1
|
Jia H, Wei J, Zheng W, Li Z. The dual role of autophagy in cancer stem cells: implications for tumor progression and therapy resistance. J Transl Med 2025; 23:583. [PMID: 40414839 DOI: 10.1186/s12967-025-06595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Cancer stem cells (CSCs) constitute a small yet crucial subgroup in tumors, known for their capacity to self-renew, differentiate, and promote tumor growth, metastasis, and resistance to therapy. These characteristics position CSCs as significant factors in tumor recurrence and unfavorable clinical results, emphasizing their role as targets for therapy. Autophagy, an evolutionarily preserved cellular mechanism for degradation and recycling, has a complex function in cancer by aiding cell survival during stress and preserving balance by eliminating damaged organelles and proteins. Although autophagy can hinder tumor growth by reducing genomic instability, it also aids tumor advancement, particularly in harsh microenvironments, highlighting its dual characteristics. Recent research has highlighted the complex interactions between autophagy and CSCs, showing that autophagy governs CSC maintenance, boosts survival, and aids in resistance to chemotherapy and radiotherapy. On the other hand, in specific situations, autophagy may restrict CSC growth by increasing differentiation or inducing cell death. These intricate interactions offer both obstacles and possibilities for therapeutic intervention. Pharmacological modulation of autophagy, via inhibitors like chloroquine or by enhancing autophagy when advantageous, has demonstrated potential in making CSCs more responsive to standard treatments. Nonetheless, applying these strategies in clinical settings necessitates a better understanding of context-dependent autophagy dynamics and the discovery of dependable biomarkers indicating autophagic activity in CSCs. Progressing in this area might unveil novel, accurate strategies to tackle therapy resistance, lessen tumor recurrence, and ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Haiqing Jia
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Jing Wei
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China
| | - Wei Zheng
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| | - Zhuo Li
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 xiaoheyan road, Shenyang, 110042, China.
| |
Collapse
|
2
|
Wang J, Fu SM, Zhou Y. Research progress on the autophagy gene ATG6 in planta. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025:112577. [PMID: 40412441 DOI: 10.1016/j.plantsci.2025.112577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Autophagy is a highly conserved intracellular degradation pathway in eukaryotes. Double-membrane autophagosomes engulf damaged organelles, misfolded proteins and pathogenic microorganisms and transport them to vacuoles (in yeast and plants) or lysosomes (in animals) for degradation to maintain cellular homeostasis. As a core regulatory component of class III PI3K-I and PI3K-II complexes, ATG6 is not only involved in autophagosome formation and vesicle trafficking, but also plays an important role in plant growth, development and stress responses. This paper reviews recent progress on the structural features, molecular functions and regulatory mechanisms of plant ATG6 in response to biotic and abiotic stresses, and discusses its potential application value in future stress-resistant plant breeding.
Collapse
Affiliation(s)
- Jiajun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Shi Min Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University/National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
3
|
Tai L, Zhu D, Tang P, Li J, Li J, Li P, Tao Z, Lei H, Miao K, Wang HX, Lin S, Zhang L, Dou M, Han Y, Shen HM, Deng C, Wang L, Di LJ. Reciprocal stabilization of CtBP and TRIM28 represses autophagy to promote metastasis. Nat Struct Mol Biol 2025:10.1038/s41594-025-01554-0. [PMID: 40374929 DOI: 10.1038/s41594-025-01554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2025] [Indexed: 05/18/2025]
Abstract
Deciphering the processes through which cancer cells overcome stress, escape a repressive microenvironment and metastasize remains a challenge. Autophagy has been demonstrated to regulate cancer metastasis and C-terminal binding protein (CtBP) has been previously implicated in promoting metastasis in breast cancer. Here we identify the formation of a complex between CtBP and tripartite-motif-containing protein 28 (TRIM28) in the nucleus. Interestingly, this complex regulates the stability of both proteins, as the removal of either partner leads to degradation of the other. Furthermore, the stability of this complex in the nucleus inhibits autophagy through two independent mechanisms. Firstly, the formation of the complex sequesters TRIM28 in the nucleus, preventing its involvement in and its degradation through autophagy. Secondly, this complex participates in the suppression of PTEN expression and leads to inhibition of Unc-51-like kinase 1-mediated autophagy through activation of the protein kinase B-mammalian target of rapamycin pathway. Using mammary gland-specific CtBP-knockout mice, we demonstrate that repression of autophagy by the CtBP-TRIM28 complex modulates luminal duct formation. In breast cancer models, CtBP-TRIM28-dependent inhibition of cellular autophagy also promotes malignant metastasis. Therefore, our study reveals similarities between the mechanisms driving tumor progression and those involved in normal mammary gland development, potentially helping to pave the way toward targeted intervention in breast cancer metastasis.
Collapse
Affiliation(s)
- Lixin Tai
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Dongliang Zhu
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Ping Tang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Jiajia Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Junyi Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Peipei Li
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Zhonghua Tao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haipeng Lei
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Kai Miao
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Hong-Xia Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuhai Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Science, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Lei Zhang
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, China
| | - Man Dou
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Metabolomics core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yu Han
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Han-Ming Shen
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Chuxia Deng
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
| | - Li Wang
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China
- Metabolomics core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Li-Jun Di
- Department of Biological Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Ministry of Education Frontiers Science Center for Precision Oncology (FSCPO), University of Macau, Macau, China.
- Department of Pathology, Basic Medical Science College, Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Attanasio S. Autophagy in cancer and protein conformational disorders. FEBS Lett 2025. [PMID: 40342093 DOI: 10.1002/1873-3468.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
Collapse
Affiliation(s)
- Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
5
|
Li F, Wan X, Li Z, Zhou L. The NR3C2-SIRT1 signaling axis promotes autophagy and inhibits epithelial mesenchymal transition in colorectal cancer. Cell Death Dis 2025; 16:295. [PMID: 40229278 PMCID: PMC11997134 DOI: 10.1038/s41419-025-07575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/16/2025]
Abstract
Colorectal cancer (CRC) is one of the most aggressive and lethal cancers with a complex pathogenesis, there is an urgent need to find new drug therapeutic targets. This study highlights the important role of the NR3C2-SIRT1 signaling axis in the metastasis mechanism of CRC. Our findings revealed that the expression of NR3C2 in CRC tissues was lower than that in adjacent non-cancerous tissues, and was negatively correlated with N stage by bioanalysis, IHC, western blot and qRT-PCR. NR3C2 overexpression / knockdown can significantly inhibit / promote the migration and invasion of CRC cells, at the same time inhibit / promote EMT. Mechanically, the regulatory molecule SIRT1 was identified by RNA-seq, bioinformatics analysis, western blot and ChIP. SIRT1 was also involved in the metastasis process of CRC, and NR3C2 was found to regulate the expression of LC3B and SQSTM1/p62 in a SIRT1-dependent manner. Therefore, NR3C2 forms a signaling axis with SIRT1, which can directly promote autophagy and inhibit EMT process in vivo and in vitro. Collectively, our findings suggest that NR3C2 - SIRT1 signal axis promote autophagy and inhibit EMT, ultimately inhibits lung metastasis of CRC.
Collapse
Affiliation(s)
- Feng Li
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xing Wan
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhigui Li
- Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Liming Zhou
- Department of Pharmacology, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Trouvé P, Férec C. p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy. Int J Mol Sci 2025; 26:3623. [PMID: 40332143 PMCID: PMC12026709 DOI: 10.3390/ijms26083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France;
| | | |
Collapse
|
7
|
Cillo M, Buonomo V, Vainshtein A, Grumati P. Autophagy, ER-phagy and ER Dynamics During Cell Differentiation. J Mol Biol 2025:169151. [PMID: 40222412 DOI: 10.1016/j.jmb.2025.169151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle essential for protein and lipid synthesis, ion transport and inter-organelle communication. It comprises a highly dynamic network of membranes that continuously reshape to support a wide range of cellular processes. During cellular differentiation, extensive remodelling of both ER architecture and its proteome is required to accommodate alterations in cell morphology and function. Autophagy, and ER-phagy in particular, plays a pivotal role in reshaping the ER, enabling cells to meet their evolving needs and adapt to developmental cues. Despite the ER's critical role in cellular differentiation, the mechanisms responsible for regulating its dynamics are not fully understood. Emerging evidence suggests that transcriptional and post-translational regulation play a role in fine-tuning ER-phagy and the unfolded protein response (UPR). This review explores the molecular basis of autophagy and ER-phagy, highlighting their role in ER remodelling during cellular differentiation. A deeper understanding of these processes could open new avenues for targeted therapeutic approaches in conditions where ER remodelling is impaired.
Collapse
Affiliation(s)
- Michele Cillo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Viviana Buonomo
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy; Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy.
| |
Collapse
|
8
|
Lee J, Cheong H. The Role of A20 in Cancer: Friend or Foe? Cells 2025; 14:544. [PMID: 40214497 PMCID: PMC11988600 DOI: 10.3390/cells14070544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention.
Collapse
Affiliation(s)
| | - Heesun Cheong
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang-si 10408, Republic of Korea;
| |
Collapse
|
9
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Kuo KL, Chang SJ, Tsai CY, Huang YS, Kwan AL, Chai CY. Circadian and autophagy markers correlate with poor prognosis in meningioma patients. Adv Med Sci 2025; 70:103-108. [PMID: 39855471 DOI: 10.1016/j.advms.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
PURPOSE Patients with meningiomas mostly present good outcomes and optimal prognosis, but different grades of tumors have very different symptoms and recurrence rates. Therefore, effective diagnosis is crucial for early intervention and controlling tumor development. Circadian cycle and autophagy have both been proven to be related to neoplasm formation and pathogenesis; however, there is limited exploration and discussion on the relationships between the circadian cycle and autophagy in patients with meningiomas. This study was undertaken to elucidate the relationship between two autophagy markers (Beclin1, LC3B) and one circadian marker (NR1D1) with clinicopathological parameters in patients with meningiomas. MATERIALS AND METHODS Clinicopathological data of 124 enrolled patients were collected. Tissue-sectioned slides were analyzed via immunohistochemical stains and the relationship between the markers was evaluated. RESULTS Individually low expression of NR1D1 and Beclin 1 was associated with better prognosis, lower pathological grade, and longer survival. Although correlation analysis showed that NR1D1, Beclin 1 and LC3B were related to each other. However, the dual marker NR1D1-/Beclin 1- was effective in predicting good prognosis in meningiomas, whereas NR1D1-/LC3B- was not. CONCLUSION NR1D1 and Beclin 1 could be adopted as a single marker or coupled as a combined marker to predict meningioma prognoses, pathological grades, and survival. This study provides insights into the association between autophagy and circadian cycles and may benefit future elucidation of molecular mechanisms.
Collapse
Affiliation(s)
- Keng-Liang Kuo
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng Yu Tsai
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Shuo Huang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
He Y, Du B, Liao W, Wang W, Su J, Guo C, Zhang K, Shi Z. Construction and evaluation of a prognostic model of autophagy-related genes in hepatocellular carcinoma. Biochem Biophys Rep 2025; 41:101893. [PMID: 39760097 PMCID: PMC11700244 DOI: 10.1016/j.bbrep.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment. Methods Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated. The value of risk models was analysed by receiver operating characteristic curve (ROC), immune microenvironment and drug sensitivity. Prognostic gene-related regulatory mechanisms based on network database. Results We screened four prognosis-related genes (SQSTM1, GABARAPL1, CDKN2A, HSPB8) for model construction. The AUC for 1-, 2- and 3-year survival was higher than 0.6 in both the training and validation sets. The nomogram constructed based on risk scores, pathologic_T predicted the outcome better. There were differences in the tumour microenvironment between the high and low risk groups, as evidenced by differences in the distribution of immune cells and differences in the expression of immune checkpoints. Conclusion Our results illustrate that models, nomograms and risk scores were valuable for tumour progression. Clinical trial number Not applicable.
Collapse
Affiliation(s)
| | | | | | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Jifeng Su
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Chen Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Zhitian Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| |
Collapse
|
13
|
ALMatrafi TA. Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer. Cell Immunol 2025; 409-410:104915. [PMID: 39798196 DOI: 10.1016/j.cellimm.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment. This study investigates the role of TMEM164, a membrane protein, in promoting ferroptosis and modulating anti-tumor immunity in NSCLC, aiming to elucidate its therapeutic potential. METHODS Using publicly available datasets, we performed bioinformatics analyses to identify TMEM164-regulated genes involved in ferroptosis. In addition, in vitro and in vivo assays were conducted to assess the impact of TMEM164 on cellular functions in NSCLC. RESULTS Functional assays demonstrated that TMEM164 overexpression significantly inhibited invasion, migration, and cell proliferation in both in vitro and in vivo models. TMEM164 was also found to induce ferroptosis in NSCLC cells by promoting autophagy. Specifically, we identified a mechanism whereby TMEM164 mediates ATG5-dependent autophagosome formation, leading to the degradation of ferritin, GPX4, and lipid droplets. This degradation facilitated iron accumulation and lipid peroxidation, which triggered iron-dependent cell death. Notably, co-administration of TMEM164 upregulation and anti-PD-1 antibodies exhibited synergistic anti-tumor effects in a mouse model. CONCLUSION These findings suggest that targeting TMEM164 to enhance ferroptosis and stimulate anti-tumor immunity may inhibit NSCLC progression. Consequently, TMEM164 holds promise as a new therapeutic target for NSCLC treatment.
Collapse
|
14
|
Saluja TS, Hosalkar R. Prognostic Utility of Autophagy Marker Beclin1 in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Head Neck Pathol 2025; 19:17. [PMID: 39907919 PMCID: PMC11799460 DOI: 10.1007/s12105-025-01755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Autophagy is involved in several critical cellular processes regulating cell survival and death. Past research suggests that it may either act as a tumor suppressor or promote tumor progression. The purpose of this systematic review and meta-analysis was to evaluate the clinical and prognostic utility of a significant autophagy related protein-Beclin1, in oral squamous cell carcinoma (OSCC). METHODS Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines were followed. Relevant literature was retrieved from PubMed, ScienceDirect and Google Scholar database. After removal of duplicates quality of the studies was assessed using Newcastle-Ottawa Scale. Heterogeneity was assessed using I2 index. Random effect model was used if I2 was more than 50% else fixed effect model was selected. Meta-analysis was carried out using Review Manager (RevMan; Version 5.4). RESULTS Five studies with 494 cases were included in this meta-analysis. Beclin1 expression in OSCC was not significantly associated (p > 0.05) with gender, age, tumor size, lymph node metastasis, histological differentiation and overall survival. Nevertheless, a trend for low Beclin1 expression favoring tumor progression was observed. Sensitivity analysis revealed significant nodal positivity related to low Beclin1 expression. CONCLUSION This study provided an overview of Beclin1 expression in OSCC and highlighted additional evaluations while its use as a prognostic marker. It is suggested that future studies should assess both nuclear as well as cytoplasmic expression of Beclin1 and report intra- and inter-tumor variations in its expression relating to clinicopathological parameters.
Collapse
Affiliation(s)
- Tajindra Singh Saluja
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Rashmi Hosalkar
- Department of Oral Pathology and Microbiology, MGM Dental College and Hospital, MGM Institute of Health Sciences, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
15
|
Wei W, Gao X, Qian J, Li L, Zhao C, Xu L, Zhu Y, Liu Z, Liu N, Wang X, Jin Z, Liu B, Xu L, Dong J, Zhang S, Wang J, Zhang Y, Yu Y, Yan Z, Yang Y, Lu J, Fang Y, Yuan N, Wang J. Beclin 1 prevents ISG15-mediated cytokine storms to secure fetal hematopoiesis and survival. J Clin Invest 2025; 135:e177375. [PMID: 39589832 PMCID: PMC11785930 DOI: 10.1172/jci177375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Proper control of inflammatory responses is essential for embryonic development, but the underlying mechanism is poorly understood. Here, we show that under physiological conditions, inactivation of ISG15, an inflammation amplifier, is associated with the interaction of Beclin 1 (Becn1), via its evolutionarily conserved domain, with STAT3 in the major fetal hematopoietic organ of mice. Conditional loss of Becn1 caused sequential dysfunction and exhaustion of fetal liver hematopoietic stem cells, leading to lethal inflammatory cell-biased hematopoiesis in the fetus. Molecularly, the absence of Becn1 resulted in the release of STAT3 from Becn1 tethering and subsequent phosphorylation and translocation to the nucleus, which in turn directly activated the transcription of ISG15 in fetal liver hematopoietic cells, coupled with increased ISGylation and production of inflammatory cytokines, whereas inactivating STAT3 reduced ISG15 transcription and inflammation but improved hematopoiesis potential, and further silencing ISG15 mitigated the above collapse in the Becn1-null hematopoietic lineage. The Becn1/STAT3/ISG15 axis remains functional in autophagy-disrupted fetal hematopoietic organs. These results suggest that Becn1, in an autophagy-independent manner, secures hematopoiesis and survival of the fetus by directly inhibiting STAT3/ISG15 activation to prevent cytokine storms. Our findings highlight a previously undocumented role of Becn1 in governing ISG15 to safeguard the fetus.
Collapse
Affiliation(s)
- Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Li Xu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yanfei Zhu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhenzhen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Nengrong Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Xueqing Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhicong Jin
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Bowen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lan Xu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiarong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yumu Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yao Yu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Zhanjun Yan
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Yanjun Yang
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Jie Lu
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, The First Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- The Ninth Affiliated Suzhou Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Gambarotto L, Russo L, Bresolin S, Persano L, D'Amore R, Ronchi G, Zen F, Muratori L, Cani A, Negro S, Megighian A, Calabrò S, Braghetta P, Bizzotto D, Cescon M. Schwann Cell-Specific Ablation of Beclin 1 Impairs Myelination and Leads to Motor and Sensory Neuropathy in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308965. [PMID: 39680476 PMCID: PMC11792035 DOI: 10.1002/advs.202308965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 07/24/2024] [Indexed: 12/18/2024]
Abstract
The core component of the class III phosphatidylinositol 3-kinase complex, Beclin 1, takes part in different protein networks, thus switching its role from inducing autophagy to regulating autophagosomal maturation and endosomal trafficking. While assessed in neurons, astrocytes, and microglia, its role is far less investigated in myelinating glia, including Schwann cells (SCs), responsible for peripheral nerve myelination. Remarkably, the dysregulation in endosomal trafficking is emerging as a pathophysiological mechanism underlying peripheral neuropathies, such as demyelinating Charcot-Marie-Tooth (CMT) diseases. By knocking out Beclin 1 in SCs here a novel mouse model (Becn1 cKO) is generated, developing a severe and progressive neuropathy, accompanied by involuntary tremors, body weight loss, and premature death. Ultrastructural analysis revealed abated myelination and SCs displaying enlarged cytoplasm with progressive accumulation of intracellular vesicles. Transcriptomic and histological analysis from sciatic nerves of 10-day and 2-month-old mice revealed pro-mitotic gene deregulation and increased SCs proliferation at both stages with axonal loss and increased immune infiltration in adults, well reflecting the progressive motor and sensory functional impairment that characterizes Becn1 cKO mice, compared to controls. The study establishes a further step in understanding key mechanisms in SC development and points to Beclin 1 and its regulated pathways as targets for demyelinating CMT forms.
Collapse
Affiliation(s)
- Lisa Gambarotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Loris Russo
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Silvia Bresolin
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Luca Persano
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
- Istituto di Ricerca Pediatrica – Città della SperanzaCorso Stati Uniti 4Padova35128Italy
| | - Rachele D'Amore
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Federica Zen
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO)University of TorinoRegione Gonzole 10, OrbassanoTorino10043Italy
| | - Alice Cani
- Department of Women and Children's HealthUniversity of Padovavia Giustiniani 3Padova35127Italy
| | - Samuele Negro
- U.O.C. Clinica NeurologicaAzienda Ospedale‐Università PadovaVia Giustiniani 5Padova35128Italy
| | - Aram Megighian
- Department of Biomedical SciencesUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Padova Neuroscience CenterUniversity of PadovaVia G. Orus, 2Padova35131Italy
| | - Sonia Calabrò
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
- Department of BiologyUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Paola Braghetta
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Dario Bizzotto
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| | - Matilde Cescon
- Department of Molecular MedicineUniversity of PadovaVia U. Bassi 58/BPadova35131Italy
| |
Collapse
|
17
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
18
|
Tang J, Liu Z, Xie G, Wang C, Jiang Y. POU4F1 enhances lung cancer gemcitabine resistance by regulating METTL3-dependent TWF1 mRNA N6 adenosine methylation. 3 Biotech 2025; 15:7. [PMID: 39676891 PMCID: PMC11638459 DOI: 10.1007/s13205-024-04161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
This study aimed to investigate the role of POU Class 4 Homeobox 1 (POU4F1) in regulating gemcitabine (GEM) resistance in lung cancer cells. The mRNA and protein expressions were assessed using RT-qPCR, western blot, immunofluorescence, and immunohistochemistry. Cell viability and proliferation were assessed by CCK-8 assay and EdU assay. TUNEL staining and flow cytometry were employed to detect cell apoptosis. The m6A modification of TWF1 was detected using MeRIP assay. The interactions between molecules were validated using dual luciferase reporter gene, ChIP, and RIP assays. POU4F1 knockdown inhibited GEM resistance and autophagy in lung cancer cells. Mechanistically, POU4F1 transcriptionally activated methyltransferase-like protein 3 (METTL3) in GEM-resistant cells by binding to the METTL3 promoter. METTL3 promoted the N6-methyladenosine (m6A) modification and expression level of twinfilin-1 (TWF1). Overexpression of METTL3 and TWF1 weakened the effects of POU4F1 knockdown on GEM resistance and autophagy. Moreover, knockdown POU4F1 also enhanced GEM anti-tumor sensitivity in vivo. In conclusion, POU4F1 upregulation promoted GEM resistance in lung cancer cells by promoting autophagy through increasing METTL3-mediated TWF1 m6A modification. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04161-w.
Collapse
Affiliation(s)
- Jianfeng Tang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Zhijian Liu
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Guanghui Xie
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Chenbin Wang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| | - Yongjun Jiang
- Department of Cardiovascular Thoracic Surgery, The Central Hospital of Yongzhou, No. 396 Yiyun Road, Lengshuitan District, Yongzhou, 425100 Hunan People’s Republic of China
| |
Collapse
|
19
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Zinnah KMA, Munna AN, Park SY. Optimizing autophagy modulation for enhanced TRAIL-mediated therapy: Unveiling the superiority of late-stage inhibition over early-stage inhibition to overcome therapy resistance in cancer. Basic Clin Pharmacol Toxicol 2025; 136:e14110. [PMID: 39668304 DOI: 10.1111/bcpt.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024]
Abstract
Autophagy is a vital mechanism that eliminates large cytoplasmic components via lysosomal degradation to maintain cellular homeostasis. The role of autophagy in cancer treatment has been studied extensively. Autophagy primarily prevents tumour initiation by maintaining genomic stability and preventing cellular inflammation. However, autophagy also supports cancer cell survival and growth by providing essential nutrients for therapeutic resistance. Thus, autophagy has emerged as a promising strategy for overcoming resistance and enhancing anti-cancer therapy. Inhibiting autophagy significantly improves the sensitivity of lung, colorectal, breast, liver and prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). This review investigates the intricate interplay between autophagy modulation and TRAIL-based therapy, specifically focussing on comparing the efficacy of late-stage autophagy inhibition versus early-stage inhibition in overcoming cancer resistance. We expose the distinctive advantages of late-stage autophagy inhibition by exploring the mechanisms underlying autophagy's impact on TRAIL sensitivity. Current preclinical and clinical investigations are inspected, showing the potential of targeting late-stage autophagy for sensitizing resistant cancer cells to TRAIL-induced apoptosis. This review emphasizes the significance of optimizing autophagy modulation to enhance TRAIL-mediated therapy and overcome the challenge of treatment resistance in cancer. We offer insights and recommendations for guiding the development of potential therapeutic strategies aimed at overcoming the challenges posed by treatment-resistant cancers.
Collapse
Affiliation(s)
- Kazi Mohammad Ali Zinnah
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
- Faculty of Biotechnology and Genetic Engineering, Department of Animal and Fish Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Ali Newaz Munna
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, South Korea
| |
Collapse
|
21
|
Dastghaib S, Siri M, Rahmani-Kukia N, Heydari ST, Pasalar M, Zamani M, Mokaram6 P, Bagheri-Lankarani K. Effect of 30-day Ramadan fasting on autophagy pathway and metabolic health outcome in healthy individuals. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2025; 14:115-127. [PMID: 40028479 PMCID: PMC11865935 DOI: 10.22099/mbrc.2024.50105.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
During Ramadan, Muslims fast to spiritually prepare their bodies and spirits. The autophagy pathway restores cellular homeostasis and is being studied as a therapy for a variety of disorders. According to previous studies, fasting or calorie restriction has a role in the up-regulation of autophagy especially through the initiation step. The effects of Ramadan fasting on the autophagy pathways and metabolic health outcome in healthy adults were investigated in this study. In this controlled cohort study, 50 healthy subjects (20-78 years old) 24-fasting and 26 non-fasting were included. At the end of Ramadan, a blood was drawn to assess biochemical, hematological, and inflammatory variables. Serum IL-6 and hs-CRP levels were measured. The serum proteins (Beclin-1 and LC3β) and mRNAs gene expressions' (Beclin-1, p62, and LC3β) of the autophagy marker were evaluated by ELISA and real-time PCR, respectively. During Ramadan, there were no significant differences for biochemical parameters (except for BUN-level), inflammatory markers (IL-6 and hs-CRP), and hematological indices during Ramadan. Beclin-1 gene expression was significantly upregulated in the fasting-group as the main marker of initiation of autophagy; yet, the LC3β and the p62 levels were decreased in the fasting-group in peripheral blood mononuclear cells. However, fasting women alone displayed a significantly high serum Beclin-1 level. Ramadan fasting does not have any adverse effects on biochemical, hematological, and inflammatory parameters. According to our results, people observing Ramadan may benefit from the autophagy pathway to compensate reduction in energy and vital metabolites in the face of food restriction.
Collapse
Affiliation(s)
- Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Taghi Heydari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokaram6
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Bagheri-Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Hua X, Xiang D, Xu J, Zhang S, Wu S, Tian Z, Zhu J, Huang C. ISO-upregulated BECN1 specifically promotes LC3B-dependent autophagy and anticancer activity in invasive bladder cancer. Transl Oncol 2025; 51:102178. [PMID: 39489089 PMCID: PMC11565558 DOI: 10.1016/j.tranon.2024.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Isorhapontigenin (ISO), an active compound isolated from the Chinese herb Gnetum Cleistostachyum, exhibited strong preventive and therapeutic effects on bladder cancer (BC) both in vitro and in vivo. Our previous studies revealed that ISO-induced autophagy is crucial for its anti-cancer activity. However, the underlying mechanism remains unclear. Here, we showed that BECN1, an important autophagic protein, was induced by ISO treatment and played crucial roles in ISO-induced late phase of LC3B-dependent, and LC3A-independent autophagy, as well as anti-cancer activity. Downregulation of BECN1 was observed in human BCs and BBN-induced mouse invasive BC tissues, whereas co-treatment with ISO completely reversed BECN1 downregulation in BBN-induced mouse invasive BCs. Consistently, ISO treatment significantly increased BECN1 expression in vitro in a dose- and time-dependent manner. Depletion of BECN1 significantly impaired LC3B-dependent autophagy following ISO treatment, as well as abolished the inhibitory effect of ISO on anchorage-independent growth of human BC cells. Mechanistic studies revealed that BECN1 induction was mediated by ISO downregulation of c-Myc, which resulted in miR-613 reduction, in turn leading to increased NCL translation and further promoting NCL binding to BECN1 mRNA, subsequently stabilizing BECN1 mRNA. In conclusion, our results demonstrate that by activating c-Myc/miR-613/NCL axis, ISO treatment results in BECN1 posttranscriptional upregulation, which specifically initiates LC3B-dependent autophagy and anti-cancer activity. Our findings further strengths our application of ISO for therapy of high-grade invasive BC (HGIBC) patients.
Collapse
Affiliation(s)
- Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Daimin Xiang
- Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jiheng Xu
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shouyue Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuai Wu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxian Tian
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Junlan Zhu
- School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chuanshu Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; School of Laboratory Medicine and Life Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
23
|
Alimogullari E, Kartal B, Demir H, Elci MP. Protective effects of adipose-derived stem cells against testicular injury induced after ischemia-reperfusion by regulating autophagy. Histochem Cell Biol 2024; 163:18. [PMID: 39709318 DOI: 10.1007/s00418-024-02347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
The damaged organ may experience severe pathological alterations as a result of tissue ischemia-reperfusion (I/R). The study of stem cell-based repair therapies is actively being conducted, and the outcomes and therapeutic potential of these cells are both promising. Autophagy checks protein homeostasis by breaking down huge damaged proteins or organelles. The study's objective was to assess how ADSCs impact the autophagic process after testicular ischemia/reperfusion. In our investigation, 30 male rats were divided into five groups: control, ADSC, ischemia, I/R, and I/R + ADSC (n = 6). Hematoxylin-eosin (HE) was used to stain the testes, and histological changes were assessed. The immunoexpression of androgen receptor (AR), Beclin1, protein light chain 3B (LC3B), and p62 were examined. The seminiferous epithelium in the testis from the ischemia and I/R groups revealed significant degeneration with disorganized morphology, damaged spermatogenic cells, and interstitial space congestion, according to HE stain results. Johnsen's score were significantly better in I/R + ADSC group than in ischemia and I/R groups. We demonstrated that in rat testes from the I/R groups, immunostaining of Beclin 1 (p = 0.042) and LC3B (p = 0.011) were raised, and p62 (p = 0.047) and AR (p = 0.049) were decreased. Ischemia and I/R promoted testicular autophagy, therefore we can conclude that ADSCs prevent excessive autophagy. Additionally, these results show that the use of ADSCs cures testicular injury and dysfunction associated with I/R injury in rats even a little.
Collapse
Affiliation(s)
- Ebru Alimogullari
- Medical Faculty, Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey.
| | - Bahar Kartal
- Medical Faculty, Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Hazal Demir
- Medical Faculty, Department of Histology and Embryology, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mualla Pınar Elci
- Stem Cell Laboratory, University of Health Sciences Gulhane Health Sciences Institute, Ankara, Turkey
| |
Collapse
|
24
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
25
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
26
|
Li Z, Zhang Y, Lei J, Wu Y. Autophagy in oral cancer: Promises and challenges (Review). Int J Mol Med 2024; 54:116. [PMID: 39422076 PMCID: PMC11518578 DOI: 10.3892/ijmm.2024.5440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Autophagy captures damaged or dysfunctional proteins and organelles through the lysosomal pathway to achieve proper cellular homeostasis. Autophagy possesses distinct characteristics and is given recognized functions in numerous physiological and pathological conditions, such as cancer. Early stage cancer development can be stopped by autophagy. After tumor cells have successfully undergone transformation and progressed to a late stage, the autophagy-mediated system of dynamic degradation and recycling will support cancer cell growth and adaptation to various cellular stress responses while preserving energy homeostasis. In the present study, the dual function that autophagy plays in various oral cancer development contexts and stages, the existing arguments for and against autophagy, and the ways in which autophagy contributes to oral cancer modifications, such as carcinogenesis, drug resistance, invasion, metastasis and self-proliferation, are reviewed. Special attention is paid to the mechanisms and functions of autophagy in oral cancer processes, and the most recent findings on the application of certain conventional drugs or natural compounds as novel agents that modulate autophagy in oral cancer are discussed. Overall, further research is needed to determine the validity and reliability of autophagy promotion and inhibition while maximizing the difficult challenge of increasing cancer suppression to improve clinical outcomes.
Collapse
Affiliation(s)
- Zhou Li
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Yao Zhang
- Shanxi Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030000, P.R. China
| | - Jianhua Lei
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| | - Yunxia Wu
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
27
|
Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y, Tang X. Beclin-1: a therapeutic target at the intersection of autophagy, immunotherapy, and cancer treatment. Front Immunol 2024; 15:1506426. [PMID: 39650649 PMCID: PMC11621085 DOI: 10.3389/fimmu.2024.1506426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
The significant identification of Beclin-1's function in regulating autophagy flow signified a significant progression in our understanding of cellular operations. Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling autophagy and cellular trafficking processes in a complicated way. This intricate protein has garnered considerable attention due to its substantial impact on the development of tumors. Strong evidence indicates Beclin-1 plays a critical role in controlling autophagy in various human cancer types and its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1 as a viable target for cancer therapy is highlighted by its associations with key autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the growth and dissemination of tumors by autophagy. It also affects how tumors react to therapies such as chemotherapy and radiation therapy. The role of Beclin-1 in autophagy can influence apoptosis, depending on whether it supports cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis. Finally, we analyzed the possible function of Beclin-1 in tumor immunology and drug sensitivity in cancers. In general, Beclin-1 has a significant impact on regulating autophagy, offering various potentials for medical intervention and altering our understanding of cancer biology.
Collapse
Affiliation(s)
- Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yincheng Ran
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Haonan Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Yana Ding
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaowei Tang
- Department of Hepatobiliary Surgery, District Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
28
|
Chen XQ, Yang Q, Chen WM, Chen ZW, Guo GH, Zhang X, Sun XM, Shen T, Xiao FH, Li YF. Dual Role of Lysosome in Cancer Development and Progression. FRONT BIOSCI-LANDMRK 2024; 29:393. [PMID: 39614447 DOI: 10.31083/j.fbl2911393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 12/01/2024]
Abstract
Lysosomes are essential intracellular catabolic organelles that contain digestive enzymes involved in the degradation and recycle of damaged proteins, organelles, etc. Thus, they play an important role in various biological processes, including autophagy regulation, ion homeostasis, cell death, cell senescence. A myriad of studies has shown that the dysfunction of lysosome is implicated in human aging and various age-related diseases, including cancer. However, what is noteworthy is that the modulation of lysosome-based signaling and degradation has both the cancer-suppressive and cancer-promotive functions in diverse cancers depending on stage, biology, or tumor microenvironment. This dual role limits their application as targets in cancer therapy. In this review, we provide an overview of lysosome and autophagy-lysosomal pathway and outline their critical roles in many cellular processes, including cell death. We highlight the different functions of autophagy-lysosomal pathway in cancer development and progression, underscoring its potential as a target for effective cancer therapies.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Quan Yang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Wei-Min Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Zi-Wei Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Guang-Hui Guo
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xuan Zhang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Xiao-Ming Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650000 Kunming, Yunnan, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Peking University Cancer Hospital Yunnan, 650000 Kunming, Yunnan, China
| |
Collapse
|
29
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
30
|
Du L, Cen M, Cheng F, Dai N. Abnormal expression of autophagy proteins in the duodenum of patients with functional dyspepsia: A preliminary study. Arab J Gastroenterol 2024; 25:410-413. [PMID: 39278781 DOI: 10.1016/j.ajg.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND STUDY AIMS Functional dyspepsia (FD) is a common disease with an unclear pathology. Autophagy is associated with inflammation and has been proposed to play a role in the development of FD. This study aimed to evaluate expression of the autophagy proteins beclin1 and p62/SQSTM1 in patients with FD. PATIENTS AND METHODS Duodenal mucosal tissues were collected from 10 patients with FD and 10 asymptomatic controls. The extent of autophagy was determined by examining expression levels of beclin1 and p62/SQSTM1 using quantitative polymerase chain reaction and immunohistochemistry techniques. RESULTS Lower expression levels of beclin1 protein were detected in the duodenal bulb (D1) and the second portion of the duodenum (D2) in patients with FD compared with asymptomatic controls. Higher levels of p62 protein were expressed in D1 in patients with FD than in controls. No differences in mRNA expression of beclin1 and p62 were observed between patients with FD and controls. CONCLUSION Abnormal autophagy was involved in FD, which may be associated with the pathogenesis of FD.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengsha Cen
- Department of Gastroenterology, Cixi People's Hospital of Zhejiang Province, Cixi, China
| | - Fangli Cheng
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Dai
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Jia L, Meng Q, Xu X. Autophagy-related miRNAs, exosomal miRNAs, and circRNAs in tumor progression and drug-and radiation resistance in colorectal cancer. Pathol Res Pract 2024; 263:155597. [PMID: 39426141 DOI: 10.1016/j.prp.2024.155597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Targeted therapies are often more tolerable than traditional cytotoxic ones. Nurses play a critical role in providing patients and caregivers with information about the disease, available therapies, and the kind, severity, and identification of any potential adverse events. By doing this, it may be possible to ensure that any adverse effects are managed quickly, maximizing the therapeutic benefit. In colorectal cancer (CRC), autophagy-related activities are significantly influenced by miRNAs and exosomal miRNAs. CRC development and treatment resistance have been associated with the cellular process of autophagy. miRNAs, which are short non-coding RNA molecules, have the ability to control the expression of genes by binding to the 3' untranslated region (UTR) of target mRNAs and either preventing or suppressing translation. It has been discovered that several miRNAs are significant regulators of CRC autophagy. By preventing autophagy, these miRNAs enhance the survival and growth of cancer cells. Exosomes are small membrane vesicles that are released by cells and include miRNAs among other bioactive compounds. Exosomes have the ability to modify recipient cells' biological processes by delivering their cargo, which includes miRNAs. It has been demonstrated that exosomal miRNAs control autophagy in CRC in both autocrine and paracrine ways. We will discuss the potential roles of miRNAs, exosomal miRNAs, and circRNAs in CRC autophagy processes and how nursing care can reduce unfavorable outcomes.
Collapse
Affiliation(s)
- Liting Jia
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 102413, China
| | - Qingyun Meng
- Gastroenterology Department, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiaofeng Xu
- Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266000, China.
| |
Collapse
|
32
|
Liu W, Wang K, Lin Y, Wang L, Jin X, Qiu Y, Sun W, Zhang L, Sun Y, Dou X, Luo S, Su Y, Sun Q, Xiang W, Diao F, Li J. VPS34 Governs Oocyte Developmental Competence by Regulating Mito/Autophagy: A Novel Insight into the Significance of RAB7 Activity and Its Subcellular Location. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308823. [PMID: 39287146 PMCID: PMC11538714 DOI: 10.1002/advs.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Asynchronous nuclear and cytoplasmic maturation in human oocytes is believed to cause morphological anomalies after controlled ovarian hyperstimulation. Vacuolar protein sorting 34 (VPS34) is renowned for its pivotal role in regulating autophagy and endocytic trafficking. To investigate its impact on oocyte development, oocyte-specific knockout mice (ZcKO) are generated, and these mice are completely found infertile, with embryonic development halted at 2- to 4-cell stage. This infertility is related with a disruption on autophagic/mitophagic flux in ZcKO oocytes, leading to subsequent failure of zygotic genome activation (ZGA) in derived 2-cell embryos. The findings further elucidated the regulation of VPS34 on the activity and subcellular translocation of RAS-related GTP-binding protein 7 (RAB7), which is critical not only for the maturation of late endosomes and lysosomes, but also for initiating mitophagy via retrograde trafficking. VPS34 binds directly with RAB7 and facilitates its activity conversion through TBC1 domain family member 5 (TBC1D5). Consistent with the cytoplasmic vacuolation observed in ZcKO oocytes, defects in multiple vesicle trafficking systems are also identified in vacuolated human oocytes. Furthermore, activating VPS34 with corynoxin B (CB) treatment improved oocyte quality in aged mice. Hence, VPS34 activation may represent a novel approach to enhance oocyte quality in human artificial reproduction.
Collapse
Affiliation(s)
- Wenwen Liu
- State Key Laboratory of Reproductive Medicine and Offspring HealthWomen's Hospital of Nanjing Medical UniversityNanjing Maternity and Child Health Care HospitalNanjing Medical UniversityNanjingJiangsu211166China
| | - Kehan Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthCenter of Reproduction and GeneticsAffiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhouJiangsu215002China
| | - Yuting Lin
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Lu Wang
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Reproductive MedicineCangzhou Central HospitalCangzhouHebei061012China
| | - Xin Jin
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Center of Reproductive MedicineWuxi Maternity and Child Health Care HospitalNanjing Medical UniversityWuxiJiangsu214200China
| | - Yuexin Qiu
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Ling Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Yan Sun
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
| | - Xiaowei Dou
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Nanjing Medical UniversityNanjing Medical UniversityNanjingJiangsu210011China
| | - Shiming Luo
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Youqiang Su
- Shandong Provincial Key Laboratory of Animal Cells and Developmental BiologySchool of Life SciencesShandong UniversityQingdaoShandong266237China
| | - Qingyuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive HealthGuangdong‐Hong Kong Metabolism & Reproduction Joint LaboratoryReproductive Medicine CenterGuangdong Second Provincial General HospitalGuangzhouGuangdong513023China
| | - Wenpei Xiang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430074China
| | - Feiyang Diao
- The Center for Clinical Reproductive MedicineState Key Laboratory of Reproductive Medicine and Offspring HealthThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu212028China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingJiangsu211166China
- Innovation Center of Suzhou Nanjing Medical UniversitySuzhou430074China
| |
Collapse
|
33
|
Lee M, Kim HG. Anti-Cancer Strategy Based on Changes in the Role of Autophagy Depending on the Survival Environment and Tumorigenesis Stages. Molecules 2024; 29:5134. [PMID: 39519774 PMCID: PMC11547988 DOI: 10.3390/molecules29215134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Autophagy is a crucial mechanism for recycling intracellular materials, and under normal metabolic conditions, it is maintained at low levels in cells. However, when nutrients are deficient or under hypoxic conditions, the level of autophagy significantly increases. Particularly in cancer cells, which grow more rapidly than normal cells and tend to grow in a three-dimensional manner, cells inside the cell mass often face limited oxygen supply, leading to inherently higher levels of autophagy. Therefore, the initial development of anticancer drugs targeting autophagy was based on a strategy to suppress these high levels of autophagy. However, anticancer drugs that inhibit autophagy have not shown promising results in clinical trials, as it has been revealed that autophagy does not always play a role that favors cancer cell survival. Hence, this review aims to suggest anticancer strategies based on the changes in the role of autophagy according to survival conditions and tumorigenesis stage.
Collapse
Affiliation(s)
- Michael Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
| | - Hye-Gyo Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
34
|
Dwyer S, Ruth J, Seidel HE, Raz AA, Chodosh LA. Autophagy is required for mammary tumor recurrence by promoting dormant tumor cell survival following therapy. Breast Cancer Res 2024; 26:143. [PMID: 39425240 PMCID: PMC11488247 DOI: 10.1186/s13058-024-01878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Mortality from breast cancer is principally due to tumor recurrence. Recurrent breast cancers arise from the pool of residual tumor cells, termed minimal residual disease, that survive treatment and may exist in a dormant state for 20 years or more following treatment of the primary tumor. As recurrent breast cancer is typically incurable, understanding the mechanisms underlying dormant tumor cell survival is a critical priority in breast cancer research. The importance of this goal is further underscored by emerging evidence suggesting that targeting dormant residual tumor cells in early-stage breast cancer patients may be a means to prevent tumor recurrence and its associated mortality. In this regard, the role of autophagy in dormant tumor cell survival and recurrence remains unresolved, with conflicting reports of both pro-survival/recurrence-promoting and pro-death/recurrence-suppressing effects of autophagy inhibition in dormant tumor cells. Resolving this question has important clinical implications. METHODS We used genetically engineered mouse models that faithfully recapitulate key features of human breast cancer progression, including minimal residual disease, tumor dormancy, and recurrence. We used genetic and pharmacological approaches to inhibit autophagy, including treatment with chloroquine, genetic knockdown of ATG5 or ATG7, or deletion of BECN and determined their effects on dormant tumor cell survival and recurrence. RESULTS We demonstrate that the survival and recurrence of dormant mammary tumor cells following therapy is dependent upon autophagy. We find that autophagy is induced in vivo following HER2 downregulation and remains activated in dormant residual tumor cells. Using genetic and pharmacological approaches we show that inhibiting autophagy by chloroquine administration, ATG5 or ATG7 knockdown, or deletion of a single allele of the tumor suppressor Beclin 1 is sufficient to inhibit mammary tumor recurrence, and that autophagy inhibition results in the death of dormant mammary tumor cells in vivo. CONCLUSIONS Our findings demonstrate a pro-tumorigenic role for autophagy in tumor dormancy and recurrence following therapy, reveal that dormant tumor cells are uniquely reliant upon autophagy for their survival, and indicate that targeting dormant residual tumor cells by inhibiting autophagy impairs tumor recurrence. These studies identify a pharmacological target for a cellular state that is resistant to commonly used anti-neoplastic agents and suggest autophagy inhibition as an approach to reduce dormant minimal residual disease in order to prevent lethal tumor recurrence.
Collapse
Affiliation(s)
- Samantha Dwyer
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jason Ruth
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hans E Seidel
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amelie A Raz
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lewis A Chodosh
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Room 614 BRB II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-6160, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
35
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
36
|
Ali ML, Roky AH, Azad SAK, Shaikat AH, Meem JN, Hoque E, Ahasan AMF, Islam MM, Arif MSR, Mostaq MS, Mahmud MZ, Amin MN, Mahmud MA. Autophagy as a targeted therapeutic approach for skin cancer: Evaluating natural and synthetic molecular interventions. CANCER PATHOGENESIS AND THERAPY 2024; 2:231-245. [PMID: 39371094 PMCID: PMC11447340 DOI: 10.1016/j.cpt.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 10/08/2024]
Abstract
Skin cancer, a prevalent malignancy worldwide, poses significant health concerns owing to its increasing incidence. Autophagy, a natural cellular process, is a pivotal event in skin cancer and has advantageous and detrimental effects. This duality has prompted extensive investigations into medical interventions targeting autophagy modulation for their substantial therapeutic potential. This systematic review aimed to investigate the relationship between skin cancer and autophagy and the contribution and mechanism of autophagy modulators in skin cancer. We outlined the effectiveness and safety of targeting autophagy as a promising therapeutic strategy for the treatment of skin cancer. This comprehensive review identified a diverse array of autophagy modulators with promising potential for the treatment of skin cancer. Each of these compounds demonstrates efficacy through distinct physiological mechanisms that have been elucidated in detail. Interestingly, findings from a literature search indicated that none of the natural, synthetic, or semisynthetic compounds exhibited notable adverse effects in either human or animal models. Consequently, this review offers novel mechanistic and therapeutic perspectives on the targeted modulation of autophagy in skin cancer.
Collapse
Affiliation(s)
- Md. Liakot Ali
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Amdad Hossain Roky
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - S.M. Asadul Karim Azad
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abdul Halim Shaikat
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Jannatul Naima Meem
- Department of Pharmacy, University of Chittagong, Chattogram 4331, Bangladesh
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
| | - Emtiajul Hoque
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Abu Mohammed Fuad Ahasan
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, International Islamic University Chittagong, Chattogram 4318, Bangladesh
| | - Mohammed Murshedul Islam
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Saifur Rahaman Arif
- Pratyasha Health Biomedical Research Center, Dhaka 1230, Bangladesh
- Department of Pharmacy, BGC Trust University Bangladesh, Chattogram 4381, Bangladesh
| | - Md. Saqline Mostaq
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | | | - Mohammad Nurul Amin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| | - Md. Ashiq Mahmud
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0497, USA
| |
Collapse
|
37
|
Rajendran P, Renu K, Ali EM, Genena MAM, Veeraraghavan V, Sekar R, Sekar AK, Tejavat S, Barik P, Abdallah BM. Promising and challenging phytochemicals targeting LC3 mediated autophagy signaling in cancer therapy. Immun Inflamm Dis 2024; 12:e70041. [PMID: 39436197 PMCID: PMC11494898 DOI: 10.1002/iid3.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Phytochemicals possess a wide range of anti-tumor properties, including the modulation of autophagy and regulation of programmed cell death. Autophagy is a critical process in cellular homeostasis and its dysregulation is associated with several pathological conditions, such as cancer, neurodegenerative diseases, and diabetes. In cancer, autophagy plays a dual role by either promoting tumor growth or suppressing it, depending on the cellular context. During autophagy, autophagosomes engulf cytoplasmic components such as proteins and organelles. LC3-II (microtubule-associated protein 1 light chain 3-II) is an established marker of autophagosome formation, making it central to autophagy monitoring in mammals. OBJECTIVE To explore the regulatory role of phytochemicals in LC3-mediated autophagy and their potential therapeutic impact on cancer. The review emphasizes the involvement of autophagy in tumor promotion and suppression, particularly focusing on autophagy-related signaling pathways like oxidative stress through the NRF2 pathway, and its implications for genomic stability in cancer development. METHODS The review focuses on a comprehensive analysis of bioactive compounds including Curcumin, Celastrol, Resveratrol, Kaempferol, Naringenin, Carvacrol, Farnesol, and Piperine. Literature on these compounds was examined to assess their influence on autophagy, LC3 expression, and tumor-related signaling pathways. A systematic literature search was conducted across databases including PubMed, Scopus, and Web of Science from inception to 2023. Studies were selected from prominent databases, focusing on their roles in cancer diagnosis and therapeutic interventions, particularly in relation to LC3-mediated mechanisms. RESULTS Phytochemicals have been shown to modulate autophagy through the regulation of LC3-II levels and autophagic flux in cancer cells. The interaction between autophagy and other cellular pathways such as oxidative stress, inflammation, and epigenetic modulation highlights the complex role of autophagy in tumor biology. For instance, Curcumin and Resveratrol have been reported to either induce or inhibit autophagy depending on cancer type, influencing tumor progression and therapeutic responses. CONCLUSION Targeting autophagy through LC3 modulation presents a promising strategy for cancer therapy. The dual role of autophagy in tumor suppression and promotion, however, necessitates careful consideration of the context in which autophagy is induced or inhibited. Future research should aim to delineate these context-specific roles and explore how phytochemicals can be optimized for therapeutic efficacy. Novel therapeutic strategies should focus on the use of bioactive compounds to fine-tune autophagy, thereby maximizing tumor suppression and inducing programmed cell death in cancer cells.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Kaviyarasi Renu
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Enas M. Ali
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Department of Botany and Microbiology, Faculty of ScienceCairo UniversityCairoEgypt
| | - Marwa Azmy M. Genena
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
- Agricultural Zoology Department, Faculty of AgricultureMansoura UniversityMansouraEgypt
| | - Vishnupriya Veeraraghavan
- Department of Biochemistry, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiTamil NaduIndia
| | - Ramya Sekar
- Department of Oral & Maxillofacial Pathology and Oral MicrobiologyMeenakshi Ammal Dental College & Hospital, MAHERChennaiTamil NaduIndia
| | | | - Sujatha Tejavat
- Department of Biomedical Sciences, College of MedicineKing Faisal UniversityAl‐AhsaSaudi Arabia
| | | | - Basem M. Abdallah
- Department of Biological Sciences, College of ScienceKing Faisal UniversityAl‐AhsaSaudi Arabia
| |
Collapse
|
38
|
Shen Y, Li T, Sun C, Cheng X, Chen Z, Wang G, Yang X. Atg7 autophagy-independent role on governing neural stem cell fate could be potentially applied for regenerative medicine. Cell Death Differ 2024; 31:1375-1388. [PMID: 38898232 PMCID: PMC11445561 DOI: 10.1038/s41418-024-01330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024] Open
Abstract
A literature review showed that Atg7 biological role was associated with the development and pathogenesis of nervous system, but very few reports focused on Atg7 role on neurogenesis at the region of spinal cord, so that we are committed to explore the subject. Atg7 expression in neural tube is incrementally increased during neurogenesis. Atg7 neural-specific knockout mice demonstrated the impaired motor function and imbalance of neuronal and glial cell differentiation during neurogenesis, which was similarly confirmed in primary neurosphere culture and reversely verified by Atg7 overexpression in unilateral neural tubes of gastrula chicken embryos. Furthermore, activating autophagy in neural stem cells (NSCs) of neurospheres did not rescue Atg7 deficiency-suppressed neuronal differentiation, but Atg7 overexpression on the basis of autophagy inhibition could reverse Atg7 deficiency-suppressed neuronal differentiation, which provides evidence for the existence of Atg7 role of autophagy-independent function. The underlying mechanism is that Atg7 deficiency directly caused the alteration of cell cycle length of NSCs, which is controlled by Atg7 through specifically binding Mdm2, thereby affecting neuronal differentiation during neurogenesis. Eventually, the effect of overexpressing Atg7-promoting neuronal differentiation was proved in spinal cord injury model as well. Taken together, this study revealed that Atg7 was involved in regulating neurogenesis by a non-autophagic signaling process, and this finding also shed light on the potential application in regenerative medicine.
Collapse
Affiliation(s)
- Yao Shen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Tingting Li
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chengyang Sun
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xin Cheng
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi Chen
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, 510220, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development & Prenatal Medicine, Division of Histology and Embryology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, 510632, China.
- Clinical Research Center, Clifford Hospital, Guangzhou, 511496, China.
| |
Collapse
|
39
|
Zhao S, Sun J, Chang Q, Pang S, Zhang N, Fan Y, Liu J. CTCF-activated FUCA1 functions as a tumor suppressor by promoting autophagy flux and serum α-L-fucosidase serves as a potential biomarker for prognosis in ccRCC. Cancer Cell Int 2024; 24:327. [PMID: 39342260 PMCID: PMC11439243 DOI: 10.1186/s12935-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Notably, clear cell renal cell carcinoma (ccRCC) is characterized by a distinct metabolic tumor phenotype that involves the reprogramming of multiple metabolic pathways. Although there is increasing evidence linking FUCA1 to malignancies, its specific role and downstream signaling pathways in ccRCC remain poorly understood. Here we found that FUCA1 expression was significantly downregulated in ccRCC tissues, which also predicts poor prognosis of ccRCCpatients. Moreover, enhancing FUCA1 expression resulted in reduced invasion and migration of ccRCC cells, further indicating its protective role. CHIP-qPCR and luciferase assays showed that CTCF was an upstream transcription factor of FUCA1 and could reverse the effects caused by FUCA1 inactivation. The change in FUCA1 led to changes in the results of various autophagy-related proteins and the mRFP-GFP-LC3 dual fluorescence system, indicating that it may play a role in the fusion stage of autophagy. Protein-protein interaction analysis revealed that FUCA2 exhibited the closest interaction with FUCA1 and strongly predicted the prognosis of ccRCC patients. Additionally, serum AFU encoded by FUCA2 could serve as a valuable predictor for survival in ccRCC patients. FUCA1 suppresses invasion and migration of ccRCC cells, with its activity being modulated by CTCF. FUCA1 regulates the autophagy process in ccRCC cells by influencing the fusion between autophagosomes and lysosomes. FUCA2 shares similarities with FUCA1, and elevated serum AFU levels along with increased expression of FUCA2 are indicative of a favorable prognosis in ccRCC.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Jiajia Sun
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Qinzheng Chang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Shuo Pang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Nianzhao Zhang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China.
| | - Jikai Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road Jinan, Jinan, Shandong, 250012, China.
| |
Collapse
|
40
|
Abdelmoaty AAA, Chen J, Zhang K, Wu C, Li Y, Li P, Xu J. Senolytic effect of triterpenoid complex from Ganoderma lucidum on adriamycin-induced senescent human hepatocellular carcinoma cells model in vitro and in vivo. Front Pharmacol 2024; 15:1422363. [PMID: 39364046 PMCID: PMC11447279 DOI: 10.3389/fphar.2024.1422363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Background Ganoderma lucidum (G. lucidum) is a famous medicinal mushroom that has been reported to prevent and treat a variety of diseases. Different extractions from G. lucidum have been used to manage age-related diseases, including cancer. Nevertheless, the senolytic activity of G. lucidum against senescent cancer cells has not been investigated. Although cellular senescence causes tumor growth inhibition, senescent cells promote the growth of the neighboring tumor cells through paracrine effects. Therefore, the elimination of senescent cells is a new strategy for cancer treatment. Methods In this study, senescence was triggered in HCC cells by the chemotherapeutic agent Adriamycin (ADR), and subsequently, cells were treated with TC to assess its senolytic activity. Results We found for the first time that the triterpenoid complex (TC) from G. lucidum had senolytic effect, which could selectively eliminate adriamycin (ADR)-induced senescent cells (SCs) of hepatocellular carcinoma (HCC) cells via caspase-dependent and mitochondrial pathways-mediated apoptosis and reduce the levels of senescence markers, thereby inhibiting the progression of cancers caused by SCs. TC could block autophagy at the late stage in SCs, resulting in a significant activation of TC-induced apoptosis. Furthermore, TC inhibited the senescence-associated secretory phenotype (SASP) in SCs through the inhibition of NF-κB, TFEB, P38, ERK, and mTOR signaling pathways and reducing the number of SCs. Sequential administration of ADR and TC in vivo significantly reduced tumor growth and reversed the toxicity of ADR. Conclusion A triterpenoid complex isolated from G. lucidum may serve as a novel senolytic agent against SCs, and its combination with chemotherapeutic agents may enhance their antitumor efficacy.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Jing Chen
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Kun Zhang
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Changhui Wu
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Ye Li
- Fujian Xianzhilou Biological Science and Technology Co., Ltd., Fuzhou, China
| | - Peng Li
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jianhua Xu
- Fujian Provincial Key Laboratory of Pharmacology of Natural Medicine, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
41
|
Li Y, Wang F, Geng Z, He T, Song Y, Wu J, Wang B. HBx promotes tumorigenicity through RRM2-mediated autophagy in hepatocellular carcinoma. Cell Biosci 2024; 14:116. [PMID: 39256879 PMCID: PMC11389268 DOI: 10.1186/s13578-024-01298-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection can exacerbate liver disease progression through multiple mechanisms, eventually leading to hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key regulatory protein of HBV infection, serves as a positive regulator of hepatocarcinogenesis. The indispensability of the M2 subunit of ribonucleotide-diphosphate reductase (RRM2) lies in its role in facilitating DNA replication and repair processes. In our previous investigation, it was postulated that the gene RRM2 exhibits elevated expression levels in several categories of malignant tumors, particularly in HBV-related HCC. Additionally, it was observed that RRM2 is present within protein complexes that are centered on HBx. In the present investigation, the objective of this work was to investigate the potential relationship between the elevated expression of RRM2 in HBV-related HCC and the influence of HBx on this expression. The study attempted to determine the specific mechanism by which RRM2 is implicated in the promotion of hepatocarcinogenesis by HBx. There have been multiple scholarly proposals suggesting that the induction of autophagy by HBx is a significant intermediary factor in the development of HCC. However, the precise carcinogenic function of HBx-induced autophagy remains a subject of debate. RESULTS This work initially investigated the impact of suppressing cellular autophagy on the malignant biological behaviors of HBx-promoted cells using an in vitro cellular model. The findings revealed that the suppression of cellular autophagy partially disrupted the oncogenic effects of HBx. In light of this, we proceeded to conduct more investigations into the regulatory association between RRM2 and HBx-induced autophagy in the upstream-downstream context. Our data indicate that HBx proteins increase the expression of RRM2. Suppression of RRM2 expression not only hinders HBx-induced autophagy, but also worsens the cellular G1/S blockage and reduces the HBx-induced malignant growth of hepatocellular carcinoma tumors, while stimulating apoptosis. CONCLUSIONS Therefore, we hypothesised that RRM2 is a potential downstream target of HBx-induced hepatocarcinogenesis, and mining the oncogenic mechanism of RRM2 is significant in exploring the preventive treatment of HBV-related HCC.
Collapse
Affiliation(s)
- Yaqun Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Department of Pharmacy, Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Furan Wang
- Pfizer Research China, Shanghai, 200000, China
| | - Zikai Geng
- Pharmacy School, Binzhou Medical University, Yantai, Shandong Province, 264003, China
| | - Tianye He
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
42
|
Zhang W, Lee A, Tiwari AK, Yang MQ. Characterizing the Tumor Microenvironment and Its Prognostic Impact in Breast Cancer. Cells 2024; 13:1518. [PMID: 39329702 PMCID: PMC11429566 DOI: 10.3390/cells13181518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
The tumor microenvironment (TME) is crucial in cancer development and therapeutic response. Immunotherapy is increasingly recognized as a critical component of cancer treatment. While immunotherapies have shown efficacy in various cancers, including breast cancer, patient responses vary widely. Some patients receive significant benefits, while others experience minimal or no improvement. This disparity underscores the complexity and diversity of the immune system. In this study, we investigated the immune landscape and cell-cell communication within the TME of breast cancer through integrated analysis of bulk and single-cell RNA sequencing data. We established profiles of tumor immune infiltration that span across a broad spectrum of adaptive and innate immune cells. Our clustering analysis of immune infiltration identified three distinct patient groups: high T cell abundance, moderate infiltration, and low infiltration. Patients with low immune infiltration exhibited the poorest survival rates, while those in the moderate infiltration group showed better outcomes than those with high T cell abundance. Moreover, the high cell abundance group was associated with a greater tumor burden and higher rates of TP53 mutations, whereas the moderate infiltration group was characterized by a lower tumor burden and elevated PIK3CA mutations. Analysis of an independent single-cell RNA-seq breast cancer dataset confirmed the presence of similar infiltration patterns. Further investigation into ligand-receptor interactions within the TME unveiled significant variations in cell-cell communication patterns among these groups. Notably, we found that the signaling pathways SPP1 and EGF were exclusively active in the low immune infiltration group, suggesting their involvement in immune suppression. This work comprehensively characterizes the composition and dynamic interplay in the breast cancer TME. Our findings reveal associations between the extent of immune infiltration and clinical outcomes, providing valuable prognostic information for patient stratification. The unique mutations and signaling pathways associated with different patient groups offer insights into the mechanisms underlying diverse tumor immune infiltration and the formation of an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Wenjuan Zhang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - Alex Lee
- Biology Department, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Amit K. Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mary Qu Yang
- MidSouth Bioinformatics Center and Joint Bioinformatics Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| |
Collapse
|
43
|
Wu N, Zheng W, Zhou Y, Tian Y, Tang M, Feng X, Ashrafizadeh M, Wang Y, Niu X, Tambuwala M, Wang L, Tergaonkar V, Sethi G, Klionsky D, Huang L, Gu M. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res Rev 2024; 100:102428. [PMID: 39038742 DOI: 10.1016/j.arr.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Macroautophagy/autophagy is primarily accountable for the degradation of damaged organelles and toxic macromolecules in the cells. Regarding the essential function of autophagy for preserving cellular homeostasis, changes in, or dysfunction of, autophagy flux can lead to disease development. In the current paper, the complicated function of autophagy in aging-associated pathologies and cancer is evaluated, highlighting the underlying molecular mechanisms that can affect longevity and disease pathogenesis. As a natural biological process, a reduction in autophagy is observed with aging, resulting in an accumulation of cell damage and the development of different diseases, including neurological disorders, cardiovascular diseases, and cancer. The MTOR, AMPK, and ATG proteins demonstrate changes during aging, and they are promising therapeutic targets. Insulin/IGF1, TOR, PKA, AKT/PKB, caloric restriction and mitochondrial respiration are vital for lifespan regulation and can modulate or have an interaction with autophagy. The specific types of autophagy, such as mitophagy that degrades mitochondria, can regulate aging by affecting these organelles and eliminating those mitochondria with genomic mutations. Autophagy and its specific types contribute to the regulation of carcinogenesis and they are able to dually enhance or decrease cancer progression. Cancer hallmarks, including proliferation, metastasis, therapy resistance and immune reactions, are tightly regulated by autophagy, supporting the conclusion that autophagy is a promising target in cancer therapy.
Collapse
Affiliation(s)
- Na Wu
- Department of Infectious Diseases, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Wenhui Zheng
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yundong Zhou
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Yu Tian
- School of Public Health, Benedictine University, No.5700 College Road, Lisle, IL 60532, USA; Research Center, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing 401120, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Xiaojia Niu
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Murtaza Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Daniel Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Li Huang
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong 525200, China.
| | - Ming Gu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
44
|
Liu X, Zhou C, Cheng B, Xiong Y, Zhou Q, Wan E, He Y. Genipin promotes the apoptosis and autophagy of neuroblastoma cells by suppressing the PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:20231. [PMID: 39215133 PMCID: PMC11364629 DOI: 10.1038/s41598-024-71123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
This study investigated the underlying function and mechanism of genipin in neuroblastoma (NB). Using flow cytometry analysis and cytotoxicity tests, in vitro studies were conducted to assess the effects of genipin on the SK-N-SH cell line. The mechanism of action of genipin was explored through immunofluorescence staining, Western blotting, and caspase-3 activity assays. In addition, we also created a xenograft tumour model to investigate the effects of genipin in vivo. This research confirmed that genipin suppressed cell viability, induced apoptosis, and promoted autophagy, processes that are likely linked to the inhibition of the PI3K/AKT/mTOR signalling pathway. Autophagy inhibition increases the sensitivity of SK-N-SH cells to genipin. Furthermore, combination treatment with a PI3K inhibitor enhanced the therapeutic efficacy of genipin. These results highlight the potential of genipin as a candidate drug for the treatment of NB.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
- Science and Technology Innovation Centre, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
- Institute of Hepatobiliary Research, North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Can Zhou
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Boli Cheng
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yan Xiong
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Qin Zhou
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Enyu Wan
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China
| | - Yun He
- Department of Paediatrics, Affiliated Hospital of North Sichuan Medical College, No. 1 Maoyuan South Road, Shunqing District, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
45
|
Marquez J, Dong J, Hayashi J, Serrero G. Prostaglandin F2 Receptor Negative Regulator (PTGFRN) Expression Correlates With a Metastatic-like Phenotype in Epidermoid Carcinoma, Pediatric Medulloblastoma, and Mesothelioma. J Cell Biochem 2024; 125:e30616. [PMID: 38924562 DOI: 10.1002/jcb.30616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024]
Abstract
Prostaglandin F2 receptor negative regulator (PTGFRN) is a transmembrane protein associated with metastatic characteristics of certain cancer types. However, it remains poorly characterized and its direct function in cancer remains unclear. The study presented here aims to further examine whether PTGFRN expression affects a cancer cell's phenotype, as well as metastatic-like characteristics. We used stable shRNA and cDNA transfections to respectively knockdown and overexpress PTGFRN in three different cancer cell lines, two of which are representative of rare and aggressive cancers (Mesothelioma and Pediatric Medulloblastoma). We then examined the characteristics of the resulting clones and showed a decrease in proliferation, migration, colony formation, and spheroid growth capabilities in cells where PTGFRN expression had been inhibited, while cells overexpressing PTGFRN showed the opposite. In addition, we showed that PTGFRN displayed direct binding to two protein partners, Integrin β1 and E. Cadherin, the latter of which is a novel direct binding partner to PTGFRN. Furthermore, silencing PTGFRN expression impacted the cellular process of autophagy, thereby providing another avenue by which PTGFRN potentially contributes to a cancer cell phenotype. Our findings demonstrate the potential role of PTGFRN in cancer metastasis and suggest PTGFRN as a future target for drug development in the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Jorge Marquez
- Department of Pharmaceutical Sciences, Baltimore School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jianping Dong
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
| | - Jun Hayashi
- Precision Antibody Service, Columbia, Maryland, USA
| | - Ginette Serrero
- Target Discovery Division, A&G Pharmaceutical Inc., Columbia, Maryland, USA
- Precision Antibody Service, Columbia, Maryland, USA
| |
Collapse
|
46
|
Restrepo LJ, Baehrecke EH. Regulation and Functions of Autophagy During Animal Development. J Mol Biol 2024; 436:168473. [PMID: 38311234 PMCID: PMC11260256 DOI: 10.1016/j.jmb.2024.168473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Autophagy is used to degrade cytoplasmic materials, and is critical to maintain cell and organismal health in diverse animals. Here we discuss the regulation, utilization and impact of autophagy on development, including roles in oogenesis, spermatogenesis and embryogenesis in animals. We also describe how autophagy influences postembryonic development in the context of neuronal and cardiac development, wound healing, and tissue regeneration. We describe recent studies of selective autophagy during development, including mitochondria-selective autophagy and endoplasmic reticulum (ER)-selective autophagy. Studies of developing model systems have also been used to discover novel regulators of autophagy, and we explain how studies of autophagy in these physiologically relevant systems are advancing our understanding of this important catabolic process.
Collapse
Affiliation(s)
- Lucas J Restrepo
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605 USA.
| |
Collapse
|
47
|
Yan L, Shi J, Zhu J. Cellular and molecular events in colorectal cancer: biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discov Oncol 2024; 15:294. [PMID: 39031216 PMCID: PMC11265098 DOI: 10.1007/s12672-024-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide, affecting millions each year. It emerges from the colon or rectum, parts of the digestive system, and is closely linked to both genetic and environmental factors. In CRC, genetic mutations such as APC, KRAS, and TP53, along with epigenetic changes like DNA methylation and histone modifications, play crucial roles in tumor development and treatment responses. This paper delves into the complex biological underpinnings of CRC, highlighting the pivotal roles of genetic alterations, cell death pathways, and the intricate network of signaling interactions that contribute to the disease's progression. It explores the dysregulation of apoptosis, autophagy, and other cell death mechanisms, underscoring the aberrant activation of these pathways in CRC. Additionally, the paper examines how mutations in key molecular pathways, including Wnt, EGFR/MAPK, and PI3K, fuel CRC development, and how these alterations can serve as both diagnostic and prognostic markers. The dual function of autophagy in CRC, acting as a tumor suppressor or promoter depending on the context, is also scrutinized. Through a comprehensive analysis of cellular and molecular events, this research aims to deepen our understanding of CRC and pave the way for more effective diagnostics, prognostics, and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yan
- Medical Department, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jia Shi
- Department of Obstetrics and Gynecology, The Central Hospital of Shaoyang Affiliated to University of South China, Shaoyang, China
| | - Jiazuo Zhu
- Department of Oncology, Xuancheng City Central Hospital, No. 117 Tong Road, Xuancheng, Anhui, China.
| |
Collapse
|
48
|
Fukui T, Yabumoto M, Nishida M, Hirokawa S, Sato R, Kurisu T, Nakai M, Hassan MA, Kishimoto K. Amino acid deprivation in cancer cells with compensatory autophagy induction increases sensitivity to autophagy inhibitors. Mol Cell Oncol 2024; 11:2377404. [PMID: 39021618 PMCID: PMC11253891 DOI: 10.1080/23723556.2024.2377404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Inhibition of autophagy is an important strategy in cancer therapy. However, prolonged inhibition of certain autophagies in established cancer cells may increase therapeutic resistance, though the underlying mechanisms of its induction and enhancement remain unclear. This study sought to elucidate the mechanisms of therapeutic resistance through repeated autophagy inhibition and amino acid deprivation (AD) in an in vitro model of in vivo chronic nutrient deprivation associated with cancer cell treatment. In the human cervical cancer cell line HeLa and human breast cancer cell line MCF-7, initial extracellular AD induced the immediate expression of endosomal microautophagy (eMI). However, repeated inhibition of eMI with U18666A and extracellular AD induced macroautophagy (MA) to compensate for reduced eMI, simultaneously decreasing cytotoxicity. Here, hyperphosphorylated JNK was transformed into a hypophosphorylated state, suggesting conversion of the cell death signal to a survival signal. In a nutrient medium, cell death could not be induced by MA inhibition. However, since LAT1 inhibitors induce intracellular AD, combining them with MA and eMI inhibitors successfully promoted cell death in resistant cells. Our study identified a novel therapeuic approach for promoting cell death and addressing therapeutic resistance in cancers under autophagy-inhibitor treatment.
Collapse
Affiliation(s)
- Takahito Fukui
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Manami Yabumoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Misuzu Nishida
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Shiori Hirokawa
- Graduate School of Environment and Energy Engineering, Waseda University, Tokyo, Japan
| | - Riho Sato
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Taichi Kurisu
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Miyu Nakai
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Sciences and Technology for Innovation, Tokushima, Japan
| | - Md. Abul Hassan
- Faculty of Bioscience and Bioindustry, Tokushima University Graduate School of Advanced Technology and Science, Tokushima, Japan
| | - Koji Kishimoto
- Division of Bioscience and Bioindustry, Tokushima University Graduate School of Technology, Industrial and Social Sciences, Tokushima, Japan
| |
Collapse
|
49
|
Selarka K, Shravage BV. Illuminating intercellular autophagy: A comprehensive review of cell non-autonomous autophagy. Biochem Biophys Res Commun 2024; 716:150024. [PMID: 38701555 DOI: 10.1016/j.bbrc.2024.150024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Macro-autophagy (autophagy hereafter) is an evolutionarily conserved cellular process that has long been recognized as an intracellular mechanism for maintaining cellular homeostasis. It involves the formation of a membraned structure called the autophagosome, which carries cargo that includes toxic protein aggregates and dysfunctional organelles to the lysosome for degradation and recycling. Autophagy is primarily considered and studied as a cell-autonomous mechanism. However, recent studies have illuminated an underappreciated facet of autophagy, i.e., non-autonomously regulated autophagy. Non-autonomously regulated autophagy involves the degradation of autophagic components, including organelles, cargo, and signaling molecules, and is induced in neighboring cells by signals from primary adjacent or distant cells/tissues/organs. This review provides insight into the complex molecular mechanisms governing non-autonomously regulated autophagy, highlighting the dynamic interplay between cells within tissue/organ or distinct cell types in different tissues/organs. Emphasis is placed on modes of intercellular communication that include secreted molecules, including microRNAs, and their regulatory roles in orchestrating this phenomenon. Furthermore, we explore the multidimensional roles of non-autonomously regulated autophagy in various physiological contexts, spanning tissue development and aging, as well as its importance in diverse pathological conditions, including cancer and neurodegeneration. By studying the complexities of non-autonomously regulated autophagy, we hope to gain insights into the sophisticated intercellular dynamics within multicellular organisms, including mammals. These studies will uncover novel avenues for therapeutic intervention to modulate intercellular autophagic pathways in altered human physiology.
Collapse
Affiliation(s)
- Karan Selarka
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India
| | - Bhupendra V Shravage
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India; Department of Biotechnology, Savitribai Phule Pune University, Pune, India; Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
50
|
Nakamura Y, Sawai T, Kakiuchi K, Arawaka S. Neuronal activity promotes secretory autophagy for the extracellular release of α-synuclein. J Biol Chem 2024; 300:107419. [PMID: 38815862 PMCID: PMC11253543 DOI: 10.1016/j.jbc.2024.107419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
Extracellular secretion is an essential mechanism for α-synuclein (α-syn) proteostasis. Although it has been reported that neuronal activity affects α-syn secretion, the underlying mechanisms remain unclear. Here, we investigated the autophagic processes that regulate the physiological release of α-syn in mouse primary cortical neurons and SH-SY5Y cells. Stimulating neuronal activity with glutamate or depolarization with high KCl enhanced α-syn secretion. This glutamate-induced α-syn secretion was blocked by a mixture of NMDA receptor antagonist AP5 and AMPA receptor antagonist NBQX, as well as by cytosolic Ca2+ chelator BAPTA-AM. Additionally, mTOR inhibitor rapamycin increased α-syn and p62/SQSTM1 (p62) secretion, and this effect of rapamycin was reduced in primary cortical neurons deficient in the autophagy regulator beclin 1 (derived from BECN1+/- mice). Glutamate-induced α-syn and p62 secretion was suppressed by the knockdown of ATG5, which is required for autophagosome formation. Glutamate increased LC3-II generation and decreased intracellular p62 levels, and the increase in LC3-II levels was blocked by BAPTA-AM. Moreover, glutamate promoted co-localization of α-syn with LC3-positive puncta, but not with LAMP1-positive structures in the neuronal somas. Glutamate-induced α-syn and p62 secretion were also reduced by the knockdown of RAB8A, which is required for autophagosome fusion with the plasma membrane. Collectively, these findings suggest that stimulating neuronal activity mediates autophagic α-syn secretion in a cytosolic Ca2+-dependent manner, and autophagosomes may participate in autophagic secretion by functioning as α-syn carriers.
Collapse
Affiliation(s)
- Yoshitsugu Nakamura
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Taiki Sawai
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Kensuke Kakiuchi
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan
| | - Shigeki Arawaka
- Division of Neurology, Department of Internal Medicine IV, Osaka Medical and Pharmaceutical University Faculty of Medicine, Takatsuki, Osaka, Japan.
| |
Collapse
|