1
|
Xue C, Chu Q, Shi Q, Zeng Y, Lu J, Li L. Wnt signaling pathways in biology and disease: mechanisms and therapeutic advances. Signal Transduct Target Ther 2025; 10:106. [PMID: 40180907 PMCID: PMC11968978 DOI: 10.1038/s41392-025-02142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/29/2024] [Indexed: 04/05/2025] Open
Abstract
The Wnt signaling pathway is critically involved in orchestrating cellular functions such as proliferation, migration, survival, and cell fate determination during development. Given its pivotal role in cellular communication, aberrant Wnt signaling has been extensively linked to the pathogenesis of various diseases. This review offers an in-depth analysis of the Wnt pathway, detailing its signal transduction mechanisms and principal components. Furthermore, the complex network of interactions between Wnt cascades and other key signaling pathways, such as Notch, Hedgehog, TGF-β, FGF, and NF-κB, is explored. Genetic mutations affecting the Wnt pathway play a pivotal role in disease progression, with particular emphasis on Wnt signaling's involvement in cancer stem cell biology and the tumor microenvironment. Additionally, this review underscores the diverse mechanisms through which Wnt signaling contributes to diseases such as cardiovascular conditions, neurodegenerative disorders, metabolic syndromes, autoimmune diseases, and cancer. Finally, a comprehensive overview of the therapeutic progress targeting Wnt signaling was given, and the latest progress in disease treatment targeting key components of the Wnt signaling pathway was summarized in detail, including Wnt ligands/receptors, β-catenin destruction complexes, and β-catenin/TCF transcription complexes. The development of small molecule inhibitors, monoclonal antibodies, and combination therapy strategies was emphasized, while the current potential therapeutic challenges were summarized. This aims to enhance the current understanding of this key pathway.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Nangia-Makker P, Ahrens M, Purandare N, Aras S, Li J, Gurdziel K, Jang H, Kim S, Shekhar MP. Relationship between melanoma vemurafenib tolerance thresholds and metabolic pathway choice and Wnt signaling involvement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641924. [PMID: 40093038 PMCID: PMC11908245 DOI: 10.1101/2025.03.06.641924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Vemurafenib constitutes an important therapeutic for BRAFV600 mutant melanomas, but despite high initial response rates, resistance to BRAF and MEK inhibitors quickly develops. Here, we performed an integrative analysis of metabolomic consequences and transcriptome alterations to uncover mechanisms involved in adaptive vemurafenib resistance (VemR) development and their relationship with vemurafenib tolerance thresholds. We developed BRAFV600E isogenic models of VemR utilizing M14 and A2058 lines, and patient-derived melanomas with V600E or normal BRAF to verify vemurafenib selectivity. MEK or PI3K inhibitors only partially inhibited VemR cell proliferation, indicating cross-resistance to these inhibitors. MITF and β-catenin levels were induced and treatment with Wnt/β-catenin inhibitor ICG-001 restored vemurafenib sensitivity with concomitant reductions in β-catenin-regulated gene expressions, phospho-ERK1/2, and VemR-induced mitochondrial mass and respiration. Targeted metabolite, MitoPlate-S1, Mito-stress and transcriptome/metabolomic analysis showed that melanoma cells with elevated vemurafenib tolerance thresholds such as A2058 VemR cells utilize Wnt/β-catenin signaling for mitochondrial metabolism while VemR cells with low tolerance such as M14 VemR cells rely on Wnt/β-catenin signaling for pentose phosphate pathway. Pathways associated with cytokine-cytokine receptor, ECM receptor, and neuroactive ligand receptor interactions were similarly enriched in BRAFV600E patient-derived melanoma as M14 and A2058 cells whereas distinct pathways involving cell cycle, DNA replication, Fanconi anemia and DNA repair pathways are upregulated in wild type BRAF expressing patient derived melanoma. These data show for the first time that the metabolic pathway choices made by VemR BRAF mutant melanomas are controlled by vemurafenib tolerance and endurance thresholds and Wnt/β-catenin signaling plays a central role in coordinating expression of genes controlling VemR and metabolic pathway shifts.
Collapse
|
3
|
Barnekow E, Liu W, Andersson E, Wang X, Helgadottir HT, Thutkawkorapin J, Barilla S, Vermani L, Mints M, Tham E, Fasching PA, Lambrechts D, Amant F, Spurdle AB, Hall P, O'Mara TA, Margolin S, Lindblom A. A Swedish genome-wide haplotype association analysis identifies novel candidate loci associated with endometrial cancer risk. PLoS One 2025; 20:e0316086. [PMID: 40101186 DOI: 10.1371/journal.pone.0316086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/05/2024] [Indexed: 03/20/2025] Open
Abstract
Genome-wide association studies [GWAS] have identified a limited number of endometrial cancer risk loci by analyzing single nucleotide polymorphisms [SNPs]. We hypothesized that analyzing haplotypes rather than SNPs could provide novel and more detailed information on genetic cancer susceptibility loci. To examine the association of a SNP or haplotype with endometrial cancer risk we performed a two-stage haplotype GWAS. The discovery GWAS included a sub-cohort of 1,116 Swedish endometrial cancer cases and 5,021 controls from previously published GWAS data. A sliding window analysis was employed with window sizes of 1-25 SNPs using a logistic regression model. The Swedish haplotype analysis identified 15 novel candidate risk loci (2q31.1, 4p16.1, 4p15.31, 6q13, 7p21.1, 9p13.3, 10q26.3, 11q21, 12q13.11, 13q12.11, 15q13.3, 16q24.3, 19q13.32, 20p12.3 and 22q13.2) with OR ranging from 1.6 to 3.3 and p-values from 4.25 × 10-8 to 9.86 × 10-15. A second replication haplotype analysis of the Swedish novel loci was performed using two cohorts from Belgium and Germany. In spite of small sample sizes in the replication cohorts, there was still support for most loci with positive ORs. In addition, the findings in the two European cohorts motivates further studies to search for founder haplotypes. These novel findings suggested that endometrial cancer loci, identified through haplotype analysis, conferred a higher risk compared to previous single-variant GWAS.
Collapse
Affiliation(s)
- Elin Barnekow
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Wen Liu
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Emil Andersson
- Department of Women´s and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Xuemin Wang
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Hafdis T Helgadottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jessada Thutkawkorapin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Serena Barilla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Litika Vermani
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Mints
- Department of Women´s and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Diether Lambrechts
- Department of Human Genetics, VIB Center for Cancer Biology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Frédéric Amant
- Division Gynecologic Oncology, UZ Leuven, Leuven, Belgium
| | - Amanda B Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Per Hall
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tracy A O'Mara
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sara Margolin
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Marques AVL, Ruginsk BE, Prado LDO, de Lima DE, Daniel IW, Moure VR, Valdameri G. The association of ABC proteins with multidrug resistance in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119878. [PMID: 39571941 DOI: 10.1016/j.bbamcr.2024.119878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024]
Abstract
Multidrug resistance (MDR) poses one of the primary challenges for cancer treatment, especially in cases of metastatic disease. Various mechanisms contribute to MDR, including the overexpression of ATP-binding cassette (ABC) proteins. In this context, we reviewed the literature to establish a correlation between the overexpression of ABC proteins and MDR in cancer, considering both in vitro and clinical studies. Initially, we presented an overview of the seven subfamilies of ABC proteins, along with the subcellular localization of each protein. Subsequently, we identified a panel of 20 ABC proteins (ABCA1-3, ABCA7, ABCB1-2, ABCB4-6, ABCC1-5, ABCC10-11, ABCE1, ABCF2, ABCG1, and ABCG2) associated with MDR. We also emphasize the significance of drug sequestration by certain ABC proteins into intracellular compartments. Among the anticancer drugs linked to MDR, 29 were definitively identified as substrates for at least one of the three most crucial ABC transporters: ABCB1, ABCC1, and ABCG2. We further discussed that the most commonly used drugs in standard regimens for mainly breast cancer, lung cancer, and acute lymphoblastic leukemia could be subject to MDR mediated by ABC transporters. Collectively, these insights will aid in conducting new studies aimed at a deeper understanding of the clinical MDR mediated by ABC proteins and in designing more effective pharmacological treatments to enhance the objective response rate in cancer patients.
Collapse
Affiliation(s)
- Andrezza Viviany Lourenço Marques
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Bruna Estelita Ruginsk
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Larissa de Oliveira Prado
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Diogo Eugênio de Lima
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Isabelle Watanabe Daniel
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vivian Rotuno Moure
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| | - Glaucio Valdameri
- Graduate Program in Pharmaceutical Sciences, Laboratory of Cancer Drug Resistance, Federal University of Parana, Curitiba, Paraná, Brazil.
| |
Collapse
|
5
|
Lu XY, Jin H. MiRNAs function in the development of resistance against doxorubicin in cancer cells: targeting ABC transporters. Front Pharmacol 2024; 15:1486783. [PMID: 39679367 PMCID: PMC11638538 DOI: 10.3389/fphar.2024.1486783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
Resistance to chemotherapeutic agents poses a significant challenge in cancer treatment, particularly with doxorubicin, a widely used drug for various cancers, including breast cancer, leukaemia, osteosarcoma, and gastrointestinal cancers. This review aims to elucidate the critical role of microRNAs (miRNAs) in the development of doxorubicin resistance, focusing on their interactions with ATP-binding cassette (ABC) transporters. Despite extensive research, the molecular mechanisms governing doxorubicin resistance still need to be completed, particularly regarding the regulatory influence of miRNAs on ABC transporter expression. By analyzing current literature, this review identifies a notable gap: the lack of comprehensive insight into how specific miRNAs modulate the expression and activity of ABC transporters in cancer cells, contributing to doxorubicin resistance. We systematically examine recent findings on the interplay between miRNAs and ABC transporters, providing a detailed assessment of potential therapeutic strategies that leverage miRNA modulation to overcome drug resistance. Ultimately, this review underscores the significance of integrating miRNA research into existing therapeutic frameworks to enhance the efficacy of doxorubicin in cancer treatment.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Wu Z, Guo Y, Qu L, Wang X, Zhang H. Development and validation of a prognostic signature of breast cancer based on drug absorption, distribution, metabolism and excretion (ADME)-related genes. Sci Rep 2024; 14:21619. [PMID: 39284852 PMCID: PMC11405771 DOI: 10.1038/s41598-024-72635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The individual variation of carcinogenesis and drug response is influenced by the absorption, distribution, metabolism, and excretion (ADME) of drugs. The utilization of signatures derived from ADME-related genes holds potential for predicting prognosis and treatment response across diverse cancer types. Further investigation is required to completely understand the role of ADME-associated genes in breast cancer. A signature was constructed through the application of a least absolute shrinkage and selection operator regression model, employing prognostic differentially expressed genes found in both cancer tissue and normal tissue. To assess the robustness of the signature, verification analyses were carried out. RT-qPCR was utilized for the validation of gene expression related to risk. Subsequently, a nomogram was developed to enhance the clinical utility of our prognostic tool. The ADME signature, comprising four genes, was established and exhibited a robust association with the prognoses of individuals diagnosed with breast cancer. The nomogram was created by fusing the clinicopathological characteristics with the ADME signature. The ADME signature demonstrated remarkable superiority when compared to the performance of the other individual predictors. Additionally, the analysis of the immune microenvironment revealed that the ImmuneScores of the low-risk group were elevated. The variation in both the infiltration of immune cells and the expression of immune-related genes in the tissues differed among the two groups. For patients with breast cancer, the utilization of ADME signatures as biomarkers presents a significant reference point for prognosis and individualized treatment strategies.
Collapse
Affiliation(s)
- Zhixuan Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Liangchen Qu
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, Zhejiang Province, 318000, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Hewei Zhang
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.
- Department of Hepatobiliary and Pancreatic Surgery, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
7
|
Gerard L, Gillet JP. The uniqueness of ABCB5 as a full transporter ABCB5FL and a half-transporter-like ABCB5β. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:29. [PMID: 39267923 PMCID: PMC11391348 DOI: 10.20517/cdr.2024.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024]
Abstract
The ABCB5 gene encodes several isoforms, including two transporters (i.e., ABCB5FL, ABCB5β) and several soluble proteins, such as ABCB5α which has been hypothesized to have a regulatory function. ABCB5FL is a full ABC transporter and is expressed in the testis and prostate, whereas ABCB5β is an atypical half-transporter with a ubiquitous expression pattern. ABCB5β has been shown to mark cancer stem cells in several cancer types. In addition, ABCB5β and ABCB5FL have been shown to play a role in tumorigenesis and multidrug resistance. However, ABCB5β shares its entire protein sequence with ABCB5FL, making them difficult to distinguish. It cannot be excluded that some biological effects described for one transporter may be mediated by the other isoform. Therefore, it is difficult to interpret the available data and some controversies remain regarding their function in cancer cells. In this review, we discuss the data collected on ABCB5 isoforms over the last 20 years and propose a common ground on which we can build further to unravel the pathophysiological roles of ABCB5 transporters.
Collapse
Affiliation(s)
- Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur 5000, Belgium
| |
Collapse
|
8
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
9
|
De Rosa L, Di Stasi R, Fusco V, D'Andrea LD. AXL receptor as an emerging molecular target in colorectal cancer. Drug Discov Today 2024; 29:104005. [PMID: 38685399 DOI: 10.1016/j.drudis.2024.104005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
AXL receptor tyrosine kinase (AXL) is a receptor tyrosine kinase whose aberrant expression has recently been associated with colorectal cancer (CRC), contributing to tumor growth, epithelial-mesenchymal transition (EMT), increased invasiveness, metastatic spreading, and the development of drug resistance. In this review we summarize preclinical data, the majority of which are limited to recent years, convincingly linking the AXL receptor to CRC. These findings support the value of targeting AXL with molecules in drug discovery, offering novel and advanced therapeutic or diagnostic tools for CRC management.
Collapse
Affiliation(s)
- Lucia De Rosa
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy.
| | - Rossella Di Stasi
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Virginia Fusco
- Istituto di Biostrutture e Bioimmagini, CNR, via P. Castellino, 111 - 80131 Naples, Italy
| | - Luca D D'Andrea
- Istituto di Scienze e Tecnologie Chimiche 'G. Natta', CNR, via M. Bianco, 9 - 20131 Milan, Italy.
| |
Collapse
|
10
|
Wang Y, Zou L, Song M, Zong J, Wang S, Meng L, Jia Z, Zhao L, Han X, Lu M. Establishment of skin cutaneous melanoma prognosis model based on vascular mimicry risk score. Medicine (Baltimore) 2024; 103:e36679. [PMID: 38363903 PMCID: PMC10869071 DOI: 10.1097/md.0000000000036679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/24/2023] [Indexed: 02/18/2024] Open
Abstract
Studies have indicated that Vascular mimicry (VM) could contribute to the unfavorable prognosis of skin cutaneous melanoma (SKCM). Thus, the objective of this study was to identify therapeutic targets associated with VM in SKCM and develop a novel prognostic model. Gene expression data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) were utilized to identify differentially expressed genes (DEGs). By intersecting these DEGs with VM genes, we acquired VM-related DEGs specific to SKCM, and then identified prognostic-related VM genes. A VM risk score system was established based on these prognosis-associated VM genes, and patients were then categorized into high- and low-score groups using the median score. Subsequently, differences in clinical characteristics, gene set enrichment analysis (GSEA), and other analyses were further presented between the 2 groups of patients. Finally, a novel prognostic model for SKCM was established using the VM score and clinical characteristics. 26 VM-related DEGs were identified in SKCM, among the identified DEGs associated with VM in SKCM, 5 genes were found to be prognostic-related. The VM risk score system, comprised of these genes, is an independent prognostic risk factor. There were significant differences between the 2 patient groups in terms of age, pathological stage, and T stage. VM risk scores are associated with epithelial biological processes, angiogenesis, regulation of the SKCM immune microenvironment, and sensitivity to targeted drugs. The novel prognostic model demonstrates excellent predictive ability. Our study identified VM-related prognostic markers and therapeutic targets for SKCM, providing novel insights for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yubo Wang
- Dalian Medical University, Dalian, China
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
| | - Linxuan Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingzhi Song
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Meng
- The First Affiliated Hospital of Nanhua Medical University, Hengyang, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ming Lu
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital, Dalian, China
- Department of Trauma and Tissue Repair Surgery, Dalian Municipal Central Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Li D, Wang L, Jiang B, Jing Y, Li X. Improving cancer immunotherapy by preventing cancer stem cell and immune cell linking in the tumor microenvironment. Biomed Pharmacother 2024; 170:116043. [PMID: 38128186 DOI: 10.1016/j.biopha.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Cancer stem cells are the key link between malignant tumor progression and drug resistance. This cell population has special properties that are different from those of conventional tumor cells, and the role of cancer stem cell-related exosomes in progression of tumor malignancy is becoming increasingly clear. Cancer stem cell-derived exosomes carry a variety of functional molecules involved in regulation of the microenvironment, especially with regard to immune cells, but how these exosomes exert their functions and the specific mechanisms need to be further clarified. Here, we summarize the role of cancer stem cell exosomes in regulating immune cells in detail, aiming to provide new insights for subsequent targeted drug development and clinical strategy formulation.
Collapse
Affiliation(s)
- Dongyu Li
- Department of General Surgery & VIP In-Patient Ward, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Bo Jiang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Yuchen Jing
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China
| | - Xuan Li
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Liaoning Province 110001, China.
| |
Collapse
|
12
|
Uceda-Castro R, Margarido AS, Song JY, de Gooijer MC, Messal HA, Chambers CR, Nobis M, Çitirikkaya CH, Hahn K, Seinstra D, Herrmann D, Timpson P, Wesseling P, van Tellingen O, Vennin C, van Rheenen J. BCRP drives intrinsic chemoresistance in chemotherapy-naïve breast cancer brain metastasis. SCIENCE ADVANCES 2023; 9:eabp9530. [PMID: 37851804 PMCID: PMC10584345 DOI: 10.1126/sciadv.abp9530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
Although initially successful, treatments with chemotherapy often fail because of the recurrence of chemoresistant metastases. Since these tumors develop after treatment, resistance is generally thought to occur in response to chemotherapy. However, alternative mechanisms of intrinsic chemoresistance in the chemotherapy-naïve setting may exist but remain poorly understood. Here, we study drug-naïve murine breast cancer brain metastases (BCBMs) to identify how cancer cells growing in a secondary site can acquire intrinsic chemoresistance without cytotoxic agent exposure. We demonstrate that drug-naïve murine breast cancer cells that form cancer lesions in the brain undergo vascular mimicry and concomitantly express the adenosine 5'-triphosphate-binding cassette transporter breast cancer resistance protein (BCRP), a common marker of brain endothelial cells. We reveal that expression of BCRP by the BCBM tumor cells protects them against doxorubicin and topotecan. We conclude that BCRP overexpression can cause intrinsic chemoresistance in cancer cells growing in metastatic sites without prior chemotherapy exposure.
Collapse
Affiliation(s)
- Rebeca Uceda-Castro
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Andreia S. Margarido
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Mark C. de Gooijer
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- The Christie NHS Foundation Trust, Manchester, UK
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Ceren H. Çitirikkaya
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kerstin Hahn
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Danielle Seinstra
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Mouse Cancer Clinic, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Claire Vennin
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
13
|
Yehya A, Youssef J, Hachem S, Ismael J, Abou-Kheir W. Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells 2023; 15:323-341. [PMID: 37342220 PMCID: PMC10277968 DOI: 10.4252/wjsc.v15.i5.323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/26/2023] Open
Abstract
Surgical resection, chemotherapy, and radiation are the standard therapeutic modalities for treating cancer. These approaches are intended to target the more mature and rapidly dividing cancer cells. However, they spare the relatively quiescent and intrinsically resistant cancer stem cells (CSCs) subpopulation residing within the tumor tissue. Thus, a temporary eradication is achieved and the tumor bulk tends to revert supported by CSCs' resistant features. Based on their unique expression profile, the identification, isolation, and selective targeting of CSCs hold great promise for challenging treatment failure and reducing the risk of cancer recurrence. Yet, targeting CSCs is limited mainly by the irrelevance of the utilized cancer models. A new era of targeted and personalized anti-cancer therapies has been developed with cancer patient-derived organoids (PDOs) as a tool for establishing pre-clinical tumor models. Herein, we discuss the updated and presently available tissue-specific CSC markers in five highly occurring solid tumors. Additionally, we highlight the advantage and relevance of the three-dimensional PDOs culture model as a platform for modeling cancer, evaluating the efficacy of CSC-based therapeutics, and predicting drug response in cancer patients.
Collapse
Affiliation(s)
- Amani Yehya
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Joe Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Sana Hachem
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jana Ismael
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
14
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
15
|
Yang J, Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J Exp Clin Cancer Res 2023; 42:131. [PMID: 37217932 DOI: 10.1186/s13046-023-02717-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer stem cells (CSCs) are the key "seeds" for tumor initiation and development, metastasis, and recurrence. Because of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes or multivesicular bodies with the plasma membrane. It has become evident that CSC-derived exosomes play a significant role in almost all "hallmarks" of cancer. For example, exosomes from CSCs can maintain a steady state of self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of CSC-derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview of the possible role of CSC-derived exosomes and targeting strategies, we summarize relevant research progress, highlight the potential impact of detecting or targeting CSC-derived exosomes on cancer treatment, and discuss opportunities and challenges based on our experience and insights in this research area. A more thorough understanding of the characteristics and function of CSC-derived exosomes may open new avenues to the development of new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
16
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/16/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
17
|
Tewari SG, Elahi R, Kwan B, Rajaram K, Bhatnagar S, Reifman J, Prigge ST, Vaidya AB, Wallqvist A. Metabolic responses in blood-stage malaria parasites associated with increased and decreased sensitivity to PfATP4 inhibitors. Malar J 2023; 22:56. [PMID: 36788578 PMCID: PMC9930341 DOI: 10.1186/s12936-023-04481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Spiroindolone and pyrazoleamide antimalarial compounds target Plasmodium falciparum P-type ATPase (PfATP4) and induce disruption of intracellular Na+ homeostasis. Recently, a PfATP4 mutation was discovered that confers resistance to a pyrazoleamide while increasing sensitivity to a spiroindolone. Transcriptomic and metabolic adaptations that underlie this seemingly contradictory response of P. falciparum to sublethal concentrations of each compound were examined to understand the different cellular accommodation to PfATP4 disruptions. METHODS A genetically engineered P. falciparum Dd2 strain (Dd2A211V) carrying an Ala211Val (A211V) mutation in PfATP4 was used to identify metabolic adaptations associated with the mutation that results in decreased sensitivity to PA21A092 (a pyrazoleamide) and increased sensitivity to KAE609 (a spiroindolone). First, sublethal doses of PA21A092 and KAE609 causing substantial reduction (30-70%) in Dd2A211V parasite replication were identified. Then, at this sublethal dose of PA21A092 (or KAE609), metabolomic and transcriptomic data were collected during the first intraerythrocytic developmental cycle. Finally, the time-resolved data were integrated with a whole-genome metabolic network model of P. falciparum to characterize antimalarial-induced physiological adaptations. RESULTS Sublethal treatment with PA21A092 caused significant (p < 0.001) alterations in the abundances of 91 Plasmodium gene transcripts, whereas only 21 transcripts were significantly altered due to sublethal treatment with KAE609. In the metabolomic data, a substantial alteration (≥ fourfold) in the abundances of carbohydrate metabolites in the presence of either compound was found. The estimated rates of macromolecule syntheses between the two antimalarial-treated conditions were also comparable, except for the rate of lipid synthesis. A closer examination of parasite metabolism in the presence of either compound indicated statistically significant differences in enzymatic activities associated with synthesis of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol. CONCLUSION The results of this study suggest that malaria parasites activate protein kinases via phospholipid-dependent signalling in response to the ionic perturbation induced by the Na+ homeostasis disruptor PA21A092. Therefore, targeted disruption of phospholipid signalling in PA21A092-resistant parasites could be a means to block the emergence of resistance to PA21A092.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Bobby Kwan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Suyash Bhatnagar
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA
| | - Akhil B Vaidya
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
18
|
Niebergall-Roth E, Frank NY, Ganss C, Frank MH, Kluth MA. Skin-Derived ABCB5 + Mesenchymal Stem Cells for High-Medical-Need Inflammatory Diseases: From Discovery to Entering Clinical Routine. Int J Mol Sci 2022; 24:66. [PMID: 36613507 PMCID: PMC9820160 DOI: 10.3390/ijms24010066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.
Collapse
Affiliation(s)
| | - Natasha Y. Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA 02132, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph Ganss
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| | - Markus H. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
| | - Mark A. Kluth
- TICEBA GmbH, 69120 Heidelberg, Germany
- RHEACELL GmbH & Co. KG, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Kumar A, Singh AK, Singh H, Thareja S, Kumar P. Regulation of thymidylate synthase: an approach to overcome 5-FU resistance in colorectal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:3. [PMID: 36308643 DOI: 10.1007/s12032-022-01864-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/29/2022] [Indexed: 01/17/2023]
Abstract
Thymidylate synthase is the rate-limiting enzyme required for DNA synthesis and overexpression of this enzyme causes resistance to cancer cells. Long treatments with 5-FU cause resistance to Thymidylate synthase targeting drugs. We have also compiled different mechanisms of drug resistance including autophagy and apoptosis, drug detoxification and ABC transporters, drug efflux, signaling pathways (AKT/PI3K, RAS-MAPK, WNT/β catenin, mTOR, NFKB, and Notch1 and FOXM1) and different genes associated with resistance in colorectal cancer. We can overcome 5-FU resistance in cancer cells by regulating thymidylate synthase by natural products (Coptidis rhizoma), HDAC inhibitors, mTOR inhibitors, Folate antagonists, and several other drugs which have been used in combination with TS inhibitors. This review is a compilation of different approaches reported for the regulation of thymidylate synthase to overcome resistance in colorectal cancer cells.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda, 151401, India.
| |
Collapse
|
21
|
Tu J, Wang J, Tang B, Zhang Z, Han M, Li M, Yu J, Shen L, Zhang M, Ye J. Expression and clinical significance of TYRP1, ABCB5, and MMP17 in sinonasal mucosal melanoma. Cancer Biomark 2022; 35:331-342. [DOI: 10.3233/cbm-220093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND: Sinonasal mucosal melanoma (SNMM) is a lethal malignancy with poor prognosis. Treatment outcomes of SNMM are poor. Novel prognostic or progression markers are needed to help adjust therapy. METHODS: RNA-seq was used to analyze the mRNA expression of tumor tissues and normal nasal mucosa from primary SNMM patients (n= 3). Real-time fluorescent quantitative PCR (qRT-PCR) was used to validate the results of RNA-seq (n= 3), while protein expression was analyzed by immunohistochemistry (IHC, n= 31) and western blot (n= 3). Retrospective studies were designed to determine the clinical parameters and the total survival rate, and correlation between the protein expression levels of the most significant key genes and prognosis was analyzed. RESULTS: In total, 668 genes were upregulated and 869 genes were downregulated in SNMM (fold change ⩾ 2, adjusted p value < 0.01). Both mRNA and protein expression levels of the key genes in SNMM tumor tissues were higher than those in the normal control nasal mucosal tissues. The expression rates of TYRP1, ABCB5, and MMP17 in 31 primary SNMM cases were 90.32%, 80.65%, and 64.52%, respectively. In addition, age, typical symptoms, and AJCC stage were related to overall survival rate of patients with SNMM (p< 0.05). Furthermore, the expression of ABCB5 was age-related (p= 0.002). Compared with individuals with negative ABCB5 expression, those with positive expression exhibited significantly poor overall survival (p= 0.02). CONCLUSION: The expression levels of TYRP1, ABCB5, and MMP17 were significantly upregulated in SNMM tissues, and the expression of ABCB5 was related to poor prognosis in SNMM. Thus, ABCB5 may serve as a progression marker and can predict unfavorable prognosis in patients with SNMM.
Collapse
Affiliation(s)
- Junhao Tu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binxiang Tang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiqiang Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei Han
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mengyue Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jieqing Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Meiping Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Ye
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Otorhinolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
22
|
Domdey M, Kluth M, Maßlo C, Ganss C, Frank M, Frank N, Coroneo M, Cursiefen C, Notara M. Consecutive dosing of UVB irradiation induces loss of ABCB5 expression and activation of EMT and fibrosis proteins in limbal epithelial cells similar to pterygium epithelium. Stem Cell Res 2022; 64:102936. [PMID: 36242878 PMCID: PMC9582195 DOI: 10.1016/j.scr.2022.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Pterygium pathogenesis is often attributed to a population of altered limbal stem cells, which initiate corneal invasion and drive the hyperproliferation and fibrosis associated with the disease. These cells are thought to undergo epithelial to mesenchymal transition (EMT) and to contribute to subepithelial stromal fibrosis. In this study, the presence of the novel limbal stem cell marker ABCB5 in clusters of basal epithelial pterygium cells co-expressing with P63α and P40 is reported. ABCB5-positive pterygium cells also express EMT-associated fibrosis markers including vimentin and α-SMA while their β-catenin expression is reduced. By using a novel in vitro model of two-dose UV-induced EMT activation on limbal epithelial cells, we could observe the dysregulation of EMT-related proteins including an increase of vimentin and α-SMA as well as downregulation of β-catenin in epithelial cells correlating to downregulation of ABCB5. The sequential irradiation of limbal fibroblasts also induced an increase in vimentin and α-SMA. Taken together, these data demonstrate for the first time the expression of ABCB5 in pterygium stem cell activity and EMT-related events while the involvement of limbal stem cells in pterygium pathogenesis is exhibited via sequential irradiation of limbal epithelial cells. The later in vitro approach can be used to further study the involvement of limbal epithelium UV-induced EMT in pterygium pathogenesis and help identify novel treatments against pterygium growth and recurrence.
Collapse
Affiliation(s)
- M. Domdey
- Dept. of Ophthalmology, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital, Cologne, Germany
| | - M.A. Kluth
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany,RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - C. Maßlo
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany,RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - C. Ganss
- TICEBA GmbH, Im Neuenheimer Feld 517, Heidelberg, Germany,RHEACELL GmbH & Co. KG, Im Neuenheimer Feld 517, Heidelberg, Germany
| | - M.H. Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,School of Medical Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - N.Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA,Department of Medicine, VA Boston Healthcare System, Boston, MA, USA,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - M.T. Coroneo
- Department of Ophthalmology, University of New South Wales, Prince of Wales Hospital, Sydney, Australia,Ophthalmic Surgeons, Sydney, Australia,East Sydney Private Hospital, Sydney, Australia,Look for Life Foundation, Sydney, Australia
| | - C. Cursiefen
- Dept. of Ophthalmology, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital, Cologne, Germany,Institute for Genome Stability in Ageing and Disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany,Center for Molecular Medicine Cologne (CMMK), University of Cologne, Germany
| | - M. Notara
- Dept. of Ophthalmology, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital, Cologne, Germany,Institute for Genome Stability in Ageing and Disease, CECAD Research Center, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany,Center for Molecular Medicine Cologne (CMMK), University of Cologne, Germany,Corresponding author at: Dept. of Ophthalmology, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany.
| |
Collapse
|
23
|
Hou W, Xu D, Wang L, Chen Y, Chen Z, Zhou C, Chen Y. Plastic structures for diverse substrates: A revisit of human
ABC
transporters. Proteins 2022; 90:1749-1765. [DOI: 10.1002/prot.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Wen‐Tao Hou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Da Xu
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Liang Wang
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yu Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Zhi‐Peng Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Cong‐Zhao Zhou
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| | - Yuxing Chen
- School of Life Sciences University of Science and Technology of China Hefei People's Republic of China
| |
Collapse
|
24
|
Chen L, Yang F, Chen S, Tai J. Mechanisms on chemotherapy resistance of colorectal cancer stem cells and research progress of reverse transformation: A mini-review. Front Med (Lausanne) 2022; 9:995882. [PMID: 36172536 PMCID: PMC9510709 DOI: 10.3389/fmed.2022.995882] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor recurrence and chemotherapy resistance are mainly responsible for poor prognosis in colorectal cancer (CRC) patients. Cancer stem cell (CSC) has been identified in many solid tumors, including CRC. Additionally, CSC cannot be completely killed during chemotherapy and develops resistance to chemotherapeutic drugs, which is the main reason for tumor recurrence. This study reviews the main mechanisms of CSC chemotherapy resistance in CRC, including activation of DNA damage checkpoints, epithelial-mesenchymal transition (EMT), inhibition of the overexpression of antiapoptotic regulatory factors, overexpression of ATP-binding cassette (ABC) transporters, maintenance of reactive oxygen species (ROS) levels, and the dormant state of CSC. Advances in research to reverse chemotherapy resistance are also discussed. Our study can provide the promising potential for eliminating CSC and preventing tumor progression for CRC treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, First Hospital of Jilin University, Changchun, China
| | - Si Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, First Hospital of Jilin University, Changchun, China
- *Correspondence: Jiandong Tai
| |
Collapse
|
25
|
Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:850-872. [PMID: 36627897 PMCID: PMC9771762 DOI: 10.20517/cdr.2022.20] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 01/13/2023]
Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their close relationship with the tumor microenvironment creates greater complexity in developing novel treatment strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. Several studies have identified promising strategies to target CSCs. These emerging strategies may help target CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and apoptosis resistance mechanisms and how to target CSCs.
Collapse
Affiliation(s)
- Ahmad R. Safa
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
26
|
Duvivier L, Gillet JP. Deciphering the roles of ABCB5 in normal and cancer cells. Trends Cancer 2022; 8:795-798. [PMID: 35907754 DOI: 10.1016/j.trecan.2022.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/25/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022]
Abstract
ABCB5 encodes a full transporter (ABCB5FL) and a half transporter (ABCB5β), which is unique in the ATP binding cassette (ABC) transporter superfamily. We discuss the roles of both isoforms in undifferentiated slow-cycling cells, multidrug resistance, and tumorigenesis, and their regulation pathways.
Collapse
Affiliation(s)
- Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, Faculty of Medicine, University of Namur, Namur, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, Faculty of Medicine, University of Namur, Namur, Belgium.
| |
Collapse
|
27
|
Clinical risk scores for stroke correlate with molecular signatures of vulnerability in symptomatic carotid patients. iScience 2022; 25:104219. [PMID: 35494231 PMCID: PMC9046225 DOI: 10.1016/j.isci.2022.104219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
Unstable carotid stenosis is an important cause of ischemic stroke, yet the basis of disease pathophysiology remains largely unknown. We hypothesized that integrated analyses of symptomatic carotid stenosis patients at increased stroke risk stratified by clinical scores, CAR and ABCD2, with transcriptomic and clinical data could improve identification of molecular pathways and targets for instability. We show that high CAR score reflects plaque instability processes related to intra-plaque hemorrhage, angiogenesis, inflammation, and foam cell differentiation, whereas ABCD2 associates with neutrophil-mediated immunity, foam cell differentiation, cholesterol transport, and coagulation. Repressed processes in plaques from high-risk patients were ossification, chondrocyte differentiation, SMC migration, and ECM organization. ABCB5 gene was found as the top upregulated in high-risk patient’s plaques, localized to macrophages in areas with neovascularization and intra-plaque hemorrhage. The link between ABCB5 and intra-plaque hemorrhage suggests its key role for plaque instability that warrants further exploration.
We integrated stroke risk in carotid stenosis patients with plaque transcriptomics High CAR and ABCD2 scores reflect plaque instability processes and hemorrhage ABCB5 is upregulated in high-risk plaques, macrophages, and around neovessels CAR and ABCD2 capture vulnerable plaque features and improve risk stratification
Collapse
|
28
|
Wang H, Zhang K, Wu L, Qin Q, He Y. Prediction of Pathogenic Factors in Dysbiotic Gut Microbiomes of Colorectal Cancer Patients Using Reverse Microbiomics. Front Oncol 2022; 12:882874. [PMID: 35574378 PMCID: PMC9091335 DOI: 10.3389/fonc.2022.882874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Gut microbiome plays a crucial role in the formation and progression of colorectal cancer (CRC). To better identify the underlying gene-level pathogenic mechanisms of microbiome-associated CRC, we applied our newly developed Reverse Microbiomics (RM) to predict potential pathogenic factors using the data of microbiomes in CRC patients. Results Our literature search first identified 40 bacterial species enriched and 23 species depleted in the guts of CRC patients. These bacteria were systematically modeled and analyzed using the NCBI Taxonomy ontology. Ten species, including 6 enriched species (e.g., Bacteroides fragilis, Fusobacterium nucleatum and Streptococcus equinus) and 4 depleted species (e.g., Bacteroides uniformis and Streptococcus thermophilus) were chosen for follow-up comparative genomics analysis. Vaxign was used to comparatively analyze 47 genome sequences of these ten species. In total 18 autoantigens were predicted to contribute to CRC formation, six of which were reported with experimental evidence to be correlated with drug resistance and/or cell invasiveness of CRC. Interestingly, four human homology proteins (EDK89078.1, EDK87700.1, EDK89777.1, and EDK89145.1) are conserved among all enriched strains. Furthermore, we predicted 76 potential virulence factors without homology to human proteins, including two riboflavin synthase proteins, three ATP-binding cassettes (ABC) transporter protein family proteins, and 12 outer membrane proteins (OMPs). Riboflavin synthase is present in all the enriched strains but not in depleted species. The critical role of riboflavin synthase in CRC development was further identified from its hub role in our STRING-based protein-protein interaction (PPI) network analysis and from the finding of the riboflavin metabolism as the most significantly enriched pathway in our KEGG pathway analysis. A novel model of the CRC pathogenesis involving riboflavin synthase and other related proteins including TpiA and GrxC was further proposed. Conclusions The RM strategy was used to predict 18 autoantigens and 76 potential virulence factors from CRC-associated microbiome data. In addition to many of these autoantigens and virulence factors experimentally verified as reported in the literature, our study predicted many new pathogenetic factors and developed a new model of CRC pathogenesis involving the riboflavin synthase from the enriched colorectal bacteria and other associated proteins.
Collapse
Affiliation(s)
- Haihe Wang
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Kaibo Zhang
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Lin Wu
- Center of Computer Experiment, Lishui University, Lishui, China
| | - Qian Qin
- Department of Immunology and Pathogen Biology, Lishui University, Lishui, China
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, United States.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States.,Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States.,Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
30
|
Lin LH, Chou CH, Cheng HW, Chang KW, Liu CJ. Precise Identification of Recurrent Somatic Mutations in Oral Cancer Through Whole-Exome Sequencing Using Multiple Mutation Calling Pipelines. Front Oncol 2021; 11:741626. [PMID: 34912705 PMCID: PMC8666431 DOI: 10.3389/fonc.2021.741626] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/11/2021] [Indexed: 01/18/2023] Open
Abstract
Understanding the genomic alterations in oral carcinogenesis remains crucial for the appropriate diagnosis and treatment of oral squamous cell carcinoma (OSCC). To unveil the mutational spectrum, in this study, we conducted whole-exome sequencing (WES), using six mutation calling pipelines and multiple filtering criteria applied to 50 paired OSCC samples. The tumor mutation burden extracted from the data set of somatic variations was significantly associated with age, tumor staging, and survival. Several genes (MUC16, MUC19, KMT2D, TTN, HERC2) with a high frequency of false positive mutations were identified. Moreover, known (TP53, FAT1, EPHA2, NOTCH1, CASP8, and PIK3CA) and novel (HYDIN, ALPK3, ASXL1, USP9X, SKOR2, CPLANE1, STARD9, and NSD2) genes have been found to be significantly and frequently mutated in OSCC. Further analysis of gene alteration status with clinical parameters revealed that canonical pathways, including clathrin-mediated endocytotic signaling, NFκB signaling, PEDF signaling, and calcium signaling were associated with OSCC prognosis. Defining a catalog of targetable genomic alterations showed that 58% of the tumors carried at least one aberrant event that may potentially be targeted by approved therapeutic agents. We found molecular OSCC subgroups which were correlated with etiology and prognosis while defining the landscape of major altered events in the coding regions of OSCC genomes. These findings provide information that will be helpful in the design of clinical trials on targeted therapies and in the stratification of patients with OSCC according to therapeutic efficacy.
Collapse
Affiliation(s)
- Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Wen Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chung-Ji Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Oral and Maxillofacial Surgery, Taipei MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
31
|
AXL Receptor in Cancer Metastasis and Drug Resistance: When Normal Functions Go Askew. Cancers (Basel) 2021; 13:cancers13194864. [PMID: 34638349 PMCID: PMC8507788 DOI: 10.3390/cancers13194864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary AXL is a member of the TAM (TYRO3, AXL, MER) family of receptor tyrosine kinases. In normal physiological conditions, AXL is involved in removing dead cells and their remains, and limiting the duration of immune responses. Both functions are utilized by cancers in the course of tumour progression. Cancer cells use the AXL pathway to detect toxic environments and to activate molecular mechanisms, thereby ensuring their survival or escape from the toxic zone. AXL is instrumental in controlling genetic programs of epithelial-mesenchymal and mesenchymal-epithelial transitions, enabling cancer cells to metastasize. Additionally, AXL signaling suppresses immune responses in tumour microenvironment and thereby helps cancer cells to evade immune surveillance. The broad role of AXL in tumour biology is the reason why its inhibition sensitizes tumours to a broad spectrum of anti-cancer drugs. In this review, we outline molecular mechanisms underlying AXL function in normal tissues, and discuss how these mechanisms are adopted by cancers to become metastatic and drug-resistant. Abstract The TAM proteins TYRO3, AXL, and MER are receptor tyrosine kinases implicated in the clearance of apoptotic debris and negative regulation of innate immune responses. AXL contributes to immunosuppression by terminating the Toll-like receptor signaling in dendritic cells, and suppressing natural killer cell activity. In recent years, AXL has been intensively studied in the context of cancer. Both molecules, the receptor, and its ligand GAS6, are commonly expressed in cancer cells, as well as stromal and infiltrating immune cells. In cancer cells, the activation of AXL signaling stimulates cell survival and increases migratory and invasive potential. In cells of the tumour microenvironment, AXL pathway potentiates immune evasion. AXL has been broadly implicated in the epithelial-mesenchymal plasticity of cancer cells, a key factor in drug resistance and metastasis. Several antibody-based and small molecule AXL inhibitors have been developed and used in preclinical studies. AXL inhibition in various mouse cancer models reduced metastatic spread and improved the survival of the animals. AXL inhibitors are currently being tested in several clinical trials as monotherapy or in combination with other drugs. Here, we give a brief overview of AXL structure and regulation and discuss the normal physiological functions of TAM receptors, focusing on AXL. We present a theory of how epithelial cancers exploit AXL signaling to resist cytotoxic insults, in order to disseminate and relapse.
Collapse
|
32
|
Zschoche M, Skosyrski S, Babst N, Ranjbar M, Rommel F, Kurz M, Tura A, Joachim SC, Kociok N, Kakkassery V. Islet Co-Expression of CD133 and ABCB5 in Human Retinoblastoma Specimens. Klin Monbl Augenheilkd 2021. [PMID: 34571550 DOI: 10.1055/a-1525-2588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The role of CD133 und ABCB5 is discussed in treatment resistance in several types of cancer. The objective of this study was to evaluate whether CD133+/ABCB5+ colocalization differs in untreated, in beam radiation treated, and in chemotherapy treated retinoblastoma specimens. Additionally, CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 gene expression was analyzed in WERI-RB1 (WERI RB1) and etoposide-resistant WERI RB1 subclones (WERI ETOR). METHODS Active human untreated retinoblastoma specimens (n = 12), active human retinoblastoma specimens pretreated with beam radiation before enucleation (n = 8), and active human retinoblastoma specimens pretreated with chemotherapy before enucleation (n = 7) were investigated for localization and expression of CD133 and ABCB5 by immunohistochemistry. Only specimens with IIRC D, but not E, were included in this study. Furthermore, WERI RB1 and WERI ETOR cell lines were analyzed for CD133, ABCB5, sphingosine kinase 1, and sphingosine kinase 2 by the real-time polymerase chain reaction (RT-PCR). RESULTS Immunohistochemical analysis revealed the same amount of CD133+/ABCB5+ colocalization islets in untreated and treated human retinoblastoma specimens. Quantitative RT-PCR analysis showed a statistically significant upregulation of CD133 in WERI ETOR (p = 0.002). No ABCB5 expression was detected in WERI RB1 and WERI ETOR. On the other hand, SPHK1 (p = 0.0027) and SPHK2 (p = 0.017) showed significant downregulation in WERI ETOR compared to WERI RB1. CONCLUSIONS CD133+/ABCB5+ co-localization islets were noted in untreated and treated human retinoblastoma specimens. Therefore, we assume that CD133+/ABCB5+ islets might play a role in retinoblastoma genesis, but not in retinoblastoma treatment resistance.
Collapse
Affiliation(s)
- Marco Zschoche
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Sergej Skosyrski
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Neele Babst
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Felix Rommel
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Maximilian Kurz
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | | |
Collapse
|
33
|
Frank MH, Wilson BJ, Gold JS, Frank NY. Clinical Implications of Colorectal Cancer Stem Cells in the Age of Single-Cell Omics and Targeted Therapies. Gastroenterology 2021; 160:1947-1960. [PMID: 33617889 PMCID: PMC8215897 DOI: 10.1053/j.gastro.2020.12.080] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The cancer stem cell (CSC) concept emerged from the recognition of inherent tumor heterogeneity and suggests that within a given tumor, in analogy to normal tissues, there exists a cellular hierarchy composed of a minority of more primitive cells with enhanced longevity (ie, CSCs) that give rise to shorter-lived, more differentiated cells (ie, cancer bulk populations), which on their own are not capable of tumor perpetuation. CSCs can be responsible for cancer therapeutic resistance to conventional, targeted, and immunotherapeutic treatment modalities, and for cancer progression through CSC-intrinsic molecular mechanisms. The existence of CSCs in colorectal cancer (CRC) was first established through demonstration of enhanced clonogenicity and tumor-forming capacity of this cell subset in human-to-mouse tumor xenotransplantation experiments and subsequently confirmed through lineage-tracing studies in mice. Surface markers for CRC CSC identification and their prospective isolation are now established. Therefore, the application of single-cell omics technologies to CSC characterization, including whole-genome sequencing, RNA sequencing, and epigenetic analyses, opens unprecedented opportunities to discover novel targetable molecular pathways and hence to develop novel strategies for CRC eradication. We review recent advances in this field and discuss the potential implications of next-generation CSC analyses for currently approved and experimental targeted CRC therapies.
Collapse
Affiliation(s)
- Markus H. Frank
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Department of Dermatology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Brian J. Wilson
- Transplant Research Program, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts;,Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Jason S. Gold
- Department of Surgery, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Department of Surgery, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natasha Y. Frank
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts;,Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;,Division of Genetics, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Koshkin SA, Anatskaya OV, Vinogradov AE, Uversky VN, Dayhoff GW, Bystriakova MA, Pospelov VA, Tolkunova EN. Isolation and Characterization of Human Colon Adenocarcinoma Stem-Like Cells Based on the Endogenous Expression of the Stem Markers. Int J Mol Sci 2021; 22:4682. [PMID: 33925224 PMCID: PMC8124683 DOI: 10.3390/ijms22094682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.
Collapse
Affiliation(s)
- Sergei A. Koshkin
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 1015 Walnut Street, Ste. 1024, Philadelphia, PA 19107, USA
| | - Olga V. Anatskaya
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Alexander E. Vinogradov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Guy W. Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Margarita A. Bystriakova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Valery A. Pospelov
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| | - Elena N. Tolkunova
- Institute of Cytology of the Russian Academy of Science, 194064 St-Petersburg, Russia; (M.A.B.); (V.A.P.)
| |
Collapse
|
35
|
Castoldi DF, Malafaia O, Santos-Neto PHD, Postiglioni TV, Vasconcelos C, Bremer FP, Czeczko LEA, Gasser M, Waaga-Gasser AM, Ribas CAPM. IS THERE A CLINICAL PATHOLOGICAL CORRELATION OF COLORECTAL ADENOCARCINOMA WITH THE IMMUNOHISTOCHEMICAL EXPRESSION OF OPN AND ABCB5? ACTA ACUST UNITED AC 2021; 33:e1569. [PMID: 33759959 PMCID: PMC7983527 DOI: 10.1590/0102-672020200004e1569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Background: Studies with biomarkers in TMA (tissue microarray) have been showing important results regarding its expression in colon cancer.
Aim: Correlate the expression profile of the OPN and ABCB5 biomarkers with the epidemiological and clinicopathological characteristics of the patients, the impact on the progression of the disease and the death.
Method: A total of 122 CRC patients who underwent surgical resection, immunomarking and their relationship with progression and death events were evaluated.
Result: The average age was 61.9 (±13.4) years. The cases were distributed in 42 (35.9%) in the ascending/transverse colon, 31 (26.5%) in the sigmoid, 27 in the rectum (23.1%), 17 (14.5%) in the descending colon. Most patients had advanced disease (stages III and IV) in 74 cases (60.9%). There was a predominance of moderately differentiated tumors in 101 samples (82.8%); despite this, the poorly differentiated subtype proved to be an independent risk factor for death in 70%. Metastasis to the liver proved to be an independent risk factor for death in 75% (18/24), as well as patients with primary rectal tumors in 81.5% (22/27).
Conclusion: The immunohistochemical expression of the OPN and ABCB5 markers was not associated with epidemiological and clinicopathological characteristics. Regarding the progression of disease and death, it was not possible to observe a correspondence relationship with the evaluated markers.
Collapse
Affiliation(s)
- Diogo Francesco Castoldi
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | - Osvaldo Malafaia
- Medical Research Institute, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Department of Surgery, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil.,Evangelical Mackenzie University Hospital, Curitiba, Paraná, Brazil
| | | | | | - Cecilia Vasconcelos
- Department of Hematology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | - Fabiola Past Bremer
- Department of Oncology, Mackenzie Evangelical School of Paraná, Curitiba, PR, Brazil
| | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
36
|
Tangella LP, Arooj M, Deplazes E, Gray ES, Mancera RL. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Comput Struct Biotechnol J 2020; 19:691-704. [PMID: 33510870 PMCID: PMC7817430 DOI: 10.1016/j.csbj.2020.12.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/24/2022] Open
Abstract
The human ATP-binding cassette B5 (ABCB5) transporter, a member of the ABC transporter superfamily, is linked to chemoresistance in tumour cells by drug effluxion. However, little is known about its structure and drug-binding sites. In this study, we generated an atomistic model of the full-length human ABCB5 transporter with the highest quality using the X-ray crystal structure of mouse ABCB1 (Pgp1), a close homologue of ABCB5 and a well-studied member of the ABC family. Molecular dynamics simulations were used to validate the atomistic model of ABCB5 and characterise its structural properties in model cell membranes. Molecular docking simulations of known ABCB5 substrates such as taxanes, anthracyclines, camptothecin and etoposide were then used to identify at least three putative binding sites for chemotherapeutic drugs transported by ABCB5. The location of these three binding sites is predicted to overlap with the corresponding binding sites in Pgp1. These findings will serve as the basis for future in vitro studies to validate the nature of the identified substrate-binding sites in the full-length ABCB5 transporter.
Collapse
Affiliation(s)
- Lokeswari P Tangella
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Mahreen Arooj
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.,School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Ricardo L Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute and Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
37
|
Hlaváč V, Václavíková R, Brynychová V, Koževnikovová R, Kopečková K, Vrána D, Gatěk J, Souček P. Role of Genetic Variation in ABC Transporters in Breast Cancer Prognosis and Therapy Response. Int J Mol Sci 2020; 21:ijms21249556. [PMID: 33334016 PMCID: PMC7765380 DOI: 10.3390/ijms21249556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women in the world. The role of germline genetic variability in ATP-binding cassette (ABC) transporters in cancer chemoresistance and prognosis still needs to be elucidated. We used next-generation sequencing to assess associations of germline variants in coding and regulatory sequences of all human ABC genes with response of the patients to the neoadjuvant cytotoxic chemotherapy and disease-free survival (n = 105). A total of 43 prioritized variants associating with response or survival in the above testing phase were then analyzed by allelic discrimination in the large validation set (n = 802). Variants in ABCA4, ABCA9, ABCA12, ABCB5, ABCC5, ABCC8, ABCC11, and ABCD4 associated with response and variants in ABCA7, ABCA13, ABCC4, and ABCG8 with survival of the patients. No association passed a false discovery rate test, however, the rs17822931 (Gly180Arg) in ABCC11, associating with response, and the synonymous rs17548783 in ABCA13 (survival) have a strong support in the literature and are, thus, interesting for further research. Although replicated associations have not reached robust statistical significance, the role of ABC transporters in breast cancer should not be ruled out. Future research and careful validation of findings will be essential for assessment of genetic variation which was not in the focus of this study, e.g., non-coding sequences, copy numbers, and structural variations together with somatic mutations.
Collapse
Affiliation(s)
- Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | - Veronika Brynychová
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
| | | | - Katerina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - David Vrána
- Department of Oncology, Medical School and Teaching Hospital, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Jiří Gatěk
- Department of Surgery, EUC Hospital and University of Tomas Bata in Zlin, 760 01 Zlin, Czech Republic;
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, 100 42 Prague, Czech Republic; (V.H.); (R.V.); (V.B.)
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 323 00 Pilsen, Czech Republic
- Correspondence: ; Tel.: +420-267-082-711
| |
Collapse
|
38
|
Karas Zella MA, Sebastião APM, Collaço LM, Ogata DC, Cecchetti G, Bartolomei IJP, Waaga-Gasser AM, Ribas CAPM. Prognostic significance of CD133 and ABCB5 expression in papillary thyroid carcinoma. Eur J Histochem 2020; 64. [PMID: 33207860 PMCID: PMC7674992 DOI: 10.4081/ejh.2020.3143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023] Open
Abstract
Expression of CD133 and ABCB5 is associated with tumor aggressiveness, but evidence in papillary thyroid cancer (PTC) is lacking. We correlated CD133 and ABCB5 expression with pathological characteristics and factors of worse prognosis in PTC. Samples of 119 PTCs and 40 controls (goiters) were distributed in 8 tissue microarray blocks and evaluated with immunohistochemistry using anti-CD133 and anti-ABCB5 antibodies. The expression of each marker alone and combined was analyzed against pathological characteristics and factors of worse prognosis in PTC. Expression of CD133 alone (19 tumors, 16.0%) was more frequent in patients with versus without lymph node metastases (P=0.024). Expression of ABCB5 alone (n=95, 83.3%) was associated with larger tumor size (P=0.045). CD133-ABCB5 coexpression was not associated with pathological characteristics or factors of worse prognosis in PTC.
Collapse
Affiliation(s)
| | | | | | - Daniel Cury Ogata
- Department of Pathology, Universidade do Vale do Itajai, Santa Catarina.
| | | | | | | | | |
Collapse
|
39
|
Kadioglu O, Saeed MEM, Munder M, Spuller A, Greten HJ, Efferth T. Effect of ABC transporter expression and mutational status on survival rates of cancer patients. Biomed Pharmacother 2020; 131:110718. [PMID: 32932043 DOI: 10.1016/j.biopha.2020.110718] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
ATP-binding cassette (ABC) transporters mediate multidrug resistance in cancer. In contrast to DNA single nucleotide polymorphisms in normal tissues, the role of mutations in tumors is unknown. Furthermore, the significance of their expression for prediction of chemoresistance and survival prognosis is still under debate. We investigated 18 tumors by RNA-sequencing. The mutation rate varied from 27,507 to 300885. In ABCB1, three hotspots with novel mutations were in transmembrane domains 3, 8, and 9. We also mined the cBioPortal database with 11,814 patients from 23 different tumor entities. We performed Kaplan-Meier survival analyses to investigate the effect of ABC transporter expression on survival rates of cancer patients. Novel mutations were also found in ABCA2, ABCA3, ABCB2, ABCB5, ABCC1-6, and ABCG2. Mining the cBioPortal database with 11,814 patients from 23 different tumor entities validated our results. Missense and in-frame mutations led to altered binding of anticancer drugs in molecular docking approaches. The ABCB1 nonsense mutation Q856* led to a truncated P-glycoprotein, which may sensitize tumors to anticancer drugs. The search for ABC transporter nonsense mutations represents a novel approach for precision medicine.. Low ABCB1 mRNA expression correlated with significantly longer survival in ovarian or kidney cancer and thymoma. In cancers of breast, kidney or lung, ABC transporter expression correlated with different tumor stages and human populations as further parameters to refine strategies for more individualized chemotherapy.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Markus Munder
- Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Henry Johannes Greten
- Abel Salazar Biomedical Sciences Institute, University of Porto, Portugal; Heidelberg School of Chinese Medicine, Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
40
|
Vaghari-Tabari M, Majidinia M, Moein S, Qujeq D, Asemi Z, Alemi F, Mohamadzadeh R, Targhazeh N, Safa A, Yousefi B. MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sci 2020; 259:118255. [PMID: 32818543 DOI: 10.1016/j.lfs.2020.118255] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies with a significant mortality rate. Despite the great advances in cancer treatment in the last few decades, effective treatment of CRC is still under challenge. One of the main problems associated with CRC treatment is the resistance of cancer cells to chemotherapy drugs. METHODS Many studies have been carried out to identify CRC chemoresistance mechanisms, and shed light on the role of ATP-binding cassette transporters (ABC transporters), enzymes as thymidylate synthase, some signaling pathways, and cancer stem cells (CSC) in chemoresistance and failed CRC chemotherapies. Other studies have also been recently carried out to find solutions to overcome chemoresistance. Some of these studies have identified the role of miRNAs in chemoresistance of the CRC cells and the effective use of these micro-molecules to CRC treatment. RESULTS Considering the results of these studies, more focus on miRNAs likely leads to a proper solution to overcome CRC chemoresistance. CONCLUSION The current study has reviewed the related literature while discussing the efficacy of miRNAs as potential clinical tools for overcoming CRC chemoresistance and reviewing the most important chemoresistance mechanisms in CRC cells.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Soheila Moein
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohamadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nilofar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
41
|
Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). JOURNAL OF TRANSLATIONAL SCIENCE 2020; 6:341. [PMID: 35330670 PMCID: PMC8941648 DOI: 10.15761/jts.1000341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Human cancers emerge from cancer stem cells (CSCs), which are resistant to cancer chemotherapeutic agents, radiation, and cell death. Moreover, autophagy provides the cytoprotective effect which contributes to drug resistance in these cells. Furthermore, much evidence shows that CSCs cause tumor initiation, progression, metastasis, and cancer recurrence. Various signaling pathways including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin as well as the CSC markers maintain CSC properties. Several mechanisms including overexpression of ABC multidrug resistance transporters, a deficiency in mitochondrial-mediated apoptosis, upregulation of c-FLIP, overexpression of anti-apoptotic Bcl-2 family members and inhibitors of apoptosis proteins (IAPs), and PI3K/AKT signaling contribute to enhancing resistance to chemotherapeutic drugs and cell death induction in CSCs in various cancers. Studying such pathways may help provide detailed understanding of CSC mechanisms of resistance to chemotherapeutic agents and apoptosis and may lead to the development of effective therapeutics to eradicate CSCs.
Collapse
Affiliation(s)
- Ahmad R Safa
- Correspondence to: Ahmad R. Safa, Department of Pharmacology and Toxicology, 635 Barnhill, Dr. MS A416, Indiana University School of Medicine, Indianapolis, IN, USA,
| |
Collapse
|
42
|
Lee CAA, Banerjee P, Wilson BJ, Wu S, Guo Q, Berg G, Karpova S, Mishra A, Lian JW, Tran J, Emmerich M, Murphy GF, Frank MH, Frank NY. Targeting the ABC transporter ABCB5 sensitizes glioblastoma to temozolomide-induced apoptosis through a cell-cycle checkpoint regulation mechanism. J Biol Chem 2020; 295:7774-7788. [PMID: 32317280 PMCID: PMC7261782 DOI: 10.1074/jbc.ra120.013778] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/10/2020] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant brain tumor with a poor prognosis resulting from tumor resistance to anticancer therapy and a high recurrence rate. Compelling evidence suggests that this is driven by subpopulations of cancer stem cells (CSCs) with tumor-initiating potential. ABC subfamily B member 5 (ABCB5) has been identified as a molecular marker for distinct subsets of chemoresistant tumor-initiating cell populations in diverse human malignancies. In the current study, we examined the potential role of ABCB5 in growth and chemoresistance of GBM. We found that ABCB5 is expressed in primary GBM tumors, in which its expression was significantly correlated with the CSC marker protein CD133 and with overall poor survival. Moreover, ABCB5 was also expressed by CD133-positive CSCs in the established human U-87 MG, LN-18, and LN-229 GBM cell lines. Antibody- or shRNA-mediated functional ABCB5 blockade inhibited proliferation and survival of GBM cells and sensitized them to temozolomide (TMZ)-induced apoptosis in vitro Likewise, in in vivo human GBM xenograft experiments with immunodeficient mice, mAb treatment inhibited growth of mutant TP53, WT PTEN LN-229 tumors, and sensitized LN-229 tumors to TMZ therapy. Mechanistically, we demonstrate that ABCB5 blockade inhibits TMZ-induced G2/M arrest and augments TMZ-mediated cell death. Our results identify ABCB5 as a GBM chemoresistance marker and point to the potential utility of targeting ABCB5 to improve current GBM therapies.
Collapse
Affiliation(s)
- Catherine A A Lee
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Pallavi Banerjee
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Brian J Wilson
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| | - Siyuan Wu
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qin Guo
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Gretchen Berg
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Svetlana Karpova
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
| | - Ananda Mishra
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - John W Lian
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Johnathan Tran
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Max Emmerich
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - George F Murphy
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia 6027, Australia
| | - Natasha Y Frank
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Department of Medicine, Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02132
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
43
|
LINC00963 Promotes Cancer Stemness, Metastasis, and Drug Resistance in Head and Neck Carcinomas via ABCB5 Regulation. Cancers (Basel) 2020; 12:cancers12051073. [PMID: 32357409 PMCID: PMC7281373 DOI: 10.3390/cancers12051073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulating studies have indicated that long non-coding RNAs (lncRNAs) participate in the regulation of cancer stem cells (CSCs), which are crucial in tumor initiation, metastasis, relapse, and therapy resistance. In the current study, RT-PCR analysis was employed to evaluate the expression of LINC00963 in tumor tissues and oral CSCs. Stemness phenotypes and the expression of CSCs markers in oral cancer cells transfected with sh-LINC00963 were examined. Our results showed that the expression of the lncRNA LINC00963 was up-regulated in oral cancer tissues and CSCs. We found that the downregulation of LINC00963 inhibited CSC hallmarks, such as migration, invasion and colony formation capacity. Moreover, suppression of LINC00963 reduced the activity of stemness marker ALDH1, the percentage of self-renewal, chemoresistance and the expression of multidrug-resistance transporter ABCB5. Most importantly, we demonstrated that knockdown of LINC00963 decreased self-renewal, invasion and colony formation ability via ABCB5. Analysis of TCGA (the Cancer Genome Atlas) datasets suggested that the level of LINC00963 was positively correlated with the expression of the cancer stemness markers (Sox2 and CD44) and drug resistance markers (ABCG2 and ABCB5). Altogether, our results showed that suppression of LINC00963 may be beneficial to inhibit chemoresistance and cancer relapse in oral cancer patients.
Collapse
|
44
|
Yaremenko IA, Coghi P, Prommana P, Qiu C, Radulov PS, Qu Y, Belyakova YY, Zanforlin E, Kokorekin VA, Wu YYJ, Fleury F, Uthaipibull C, Wong VKW, Terent'ev AO. Synthetic Peroxides Promote Apoptosis of Cancer Cells by Inhibiting P‐Glycoprotein ABCB5. ChemMedChem 2020; 15:1118-1127. [DOI: 10.1002/cmdc.202000042] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Ivan A. Yaremenko
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Paolo Coghi
- School of PharmacyMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Parichat Prommana
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Congling Qiu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Peter S. Radulov
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuanqing Qu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Yulia Yu. Belyakova
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padova via Marzolo 5 35131 Padova Italy
| | - Vladimir A. Kokorekin
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Yuki Yu Jun Wu
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Fabrice Fleury
- Mechanism and Regulation of DNA Repair Team UFIP CNRS UMR 6286Université de Nantes 2 chemin de la Houssinière 44322 Nantes France
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA) 113 Thailand Science Park Pathum Thani 12120 Thailand
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and Technology Avenida Wai Long Taipa, Macau China
| | - Alexander O. Terent'ev
- N.D. Zelinsky Institute of Organic ChemistryRussian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
45
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
ATP Binding Cassette (ABC) transporters, widely studied in cancer for their role in drug resistance, have been more recently also considered for their contribution to cancer cell biology. To date, many data provide evidences for their potential role in all the phases of cancer development from cancer susceptibility, tumor initiation, tumor progression and metastasis. Although many evidences are based on correlative analyses, data describing a direct or indirect role of ABC transporters in cancer biology are increasing. Overall, current available information suggests a relevant molecular effector role of some ABC transporters in cancer invasion and metastasis as reported in experimental tumor models. From a therapeutic point of view, due to the physiological relevant roles that ABC transporters play in the organism, the capability to selectively inhibit the function or the expression of ABC transporters in cancer stem cells or other tumor cells, represents the main challenge for researcher scientists. A detailed and updated description of the current knowledge on the role of ABC transporters in cancer biology is provided.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
46
|
Garcia-Mayea Y, Mir C, Masson F, Paciucci R, LLeonart ME. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol 2020; 60:166-180. [PMID: 31369817 DOI: 10.1016/j.semcancer.2019.07.022] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
The acquisition of genetic alterations, clonal evolution, and the tumor microenvironment promote cancer progression, metastasis and therapy resistance. These events correspond to the establishment of the great phenotypic heterogeneity and plasticity of cancer cells that contribute to tumor progression and resistant disease. Targeting resistant cancers is a major challenge in oncology; however, the underlying processes are not yet fully understood. Even though current treatments can reduce tumor size and increase life expectancy, relapse and multidrug resistance (MDR) ultimately remain the second cause of death in developed countries. Recent evidence points toward stem-like phenotypes in cancer cells, promoted by cancer stem cells (CSCs), as the main culprit of cancer relapse, resistance (radiotherapy, hormone therapy, and/or chemotherapy) and metastasis. Many mechanisms have been proposed for CSC resistance, such as drug efflux through ABC transporters, overactivation of the DNA damage response (DDR), apoptosis evasion, prosurvival pathways activation, cell cycle promotion and/or cell metabolic alterations. Nonetheless, targeted therapy toward these specific CSC mechanisms is only partially effective to prevent or abolish resistance, suggesting underlying additional causes for CSC resilience. This article aims to provide an integrated picture of the MDR mechanisms that operate in CSCs' behavior and to propose a novel model of tumor evolution during chemotherapy. Targeting the pathways mentioned here might hold promise and reveal new strategies for future clinical therapeutic approaches.
Collapse
Affiliation(s)
- Y Garcia-Mayea
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - C Mir
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - F Masson
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - R Paciucci
- Clinical Biochemistry Group, Vall d'Hebron Hospital and Vall d´Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain
| | - M E LLeonart
- Biomedical Research in Cancer Stem Cells, Vall d´Hebron Research Institute (VHIR), Passeig Vall d´Hebron 119-129, 08035 Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Spain.
| |
Collapse
|
47
|
Zhu M, Jiang B, Yan D, Wang X, Ge H, Sun Y. Knockdown of TMEM45A overcomes multidrug resistance and epithelial-mesenchymal transition in human colorectal cancer cells through inhibition of TGF-β signalling pathway. Clin Exp Pharmacol Physiol 2019; 47:503-516. [PMID: 31788833 DOI: 10.1111/1440-1681.13220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC), a leading cause of cancer death, has recently been known as the most prevalent malignancy worldwide. Although chemotherapy is an important therapeutic option for CRC patients, multidrug resistance (MDR) still remains a major cause of chemotherapy failure. Transmembrane protein 45A (TMEM45A) has been found highly expressed in various cancers, and is also proposed as an interesting biomarker for chemoresistance. However, the association between TMEM45A and MDR in CRC remains unclear. This study aimed to investigate the key role of TMEM45A in CRC by knockdown of its expression in 5-FU-resistant CRC cells (HCT-8/5-FU and SW480/5-FU) and their parental cells (HCT-8 and SW480). Data showed that TMEM45A was significantly up-regulated in HCT-8/5-FU and SW480/5-FU cells in comparison with their parental HCT-8 and SW480 cells. Knockdown of TMEM45A enhanced 5-FU sensitivity and 5-FU-induced apoptosis in HCT-8/5-FU and SW480/5-FU cells. It was also found that inhibition of TMEM45A increased the intracellular accumulation of Rhodamine-123 and down-regulated the expression of MDR1 in HCT-8/5-FU and SW480/5-FU cells. In addition, knockdown of TMEM45A suppressed migration and invasion of HCT-8/5-FU and SW480/5-FU cells. Furthermore, knockdown of TMEM45A not only attenuated MDR-enhanced epithelial-mesenchymal transition (EMT), but also suppressed MDR-enhanced activation of the TGF-β signalling pathway in HCT-8/5-FU and SW480/5-FU cells. Taken together, our study suggests that knockdown of TMEM45A can effectively overcome MDR and inhibit EMT via suppression of the TGF-β signalling pathway in human CRC cells, and that targeting TMEM45A will be a potential strategy in the treatment of MDR in CRC.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Gastrointestinal Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dongsheng Yan
- Department of Gastrointestinal Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Xiaopeng Wang
- Department of Gastrointestinal Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Hengfa Ge
- Department of Gastrointestinal Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yueming Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Zhang H, Xie T, Shui Y, Qi Y. Knockdown of PLCB2 expression reduces melanoma cell viability and promotes melanoma cell apoptosis by altering Ras/Raf/MAPK signals. Mol Med Rep 2019; 21:420-428. [PMID: 31746389 DOI: 10.3892/mmr.2019.10798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/29/2019] [Indexed: 11/05/2022] Open
Abstract
Malignant melanoma has the highest malignancy rate among all skin cancer and is characterized by an insidious onset, high invasion and poor patient prognosis. Yet, the mechanisms involved remain unclear and warrant further investigation. Based on bioinformatic analysis, phospholipase C β2 (PLCB2) has been found to be correlated with melanoma growth. The present study was the first to demonstrate that PLCB2 is a key factor affecting melanoma proliferation and apoptosis. Here, microarray datasets from the publicly available Gene Expression Omnibus (GEO) database were employed, and gene set enrichment analysis (GSEA) was introduced to identify candidate transcription factors. PLCB2 was identified as a crucial gene in the protein‑protein interaction (PPI) network. The expression of PLCB2 mRNA in various cancer lines was analyzed by reverse transcription‑polymerase chain reaction (RT‑PCR). In addition, the proliferation ability and apoptosis rate in human melanoma cells overexpressing or not overexpressing PLCB2 were assessed using colony formation assay, flow cytometry and the Cell Counting Kit‑8 (CCK‑8) assay. Cell viability and apoptosis‑related factors, such as p53, Bcl‑2, Bax and caspase‑3 were significantly regulated. Knockdown of PLCB2 suppressed the activation of the Ras/Raf/MAPK signaling pathway. In conclusion, knockdown of PLCB2 suppressed cell viability and promoted cell apoptosis by activating the Ras/Raf/MAPK pathway. Thus, PLCB2 may utilized as a potential therapeutic target in patients with melanoma.
Collapse
Affiliation(s)
- Huahui Zhang
- Department of Plastic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang 310007, P.R. China
| | - Tao Xie
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yongjie Shui
- Department of Radiotherapy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
49
|
Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol 2019; 235:4153-4166. [PMID: 31647128 DOI: 10.1002/jcp.29337] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jaffar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Nie K, Shi L, Wen Y, Pan J, Li P, Zheng Z, Liu F. Identification of hub genes correlated with the pathogenesis and prognosis of gastric cancer via bioinformatics methods. Minerva Med 2019; 111:213-225. [PMID: 31638362 DOI: 10.23736/s0026-4806.19.06166-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the fourth most common cause of cancer-related deaths in the world and 5-year overall survival (OS) rate is less than 10%. So, it is urgent to identified novel diagnostic and prognostic biomarkers. METHODS Twelve GEO (gene expression omnibus) datasets were obtained from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between GC and normal tissues were screened and integrated using limma and RobustRankAggreg (RRA) packages in R software. Protein-protein interaction (PPI) network, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses for DEGs were conducted via STRING and DAVID, respectively. Moreover, Cox regression model was used to construct a gene prognosis signature. RESULTS Ten genes (COL1A1, CXCL8, COL3A1, SPP1, COL1A2, TIMP1, CXCL1, BGN, MMP3 and SERPINE1) were identified and might be highly related to GC. Further analysis showed high expression of CXCL8, COL3A1, CXCL1, MMP3 and SERPINE1, were significantly associated with late stage of GC. Lastly, we build a seven-gene prognosis signature (CYP19A1, SERPINE1, CGB5, CALCR, ASGR2, CYTL1 and ABCB5), which can give a good prediction of OS. CONCLUSIONS Our article screened out key genes highly associating with GC's developments and prognosis, and it is useful for researcher to further understand GC's molecular basis and direct the synthesis medicine of GC.
Collapse
Affiliation(s)
- Kechao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Laner Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi Wen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinglin Pan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhihua Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China -
| |
Collapse
|