1
|
Ems M, Brichkina A, Lauth M. A safe haven for cancer cells: tumor plus stroma control by DYRK1B. Oncogene 2025; 44:341-347. [PMID: 39863750 PMCID: PMC11790486 DOI: 10.1038/s41388-025-03275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated. In this review, we describe a seemingly paradoxical oncogenic mediator with this potential: The dual-specificity tyrosine-phosphorylation regulated kinase 1B (DYRK1B). DYRK1B promotes proliferative quiescence and yet is overexpressed or amplified in many hyperproliferative malignancies including ovarian cancer and pancreatic cancer. In particular the latter disease is a paradigmatic example for a therapy-recalcitrant and highly stroma-rich cancer entity. Here, recent evidence suggests that DYRK1B exerts its oncogenic features by installing a protective niche for cancer cells by directly affecting cancer cells but also the TME. Specifically, DYRK1B not only fosters cell-intrinsic processes like cell survival, chemoresistance, and disease recurrence, but it also upregulates TME and cancer cell-protective innate immune checkpoints and down-modulates anti-tumoral macrophage functionality. In this article, we outline the well-established cell-autonomous roles of DYRK1B and extend its importance to the TME and the control of the tumor immune stroma. In summary, DYRK1B appears as a single novel key player creating a safe haven for cancer cells by acting cell-intrinsically and-extrinsically, leading to the promotion of cancer cell survival, chemoresistance, and relapse. Thus, DYRK1B appears as an attractive drug target for future therapeutic approaches.
Collapse
Affiliation(s)
- Miriam Ems
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany
| | - Anna Brichkina
- Institute of Systems Immunology, Philipps University Marburg, Marburg, Germany
| | - Matthias Lauth
- Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
2
|
Papenfuss M, Lützow S, Wilms G, Babendreyer A, Flaßhoff M, Kunick C, Becker W. Differential maturation and chaperone dependence of the paralogous protein kinases DYRK1A and DYRK1B. Sci Rep 2022; 12:2393. [PMID: 35165364 PMCID: PMC8844047 DOI: 10.1038/s41598-022-06423-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The HSP90/CDC37 chaperone system not only assists the maturation of many protein kinases but also maintains their structural integrity after folding. The interaction of mature kinases with the HSP90/CDC37 complex is governed by the conformational stability of the catalytic domain, while the initial folding of the protein kinase domain is mechanistically less well characterized. DYRK1A (Dual-specificity tyrosine (Y)-phosphorylation Regulated protein Kinase 1A) and DYRK1B are closely related protein kinases with discordant HSP90 client status. DYRK kinases stoichiometrically autophosphorylate on a tyrosine residue immediately after folding, which served us as a traceable marker of successful maturation. In the present study, we used bacterial expression systems to compare the capacity of autonomous maturation of DYRK1A and DYRK1B in the absence of eukaryotic cofactors or chaperones. Under these conditions, autophosphorylation of human DYRK1B was severely compromised when compared with DYRK1A or DYRK1B orthologs from zebrafish and Xenopus. Maturation of human DYRK1B could be restored by bacterial expression at lower temperatures, suggesting that folding was not absolutely dependent on eukaryotic chaperones. The differential folding properties of DYRK1A and DYRK1B were largely due to divergent sequences of the C-terminal lobes of the catalytic domain. Furthermore, the mature kinase domain of DYRK1B featured lower thermal stability than that of DYRK1A when exposed to heat challenge in vitro or in living cells. In summary, our study enhances the mechanistic understanding of the differential thermodynamic properties of two closely related protein kinases during initial folding and as mature kinases.
Collapse
Affiliation(s)
- Marco Papenfuss
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Svenja Lützow
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, RWTH Aachen University, 52074, Aachen, Germany
| | - Maren Flaßhoff
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
4
|
Méjécase C, Way CM, Owen N, Moosajee M. Ocular Phenotype Associated with DYRK1A Variants. Genes (Basel) 2021; 12:234. [PMID: 33562844 PMCID: PMC7915179 DOI: 10.3390/genes12020234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A or DYRK1A, contributes to central nervous system development in a dose-sensitive manner. Triallelic DYRK1A is implicated in the neuropathology of Down syndrome, whereas haploinsufficiency causes the rare DYRK1A-related intellectual disability syndrome (also known as mental retardation 7). It is characterised by intellectual disability, autism spectrum disorder and microcephaly with a typical facial gestalt. Preclinical studies elucidate a role for DYRK1A in eye development and case studies have reported associated ocular pathology. In this study families of the DYRK1A Syndrome International Association were asked to self-report any co-existing ocular abnormalities. Twenty-six patients responded but only 14 had molecular confirmation of a DYRK1A pathogenic variant. A further nineteen patients from the UK Genomics England 100,000 Genomes Project were identified and combined with 112 patients reported in the literature for further analysis. Ninety out of 145 patients (62.1%) with heterozygous DYRK1A variants revealed ocular features, these ranged from optic nerve hypoplasia (13%, 12/90), refractive error (35.6%, 32/90) and strabismus (21.1%, 19/90). Patients with DYRK1A variants should be referred to ophthalmology as part of their management care pathway to prevent amblyopia in children and reduce visual comorbidity, which may further impact on learning, behaviour, and quality of life.
Collapse
Affiliation(s)
- Cécile Méjécase
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Christopher M. Way
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Nicholas Owen
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V E9L, UK; (C.M.); (C.M.W.); (N.O.)
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
5
|
Laham AJ, Saber-Ayad M, El-Awady R. DYRK1A: a down syndrome-related dual protein kinase with a versatile role in tumorigenesis. Cell Mol Life Sci 2021; 78:603-619. [PMID: 32870330 PMCID: PMC11071757 DOI: 10.1007/s00018-020-03626-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region (DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phosphorylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcription, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential strategy for management of cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- Amina Jamal Laham
- College of Medicine, University of Sharjah, Sharjah, UAE
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, UAE.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE.
| | - Raafat El-Awady
- College of Medicine, University of Sharjah, Sharjah, UAE.
- College of Pharmacy, University of Sharjah, Sharjah, UAE.
| |
Collapse
|
6
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
7
|
Agnew C, Liu L, Liu S, Xu W, You L, Yeung W, Kannan N, Jablons D, Jura N. The crystal structure of the protein kinase HIPK2 reveals a unique architecture of its CMGC-insert region. J Biol Chem 2019; 294:13545-13559. [PMID: 31341017 PMCID: PMC6746438 DOI: 10.1074/jbc.ra119.009725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/11/2019] [Indexed: 01/07/2023] Open
Abstract
The homeodomain-interacting protein kinase (HIPK) family is comprised of four nuclear protein kinases, HIPK1-4. HIPK proteins phosphorylate a diverse range of transcription factors involved in cell proliferation, differentiation, and apoptosis. HIPK2, thus far the best-characterized member of this largely understudied family of protein kinases, plays a role in the activation of p53 in response to DNA damage. Despite this tumor-suppressor function, HIPK2 is also found overexpressed in several cancers, and its hyperactivation causes chronic fibrosis. There are currently no structures of HIPK2 or of any other HIPK kinase. Here, we report the crystal structure of HIPK2's kinase domain bound to CX-4945, a casein kinase 2α (CK2α) inhibitor currently in clinical trials against several cancers. The structure, determined at 2.2 Å resolution, revealed that CX-4945 engages the HIPK2 active site in a hybrid binding mode between that seen in structures of CK2α and Pim1 kinases. The HIPK2 kinase domain crystallized in the active conformation, which was stabilized by phosphorylation of the activation loop. We noted that the overall kinase domain fold of HIPK2 closely resembles that of evolutionarily related dual-specificity tyrosine-regulated kinases (DYRKs). Most significant structural differences between HIPK2 and DYRKs included an absence of the regulatory N-terminal domain and a unique conformation of the CMGC-insert region and of a newly defined insert segment in the αC-β4 loop. This first crystal structure of HIPK2 paves the way for characterizing the understudied members of the HIPK family and for developing HIPK2-directed therapies for managing cancer and fibrosis.
Collapse
Affiliation(s)
- Christopher Agnew
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Lijun Liu
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wei Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115
| | - Wayland Yeung
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Natarajan Kannan
- Institute of Bioinformatics and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - David Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94115, Supported by the Kazan McClain Partners' Foundation and the H. N. and Frances C. Berger Foundation. To whom correspondence may be addressed:
1600 Divisadero St., A745, San Francisco, CA 94115. Tel.:
415-353-7502; E-mail:
| | - Natalia Jura
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158,Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, To whom correspondence may be addressed:
555 Mission Bay Blvd. S., Rm. 452W, San Francisco, CA 94158. Tel.:
415-514-1133; E-mail:
| |
Collapse
|
8
|
Widowati EW, Bamberg-Lemper S, Becker W. Mutational analysis of two residues in the DYRK homology box of the protein kinase DYRK1A. BMC Res Notes 2018; 11:297. [PMID: 29764512 PMCID: PMC5952693 DOI: 10.1186/s13104-018-3416-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Dual specificity tyrosine phosphorylation-regulated kinases (DYRK) contain a characteristic sequence motif (DYRK homology box, DH box) that is located N-terminal of the catalytic domain and supports the autophosphorylation of a conserved tyrosine during maturation of the catalytic domain. Two missense mutations in the DH box of human DYRK1B were recently identified as causative of a rare familiar form of metabolic syndrome. We have recently shown that these amino acid exchanges impair maturation of the kinase domain. Here we report the characterization of DYRK1A point mutants (D138P, K150C) that correspond to the pathogenic DYRK1B variants (H90P, R102C). RESULTS When expressed in HeLa cells, DYRK1A-D138P and K150C showed no significant difference from wild type DYRK1A regarding the activating tyrosine autophosphorylation or catalytic activity towards exogenous substrates. However, both DYRK1A variants were underphosphorylated on tyrosine when expressed in a bacterial cell free in vitro translation system. These results suggest that D138 and K150 participate in the maturation of the catalytic domain of DYRK1A albeit the mutation of these residues is compensated under physiological conditions.
Collapse
Affiliation(s)
- Esti Wahyu Widowati
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Chemistry Study Program, Faculty of Science and Technology, State Islamic University (UIN) Sunan Kalijaga, Yogyakarta, Indonesia
| | | | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Tian Y, Zhang ZC, Han J. Drosophila Studies on Autism Spectrum Disorders. Neurosci Bull 2017; 33:737-746. [PMID: 28795356 DOI: 10.1007/s12264-017-0166-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
10
|
Abu Jhaisha S, Widowati EW, Kii I, Sonamoto R, Knapp S, Papadopoulos C, Becker W. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Sci Rep 2017; 7:6420. [PMID: 28743892 PMCID: PMC5526990 DOI: 10.1038/s41598-017-06874-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 06/20/2017] [Indexed: 01/12/2023] Open
Abstract
Two missense mutations of the DYRK1B gene have recently been found to co-segregate with a rare autosomal-dominant form of metabolic syndrome. This gene encodes a member of the DYRK family of protein kinases, which depend on tyrosine autophosphorylation to acquire the catalytically active conformation. The mutations (H90P and R102C) affect a structural element named DYRK homology (DH) box and did not directly interfere with the conformation of the catalytic domain in a structural model of DYRK1B. Cellular assays showed that the mutations did not alter the specific activity of mature kinase molecules. However, a significant part of the mutant DYRK1B protein accumulated in detergent-insoluble cytoplasmic aggregates and was underphosphorylated on tyrosine. The mutant DYRK1B variants were more vulnerable to the HSP90 inhibitor ganetespib and showed enhanced binding to the co-chaperone CDC37 as compared to wild type DYRK1B. These results support the hypothesis that the mutations in the DH box interfere with the maturation of DYRK1B by tyrosine autophosphorylation and compromise the conformational stability of the catalytic domain, which renders the kinase susceptible to misfolding.
Collapse
Affiliation(s)
- Samira Abu Jhaisha
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Esti W Widowati
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Chemistry Study Program, Faculty of Science and Technology, State Islamic University, (UIN), Sunan Kalijaga, Yogyakarta, Indonesia
| | - Isao Kii
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Rie Sonamoto
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry and Buchmann Institute for Molecular Life Sciences (BMLS), Johann Wolfgang Goethe University, Frankfurt am, Main, 60438, Germany
| | - Chrisovalantis Papadopoulos
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
- Molecular Biology I, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
11
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
12
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
13
|
van Bon BW, Coe BP, Bernier R, Green C, Gerdts J, Witherspoon K, Kleefstra T, Willemsen MH, Kumar R, Bosco P, Fichera M, Li D, Amaral D, Cristofoli F, Peeters H, Haan E, Romano C, Mefford HC, Scheffer I, Gecz J, de Vries BB, Eichler EE. Disruptive de novo mutations of DYRK1A lead to a syndromic form of autism and ID. Mol Psychiatry 2016; 21:126-32. [PMID: 25707398 PMCID: PMC4547916 DOI: 10.1038/mp.2015.5] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 A (DYRK1A) maps to the Down syndrome critical region; copy number increase of this gene is thought to have a major role in the neurocognitive deficits associated with Trisomy 21. Truncation of DYRK1A in patients with developmental delay (DD) and autism spectrum disorder (ASD) suggests a different pathology associated with loss-of-function mutations. To understand the phenotypic spectrum associated with DYRK1A mutations, we resequenced the gene in 7162 ASD/DD patients (2446 previously reported) and 2169 unaffected siblings and performed a detailed phenotypic assessment on nine patients. Comparison of our data and published cases with 8696 controls identified a significant enrichment of DYRK1A truncating mutations (P=0.00851) and an excess of de novo mutations (P=2.53 × 10(-10)) among ASD/intellectual disability (ID) patients. Phenotypic comparison of all novel (n=5) and recontacted (n=3) cases with previous case reports, including larger CNV and translocation events (n=7), identified a syndromal disorder among the 15 patients. It was characterized by ID, ASD, microcephaly, intrauterine growth retardation, febrile seizures in infancy, impaired speech, stereotypic behavior, hypertonia and a specific facial gestalt. We conclude that mutations in DYRK1A define a syndromic form of ASD and ID with neurodevelopmental defects consistent with murine and Drosophila knockout models.
Collapse
Affiliation(s)
- Bregje W.M. van Bon
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Raphael Bernier
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Cherie Green
- Florey Institute, University of Melbourne, Austin Health and Royal Children’s Hospital, Melbourne 3010, Australia
| | - Jennifer Gerdts
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Kali Witherspoon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein H. Willemsen
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
| | - Raman Kumar
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
| | - Paolo Bosco
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
| | - Marco Fichera
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
- Medical Genetics, University of Catania, Catania 95123, Italy
| | - Deana Li
- Representing the Autism Phenome Project, MIND Institute, University of California-Davis, Sacramento, CA 95817, USA
| | - David Amaral
- Representing the Autism Phenome Project, MIND Institute, University of California-Davis, Sacramento, CA 95817, USA
| | - Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven 3000, Belgium
| | - Hilde Peeters
- Center for Human Genetics, University Hospitals Leuven, KU Leuven, Leuven 3000, Belgium
- Leuven Autism Research (LAuRes), Leuven 3000, Belgium
| | - Eric Haan
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Clinical Genetics Service, SA Pathology, Adelaide, Australia
| | - Corrado Romano
- I.R.C.C.S. Associazione Oasi Maria Santissima, Troina 94018, Italy
| | - Heather C. Mefford
- Department of Psychiatry, University of Washington, Seattle, WA 98195, USA
| | - Ingrid Scheffer
- Florey Institute, University of Melbourne, Austin Health and Royal Children’s Hospital, Melbourne 3010, Australia
| | - Jozef Gecz
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, Australia
- South Australian Clinical Genetics Service, SA Pathology, Adelaide, Australia
- Robinson Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - Bert B.A. de Vries
- Department of Human Genetics, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development. Genetics 2013; 195:927-40. [PMID: 24026097 DOI: 10.1534/genetics.113.154211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes.
Collapse
|
15
|
Soundararajan M, Roos A, Savitsky P, Filippakopoulos P, Kettenbach A, Olsen J, Gerber S, Eswaran J, Knapp S, Elkins J. Structures of Down syndrome kinases, DYRKs, reveal mechanisms of kinase activation and substrate recognition. Structure 2013; 21:986-96. [PMID: 23665168 PMCID: PMC3677093 DOI: 10.1016/j.str.2013.03.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/28/2013] [Accepted: 03/19/2013] [Indexed: 01/16/2023]
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinases (DYRKs) play key roles in brain development, regulation of splicing, and apoptosis, and are potential drug targets for neurodegenerative diseases and cancer. We present crystal structures of one representative member of each DYRK subfamily: DYRK1A with an ATP-mimetic inhibitor and consensus peptide, and DYRK2 including NAPA and DH (DYRK homology) box regions. The current activation model suggests that DYRKs are Ser/Thr kinases that only autophosphorylate the second tyrosine of the activation loop YxY motif during protein translation. The structures explain the roles of this tyrosine and of the DH box in DYRK activation and provide a structural model for DYRK substrate recognition. Phosphorylation of a library of naturally occurring peptides identified substrate motifs that lack proline in the P+1 position, suggesting that DYRK1A is not a strictly proline-directed kinase. Our data also show that DYRK1A wild-type and Y321F mutant retain tyrosine autophosphorylation activity.
Collapse
Affiliation(s)
- Meera Soundararajan
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Annette K. Roos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Pavel Savitsky
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Arminja N. Kettenbach
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jesper V. Olsen
- Department of Proteomics, Novo Nordisk Foundation Center for Protein Research, Copenhagen DK-2200, Denmark
| | - Scott A. Gerber
- Department of Genetics, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Jeyanthy Eswaran
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Stefan Knapp
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
- Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Jonathan M. Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|
16
|
Haydar TF, Reeves RH. Trisomy 21 and early brain development. Trends Neurosci 2012; 35:81-91. [PMID: 22169531 PMCID: PMC3273608 DOI: 10.1016/j.tins.2011.11.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/17/2011] [Accepted: 11/01/2011] [Indexed: 12/13/2022]
Abstract
Trisomy for human chromosome 21 (Hsa21) results in Down syndrome (DS). The finished human genome sequence provides a thorough catalog of the genetic elements whose altered dosage perturbs development and function in DS. However, understanding how small alterations in the steady state transcript levels for <2% of human genes can disrupt development and function of essentially every cell presents a more complicated problem. Mouse models that recapitulate specific aspects of DS have been used to identify changes in brain morphogenesis and function. Here we provide a few examples of how trisomy for specific genes affects the development of the cortex and cerebellum to illustrate how gene dosage effects might contribute to divergence between the trisomic and euploid brains.
Collapse
Affiliation(s)
- Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | |
Collapse
|
17
|
Abstract
MNB/DYRK1A is a member of the dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) family that has been strongly conserved across evolution. There are substantial data implicating MNB/DYRK1A in brain development and adult brain function, as well as in neurodegeneration and Down syndrome pathologies. Here we review our current understanding of the neurodevelopmental activity of MNB/DYRK1A. We discuss how MNB/DYRK1A fulfils several sequential roles in neuronal development and the molecular mechanisms possibly underlying these functions. We also summarize the evidence behind the hypotheses to explain how the imbalance in MNB/DYRK1A gene dosage might be implicated in the neurodevelopmental alterations associated with Down syndrome. Finally, we highlight some research directions that may help to clarify the mechanisms and functions of MNB/DYRK1A signalling in the developing brain.
Collapse
Affiliation(s)
- Francisco J Tejedor
- Instituto de Neurociencias, CSIC and Universidad Miguel Hernandez, Alicante, Spain.
| | | |
Collapse
|
18
|
Kinstrie R, Luebbering N, Miranda-Saavedra D, Sibbet G, Han J, Lochhead PA, Cleghon V. Characterization of a domain that transiently converts class 2 DYRKs into intramolecular tyrosine kinases. Sci Signal 2010; 3:ra16. [PMID: 20197545 DOI: 10.1126/scisignal.2000579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) autophosphorylate an essential tyrosine residue in their activation loop and phosphorylate their substrates on serine and threonine residues. Phosphorylation of the activation loop tyrosine occurs intramolecularly, is mediated by a short-lived transitional intermediate during protein maturation, and is required for functional serine-threonine kinase activity of DYRKs. The DYRK family is separated into two subclasses. Through bioinformatics and mutational analyses, we identified a conserved domain in the noncatalytic N terminus of a class 2 DYRK that was required for autophosphorylation of the activation loop tyrosine but not for the phosphorylation of serine or threonine residues in substrates. We propose that this domain, which we term the NAPA domain, provides a chaperone-like function that transiently converts class 2 DYRKs into intramolecular kinases capable of autophosphorylating the activation loop tyrosine. The conservation of the NAPA domain from trypanosomes to humans indicates that this form of intramolecular phosphorylation of the activation loop is ancient and may represent a primordial mechanism for the activation of protein kinases.
Collapse
Affiliation(s)
- Ross Kinstrie
- 1Department of Immunology, Infection and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Fedorova EV, Pindyurin AV, Baricheva EM. Maintenance of the patterns of expression of homeotic genes in the development of Drosophila melanogaster by proteins of the polycomb, trithorax, and ETP groups. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Lepagnol-Bestel AM, Zvara A, Maussion G, Quignon F, Ngimbous B, Ramoz N, Imbeaud S, Loe-Mie Y, Benihoud K, Agier N, Salin PA, Cardona A, Khung-Savatovsky S, Kallunki P, Delabar JM, Puskas LG, Delacroix H, Aggerbeck L, Delezoide AL, Delattre O, Gorwood P, Moalic JM, Simonneau M. DYRK1A interacts with the REST/NRSF-SWI/SNF chromatin remodelling complex to deregulate gene clusters involved in the neuronal phenotypic traits of Down syndrome. Hum Mol Genet 2009; 18:1405-14. [PMID: 19218269 DOI: 10.1093/hmg/ddp047] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The molecular mechanisms that lead to the cognitive defects characteristic of Down syndrome (DS), the most frequent cause of mental retardation, have remained elusive. Here we use a transgenic DS mouse model (152F7 line) to show that DYRK1A gene dosage imbalance deregulates chromosomal clusters of genes located near neuron-restrictive silencer factor (REST/NRSF) binding sites. We found that Dyrk1a binds the SWI/SNF complex known to interact with REST/NRSF. The mutation of a REST/NRSF binding site in the promoter of the REST/NRSF target gene L1cam modifies the transcriptional effect of Dyrk1a-dosage imbalance on L1cam. Dyrk1a dosage imbalance perturbs Rest/Nrsf levels with decreased Rest/Nrsf expression in embryonic neurons and increased expression in adult neurons. Using transcriptome analysis of embryonic brain subregions of transgenic 152F7 mouse line, we identified a coordinated deregulation of multiple genes that are responsible for dendritic growth impairment present in DS. Similarly, Dyrk1a overexpression in primary mouse cortical neurons induced severe reduction of the dendritic growth and dendritic complexity. We propose that DYRK1A overexpression-related neuronal gene deregulation via disturbance of REST/NRSF levels, and the REST/NRSF-SWI/SNF chromatin remodelling complex, significantly contributes to the neural phenotypic changes that characterize DS.
Collapse
|
21
|
Maddika S, Chen J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat Cell Biol 2009; 11:409-19. [PMID: 19287380 PMCID: PMC2754075 DOI: 10.1038/ncb1848] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/04/2008] [Indexed: 01/02/2023]
Abstract
Protein kinases have central functions in various cellular signal transduction pathways through their substrate phosphorylation. Here we show that a protein kinase, DYRK2, has unexpected role as a scaffold for an E3 ubiquitin ligase complex. DYRK2 associates with an E3 ligase complex containing EDD, DDB1 and VPRBP proteins (EDVP complex). Strikingly, DYRK2 serves as a scaffold for the EDVP complex, because small-interfering-RNA-mediated depletion of DYRK2 disrupts the formation of the EDD-DDB1-VPRBP complex. Although the kinase activity of DYRK2 is dispensable for its ability to mediate EDVP complex formation, it is required for the phosphorylation and subsequent degradation of its downstream substrate, katanin p60. Collectively, our results reveal a new type of E3-ubiquitin ligase complex in humans that depends on a protein kinase for complex formation as well as for the subsequent phosphorylation, ubiquitylation and degradation of their substrates.
Collapse
Affiliation(s)
- Subbareddy Maddika
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT 06520, USA
| | - Junjie Chen
- Department of Therapeutic Radiology, Yale University School of Medicine, P. O. Box 208040, New Haven, CT 06520, USA
| |
Collapse
|
22
|
Spickett CM, Pitt AR, Morrice N, Kolch W. Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1823-41. [PMID: 17070740 DOI: 10.1016/j.bbapap.2006.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 12/28/2022]
Abstract
Signal transduction pathways control cell fate, survival and function. They are organized as intricate biochemical networks which enable biochemical protein activities, crosstalk and subcellular localization to be integrated and tuned to produce highly specific biological responses in a robust and reproducible manner. Post translational Modifications (PTMs) play major roles in regulating these processes through a wide variety of mechanisms that include changes in protein activities, interactions, and subcellular localizations. Determining and analyzing PTMs poses enormous challenges. Recent progress in mass spectrometry (MS) based proteomics have enhanced our capability to map and identify many PTMs. Here we review the current state of proteomic PTM analysis relevant for signal transduction research, focusing on two areas: phosphorylation, which is well established as a widespread key regulator of signal transduction; and oxidative modifications, which from being primarily viewed as protein damage now start to emerge as important regulatory mechanisms.
Collapse
|