be elucidated. In this review, we summarize commonly used omics techniques and their applications in the research of HNSCC immunotherapy, including predicting and enhancing efficacy, formulating personalized treatment plans, establishing robust preclinical research models, and identifying new immunotherapy targets. Finally, we explore future perspective in terms of sequencing samples, data integration analysis, emerging technologies, clinicopathological features, and interdisciplinary approaches.
Collapse
Affiliation(s)
- Xuan-Hao Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Wei-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Zheng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, 169, Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
- Department of Oral & Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
11
|
Yu J, Yu J, Chen Y, Yang Y, Yi P. PD-1 inhibitors improve the efficacy of transcatheter arterial chemoembolization combined with apatinib in advanced hepatocellular carcinoma: a meta-analysis and trial sequential analysis. BMC Cancer 2025; 25:564. [PMID: 40155828 PMCID: PMC11951536 DOI: 10.1186/s12885-025-13932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The efficacy of adding programmed death-1 (PD-1) inhibitors to transcatheter arterial chemoembolization (TACE) combined with apatinib for advanced hepatocellular carcinoma (HCC) remains controversial. This study aimed to evaluate the efficacy of incorporating PD-1 inhibitors into TACE combined with apatinib. METHODS Relevant literature on TACE combined with apatinib plus PD-1 inhibitors for advanced HCC was searched in PubMed, Cochrane Library, Embase, and Web of Science databases. Trial sequential analysis (TSA) was conducted to minimize randomization errors and assess whether the meta-analysis provided conclusive evidence. RESULTS Six studies involving 1,452 patients were included. Compared with the TACE combined with apatinib treatment group (T-A), TACE combined with apatinib plus PD-1 inhibitors (T-A-P) significantly prolonged overall survival (OS) (Hazard Ratio [HR] 2.22, 95% Confidence Interval [CI] 1.93-2.56; p < 0.001) and progression-free survival (PFS) (HR 2.36, 95% CI 2.01-2.77; p < 0.001), while also improving the objective response rate (ORR) (risk ratios [RR] 1.60, 95% CI 1.20-2.14; p < 0.001) and disease control rate (DCR) (RR 1.06, 95% CI 1.00-1.12; p < 0.001). TSA results indicated that additional studies were required to confirm the significance of DCR. Prognostic analysis identified treatment regimen and extrahepatic metastasis as common independent risk factors for OS and PFS. The incidence of adverse events in the T-A-P treatment group was comparable to that in the T-A treatment group. CONCLUSION Adding PD-1 inhibitors to TACE combined with apatinib significantly prolonged OS and PFS, particularly in patients without extrahepatic metastases. It also improved ORR and DCR in patients with HCC.
Collapse
Affiliation(s)
- Jiahui Yu
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Jinxin Yu
- North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Yimiao Chen
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China
| | - Yuting Yang
- Department of Educational Technology, Institute of Education, China West Normal University, Nanchong, Sichuan, 637000, People's Republic of China
- Nanchong Gaoping District Wangcheng Primary School, Nanchong, People's Republic of China
| | - Pengsheng Yi
- Department of Hepato-Biliary-Pancrease II, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People's Republic of China.
| |
Collapse
|
12
|
Ren X, Guo A, Geng J, Chen Y, Wang X, Zhou L, Shi L. Pan-cancer analysis of co-inhibitory molecules revealing their potential prognostic and clinical values in immunotherapy. Front Immunol 2025; 16:1544104. [PMID: 40196117 PMCID: PMC11973099 DOI: 10.3389/fimmu.2025.1544104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The widespread use of immune checkpoint inhibitors (anti-CTLA4 or PD-1) has opened a new chapter in tumor immunotherapy by providing long-term remission for patients. Unfortunately, however, these agents are not universally available and only a minority of patients respond to them. Therefore, there is an urgent need to develop novel therapeutic strategies targeting other co-inhibitory molecules. However, comprehensive information on the expression and prognostic value of co-inhibitory molecules, including co-inhibitory receptors and their ligands, in different cancers is not yet available. Methods We investigated the expression, correlation, and prognostic value of co-inhibitory molecules in different cancer types based on TCGA, UCSC Xena, TIMER, CellMiner datasets. We also examined the associations between the expression of these molecules and the extent of immune cell infiltration. Besides, we conducted a more in-depth study of VISTA. Result The results of differential expression analysis, correlation analysis, and drug sensitivity analysis suggest that CTLA4, PD-1, TIGIT, LAG3, TIM3, NRP1, VISTA, CD80, CD86, PD-L1, PD-L2, PVR, PVRL2, FGL1, LGALS9, HMGB1, SEMA4A, and VEGFA are associated with tumor prognosis and immune cell infiltration. Therefore, we believe that they are hopefully to serve as prognostic biomarkers for certain cancers. In addition, our analysis indicates that VISTA plays a complex role and its expression is related to TMB, MSI, cancer cell stemness, DNA/RNA methylation, and drug sensitivity. Conclusions These co-inhibitory molecules have the potential to serve as prognostic biomarkers and therapeutic targets for a broad spectrum of cancers, given their strong associations with key clinical metrics. Furthermore, the analysis results indicate that VISTA may represent a promising target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Anjie Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiahui Geng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuling Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lian Zhou
- Department of Head&Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Chen M, Zhou Y, Bao K, Chen S, Song G, Wang S. Multispecific Antibodies Targeting PD-1/PD-L1 in Cancer. BioDrugs 2025:10.1007/s40259-025-00712-6. [PMID: 40106158 DOI: 10.1007/s40259-025-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The development of immune checkpoint inhibitors has revolutionized the treatment of patients with cancer. Targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1(PD-L1) interaction using monoclonal antibodies has emerged as a prominent focus in tumor therapy with rapid advancements. However, the efficacy of anti-PD-1/PD-L1 treatment is hindered by primary or acquired resistance, limiting the effectiveness of single-drug approaches. Moreover, combining PD-1/PD-L1 with other immune drugs, targeted therapies, or chemotherapy significantly enhances response rates while exacerbating adverse reactions. Multispecific antibodies, capable of binding to different epitopes, offer improved antitumor efficacy while reducing drug-related side effects, serving as a promising therapeutic approach in cancer treatment. Several bispecific antibodies (bsAbs) targeting PD-1/PD-L1 have received regulatory approval, and many more are currently in clinical development. Additionally, tri-specific antibodies (TsAbs) and tetra-specific antibodies (TetraMabs) are under development. This review comprehensively explores the fundamental structure, preclinical principles, clinical trial progress, and challenges associated with bsAbs targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Yuli Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaicheng Bao
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Siyu Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Guoqing Song
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
14
|
Xu Q, Li L, Zhu R. T Cell Exhaustion in Allergic Diseases and Allergen Immunotherapy: A Novel Biomarker? Curr Allergy Asthma Rep 2025; 25:18. [PMID: 40091122 DOI: 10.1007/s11882-025-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE OF REVIEW This review explores the emerging role of T cell exhaustion in allergic diseases and allergen immunotherapy (AIT). It aims to synthesize current knowledge on the mechanisms of T cell exhaustion, evaluate its potential involvement in allergic inflammation, and assess its implications as a novel biomarker for predicting and monitoring AIT efficacy. RECENT FINDINGS Recent studies highlight that T cell exhaustion, characterized by co-expression of inhibitory receptors (e.g., PD-1, CTLA-4, TIM-3), diminished cytokine production, and altered transcriptional profiles, may suppress type 2 inflammation in allergic diseases. In allergic asthma, exhausted CD4 + T cells exhibit upregulated inhibitory receptors, correlating with reduced IgE levels and airway hyperreactivity. During AIT, prolonged high-dose allergen exposure drives allergen-specific Th2 and T follicular helper (Tfh) cell exhaustion, potentially contributing to immune tolerance. Notably, clinical improvements in AIT correlate with depletion of allergen-specific Th2 cells and persistent expression of exhaustion markers (e.g., PD-1, CTLA-4) during maintenance phases. Blockade of inhibitory receptors (e.g., PD-1) enhances T cell activation, underscoring their dual regulatory role in allergy. T cell exhaustion represents a double-edged sword in allergy: it may dampen pathological inflammation in allergic diseases while serving as a mechanism for AIT-induced tolerance. The co-expression of inhibitory receptors on allergen-specific T cells emerges as a promising biomarker for AIT efficacy. Future research should clarify the transcriptional and metabolic drivers of exhaustion in allergy, validate its role across diverse allergic conditions, and optimize strategies to harness T cell exhaustion for durable immune tolerance. These insights could revolutionize therapeutic approaches and biomarker development in allergy management.
Collapse
Affiliation(s)
- Qingxiu Xu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Le Li
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rongfei Zhu
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Allergy and Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Musnier A, Corde Y, Verdier A, Cortes M, Pallandre JR, Dumet C, Bouard A, Keskes A, Omahdi Z, Puard V, Poupon A, Bourquard T. AI-enhanced profiling of phage-display-identified anti-TIM3 and anti-TIGIT novel antibodies. Front Immunol 2025; 16:1499810. [PMID: 40134430 PMCID: PMC11933058 DOI: 10.3389/fimmu.2025.1499810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Antibody discovery is a lengthy and labor-intensive process, requiring extensive laboratory work to ensure that an antibody demonstrates the appropriate efficacy, production, and safety characteristics necessary for its use as a therapeutic agent in human patients. Traditionally, this process begins with phage display or B-cells isolation campaigns, where affinity serves as the primary selection criterion. However, the initial leads identified through this approach lack sufficient characterization in terms of developability and epitope definition, which are typically performed at late stages. In this study, we present a pipeline that integrates early-stage phage display screening with AI-based characterization, enabling more informed decision-making throughout the selection process. Using immune checkpoints TIM3 and TIGIT as targets, we identified five initial leads exhibiting similar binding properties. Two of these leads were predicted to have poor developability profiles due to unfavorable surface physicochemical properties. Of the remaining three candidates, structural models of the complexes formed with their respective targets were generated for 2: T4 (against TIGIT) and 6E9 (against TIM3). The predicted epitopes allowed us to anticipate a competition with TIM3 and TIGIT binding partners, and to infer the antagonistic functions expected from these antibodies. This study lays the foundations of a multidimensional AI-driven selection of lead candidates derived from high throughput analysis.
Collapse
Affiliation(s)
| | | | | | | | - Jean-René Pallandre
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | - Adeline Bouard
- Etablissement Français du Sang - Bourgogne Franche-Comté (EFS BFC), Plateforme ITAC-UMR1098-RIGHT, Besançon, France
| | | | | | | | | | | |
Collapse
|
16
|
Pulica R, Aquib A, Varsanyi C, Gadiyar V, Wang Z, Frederick T, Calianese DC, Patel B, de Dios KV, Poalasin V, De Lorenzo MS, Kotenko SV, Wu Y, Yang A, Choudhary A, Sriram G, Birge RB. Dys-regulated phosphatidylserine externalization as a cell intrinsic immune escape mechanism in cancer. Cell Commun Signal 2025; 23:131. [PMID: 40069722 PMCID: PMC11900106 DOI: 10.1186/s12964-025-02090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
The negatively charged aminophospholipid, phosphatidylserine (PS), is typically restricted to the inner leaflet of the plasma membrane under normal, healthy physiological conditions. PS is irreversibly externalized during apoptosis, where it serves as a signal for elimination by efferocytosis. PS is also reversibly and transiently externalized during cell activation such as platelet and immune cell activation. These events associated with physiological PS externalization are tightly controlled by the regulated activation of flippases and scramblases. Indeed, improper regulation of PS externalization results in thrombotic diseases such as Scott Syndrome, a defect in coagulation and thrombin production, and in the case of efferocytosis, can result in autoimmunity such as systemic lupus erythematosus (SLE) when PS-mediated apoptosis and efferocytosis fails. The physiological regulation of PS is also perturbed in cancer and during viral infection, whereby PS becomes persistently exposed on the surface of such stressed and diseased cells, which can lead to chronic thrombosis and chronic immune evasion. In this review, we summarize evidence for the dysregulation of PS with a main focus on cancer biology and the pathogenic mechanisms for immune evasion and signaling by PS, as well as the discussion of new therapeutic strategies aimed to target externalized PS. We posit that chronic PS externalization is a universal and agnostic marker for diseased tissues, and in cancer, likely reflects a cell intrinsic form of immune escape. The continued development of new therapeutic strategies for targeting PS also provides rationale for their co-utility as adjuvants and with immune checkpoint therapeutics.
Collapse
Affiliation(s)
- Rachael Pulica
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ahmed Aquib
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Christopher Varsanyi
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Varsha Gadiyar
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Ziren Wang
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Trevor Frederick
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - David C Calianese
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Bhumik Patel
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Kenneth Vergel de Dios
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Victor Poalasin
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Mariana S De Lorenzo
- Department of Cell Biology and Molecular Medicine, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA
| | - Yi Wu
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Aizen Yang
- Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Alok Choudhary
- International Center for Public Health, Public Health Research Institute, Newark, NJ, 07103, USA
| | - Ganapathy Sriram
- Department Biological, Chemical and Environmental Sciences, Wheaton College, 26 E Main St, Norton, MA, 02766, USA
| | - Raymond B Birge
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Rutgers New Jersey Medical School, 205 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
17
|
Shen T, Fang H, Wu J, Qin Y, Zhou X, Zhao X, Huang B, Gao H. Clinical Value of Serum sTim-3, CEA, CA15-3 for Postoperative Recurrence of Breast Cancer. Cancer Manag Res 2025; 17:517-526. [PMID: 40098805 PMCID: PMC11911233 DOI: 10.2147/cmar.s508321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Objective To evaluate the clinical value of serum soluble T cell immunoglobulin 3 (sTim-3) on postoperative recurrence of breast cancer (BC). Methods A highly sensitive time-resolved fluorescence immunoassay (TRFIA) was employed to measure sTim-3. Quantification of serum sTim-3 in 172 BC patients more than one-year postoperative (96 patients with stage I + II, 76 patients with stage III + IV; 31 patients with postoperative recurrence, and 141 patients with postoperative non-recurrence) and 51 healthy controls (HC). To evaluate the difference of serum sTim-3 in different stages of BC and its clinical value for postoperative recurrence of BC. Results The serum sTim-3 level of BC patients with stage III + IV (21.62 (17.27, 29.78)) were significantly higher than HC (4.49 (3.30, 7.60)), patients with stage I + II (14.96 + 4.94) (P < 0.0001). Serum sTim-3 level of BC patients with postoperative recurrence (21.8(12.40,34.20) were significantly higher than those without recurrence (17.13 ± 6.44) (P = 0.0130). When the serum sTim-3 level was below 11.8 ng/mL, the negative predictive values of sTim-3, CEA and CA15-3 were 90.9%, 68.0% and 67.1%, respectively, and the negative likelihood ratios were 0.16, 0.77 and 0.81, respectively. The positive rate of combined detection of sTim-3, CEA and CA15-3 was 58.1%, higher than single detection of CEA (22.6%) and CA15-3 (19.4%). Conclusion Serum sTim-3 levels may assist in the staging of BC. Combined detection of sTim-3, CEA, and CA15-3 can be used to routinely monitor the progression of BC and indicate the risk of postoperative BC recurrence.
Collapse
Affiliation(s)
- Ting Shen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Hongming Fang
- Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jialong Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yuan Qin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xueqin Zhao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
- Provincial Key Laboratory for Research and Translation on the Syndrome of Kidney Deficiency Accompanied by Blood Stasis and Turbidity, Zhejiang Sci-Tech University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Haiyan Gao
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
18
|
Sarkar S, Taira N, Hsieh TH, Chien HC, Hirota M, Koizumi SI, Sasaki D, Tamai M, Seto Y, Miyagi M, Ishikawa H. JunB is required for CD8+ T cell responses to acute infections. Int Immunol 2025; 37:203-220. [PMID: 39425978 PMCID: PMC11884676 DOI: 10.1093/intimm/dxae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Basic-leucine zipper transcription factor ATF-like (BATF) and interferon regulatory factor 4 (IRF4) are crucial transcription factors for the generation of cytotoxic effector and memory CD8+ T cells. JunB is required for expression of genes controlled by BATF and IRF4 in CD4+ T cell responses, but the role of JunB in CD8+ T cells remains unknown. Here, we demonstrate that JunB is essential for cytotoxic CD8+ T cell responses. JunB expression is transiently induced, depending on the T cell receptor signal strength. JunB deficiency severely impairs the clonal expansion of effector CD8+ T cells in response to acute infection with Listeria monocytogenes. Junb-deficient CD8+ T cells fail to control transcription and chromatin accessibility of a specific set of genes regulated by BATF and IRF4, resulting in impaired cell survival, glycolysis, and cytotoxic CD8+ T cell differentiation. Furthermore, JunB deficiency enhances the expression of co-inhibitory receptors, including programmed cell death 1 (PD-1) and T cell immunoglobulin mucin-3 (TIM3) upon activation of naive CD8+ T cells. These results indicate that JunB, in collaboration with BATF and IRF4, promotes multiple key events in the early stage of cytotoxic CD8+ T cell responses.
Collapse
Affiliation(s)
- Shukla Sarkar
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Naoyuki Taira
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Tsung-Han Hsieh
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Hsiao-Chiao Chien
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Masato Hirota
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Shin-ichi Koizumi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Daiki Sasaki
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Miho Tamai
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Yu Seto
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Mio Miyagi
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Jin S, Li T, Liu L, Gao T, Zhang T, Yuan D, Di J, Guo Z, Luo Z, Yuan H, Liu J. V-domain immunoglobulin suppressor of T-cell activation and programmed death receptor 1 dual checkpoint blockade enhances antitumour immunity and survival in glioblastoma. Br J Pharmacol 2025; 182:1306-1323. [PMID: 39626657 DOI: 10.1111/bph.17404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND AND PURPOSE The current therapy cannot meet the needs of glioblastoma (GBM). V-domain immunoglobulin suppressor of T-cell activation (VISTA) is significantly up-regulated in GBM patients; however, its therapeutic potential in GBM is still unclear. EXPERIMENTAL APPROACH Flow cytometry was used to detect the expression of VISTA and the co-expression pattern of VISTA and programmed death receptor 1 (PD-1) on brain infiltrating lymphocytes of GBM mice. Monoclonal antibody therapy was used to evaluate the therapeutic effect of α-VISTA monotherapy and α-VISTA combined with α-PD-1 on GBM mice. Transcriptome analysis, flow cytometry, and immunofluorescence were used to detect changes of immune microenvironment in mouse brain tumours. Immunofluorescence and TCGA data analysis were used to further validate the combined treatment strategy on patient data. KEY RESULTS Compared with normal mice, the frequency of VISTA expression and co-expression of VISTA and PD-1 on tumour-infiltrating lymphocytes (TILs) in tumour-bearing mice was increased. Anti-VISTA monotherapy significantly up-regulated multiple immune stimulation-related pathways and moderately prolonged mouse survival time. Blocking the immune checkpoint VISTA and PD-1 significantly prolonged the survival time of mice and cured about 80% of the mice; CD8+ T cells played an important role in this process. In addition, we found that the expression of VISTA and PD-1 was significantly up-regulated in GBM patients by immunofluorescence, and patients with high expression of VISTA and PD-1 were associated with poor overall survival. This combination of blocking the immune checkpoint VISTA and PD-1 may achieve clinical transformation in GBM.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tao Li
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ting Gao
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Tingting Zhang
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Dingyi Yuan
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jianwen Di
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhanying Guo
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zhijie Luo
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haoliang Yuan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- New Drug Screening and Pharmacodynamics Evaluation Center, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Su R, Sun X, Luo Y, Gu L, Wang F, Dong A, Yamamoto M, Tsukamoto T, Nomura S, Zhao Z, Dai C, Deng G, Zhuang B, He Y, Zhang C, Yin S. SUSD2 + cancer-associated fibroblasts in gastric cancer mediate the effect of immunosuppression and predict overall survival and the effectiveness of neoadjuvant immunotherapy. Gastric Cancer 2025; 28:245-263. [PMID: 39656339 DOI: 10.1007/s10120-024-01572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/25/2024] [Indexed: 02/21/2025]
Abstract
BACKGROUND The expression patterns and functions of Sushi Domain Containing 2 (SUSD2) differ among various malignancies. This research aims to investigate the expression of SUSD2 and the role of the SUSD2+ cancer-associated fibroblasts (CAFs) for immunotherapy in gastric cancer. METHODS The expression of SUSD2 and specific markers (CD4, CD8, PD-1, TIGIT, TIM-3 and CD163) was determined using immunohistochemistry and multiplex immunofluorescence (mIHC) on paraffin sections. Flow cytometry and western blot were used to assess the expression of SUSD2 in fibroblasts from fresh samples. Also, analysis of single-cell and bulk RNA sequencing was employed to confirm the presence and characterize the function of SUSD2+ CAFs. The predictive power of indicators for neoadjuvant immunotherapy was evaluated via ROC curve analysis. Animal experiment was employed to validate the immunosuppressive effect of SUSD2+ CAFs. RESULTS SUSD2 is mainly expressed on fibroblasts within the tumors and the high infiltration of SUSD2+ CAFs went together with a poor survival and a more advanced tumor stage. Significantly, the joint use of SUSD2+ CAFs and CD8+ T cells demonstrated a remarkable ability to predict the efficacy of neoadjuvant immunotherapy superior to PD-L1 combined positive score. High SUSD2+ CAFs was correlated with resistance to immunotherapy as well as low CD8+ T infiltration and high exhausted T cell infiltration. CONCLUSIONS We have identified a novel subset of CAFs that could predict the survival and response to neoadjuvant immunotherapy of patients. The SUSD2+ CAFs have the potential to serve as a predictive biomarker and a promising target for immunotherapy.
Collapse
Affiliation(s)
- Rishun Su
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuezeng Sun
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yusheng Luo
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Liang Gu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Fulin Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Aoran Dong
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Zhenzhen Zhao
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chen Dai
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Guofei Deng
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Baoding Zhuang
- Hepatic-Biliary-Pancreatic Surgery, The Second People's Hospital of Foshan, Foshan, Guangdong Province, China
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Songcheng Yin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
21
|
Kim M, Je Y, Chun J, Youn YH, Park H, Nahm JH, Kim J. Helicobacter pylori Eradication Is Associated With a Reduced Risk of Metachronous Gastric Neoplasia by Restoring Immune Function in the Gastric Mucosa. Helicobacter 2025; 30:e70030. [PMID: 40169366 PMCID: PMC11961346 DOI: 10.1111/hel.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
BACKGROUND Helicobacter pylori infection is a significant contributing factor of gastric cancer. Metachronous neoplasms also pose a risk. The mechanism underlying the impact of H. pylori eradication on preventing metachronous gastric cancer is unclear. This study aimed to investigate immunity changes in gastric mucosa after H. pylori eradication and to identify mechanisms preventing metachronous recurrence. MATERIALS AND METHODS Patients diagnosed with gastric neoplasm and H. pylori infection, who underwent endoscopic resection, were included. Thirty-six cases of metachronous neoplasms occurring after eradication (metachronous group) were compared to 36 controls matched for age, sex, atrophy, and metaplasia (control group). Histological features and immunohistochemical staining for T-cell (CD3, CD4, and CD8) and immune exhaustion (forkhead/winged helix transcription factor and programmed cell death-ligand 1) markers in the non-tumor-bearing mucosa were evaluated. RESULTS In histologic features, glandular atrophy and intestinal metaplasia in the gastric mucosa significantly improved following H. pylori eradication in the control group (p < 0.001, 0.008), whereas they did not improve in the metachronous group (p = 0.449, 0.609). CD8 and CD8/CD3 ratios increased in the control group (p < 0.001, 0.04), but did not show differences in the metachronous group (p = 0.057, 0.245). The CD4/CD3 ratio and programmed cell death-ligand 1/CD4 expression significantly decreased after H. pylori eradication in the control group (p = 0.003, 0.042), but not in the metachronous group (p = 0.54, 0.55). CONCLUSIONS This observational study suggests that H. pylori eradication may prevent the recurrence of gastric neoplasia by improving histological inflammation and overcoming immune exhaustion.
Collapse
Affiliation(s)
- Min‐Jae Kim
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Yeonjin Je
- Graduate School of MedicineYonsei UniversitySeoulKorea
| | - Jaeyoung Chun
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Young Hoon Youn
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Hyojin Park
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Ji Hae Nahm
- Department of Pathology, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| | - Jie‐Hyun Kim
- Department of Internal Medicine, Gangnam Severance HospitalYonsei University College of MedicineSeoulKorea
| |
Collapse
|
22
|
Ahmady F, Sharma A, Achuthan AA, Kannourakis G, Luwor RB. The Role of TIM-3 in Glioblastoma Progression. Cells 2025; 14:346. [PMID: 40072074 PMCID: PMC11899008 DOI: 10.3390/cells14050346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Several immunoregulatory or immune checkpoint receptors including T cell immunoglobulin and mucin domain 3 (TIM-3) have been implicated in glioblastoma progression. Rigorous investigation over the last decade has elucidated TIM-3 as a key player in inhibiting immune cell activation and several key associated molecules have been identified both upstream and downstream that mediate immune cell dysfunction mechanistically. However, despite several reviews being published on other immune checkpoint molecules such as PD-1 and CTLA-4 in the glioblastoma setting, no such extensive review exists that specifically focuses on the role of TIM-3 in glioblastoma progression and immunosuppression. Here, we critically summarize the current literature regarding TIM-3 expression as a prognostic marker for glioblastoma, its expression profile on immune cells in glioblastoma patients and the exploration of anti-TIM-3 agents in glioblastoma pre-clinical models for potential clinical application.
Collapse
Affiliation(s)
- Farah Ahmady
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127 Bonn, Germany;
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Adrian A. Achuthan
- Department of Medicine, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia;
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
| | - Rodney B. Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3350, Australia; (F.A.); (G.K.)
- Federation University, Ballarat, VIC 3350, Australia
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC 3350, Australia
- Huagene Institute, Kecheng Science and Technology Park, Pukou District, Nanjing 211806, China
| |
Collapse
|
23
|
Du F, Wang G, Dai Q, Huang J, Li J, Liu C, Du K, Tian H, Deng Q, Xie L, Zhao X, Zhang Q, Yang L, Li Y, Wu Z, Zhang Z. Targeting novel regulated cell death: disulfidptosis in cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2025; 13:35. [PMID: 40012016 DOI: 10.1186/s40364-025-00748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
The battle against cancer has evolved over centuries, from the early stages of surgical resection to contemporary treatments including chemotherapy, radiation, targeted therapies, and immunotherapies. Despite significant advances in cancer treatment over recent decades, these therapies remain limited by various challenges. Immune checkpoint inhibitors (ICIs), a cornerstone of tumor immunotherapy, have emerged as one of the most promising advancements in cancer treatment. Although ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, have demonstrated clinical efficacy, their therapeutic impact remains suboptimal due to patient-specific variability and tumor immune resistance. Cell death is a fundamental process for maintaining tissue homeostasis and function. Recent research highlights that the combination of induced regulatory cell death (RCD) and ICIs can substantially enhance anti-tumor responses across multiple cancer types. In cells exhibiting high levels of recombinant solute carrier family 7 member 11 (SLC7A11) protein, glucose deprivation triggers a programmed cell death (PCD) pathway characterized by disulfide bond formation and REDOX (reduction-oxidation) reactions, termed "disulfidptosis." Studies suggest that disulfidptosis plays a critical role in the therapeutic efficacy of SLC7A11high cancers. Therefore, to investigate the potential synergy between disulfidptosis and ICIs, this study will explore the mechanisms of both processes in tumor progression, with the goal of enhancing the anti-tumor immune response of ICIs by targeting the intracellular disulfidptosis pathway.
Collapse
Affiliation(s)
- Fei Du
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Guojun Wang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qian Dai
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Jiang Huang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Junxin Li
- Department of pharmacy, Zigong Fourth People's Hospital, Zigong, 643000, China
| | - Congxing Liu
- Department of Pharmacy, Chengfei Hospital, Chengdu, 610000, China
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Pediatrics, Luzhou Maternal and Child Health Hospital, Luzhou Second People's Hospital, Luzhou, 646000, Sichuan, China
| | - Hua Tian
- School of Nursing, Chongqing College of Humanities, Science & Technology, Chongqing, 401520, China
| | - Qiwei Deng
- Heruida Pharmaceutical Co.,ltd, Haikou, Hainan, 570100, China
| | - Longxiang Xie
- The TCM Hospital of Longquanyi District, Chengdu, 610100, Sichuan, China
| | - Xin Zhao
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Qimin Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Lan Yang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China
| | - Yaling Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmacy, The Fourth Affiliated Hospital Of Southwest Medical University, Meishan, 620000, Sichuan, China.
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Bloom M, Podder S, Dang H, Lin D. Advances in Immunotherapy in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1936. [PMID: 40076561 PMCID: PMC11900920 DOI: 10.3390/ijms26051936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Over the past several years, the therapeutic landscape for patients with advanced, unresectable, or metastatic hepatocellular carcinoma has been transformed by the incorporation of checkpoint inhibitor immunotherapy into the treatment paradigm. Frontline systemic treatment options have expanded beyond anti-angiogenic tyrosine kinase inhibitors, such as sorafenib, to a combination of immunotherapy approaches, including atezolizumab plus bevacizumab and durvalumab plus tremelimumab, both of which have demonstrated superior response and survival to sorafenib. Additionally, combination treatments with checkpoint inhibitors and tyrosine kinase inhibitors have been investigated with variable success. In this review, we discuss these advances in systemic treatment with immunotherapy, with a focus on understanding both the underlying biology and mechanism of these strategies and their efficacy outcomes in clinical trials. We also review challenges in identifying predictive biomarkers of treatments and discuss future directions with novel immunotherapy targets.
Collapse
Affiliation(s)
- Matthew Bloom
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| | - Sourav Podder
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (S.P.); (H.D.)
| | - Daniel Lin
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA;
| |
Collapse
|
25
|
Xie Y, Peng H, Hu Y, Jia K, Yuan J, Liu D, Li Y, Feng X, Li J, Zhang X, Sun Y, Shen L, Chen Y. Immune microenvironment spatial landscapes of tertiary lymphoid structures in gastric cancer. BMC Med 2025; 23:59. [PMID: 39901202 PMCID: PMC11792408 DOI: 10.1186/s12916-025-03889-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) correlate with tumour prognosis and immunotherapy responses in gastric cancer (GC) studies. However, understanding the complex and diverse immune microenvironment within TLS requires comprehensive analysis. METHODS We examined the prognostic impact of TLS within the tumour core (TC) of 59 GC patients undergoing immunotherapy. Multispectral fluorescence imaging was employed to evaluate variations in immune cell infiltration across different TLS sites among 110 GC patients, by quantifying immune cell density and spatial characteristics. We also generated a single-cell transcriptomic atlas of TLS-positive (n = 4) and TLS-negative (n = 8) microenvironments and performed spatial transcriptomics (ST) analysis on two samples. RESULTS TLS presence in the TC significantly correlated with improved immune-related overall survival (P = 0.049). CD8+LAG-3-PD-1+TIM-3-, CD4+PD-L1+, and CD4+FoxP3- T cell densities were significantly higher in the TLS within TC compared to tumour and stromal regions. Immune cells within TLS exhibited closer intercellular proximity than those outside TLS. Five key density and spatial characteristics of immune cells within TLS in the TC were selected to develop the Density and Spatial Score risk model. Single-cell RNA sequencing revealed strong intercellular interactions in the presence of TLS within the microenvironment. However, TLS-absent environment facilitated tumour cell interactions with immune cells through MIF- and galectin-dependent pathways, recruiting immunosuppressive cells. ST analysis confirmed that T and B cells co-localise within TLS, enhancing immune response activation compared to cancer nests and exerting a strong anti-tumour effect. CONCLUSIONS TLS presence facilitates frequent cell-to-cell communication, forming an active immune microenvironment, highlighting the prognostic value of TLS.
Collapse
Affiliation(s)
- Yi Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Haoxin Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yajie Hu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Keren Jia
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jiajia Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Dan Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xujiao Feng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yu Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Department of Gastrointestinal Cancer, Beijing GoBroad Hospital, Beijing, 102200, China.
| |
Collapse
|
26
|
Heiat M, Javanbakht M, Jafari D, Poudineh M, Heydari F, Sharafi H, Alavian SM. Correlation of IL-10 and IL18 with the development of liver cirrhosis associated with hepatitis B virus infection: A systematic review. Cytokine 2025; 186:156818. [PMID: 39671883 DOI: 10.1016/j.cyto.2024.156818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/02/2024] [Accepted: 11/16/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Patients who have been infected with the Hepatitis B virus (HBV) are susceptible to developing liver cirrhosis (LC) and hepatocellular carcinoma (HCC). The objective of this systematic review was to comprehensively scrutinize the existing evidence concerning the association between host genetic polymorphisms and HBV-associated LC. METHODS We searched databases of PubMed, Scopus, and Web of Science for relevant articles published from building databases to 25 October 2023. RESULT We detected 104 relevant articles, relating to 84 individuals genes. Nine genes had the strong evidence of correlation, including IL-10, IL-18, IL-1B, TGF- β, TLR3, STAT4, IL-1RN, Tim3, and IFN receptors. A positive correlation was found for 33 genes but this data had not yet been replicated, 11 genes had limited or mixed evidence of a correlation, and 34 genes indicated no correlation. IL-10 and IL-18 had the most evidence of correlation. There was a notable amount of diversity in both the design and method of studies and data quality. CONCLUSION IL-10 and IL-18 had the most evidence of correlation. There was a notable amount of diversity in both the design and method of studies and data quality. It is of necessary to take into account the fundamental mechanism behind these associations and discern those that are confounded by the coexistence of other LC/HCC risk factors and response to therapy. These results are expected to guide future studies on the genetic susceptibility of HBV-related LC/HCC.
Collapse
Affiliation(s)
- Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Heydari
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Struckmeier AK, Gosau M, Smeets R. Immunotherapeutic strategies beyond the PD-1/PD-L1 pathway in head and neck squamous cell carcinoma - A scoping review on current developments in agents targeting TIM-3, TIGIT, LAG-3, and VISTA. Oral Oncol 2025; 161:107145. [PMID: 39705929 DOI: 10.1016/j.oraloncology.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) poses a considerable challenge due to its high incidence and mortality rates. Immunotherapy targeting PD-(L)1 emerges as a promising approach for HNSCC, as it has the potential to trigger a broad and long-lasting anti-tumor response. Nevertheless, the effectiveness of immunotherapy encounters hurdles, and only a small proportion of patients benefit, with many eventually experiencing relapse. Consequently, there is a pursuit of strategies to enhance overall treatment outcomes. Understanding the mechanisms driving resistance to PD-(L)1 inhibition and devising strategies to overcome these challenges are vital for advancing more effective treatments. Furthermore, gaining insights into the mechanisms of action and safety profiles of novel combination therapies is critical for their successful adoption in clinical practice. As a result, current research is dedicated to investigating various immunotherapeutic agents beyond the PD-1/PD-L1 axis. This review offers a comprehensive overview of the existing immunotherapy strategies in HNSCC with a focus on TIM-3, TIGIT, LAG-3, and VISTA. The aim is to lay a strong foundation for the continual advancement of therapies for HNSCC.
Collapse
Affiliation(s)
- Ann-Kristin Struckmeier
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Du K, Huang H. Design of a humanized CD40 agonist antibody with specific properties using AlphaFold2 and development of an anti-PD-L1/CD40 bispecific antibody for cancer immunotherapy. Transl Oncol 2025; 52:102247. [PMID: 39693719 PMCID: PMC11722911 DOI: 10.1016/j.tranon.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
Bispecific antibodies (BsAbs) represent a promising strategy for cancer immunotherapy. Challenges in immunotherapy include inefficient early events in the immune response cycle, such as antigen presentation and T cell priming. Background stimulation of CD40 with agonistic antibodies is a promising strategy to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs). Assisted by Alphafold2(AlphaFold-Multimer), we developed a humanized CD40 agonistic antibody that exhibits activation only in the presence of cross-linking. It also demonstrates that the current AlphaFold2(AlphaFold2-Multimer) can predict antibody-antigen complexes. Due to the unique epitope, it demonstrates superior activation compared to APX005M (S267E). Building upon this, we created a novel bispecific antibody (anti-PD-L1/CD40 bispecific antibody, referred to as "BA4415") designed to activate CD40 signaling specifically in the context of PD-L1 while simultaneously blocking PD-1/PD-L1 signaling. Results from functional evaluations using effector cells revealed the superior biological activity of BA4415 compared to the combination of each monoclonal antibody. BA4415 demonstrated the ability to enhance T-cell cytokine release in vitro assays, exhibiting superior functional attributes compared to the anti-PD-L1 antibody. Furthermore, in humanized transgenic mice challenged with huPD-L1-expressing tumor cells, BA4415 induced superior anti-tumor activity. This novel anti-PD-L1/CD40 bispecific antibody holds potential for strong anti-tumor therapeutic efficacy by selectively restricting CD40 stimulation in tumors.
Collapse
Affiliation(s)
- Kun Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, PR China.
| |
Collapse
|
29
|
Li S, Pan Y, Ye R, Wang Y, Li L. Immune checkpoints in B-cell Lymphoma: Still an Unmet challenge from Basic research to clinical practice. Int Immunopharmacol 2025; 146:113717. [PMID: 39673995 DOI: 10.1016/j.intimp.2024.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024]
Abstract
In the last decade, advancements in immunotherapy knowledge have highlighted CTLA-4, PD-1, LAG-3, TIM-3, and TIGIT, decisive immune checkpoints exhibiting within the tumor microenvironment (TME), as fundamental objects for cancer immunotherapy. The widespread clinical use of immune checkpoint inhibitors (ICls), employing PD-1/PD-L1 or CTLA-4 antibodies to obstruct crucial checkpoint regulators, is noted in treating B-cell lymphoma patients. Nevertheless, the prolonged advantages of the currently employed treatments against CTLA-4, PD-1, and PD-L1 are uncommon among patients. Thus, recent focus has been progressively moved to additional immune checkpoints on T cells, like LAG-3, TIM-3, and TIGIT, which are now seen as reassuring targets for treatment and broadly acknowledged. There are several types of immunecheckpoint molecules expressed by T cells, and inhibitors targeting immune checkpoints can revive and amplify the immune response of T lymphocytes against tumors, a crucial aspect in lymphoma therapy. However, there is little knowledge about their regulation. Herein, we discuss the anti-tumor effects and functions of ICIs in controlling T-cell activity, as well as the progress in combined application with other immunotherapies.
Collapse
Affiliation(s)
- Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yuanyuan Pan
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yu Wang
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
30
|
Su H, Peng Y, Wu Y, Zeng X. Overcoming immune evasion with innovative multi-target approaches for glioblastoma. Front Immunol 2025; 16:1541467. [PMID: 39911397 PMCID: PMC11794508 DOI: 10.3389/fimmu.2025.1541467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Glioblastoma (GBM) cells leverage complex endogenous and environmental regulatory mechanisms to drive proliferation, invasion, and metastasis. Tumor immune evasion, facilitated by a multifactorial network, poses a significant challenge to effective therapy, as evidenced by the limited clinical benefits of monotherapies, highlighting the adaptive nature of immune evasion. This review explores glioblastoma's immune evasion mechanisms, the role of ICIs in the tumor microenvironment, and recent clinical advancements, offering theoretical insights and directions for monotherapy and combination therapy in glioblastoma management.
Collapse
Affiliation(s)
- Hai Su
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Peng
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yilong Wu
- Department of Neurosurgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Zeng
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Jiangxi “Flagship” Oncology Department of Synergy for Chinese and Western Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Oncology, Jiangxi Clinical Research Center for Cancer, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
31
|
Pierini S, Gabbasov R, Oliveira-Nunes MC, Qureshi R, Worth A, Huang S, Nagar K, Griffin C, Lian L, Yashiro-Ohtani Y, Ross K, Sloas C, Ball M, Schott B, Sonawane P, Cornell L, Blumenthal D, Chhum S, Minutolo N, Ciccaglione K, Shaw L, Zentner I, Levitsky H, Shestova O, Gill S, Varghese B, Cushing D, Ceeraz DeLong S, Abramson S, Condamine T, Klichinsky M. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat Commun 2025; 16:706. [PMID: 39814734 PMCID: PMC11735936 DOI: 10.1038/s41467-024-55770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading. CAR-M therapy protects against antigen-negative relapses in a T cell dependent fashion, confirming long-term anti-tumor immunity. In HER2+ solid tumors with limited sensitivity to anti-PD1 (aPD1) monotherapy, the combination of CAR-M and aPD1 significantly improves tumor growth control, survival, and remodeling of the TME in pre-clinical models. These results demonstrate synergy between CAR-M and T cell checkpoint blockade and provide a strategy to potentially enhance response to aPD1 therapy for patients with non-responsive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Huang
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | - Karan Nagar
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | - Lurong Lian
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Lauren Shaw
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | - Olga Shestova
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Vijayanathan Y, Ho IAW. The Impact of Metabolic Rewiring in Glioblastoma: The Immune Landscape and Therapeutic Strategies. Int J Mol Sci 2025; 26:669. [PMID: 39859381 PMCID: PMC11765942 DOI: 10.3390/ijms26020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor characterized by extensive metabolic reprogramming that drives tumor growth and therapeutic resistance. Key metabolic pathways, including glycolysis, lactate production, and lipid metabolism, are upregulated to sustain tumor survival in the hypoxic and nutrient-deprived tumor microenvironment (TME), while glutamine and tryptophan metabolism further contribute to the aggressive phenotype of GBM. These metabolic alterations impair immune cell function, leading to exhaustion and stress in CD8+ and CD4+ T cells while favoring immunosuppressive populations such as regulatory T cells (Tregs) and M2-like macrophages. Recent studies emphasize the role of slow-cycling GBM cells (SCCs), lipid-laden macrophages, and tumor-associated astrocytes (TAAs) in reshaping GBM's metabolic landscape and reinforcing immune evasion. Genetic mutations, including Isocitrate Dehydrogenase (IDH) mutations, Epidermal Growth Factor Receptor (EGFR) amplification, and Phosphotase and Tensin Homolog (PTEN) loss, further drive metabolic reprogramming and offer potential targets for therapy. Understanding the relationship between GBM metabolism and immune suppression is critical for overcoming therapeutic resistance. This review focuses on the role of metabolic rewiring in GBM, its impact on the immune microenvironment, and the potential of combining metabolic targeting with immunotherapy to improve clinical outcomes for GBM patients.
Collapse
Affiliation(s)
- Yuganthini Vijayanathan
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
| | - Ivy A. W. Ho
- Molecular Neurotherapeutics Laboratory, National Neuroscience Institute, Singapore 308433, Singapore;
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Physiology, National University of Singapore, Singapore 117593, Singapore
| |
Collapse
|
33
|
Huang K, Han Y, Chen Y, Shen H, Zeng S, Cai C. Tumor metabolic regulators: key drivers of metabolic reprogramming and the promising targets in cancer therapy. Mol Cancer 2025; 24:7. [PMID: 39789606 PMCID: PMC11716519 DOI: 10.1186/s12943-024-02205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Metabolic reprogramming within the tumor microenvironment (TME) is a hallmark of cancer and a crucial determinant of tumor progression. Research indicates that various metabolic regulators form a metabolic network in the TME and interact with immune cells, coordinating the tumor immune response. Metabolic dysregulation creates an immunosuppressive TME, impairing the antitumor immune response. In this review, we discuss how metabolic regulators affect the tumor cell and the crosstalk of TME. We also summarize recent clinical trials involving metabolic regulators and the challenges of metabolism-based tumor therapies in clinical translation. In a word, our review distills key regulatory factors and their mechanisms of action from the complex reprogramming of tumor metabolism, identified as tumor metabolic regulators. These regulators provide a theoretical basis and research direction for the development of new strategies and targets in cancer therapy based on tumor metabolic reprogramming.
Collapse
Affiliation(s)
- Kun Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yihong Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Changjing Cai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
34
|
Wang J, Li H, Kulkarni A, Anderson JL, Upadhyay P, Onyekachi OV, Arantes LMRB, Banerjee H, Kane LP, Zhang X, Bruno TC, Bao R, Ferris RL, Vujanovic L. Differential impact of TIM-3 ligands on NK cell function. J Immunother Cancer 2025; 13:e010618. [PMID: 39773563 PMCID: PMC11748930 DOI: 10.1136/jitc-2024-010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3+ natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3+ NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions. METHODS Single-cell RNA sequencing and flow cytometry were used to study the prevalence, phenotypes and function of TIM-3+ NK cells in HNSCC patient tumors and blood. In vitro killing, proliferation and cytokine production assays were implemented to evaluate whether the four TIM-3 ligands differentially modulate TIM-3+ NK cell functions, and whether disruption of TIM-3/ligand interaction can enhance NK cell-mediated antitumor effector mechanisms. Finally, The Cancer Genome Atlas survival analysis and digital spatial profiling were employed to study the potential impact of etiology-associated differences on patients with HNSCC outcomes. RESULTS We demonstrate that TIM-3 is highly prevalent on circulating and tumor-infiltrating NK cells. It co-expresses with CD44 and marks NK cells with heightened effector potential. Among the four putative TIM-3 ligands, galectin-9 most consistently suppresses NK cell-mediated cytotoxicity and proliferation through TIM-3 and CD44 signaling, respectively, but promotes IFN-γ release in a TIM-3-dependent manner. Among patients with HNSCC, an elevated intratumoral TIM-3+ NK cell gene signature associates with worse outcomes, specifically in those with human papillomavirus (HPV)+ disease, potentially attributable to higher galectin-9 levels in HPV+ versus HPV- patients. CONCLUSIONS Our findings underscore the complex functional impact of TIM-3 ligand signaling, which is consistent with recent clinical trials suggesting that targeting TIM-3 alone is suboptimal as an immunotherapeutic approach for treating malignancies.
Collapse
Affiliation(s)
- Juncheng Wang
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Housaiyin Li
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aditi Kulkarni
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Jennifer L Anderson
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Pragati Upadhyay
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Onyedikachi Victor Onyekachi
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lidia M R B Arantes
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Barretos Cancer Hospital, Barretos, Brazil
| | - Hridesh Banerjee
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lawrence P Kane
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xin Zhang
- Otolaryngology Head and Neck Surgery, Central South University, Changsha, Hunan, China
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert L Ferris
- UNC Lineberger Comprehensive Cancer Center, UNC Health Care System, Chapel Hill, North Carolina, USA
| | - Lazar Vujanovic
- Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Zhou H, Bao G, Zhao J, Zhu X. Nuclear Molecular Imaging for Evaluating T Cell Exhaustion. Mol Pharm 2025; 22:103-112. [PMID: 39586059 DOI: 10.1021/acs.molpharmaceut.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
T cells are indispensable for the therapeutic efficacy of cancer immunotherapies, including immune checkpoint blockade. However, prolonged antigen exposure also drives T cells into exhaustion, which is characterized by upregulated inhibitory molecules, impaired effector functions, reduced cytotoxicity, altered metabolism, etc. Noninvasive monitoring of T cell exhaustion allows a timely identification of cancer patients that are most likely to benefit from immunotherapies. In this Review, we briefly explain the biological cascades underlying the modulation of inhibitory molecules, present a concise update on the nuclear molecular imaging tracers of T cell exhaustion, and then discuss the potential opportunities for future development.
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangfa Bao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Nuclear Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China
| | - Jun Zhao
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Anatomy, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
36
|
Timis T, Buruiana S, Dima D, Nistor M, Muresan XM, Cenariu D, Tigu AB, Tomuleasa C. Advances in Cell and Immune Therapies for Melanoma. Biomedicines 2025; 13:98. [PMID: 39857682 PMCID: PMC11761552 DOI: 10.3390/biomedicines13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
The incidence rate of cutaneous melanoma is on the rise worldwide, due to increased exposure to UV radiation, aging populations, and exposure to teratogen agents. However, diagnosis is more precise, and the increased number of new cases is related to the improved diagnosis tools. Despite better early diagnosis and better therapies, melanoma has remained a significant public health challenge because of its aggressive behavior and high potential for metastasis. In 2020, cutaneous melanoma constituted approximately 1.3% of all cancer deaths that occurred within the European Union, thereby highlighting the necessity for effective prevention, timely diagnosis, and sustainable treatment measures, especially as a growing number of cases occur among younger patients. Melanoma is regarded as one of the most inflamed cancers due to its high immune cell presence and strong response to immunotherapy, fueling the need for development of immune-driven innovative treatments. Approved therapies, including immune checkpoint inhibitors (e.g., anti-PD-1 and anti-CTLA-4), have notably improved survival rates in melanoma. However, the limitations of the PD-1/PD-L1 and CTLA-4 axes inhibitors, such as low response rates, treatment resistance, and toxicity, have driven the need for continued research and advancements in treatment strategies. Current clinical trials are exploring various combinations of immune checkpoint inhibitors with costimulatory receptor agonists, chemotherapy, targeted therapies, and other immunotherapies, with the goal of improving outcomes and reducing side effects for melanoma patients. Emerging approaches, including adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) and oncolytic virotherapy, are showing promise. While CAR-T cell therapy has been less successful in melanoma compared to blood cancers, ongoing research is addressing challenges like the tumor microenvironment and antigen specificity. This review provides an overview of the requirement for advances in these medications, to mark a significant step forward in melanoma management, set to bring a fresh breath of hope for patients.
Collapse
Affiliation(s)
- Tanase Timis
- Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
- Department of Oncology, Bistrița Emergency Hospital, 420094 Bistrița, Romania
| | - Sanda Buruiana
- Department of Hematology, Nicolae Testemițanu University of Medicine and Pharmacy, MD-2004 Chisinau, Moldova
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
| | - Madalina Nistor
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ximena Maria Muresan
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Adrian-Bogdan Tigu
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania
- Department of Personalized Medicine and Rare Diseases, MEDFUTURE—Institute for Biomedical Research, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
38
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
39
|
Wang W, Ye L, Li H, Chen W, Hong W, Mao W, Xu X. A narrative review on advances in neoadjuvant immunotherapy for esophageal cancer: Molecular biomarkers and future directions. Int J Cancer 2025; 156:20-33. [PMID: 39276114 DOI: 10.1002/ijc.35153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Esophageal cancer has a poor prognosis and survival rate due to its high incidence in Asia, lack of early symptoms and limited treatment options. In recent years, many clinical trials have demonstrated that immunotherapy has greatly improved the survival of patients with esophageal cancer. In addition, the combination of neoadjuvant immunotherapy with other popular therapeutic regimens has shown good efficacy and safety. In this review, we summarize the progress of clinical trials and some breakthroughs in neoadjuvant immunotherapy for esophageal cancer in recent years and suggest the possibility of multimodal neoadjuvant immunotherapy regimens, as well as directions for future development.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, China
| | - Lisha Ye
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Wei Hong
- Department of Medical Thoracic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, China
| | - Weimin Mao
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaoling Xu
- Postgraduate Training Base Alliance, Wenzhou Medical University, Wenzhou, China
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Shangguan X, Huang Y, Chen C, Wu W, Ma X, You C, Chen L, Huang J. Prognostic assessment value of immune escape-related genes in patients with acute myeloid leukemia. Leuk Lymphoma 2025; 66:72-83. [PMID: 39311489 DOI: 10.1080/10428194.2024.2404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025]
Abstract
This study explores the prognostic value of immune escape-related genes in acute myeloid leukemia (AML) patients. Using TARGET_AML and GSE37642 datasets, we identified CEP55, DNAJC13, and EMC2 as significant prognostic indicators, with high transcript abundance correlating with poor outcomes. Consensus clustering divided patients into two groups, with Cluster 1 showing worse prognosis. A prognostic signature based on these genes stratified patients into high- and low-risk groups, with the high-risk group experiencing worse outcomes. The risk score was an independent prognostic factor. Functional analysis revealed that high-risk genes could promote cell cycle progression. The selected genes were strongly associated with immune cells, particularly mast cells and CD8+ T cells. This study enriches the prognostic evaluation system for AML and suggests a new therapeutic direction.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/mortality
- Prognosis
- Biomarkers, Tumor/genetics
- Gene Expression Profiling
- Female
- Male
- Tumor Escape/genetics
- Middle Aged
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Xiaohui Shangguan
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Yanhong Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Congjie Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Weihao Wu
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaomei Ma
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Chongdeng You
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Longtian Chen
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Jianqing Huang
- Department of Hematology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
41
|
Santiago-Sánchez GS, Fabian KP, Hodge JW. A landscape of checkpoint blockade resistance in cancer: underlying mechanisms and current strategies to overcome resistance. Cancer Biol Ther 2024; 25:2308097. [PMID: 38306161 PMCID: PMC10841019 DOI: 10.1080/15384047.2024.2308097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The discovery of immune checkpoints and the development of immune checkpoint inhibitors (ICI) have achieved a durable response in advanced-stage cancer patients. However, there is still a high proportion of patients who do not benefit from ICI therapy due to a lack of response when first treated (primary resistance) or detection of disease progression months after objective response is observed (acquired resistance). Here, we review the current FDA-approved ICI for the treatment of certain solid malignancies, evaluate the contrasting responses to checkpoint blockade in different cancer types, explore the known mechanisms associated with checkpoint blockade resistance (CBR), and assess current strategies in the field that seek to overcome these mechanisms. In order to improve current therapies and develop new ones, the immunotherapy field still has an unmet need in identifying other molecules that act as immune checkpoints, and uncovering other mechanisms that promote CBR.
Collapse
Affiliation(s)
- Ginette S. Santiago-Sánchez
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kellsye P. Fabian
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
42
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
43
|
WU J, GUO S, LV L, ZHAI J, SHEN Y, CHEN C, QU Q. [TIM3+CD8+ T Cell Expression and Clinical Significance in the Central and Non-central Tumor Microenvironment of Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:903-910. [PMID: 39962845 PMCID: PMC11839502 DOI: 10.3779/j.issn.1009-3419.2024.102.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Indexed: 02/23/2025]
Abstract
BACKGROUND One of the most important treatment modalities for non-small cell lung cancer (NSCLC) is immune checkpoint inhibitor. Nevertheless, a small percentage of patients do not respond well to these therapies, highlighting the significance of identifying important CD8+ T cell subsets for immunotherapy and creating trustworthy biomarkers. The purpose of this study is to assess the potential utility of TIM3+CD8+ T cells as new biomarkers by examining their expressions in various areas of the NSCLC tumor microenvironment. METHODS Based on biopsy techniques, tumor tissue samples were obtained from patients with NSCLC and categorized into tumor central and non-central regions. Using flow cytometry, the infiltration of TIM3+CD8+ T cells and the surface expression of programmed cell death 1 (PD-1) on these cells were examined, and their correlations with the effectiveness of immunotherapy were assessed. RESULTS The non-central region of tumor tissues had considerably larger infiltration of TIM3+CD8+ T lymphocytes compared to the non-central region (P<0.0001). This pattern was found in both subgroups with tumor diameters ≥3 cm or <3 cm (P<0.01). In comparison to TIM3-CD8+ T cells, TIM3+CD8+ T cells showed higher levels of PD-1 (P<0.001), with more PD-1+TIM3+CD8+ T cells invading the non-central region (P<0.01). Clinical responders to immunotherapy had considerably lower infiltration levels of TIM3+CD8+ T cells in the tumor non-central region compared to non-responders, with lower levels correlated with better clinical outcomes (P<0.01), while no correlation was identified in the tumor central region (P>0.05). According to reciever operating characteristic (ROC) curve analysis, TIM3+CD8+ T cells in the tumor non-central region had an area under the curve (AUC) of 0.9375 for predicting the effectiveness of immunotherapy, which was considerably higher than that of TIM3+CD8+ T cells in the tumor central region and programmed cell death ligand 1 (PD-L1) [tumor proportion score (TPS)]. CONCLUSIONS In the tumor microenvironment of NSCLC, TIM3+CD8+ T cells show regional distribution patterns. The expression of this cell population in the non-central region of the tumor microenvironment may be a biomarker for predicting the effectiveness of immunotherapy.
Collapse
|
44
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Yu F, Zhu Y, Li S, Hao L, Li N, Ye F, Jiang Z, Hu X. Dysfunction and regulatory interplay of T and B cells in chronic hepatitis B: immunotherapy and emerging antiviral strategies. Front Cell Infect Microbiol 2024; 14:1488527. [PMID: 39717542 PMCID: PMC11663751 DOI: 10.3389/fcimb.2024.1488527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
In the context of chronic hepatitis B virus (HBV) infection, the continuous replication of HBV within host hepatocytes is a characteristic feature. Rather than directly causing hepatocyte destruction, this replication leads to immune dysfunction and establishes a state of T-B immune tolerance. Successful clearance of the HBV virus is dependent on the close collaboration between humoral and cellular immunity. Humoral immunity, mediated by B-cell subpopulations, and cellular immunity, dominated by T-cell subpopulations show varying degrees of dysfunction during chronic hepatitis B (CHB). Notably, not all T- and B-cells produce positive immune responses. This review examine the most recent developments in the mutual regulation of T-B cells during chronic HBV infection. Our focus is on the prevailing immunotherapeutic strategies, such as T cell engineering, HBV-related vaccines, PD-1 inhibitors, and Toll-like receptor agonists. While nucleos(t)ide analogues (NUCs) and interferons have notable limitations, including inadequate viral suppression, drug resistance, and adverse reactions, several HBV entry inhibitors have shown promising clinical efficacy. To overcome the challenges posed by NUCs or monotherapy, the combination of immunotherapy and novel antiviral agents presents a promising avenue for future CHB treatment and potential cure.
Collapse
Affiliation(s)
- Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanghang Ye
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhi Jiang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
46
|
Carey KM, Young CD, Clark AJ, Dammer EB, Singh R, Lillard JW. Subtype-specific analysis of gene co-expression networks and immune cell profiling reveals high grade serous ovarian cancer subtype linkage to variable immune microenvironment. J Ovarian Res 2024; 17:240. [PMID: 39627836 PMCID: PMC11613732 DOI: 10.1186/s13048-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/08/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is marked by significant molecular diversity, presenting a major clinical challenge due to its aggressive nature and poor prognosis. This study aims to deepen the understanding of HGSOC by characterizing mRNA subtypes and examining their immune microenvironment (TIME) and its role in disease progression. Using transcriptomic data and an advanced computational pipeline, we investigated four mRNA subtypes: immunoreactive, differentiated, proliferative, and mesenchymal, each associated with distinct gene expression profiles and clinical behaviors. We performed differential expression analysis among mRNA subtypes using DESeq2 and conducted Weighted Gene Co-Expression Network Analysis (WGCNA) to identify co-expressed gene modules related to clinical traits, e.g., age, survival, and subtype classification. Gene Ontology (GO) analysis highlighted key pathways involved in tumor progression and immune evasion. Additionally, we utilized TIMER 2.0 to assess immune cell infiltration across different HGSOC subtypes, providing insights into the interplay between tumor immune microenvironment (TIME). Our findings show that the immunoreactive subtype, particularly the M3 module-associated network, was marked by high immune cell infiltration, including M1 (p < 0.0001) and M2 macrophages (p < 0.01), and Th1 cells (p < 0.01) along with LAIR-1 expression (p = 1.63e-101). The M18 module exhibited strong B cell signatures (p = 6.24e-28), along with significant FCRL5 (adj. p = 3.09e-30) and IRF4 (adj. p = 3.09e-30) coexpression. In contrast, the M5 module was significantly associated with the mesenchymal subtype, along with fibroblasts (p < 0.0001). The proliferative subtype was characterized by M15 module-driven cellular growth and proliferation gene expression signatures, along with significant ovarian stromal cell involvement (p < 0.0001). Our study reveals the complex interplay between mRNA subtypes and suggests genes contributing to molecular subtypes, underscoring the important clinical implications of mRNA subtyping in HGSOC.
Collapse
Affiliation(s)
- Kaylin M Carey
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Corey D Young
- Department of Health and Human Services, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexis J Clark
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, 720 Westview Dr SW, HG 341B, Atlanta, GA, 30310, USA.
| |
Collapse
|
47
|
Hu J, Zhang J, Wan S, Zhang P. Neoadjuvant immunotherapy for non-small cell lung cancer: Opportunities and challenges. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:224-239. [PMID: 39834585 PMCID: PMC11742355 DOI: 10.1016/j.pccm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 01/22/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for resectable non-small cell lung cancer. Numerous trials have explored the use of ICIs, either as monotherapy or in combination with other therapies, in the neoadjuvant setting for stage I-III non-small cell lung cancer. Most trials have demonstrated neoadjuvant immunotherapy to be safe and to have remarkable efficacy, with a high pathological response rate and significantly improved event-free survival. This review summarizes the findings of Phase I-III clinical trials investigating various neoadjuvant regimens, including ICI monotherapy, ICI therapy combined with chemotherapy, ICI plus anti-angiogenic therapy, dual ICI therapy, and ICI therapy in combination with radiotherapy or chemoradiotherapy. We discuss the benefits and outcomes associated with each approach. Despite the results being promising, several unresolved issues remain, including identification of reliable biomarkers, the appropriate duration of therapy, the optimal treatment regimen for tumors with high programmed cell death ligand 1 (PD-L1) expression, the false-negative pathological complete response rate, and the role of digital pathology in assessing the response to treatment. Resistance to immunotherapy, in particular, remains a significant barrier to effective use of ICIs. Given the critical influence of the tumor microenvironment (TME) on the response to treatment, we examine the characteristics of the TME in both responsive and resistant tumors as well as the dynamic changes that occur in the TME in response to neoadjuvant immunotherapy. We also summarize the mechanisms underlying T cell responses following neoadjuvant immunotherapy and provide a perspective on strategies to enhance the understanding of tumor heterogeneity, therapy-driven TME remodeling, and overcoming resistance to therapy. Finally, we propose future directions for advancements in personalized neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Junjie Hu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Shiyue Wan
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- The 1st School of Medicine, the 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, Xinjiang 832000, China
| |
Collapse
|
48
|
Liu Y, Liu W, Wu T. TIGIT: Will it be the next star therapeutic target like PD-1 in hematological malignancies? Crit Rev Oncol Hematol 2024; 204:104495. [PMID: 39236904 DOI: 10.1016/j.critrevonc.2024.104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.
Collapse
Affiliation(s)
- Yang Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Wenhui Liu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| | - Tao Wu
- The 940th Hostipal of Joint Logistics Support force of Chinese People's Liberation Army, China.
| |
Collapse
|
49
|
Pei S, Deng X, Yang R, Wang H, Shi JH, Wang X, Huang J, Tian Y, Wang R, Zhang S, Hou H, Xu J, Zhu Q, Huang H, Ye J, Wang CY, Lu W, Luo Q, Ni ZY, Zheng M, Xiao Y. Age-related decline in CD8 + tissue resident memory T cells compromises antitumor immunity. NATURE AGING 2024; 4:1828-1844. [PMID: 39592880 DOI: 10.1038/s43587-024-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China
| | - Xueqing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingcheng Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialing Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi-Yu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China.
- Affiliated Hospital of Hebei Engineering University, Handan, China.
- Clinical Medical College, Hebei University of Engineering, Handan, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
50
|
Boruah M, Agarwal S, Mir RA, Choudhury SD, Sikka K, Rastogi S, Damle N, Sharma MC. Unravelling the Reasons Behind Limited Response to Anti-PD Therapy in ATC: A Comprehensive Evaluation of Tumor-Infiltrating Immune Cells and Checkpoints. Endocr Pathol 2024; 35:419-431. [PMID: 39477894 DOI: 10.1007/s12022-024-09832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Inhibiting the immune checkpoint (ICP) PD-1 based on PD-L1 expression status has revolutionized the treatment of various cancers, yet its efficacy in anaplastic thyroid carcinoma (ATC) remains limited. The therapeutic response depends upon multiple factors, particularly the conduciveness of the tumor's immune milieu. This study comprehensively evaluated and classified ATC's immune microenvironment (IME) to elucidate the factors behind suboptimal response to anti-PD therapy. Utilizing multiplex-immunofluorescence and immunohistochemistry, we retrospectively analyzed 26 cases of ATC for expression of ICPs PD-L1, PD-1, CTLA4, TIM3, and Galectin-9 and tumor-infiltrating cytotoxic T lymphocytes (CTL)-the effector cells, the anti-tumor NK cells, the immune-inhibitory myeloid-derived suppressor (MDSC) and regulatory T (Treg) cells, and B lymphocytes. Most ATCs (65%) exhibited PD-L1 positivity, but only 31%, in addition, had abundant CTL (type I IME), a combination associated with a better response to ICP inhibition. Additionally, PD-1 expression levels on CTL were low/absent in most cases-a "target-missing" situation-unfavorable for an adequate therapeutic response. All but one ATC showed nuclear Galectin-9 expression. The documentation of nuclear expression of Galectin-9 akin to benign thyroid is a first, and its role in ATC pathobiology needs further elucidation. In addition to less abundant PD-1 expression on CTL, the presence of MDSC, Treg, and exhausted cytotoxic T lymphocytes in the immune milieu of ATC can contribute to anti-PD resistance. TIM3, the most frequently expressed ICP on CTL, followed by CTLA4, provides alternate therapeutic targets in ATC. The co-expression of multiple immune checkpoints is of great interest for ATC since these data also open the avenue for combination therapies.
Collapse
Affiliation(s)
- Monikongkona Boruah
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Riyaz Ahmad Mir
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| | - Saumitra Dey Choudhury
- Confocal Microscopy Facility, Centralized Core Research Facility, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Kapil Sikka
- Department of Otorhinolaryngology and Head and Neck Surgery, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sameer Rastogi
- Department of Medical Oncology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Nishikant Damle
- Department of Nuclear Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mehar C Sharma
- Department of Neuropathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|