1
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Palizkaran Yazdi M, Barjasteh A, Moghbeli M. MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma. Mol Brain 2024; 17:42. [PMID: 38956588 PMCID: PMC11218189 DOI: 10.1186/s13041-024-01113-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive nervous system tumor with a poor prognosis. Although, surgery, radiation therapy, and chemotherapy are the current standard protocol for GBM patients, there is still a poor prognosis in these patients. Temozolomide (TMZ) as a first-line therapeutic agent in GBM can easily cross from the blood-brain barrier to inhibit tumor cell proliferation. However, there is a high rate of TMZ resistance in GBM patients. Since, there are limited therapeutic choices for GBM patients who develop TMZ resistance; it is required to clarify the molecular mechanisms of chemo resistance to introduce the novel therapeutic targets. MicroRNAs (miRNAs) regulate chemo resistance through regulation of drug metabolism, absorption, DNA repair, apoptosis, and cell cycle. In the present review we discussed the role of miRNAs in TMZ response of GBM cells. It has been reported that miRNAs mainly induced TMZ sensitivity by regulation of signaling pathways and autophagy in GBM cells. Therefore, miRNAs can be used as the reliable diagnostic/prognostic markers in GBM patients. They can also be used as the therapeutic targets to improve the TMZ response in GBM cells.
Collapse
Affiliation(s)
- Mahsa Palizkaran Yazdi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Barjasteh
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Hong SP, Kim KW, Ahn SK. Inhibition of GLI Transcriptional Activity and Prostate Cancer Cell Growth and Proliferation by DAX1. Curr Issues Mol Biol 2023; 45:5347-5361. [PMID: 37504255 PMCID: PMC10378570 DOI: 10.3390/cimb45070339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
The Hedgehog (Hh) signaling pathway plays an essential role in the initiation and progression of prostate cancer. This is mediated by transcriptional factors belonging to the GLI (glioma-associated oncogene) family, which regulate downstream targets to drive prostate cancer progression. The activity of GLI proteins is tightly controlled by a range of mechanisms, including molecular interactions and post-translational modifications. In particular, mitogenic and oncogenic signaling pathways have been shown to regulate GLI protein activity independently of upstream Hh pathway signaling. Identifying GLI protein regulators is critical for the development of targeted therapies that can improve patient outcomes. This study aimed to identify a novel protein that directly regulates the activity of GLI transcription factors in prostate cancer. We performed gene expression, cellular analyses, and reporter assays to demonstrate that DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1) interacts with GLI1 and GLI2, the master regulators of Hh signaling. Interestingly, DAX1 overexpression significantly inhibited Hh signaling by reducing GLI1 and GLI2 activity, prostate cancer cell proliferation, and viability. Our results shed light on a novel regulatory mechanism of Hh signaling in prostate cancer cells. The interaction between DAX1 and GLI transcription factors provides insight into the complex regulation of Hh signaling in prostate cancer. Given the importance of Hh signaling in prostate cancer progression, targeting DAX1-GLI interactions may represent a promising therapeutic approach against prostate cancer. Overall, this study provides new insights into the regulation of the Hh pathway and its role in prostate cancer progression. The findings suggest that DAX1 could serve as a potential therapeutic target for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Sung Pyo Hong
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Kil Won Kim
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Soon Kil Ahn
- Institute for New Drug Development, Division of Life Sciences, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Ruan W, Chi D, Wang Y, Ma J, Huang Y. Rs28446116 in PTCH1 is associated with non-syndromic cleft lip with or without palate in the Ningxia population, China. Arch Oral Biol 2023; 149:105660. [PMID: 36870116 DOI: 10.1016/j.archoralbio.2023.105660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES To investigate the association between PTCH1 single nucleotide polymorphism(SNP) and non-syndromic cleft lip with or without palate (NSCL/P) in the Ningxia Hui Autonomous region and predict the function of single nucleotide polymorphism through bioinformatics analysis. DESIGN A case-control analysis of 31 single nucleotide polymorphism locus alleles on PTCH1 gene (504 cases and 455 controls) was performed to explore the association between PTCH1 gene polymorphisms and non-syndromic cleft lip with or without palate in Ningxia region. Transcription factors, 3D single nucleotide polymorphism and other related information of single nucleotide polymorphism loci with statistical significance were screened by the case-control experiments, and then analyzed the corresponding transcription factors through the NCBI database. RESULTS The case-control study showed that 5 of the 31 single nucleotide polymorphism loci rs357564 (P = 0.0233), rs1805155 (P = 0.0371), rs28446116 (P = 0.0408), rs2282041 (P = 0.0439), rs56119276 (P = 0.0256) had statistically significant differences in allele frequencies between the case and control groups. Bioinformatics analysis revealed that EP300 and RUNX3, among the transcription factors associated with rs28446116, may be associated with the development of non-syndromic cleft lip with or without palate. CONCLUSION PTCH1 gene may be associated with the occurrence of non-syndromic cleft lip with or without palate in the Ningxia region, which may be related to the role of EP300 and RUNX3 in the development of cleft lip and palate.
Collapse
Affiliation(s)
- Wenyan Ruan
- Ningxia Medical University, Yinchuan, Ningxia, China; State Key Laboratory of Military Stomatology; National Clinical Research Center for Oral Disease; Shaanxi Key laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Dandan Chi
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yumeng Wang
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jian Ma
- Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yongqing Huang
- Ningxia Medical University, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Oral Disease Research; Ningxia Key Laboratory of Craniomaxillofacial Deformities Research; Department of Oral and Maxillafacial Surgery, Hospital of Stomatology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
5
|
Farheen S, Ahmed SP, Mariyath P M M, Kausar T, Hoda MF, Arif SH, Nayeem SM, Ali A, Chosdol K, Shahi MH. Differential role of Pax6 and its interaction with Shh-Gli1-IDH2 axis in regulation of glioma growth and chemoresistance. J Biochem Mol Toxicol 2023; 37:e23241. [PMID: 36205257 DOI: 10.1002/jbt.23241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Glioma is a major brain tumor, and the associated mortality rate is very high. Contemporary therapies provide a chance of survival for 9-12 months. Therefore, a novel approach is essential to improve the survival rate. Sonic hedgehog (Shh) cell signaling is critical for early development in various tumors. This investigation attempted to explore the potential interaction and regulation of Shh-Gli1 cell signaling in association with paired box 6 (Pax6) and isocitrate dehydrogenase 2 (IDH2). The expression pattern of Shh, Gli1, Pax6, and IDH2 was examined by transcriptome analysis, immunohistochemistry, and confocal images. The results suggest the interaction of Shh-Gli1 cell signaling pathway with Pax6 and IDH2 and potential regulation. Thereafter, we performed protein-protein docking and molecular dynamic simulations (MDS) of Gli1 with Pax6 and IDH2. The results suggest differential dynamic interactions of Gli1-IDH2 and Gli1-Pax6. Gli1 knockdown downregulated the expression of Pax6 and upregulated the expression of IDH2. Moreover, Gli1 knockdown decreased the expression of the drug resistance gene MRP1. The knockdown of Pax6 gene in glioma cells downregulated the expression of Gli1 and IDH2 and promoted cell proliferation. Moreover, the efficacy of the treatment of glioma cells with temozolomide (TMZ) and Gli1 inhibitor GANT61 was higher than that of TMZ alone. MDS results revealed that the interactions of Gli1 with IDH2 were stronger and more stable than those with Pax6. Intriguingly, inhibition of Pax6 promoted glioma growth even in the presence of TMZ. However, the tumor-suppressive nature of Pax6 was altered when Gli1 was inhibited by GANT61, and it showed potential oncogenic character, as observed in other cancers. Therefore, we conclude that Pax6 interacted with IDH2 and Gli1 in glioma. Moreover, the Shh-Gli1-IDH2/Pax6 cell signaling axis provides a new therapeutic approach for inhibiting the progression of the disease and mitigating drug resistance in glioma.
Collapse
Affiliation(s)
- Shirin Farheen
- Interdisciplinary Brain Research Centre, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swalih P Ahmed
- Interdisciplinary Brain Research Centre, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mubeena Mariyath P M
- Interdisciplinary Brain Research Centre, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Tasneem Kausar
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Fakhrul Hoda
- Department of Neuro Surgery, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sayeedul H Arif
- Department of Pathology, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahid M Nayeem
- Department of Chemistry, Faculty of Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Asif Ali
- Interdisciplinary Brain Research Centre, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
6
|
Ghuloum FI, Johnson CA, Riobo-Del Galdo NA, Amer MH. From mesenchymal niches to engineered in vitro model systems: Exploring and exploiting biomechanical regulation of vertebrate hedgehog signalling. Mater Today Bio 2022; 17:100502. [PMID: 36457847 PMCID: PMC9707069 DOI: 10.1016/j.mtbio.2022.100502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Tissue patterning is the result of complex interactions between transcriptional programs and various mechanical cues that modulate cell behaviour and drive morphogenesis. Vertebrate Hedgehog signalling plays key roles in embryogenesis and adult tissue homeostasis, and is central to skeletal development and the osteogenic differentiation of mesenchymal stem cells. The expression of several components of the Hedgehog signalling pathway have been reported to be mechanically regulated in mesodermal tissue patterning and osteogenic differentiation in response to external stimulation. Since a number of bone developmental defects and skeletal diseases, such as osteoporosis, are directly linked to aberrant Hedgehog signalling, a better knowledge of the regulation of Hedgehog signalling in the mechanosensitive bone marrow-residing mesenchymal stromal cells will present novel avenues for modelling these diseases and uncover novel opportunities for extracellular matrix-targeted therapies. In this review, we present a brief overview of the key molecular players involved in Hedgehog signalling and the basic concepts of mechanobiology, with a focus on bone development and regeneration. We also highlight the correlation between the activation of the Hedgehog signalling pathway in response to mechanical cues and osteogenesis in bone marrow-derived mesenchymal stromal cells. Finally, we propose different tissue engineering strategies to apply the expanding knowledge of 3D material-cell interactions in the modulation of Hedgehog signalling in vitro for fundamental and translational research applications.
Collapse
Affiliation(s)
- Fatmah I. Ghuloum
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Colin A. Johnson
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, UK
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
7
|
Spadari F, Pulicari F, Pellegrini M, Scribante A, Garagiola U. Multidisciplinary approach to Gorlin-Goltz syndrome: from diagnosis to surgical treatment of jawbones. Maxillofac Plast Reconstr Surg 2022; 44:25. [PMID: 35843976 PMCID: PMC9288940 DOI: 10.1186/s40902-022-00355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gorlin syndrome, also known as Gorlin-Goltz syndrome (GGS) or basal cell nevus syndrome (BCNS) or nevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant familial cancer syndrome. It is characterized by the presence of numerous basal cell carcinomas (BCCs), along with skeletal, ophthalmic, and neurological abnormalities. It is essential to anticipate the diagnosis by identifying the pathology through the available diagnostic tests, clinical signs, and radiological manifestations, setting up an adequate treatment plan. MAIN BODY In the first part, we searched recent databases including MEDLINE (PubMed), Embase, and the Cochrane Library by analyzing the etiopathogenesis of the disease, identifying the genetic alterations underlying them. Subsequently, we defined what are, to date, the major and minor clinical diagnostic criteria, the possible genetic tests to be performed, and the pathologies with which to perform differential diagnosis. The radiological investigations were reviewed based on the most recent literature, and in the second part, we performed a review regarding the existing jawbone protocols, treating simple enucleation, enucleation with bone curettage in association or not with topical use of cytotoxic chemicals, and "en bloc" resection followed by possible bone reconstruction, marsupialization, decompression, and cryotherapy. CONCLUSION To promote the most efficient and accurate management of GGS, this article summarizes the clinical features of the disease, pathogenesis, diagnostic criteria, differential diagnosis, and surgical protocols. To arrive at an early diagnosis of the syndrome, it would be advisable to perform radiographic and clinical examinations from the young age of the patient. The management of the patient with GGS requires a multidisciplinary approach ensuring an adequate quality of life and effective treatment of symptoms.
Collapse
Affiliation(s)
- Francesco Spadari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Federica Pulicari
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Matteo Pellegrini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Andrea Scribante
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences Section of Dentistry, University of Pavia, Pavia, Italy
| | - Umberto Garagiola
- Department of Biomedical Surgical and Dental Sciences, Maxillo-Facial and Odontostomatology Unit, School of Orthodontics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Nam A, Song WJ, An JH, Rebhun RB, Youn HY, Seo KW. Expression of the hedgehog signaling pathway and the effect of inhibition at the level of Smoothened in canine osteosarcoma cell lines. Vet Comp Oncol 2022; 20:778-787. [PMID: 35521940 DOI: 10.1111/vco.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/27/2022]
Abstract
Osteosarcoma (OSA) is the most common malignant bone cancer in dogs. Canine and human OSA share several features, including tumor environments, response to traditional treatment, and several molecular pathways. Hedgehog (Hh) signaling is known to contribute to tumorigenesis and progression of various cancers, including human OSA. This study aimed to identify the role of the Hh signaling pathway in canine OSA cell lines, including Abrams, D17, and Moresco, focusing on the signal transducer Smoothened (SMO). mRNA and protein levels of Hh pathway components, including SHH, IHH, SMO, and PTCH1, were aberrant in all examined OSA cell lines compared with canine osteoblast cells. The SMO inhibitor cyclopamine significantly decreased cell viability and colony-forming ability in the canine OSA cell lines in a dose-dependent manner. Moresco cells, which expressed the highest level of SMO protein, were the most sensitive to the anticancer effect of cyclopamine among the three canine OSA cell lines tested. Hh downstream target gene and protein expression in canine OSA cell lines were downregulated after cyclopamine treatment. In addition, cyclopamine significantly increased apoptotic cell death in Abrams and Moresco cells. The findings that Hh/SMO is activated in canine OSA cell lines and cyclopamine suppresses OSA cell survival via inhibition of SMO suggest that the Hh/SMO signaling pathway might be a novel therapeutic target for canine OSA. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aryung Nam
- Department of Veterinary Internal Medicine, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea
| | - Woo-Jin Song
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and Research Institute of Veterinary Science, Jeju National University, Jeju, South Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis, California, United States of America
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
9
|
Hedgehog signaling orchestrates cartilage-to-bone transition independently of Smoothened. Matrix Biol 2022; 110:76-90. [PMID: 35472633 DOI: 10.1016/j.matbio.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022]
Abstract
Although recent lineage studies strongly support a chondrocyte-to-osteoblast differentiation continuum, the biological significance and molecular basis remain undetermined. In silico analysis at a single-cell level indicates a transient shutdown of Hedgehog-related transcriptome during simulated cartilage-to-bone transition. Prompted by this, we genetically induce gain- and loss-of function to probe the role of Hedgehog signaling in cartilage-to-bone transition. Ablating Smo in hypertrophic chondrocytes (HCs) does not result in any phenotypic outcome, whereas deleting Ptch1 in HCs leads to disrupted formation of primary spongiosa and actively proliferating HCs-derived osteogenic cells that contribute to bony bulges seen in adult mutant mice. In HCs-derived osteoblasts, constitutive activation of Hedgehog signaling blocks their further differentiation to osteocytes. Moreover, ablation of both Smo and Ptch1 in HCs reverses neither persistent Hedgehog signaling nor bone overgrowths. These results establish a functional contribution of extended chondrocyte lineage to bone homeostasis and diseases, governed by an unanticipated mode of regulation for Hedgehog signaling independently of Smo.
Collapse
|
10
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
11
|
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6689403. [PMID: 34630850 PMCID: PMC8495593 DOI: 10.1155/2021/6689403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/24/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NER's function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence.
Collapse
|
12
|
Wagstaff EL, Heredero Berzal A, Boon CJF, Quinn PMJ, ten Asbroek ALMA, Bergen AA. The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. Int J Mol Sci 2021; 22:7081. [PMID: 34209272 PMCID: PMC8268497 DOI: 10.3390/ijms22137081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Early in vivo embryonic retinal development is a well-documented and evolutionary conserved process. The specification towards eye development is temporally controlled by consecutive activation or inhibition of multiple key signaling pathways, such as the Wnt and hedgehog signaling pathways. Recently, with the use of retinal organoids, researchers aim to manipulate these pathways to achieve better human representative models for retinal development and disease. To achieve this, a plethora of different small molecules and signaling factors have been used at various time points and concentrations in retinal organoid differentiations, with varying success. Additions differ from protocol to protocol, but their usefulness or efficiency has not yet been systematically reviewed. Interestingly, many of these small molecules affect the same and/or multiple pathways, leading to reduced reproducibility and high variability between studies. In this review, we make an inventory of the key signaling pathways involved in early retinogenesis and their effect on the development of the early retina in vitro. Further, we provide a comprehensive overview of the small molecules and signaling factors that are added to retinal organoid differentiation protocols, documenting the molecular and functional effects of these additions. Lastly, we comparatively evaluate several of these factors using our established retinal organoid methodology.
Collapse
Affiliation(s)
- Ellie L. Wagstaff
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
| | - Andrea Heredero Berzal
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
| | - Camiel J. F. Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZA Leiden, The Netherlands
| | - Peter M. J. Quinn
- Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Departments of Ophthalmology, Pathology & Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Edward S. Harkness Eye Institute, Department of Ophthalmology, Columbia University Irving Medical Center—New York-Presbyterian Hospital, New York, NY 10032, USA;
| | | | - Arthur A. Bergen
- Department of Human Genetics, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands;
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam (UvA), 1105 AZ Amsterdam, The Netherlands; (A.H.B.); (C.J.F.B.)
- Netherlands Institute for Neuroscience (NIN-KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
13
|
Nam A, Kim T, Li Q, Rebhun RB, Youn HY, Seo KW. Melarsomine suppresses canine osteosarcoma cell survival via inhibition of Hedgehog-GLI signaling. J Vet Med Sci 2019; 81:1722-1729. [PMID: 31645504 PMCID: PMC6943322 DOI: 10.1292/jvms.19-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Hedgehog-GLI signaling pathway is activated in human and canine osteosarcoma (OSA)
and represents a potential therapeutic target for cancers, including OSA. Arsenic trioxide
represses GLI expression. Melarsomine, an arsenic compound-containing drug, has been
approved for the treatment of canine heartworm disease. Hence, we hypothesized that
melarsomine inhibits GLI signaling in canine OSA cell lines. The present study aimed to
assess this hypothesis. Cell viability and colony formation were decreased in the canine
OSA cell lines Abrams and D17 after treatment with melarsomine. Melarsomine-induced
apoptotic cell death was assessed via cell cycle analysis using propidium iodide staining.
Quantitative real-time reverse transcription polymerase chain reaction and western blot
analyses revealed a downregulation of genes downstream of the Hedgehog signaling pathway,
including GLI1, GLI2, and PTCH, after
melarsomine treatment. The present results suggest that melarsomine exerts antitumor
effects and serves as a GLI inhibitor in canine OSA cells. Additional studies are required
to evaluate and confirm the anticancer effect and relevant therapeutic dose of melarsomine
in vivo.
Collapse
Affiliation(s)
- Aryung Nam
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Taewon Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, South Korea
| | - Qiang Li
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, University of California Davis, School of Veterinary Medicine, Davis 95616, CA, U.S.A
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Kyoung-Won Seo
- Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
14
|
Zhang JN, Song FQ, Zhou SN, Zheng H, Peng LY, Zhang Q, Zhao WH, Zhang TW, Li WR, Zhou ZB, Lin JX, Chen F. [Analysis of single-nucleotide polymorphism of Sonic hedgehog signaling pathway in non-syndromic cleft lip and/or palate in the Chinese population]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:556-563. [PMID: 31209431 DOI: 10.19723/j.issn.1671-167x.2019.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the relationship between Sonic hedgehog (Shh) associated single-nucleotide polymorphism (SNP) and non-syndromic cleft lip and/or palate (NSCL/P), and to explore the risk factors of cleft lip and/or palate. Many studies suggest that the pathogenesis of NSCL/P could be related to genes that control early development, in which the Shh signaling pathway plays an important role. METHODS Peripheral blood was collected from 197 individuals (100 patients with NSCL/P and 97 healthy controls). Haploview software was used for haplotype analysis and Tag SNP were selected, based on the population data of Han Chinese in Beijing of the international human genome haplotype mapping project. A total of 27 SNP were selected for the 4 candidate genes of SHH, PTCH1, SMO and GLI2 in the Shh signaling pathway. The genotypes of 27 SNP were detected and analyzed by Sequenom mass spectrometry. The data were analyzed by chi-squared test and an unconditional Logistic regression model. RESULTS The selected SNP basically covered the potential functional SNP of the target genes, and its minimum allele frequency (MAF) was >0.05: GLI2 73.5%, PTCH1 91.0%, SMO 100.0%, and SHH 75.0%. It was found that the genotype frequency of SNP (rs12674259) located in SMO gene and SNP (rs2066836) located in PTCH1 gene were significantly different between the NSCL/P group and the control group. Linkage disequilibrium was also found on 3 chromosomes (chromosomes 2, 7 and 9) where the 4 candidate genes were located. However, in the analysis of linkage imbalance haplotype, there was no significant difference between the disease group and the control group. CONCLUSION In China, NSCL/P is the most common congenital disease in orofacial region. However, as it is a multigenic disease and could be affected by multiple factors, such as the external environment, the etiology of NSCL/P has not been clearly defined. This study indicates that Shh signaling pathway is involved in the occurrence of NSCL/P, and some special SNP of key genes in this pathway are related to cleft lip and/or palate, which provides a new direction for the etiology research of NSCL/P and may provide help for the early screening and risk prediction of NSCL/P.
Collapse
Affiliation(s)
- J N Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - F Q Song
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - S N Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - H Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - L Y Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Q Zhang
- Department of Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - W H Zhao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - T W Zhang
- Department of Orthodontics, Yantai Stomatological Hospital, Yantai 264000, Shandong, China
| | - W R Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - Z B Zhou
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - J X Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
| | - F Chen
- Department of Center Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| |
Collapse
|
15
|
Zhang M, Tan S, Yu D, Zhao Z, Zhang B, Zhang P, Lv C, Zhou Q, Cao Z. Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicol Appl Pharmacol 2019; 365:1-8. [PMID: 30610878 DOI: 10.1016/j.taap.2019.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
Lung cancer is a leading lethal disease with a 5-year survival rate of only 16%. Inadequate potent anti-cancer drugs appear to be a bottleneck in the treatment of lung cancer; hence, how to develop effective anti-lung cancer therapeutics is an urgent problem. In this study, we aim to explore a novel compound with potent anti-lung cancer effect and study its anti-cancer mechanisms. We found that triptonide at very low concentrations of 5-10 nM caused a marked suppression of cell proliferation and colony formation of lung cancer cells. More interestingly, triptonide also robustly inhibited the lung cancer cell formation of tumor spheres, and reduced the stemness and tumorigenicity of the sphere-forming cells. In vivo studies showed that administration of triptonide significantly inhibited the tumor growth with low toxicity. Molecular mechanistic studies revealed that triptonide significantly decreased expression of the Gli1 at both mRNA and protein levels by repressing Gli1 gene promoter activity. Additionally, triptonide reduced the levels of cancer stem cell key signaling protein sonic hedgehog (Shh), but increased the amount of Ptch1, a protein binding to SMO to diminish the Shh signal transduction, thus inhibition of the Shh-Gli1 signaling pathway. Together, our findings show that triptonide effectively inhibits lung cancer cell growth, stemness, and tumorigenicity, and support the notion that triptonide is a new Shh-Gli1 signaling inhibitor and a novel anti-lung cancer drug candidate for further developing effective lung cancer therapeutics.
Collapse
Affiliation(s)
- Mengli Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Shijie Tan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Di Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Bin Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Pan Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Chunping Lv
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| | - Zhifei Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, 2011 Collaborative Innovation Center of Hematology, Soochow University; Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
16
|
Nicotine inhibits murine Leydig cell differentiation and maturation via regulating Hedgehog signal pathway. Biochem Biophys Res Commun 2019; 510:1-7. [DOI: 10.1016/j.bbrc.2018.11.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022]
|
17
|
Magic M, Zeljic K, Jovandic S, Stepic J, Pejovic M, Colic S, Magic Z, Supic G. Hedgehog signaling pathway and vitamin D receptor gene variants as potential risk factors in odontogenic cystic lesions. Clin Oral Investig 2018; 23:2675-2684. [DOI: 10.1007/s00784-018-2686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/01/2018] [Indexed: 01/10/2023]
|
18
|
Morgillo F, Amendola G, Della Corte CM, Giacomelli C, Botta L, Di Maro S, Messere A, Ciaramella V, Taliani S, Marinelli L, Trincavelli ML, Martini C, Novellino E, Ciardiello F, Cosconati S. Dual MET and SMO Negative Modulators Overcome Resistance to EGFR Inhibitors in Human Nonsmall Cell Lung Cancer. J Med Chem 2017; 60:7447-7458. [PMID: 28787156 DOI: 10.1021/acs.jmedchem.7b00794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) of the EGF receptor (EGFR) have provided a significant improvement in the disease outcome of nonsmall cell lung cancer (NSCLC). Unfortunately, resistance to these agents frequently occurs, and it is often related to the activation of the Hedgehog (Hh) and MET signaling cascades driving the epithelial-to-mesenchymal transition (EMT). Because the concomitant inhibition of both Hh and MET pathways restores the sensitivity to anti-EGFR drugs, here we aimed at discovering the first compounds that block simultaneously MET and SMO. By using an "in silico drug repurposing" approach and by validating our predictions both in vitro and in vivo, we identified a set of compounds with the desired dual inhibitory activity and enhanced antiproliferative activity on EGFR TKI-resistant NSCLC. The identification of the known MET TKIs, glesatinib and foretinib, as negative modulators of the Hh pathway, widens their application in the context of NSCLC.
Collapse
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Università della Campania "Luigi Vanvitelli" , Via Pansini 6, 80131 Naples, Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania "Luigi Vanvitelli" , Via Vivaldi 43, 81100 Caserta, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Università della Campania "Luigi Vanvitelli" , Via Pansini 6, 80131 Naples, Italy
| | - Chiara Giacomelli
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Lorenzo Botta
- Dipartimento di Farmacia, Università di Napoli "Federico II" , Via D. Montesano 49, 80131 Naples, Italy
| | - Salvatore Di Maro
- DiSTABiF, Università della Campania "Luigi Vanvitelli" , Via Vivaldi 43, 81100 Caserta, Italy
| | - Anna Messere
- DiSTABiF, Università della Campania "Luigi Vanvitelli" , Via Vivaldi 43, 81100 Caserta, Italy
| | - Vincenza Ciaramella
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Università della Campania "Luigi Vanvitelli" , Via Pansini 6, 80131 Naples, Italy
| | - Sabrina Taliani
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Luciana Marinelli
- Dipartimento di Farmacia, Università di Napoli "Federico II" , Via D. Montesano 49, 80131 Naples, Italy
| | | | - Claudia Martini
- Dipartimento di Farmacia, Università di Pisa , Via Bonanno 6, 56126 Pisa, Italy
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli "Federico II" , Via D. Montesano 49, 80131 Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara", Università della Campania "Luigi Vanvitelli" , Via Pansini 6, 80131 Naples, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania "Luigi Vanvitelli" , Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
19
|
Identification and characterization of two novel PTCH1 splice variants. Biochem Biophys Res Commun 2017; 487:68-75. [DOI: 10.1016/j.bbrc.2017.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022]
|
20
|
UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:27-40. [PMID: 29124688 DOI: 10.1007/978-3-319-56017-5_3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are three major types of skin cancer: melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC and SCC are often referred to as non-melanoma skin cancer (NMSC). NMSCs are relatively non-lethal and curable by surgery, hence are not reportable in most cancer registries all over the world. Melanoma is the deadliest skin cancer. Its incidence rate (case number) is about 1/10th of that for NMSC, yet its death toll is ~8 fold higher than NMSC.Melanomas arise from melanocytes which are normally located on the basement membrane with dendrites extending into the epidermal keratinocytes. A major known function of melanocytes is to produce pigments which are enclosed by lipid membrane (termed melanosomes) and distribute them into keratinocytes, thus give different shade of skin colors. BCCs arise from basal cells, which are a layer of cells located at the deepest part of epidermis. Basal cells are recently considered to be skin stem cells as they are constantly proliferating and generating keratinocytes which are continuously pushed to the surface and eventually become a dead layer of stratum corneum. Squamous cells are the keratinocytes which resembles fish scale shape, ie, those initiated from basal cells and differentiated into squamous cells. Both basal cells and squamous cells belong to keratinocytes, therefore sometimes BCC and SCC are termed keratinocyte cancer.These three types of cancer share many characteristics, yet they are very different from etiology to progression. One shared characteristic of skin cancer is that, according to the current views, they all are caused by solar or artificial ultraviolet radiation (UVR). UVA and UVB from solar UVR are the major UV bands reaching the earth surface. Both UV types cause DNA damage and immune suppression which play crucial roles in skin carcinogenesis. UVB can be directly absorbed by DNA molecules and thus causes UV-signature DNA damages; UVA, on the other hand, may function through inducing cellular ROS which then causes oxidative DNA damages [1-4]. This chapter will discuss the molecular signaling differences of UVR in melanoma and NMSC.
Collapse
|
21
|
Zhu H, Zou C, Fan X, Xiong W, Tang L, Wu X, Tang C. Up-regulation of 11β-Hydroxysteroid Dehydrogenase Type 2 Expression by Hedgehog Ligand Contributes to the Conversion of Cortisol Into Cortisone. Endocrinology 2016; 157:3529-39. [PMID: 27379371 DOI: 10.1210/en.2016-1286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cortisol-inactivating enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that catalyzes the intracellular inactivation of glucocorticoids plays a pivotal role in human pregnant maintenance and normal fetal development. Given the fact that the main components of Hedgehog (HH) signaling pathway are predominantly expressed in syncytial layer of human placental villi where 11β-HSD2 is robustly expressed, in the present study, we have investigated the potential roles and underlying mechanisms of HH signaling in 11β-HSD2 expression. Activation of HH signaling by a variety of approaches robustly induced 11β-HSD2 expression as well as the 11β-HSD2 activity, whereas suppression of HH signaling significantly attenuated 11β-HSD2 expression as well as the 11β-HSD2 activity in both human primary cytotrophoblasts and trophoblast-like BeWo cells. Moreover, among glioma-associated oncogene (GLI) family transcriptional factors in HH signaling, knockdown of GLI2 but not GLI1 and GLI3 significantly attenuated HH-induced 11β-HSD2 expression and activity, and overexpression of GLI2 activator alone was sufficient to induce 11β-HSD2 expression and activity. Finally, GLI2 not only directly bound to the promoter region of gene hsd11b2 to transactivate hsd11b2 but also formed a heterodimer with RNA polymerase II, an enzyme that catalyzes the transcription of DNA to synthesize mRNAs, resulting in up-regulation of hsd11b2 gene transcription. Taken together, the present study has uncovered a hitherto uncharacterized role of HH/GLI2 signaling in 11β-HSD2 regulation, implicating that HH signaling through GLI2 could be required for the human pregnant maintenance and fetal development.
Collapse
Affiliation(s)
- Haibin Zhu
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chaochun Zou
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xueying Fan
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Wenyi Xiong
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Lanfang Tang
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ximei Wu
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chao Tang
- Department of Obstetrics and Gynaecology (H.Z.), The First Affiliated Hospital, and Department of Endocrinology (C.Z., W.X., L.T.), The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, People's Republic of China; and Department of Pharmacology (X.F., X.W., C.T.), School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
22
|
Temozolomide resistance in glioblastoma occurs by miRNA-9-targeted PTCH1, independent of sonic hedgehog level. Oncotarget 2015; 6:1190-201. [PMID: 25595896 PMCID: PMC4359226 DOI: 10.18632/oncotarget.2778] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma Multiforme (GBM), the most common and lethal adult primary tumor of the brain, showed a link between Sonic Hedgehog (SHH) pathway in the resistance to temozolomide (TMZ). PTCH1, the SHH receptor, can tonically represses signaling by endocytosis. We asked how the decrease in PTCH1 in GBM cells could lead to TMZ-resistance. TMZ resistant GBM cells have increased PTCH1 mRNA and reduced protein. Knockdown of Dicer, a Type III RNAase, indicated that miRNAs can explain the decreased PTCH1 in TMZ resistant cells. Computational studies, real-time PCR, reporter gene studies, western blots, target protector oligos and ectopic expression identified miR-9 as the target of PTCH1 in resistant GBM cells with concomitant activation of SHH signaling. MiR-9 mediated increases in the drug efflux transporters, MDR1 and ABCG2. MiR-9 was increased in the tissues from GBM patients and in an early passage GBM cell line from a patient with recurrent GBM but not from a naïve patient. Pharmacological inhibition of SHH signaling sensitized the GBM cells to TMZ. Taken together, miR-9 targets PTCH1 in GBM cells by a SHH-independent method in GBM cells for TMZ resistance. The identified pathways could lead to new strategies to target GBM with combinations of drugs.
Collapse
|
23
|
Fotopoulos G, Gousia A, Bareta E, Koumpis E, Chrisafi S, Bobos M, Malamou-Mitsi V, Fountzilas G, Pavlidis N, Pentheroudakis G. Prognostic significance of WNT and hedgehog pathway activation markers in cancer of unknown primary. Eur J Clin Invest 2015; 45:1145-52. [PMID: 26269154 DOI: 10.1111/eci.12518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 08/08/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Cancer of unknown primary (CUP) possesses distinct biology and peculiar natural history, in which the roles of the winged and hedgehog signalling pathways are unclear. MATERIALS AND METHODS We constructed tissue microarrays and studied the immunohistochemical (IHC) expression of β-catenin, smoothened (SMO) and the transcription factors TCF, LEF, GLI1 in 87 CUP cases for prognostic significance. RESULTS A low rate of IHC expression of proteins was seen, the cut-off used being any expression in ≥ 1% of tumour cells. At univariate analysis, only nuclear IHC SMO expression displayed a statistically significant association with favourable outcome [median Overall survival (OS) of 19 months in SMO-positive vs. 12 months in SMO-negative cases, P = 0·01]. An activated Wnt pathway, defined as IHC expression of any of nuclear β-catenin, TCF and LEF, was significantly associated with favourable progression free survival (median 9 vs. 5 months, P = 0·037) and OS (median 19 vs. 13 months, P = 0·04). This prognostic impact on OS was mainly driven by nuclear expression of TCF and/or LEF (P = 0·03). No prognostic significance of the hedgehog pathway activation status, defined as IHC expression of SMO or nuclear GLI1, could be established. A favourable prognostic impact of the concurrent activation of both pathways was observed. A trend for association of activated Wnt with response to chemotherapy (responders 67% among activated Wnt cases vs. 35% among nonactivated Wnt cases, P = 0·07) was observed in CUP adenocarcinomas. CONCLUSIONS Activation of the Wnt pathway was a positive prognostic factor in a small CUP series, possibly via enhanced chemosensitivity. Independent validation is warranted.
Collapse
Affiliation(s)
- George Fotopoulos
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anna Gousia
- Department of Pathology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Bareta
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| | - Epameinondas Koumpis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| | - Sofia Chrisafi
- Department of Medical Oncology, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthaios Bobos
- Department of Pathology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Fountzilas
- Department of Medical Oncology, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicholas Pavlidis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
24
|
Targeting the Hedgehog Pathway in Pediatric Medulloblastoma. Cancers (Basel) 2015; 7:2110-23. [PMID: 26512695 PMCID: PMC4695880 DOI: 10.3390/cancers7040880] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB), a primitive neuroectomal tumor of the cerebellum, is the most common malignant pediatric brain tumor. The cause of MB is largely unknown, but aberrant activation of Hedgehog (Hh) pathway is responsible for ~30% of MB. Despite aggressive treatment with surgical resection, radiation and chemotherapy, 70%–80% of pediatric medulloblastoma cases can be controlled, but most treated patients suffer devastating side effects. Therefore, developing a new effective treatment strategy is urgently needed. Hh signaling controls transcription of target genes by regulating activities of the three Glioma-associated oncogene (Gli1-3) transcription factors. In this review, we will focus on current clinical treatment options of MB and discuss mechanisms of drug resistance. In addition, we will describe current known molecular pathways which crosstalk with the Hedgehog pathway both in the context of medulloblastoma and non-medulloblastoma cancer development. Finally, we will introduce post-translational modifications that modulate Gli1 activity and summarize the positive and negative regulations of the Hh/Gli1 pathway. Towards developing novel combination therapies for medulloblastoma treatment, current information on interacting pathways and direct regulation of Hh signaling should prove critical.
Collapse
|
25
|
Shimozaki K. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. World J Stem Cells 2014; 6:485-490. [PMID: 25258670 PMCID: PMC4172677 DOI: 10.4252/wjsc.v6.i4.485] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
Neural stem cells (NSCs) contribute to ontogeny by producing neurons at the appropriate time and location. Neurogenesis from NSCs is also involved in various biological functions in adults. Thus, NSCs continue to exert their effects throughout the lifespan of the organism. The mechanism regulating the core functional properties of NSCs is governed by intra- and extracellular signals. Among the transcription factors that serve as molecular switches, Sox2 is considered a key factor in NSCs. Sox2 forms a core network with partner factors, thereby functioning as a molecular switch. This review discusses how the network of Sox2 partner and target genes illustrates the molecular characteristics of the mechanism underlying the self-renewal and multipotency of NSCs.
Collapse
|
26
|
Tsao AS, Roth JA. Novel and Emerging Agents in NSCLC. Lung Cancer 2014. [DOI: 10.1002/9781118468791.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Wittko-Schneider IM, Schneider FT, Plate KH. Cerebral angiogenesis during development: who is conducting the orchestra? Methods Mol Biol 2014; 1135:3-20. [PMID: 24510850 DOI: 10.1007/978-1-4939-0320-7_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Blood vessels provide the brain with the oxygen and the nutrients it requires to develop and function. Endothelial cells (ECs) are the principal cell type forming the vascular system and driving its development and remodeling. All vessels are lined by a single EC layer. Larger blood vessels are additionally enveloped by vascular smooth muscle cells (VSMCs) and pericytes, which increase their stability and regulate their perfusion and form the blood-brain barrier (BBB). The development of the vascular system occurs by two processes: (1) vasculogenesis, the de novo assembly of the first blood vessels, and (2) angiogenesis, the creation of new blood vessels from preexisting ones by sprouting from or by division of the original vessel. The walls of maturing vessels produce a basal lamina and recruit pericytes and vascular smooth muscle cells for structural support. Whereas the process of vasculogenesis seems to be genetically programmed, angiogenesis is induced mainly by hypoxia in development and disease. Both processes and the subsequent vessel maturation are further orchestrated by a complex interplay of inhibiting and stimulating growth factors and their respective receptors, many of which are hypoxia-inducible. This chapter intends to give an overview about the array of factors directing the development and maintenance of the brain vasculature and their interdependent actions.
Collapse
Affiliation(s)
- Ina M Wittko-Schneider
- Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | | | | |
Collapse
|
28
|
Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: role in cancer growth, stemness, and metabolism. Front Endocrinol (Lausanne) 2014; 5:215. [PMID: 25566187 PMCID: PMC4269192 DOI: 10.3389/fendo.2014.00215] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Deiodinases are selenoenzymes that catalyze thyroid hormones (THs) activation (type 1 and type 2, D1 and D2, respectively) or inactivation (type 3, D3). THs are essential for proper body development and cellular differentiation. Their intra- and extra-cellular concentrations are tightly regulated by deiodinases with a pre-receptorial control thus generating active or inactive form of THs. Changes in deiodinases expression are anatomically and temporally regulated and influence the downstream TH signaling. D3 overexpression is a feature of proliferative tissues such as embryo or cancer tissues. The enhanced TH degradation by D3 induces a local hypothyroidism, thus inhibiting THs transcriptional activity. Of note, overexpression of D3 is a feature of several highly proliferative cancers. In this paper, we review recent advances in the role of D3 in cancer growth, stemness, and metabolic phenotype. In particular, we focus on the main signaling pathways that result in the overexpression of D3 in cancer cells and are known to be relevant to cancer development, progression, and recurrence. We also discuss the potential role of D3 in cancer stem cells metabolic phenotype, an emerging topic in cancer research.
Collapse
Affiliation(s)
- Domenico Ciavardelli
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Center of Excellence on Aging (CeS.I.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Maria Bellomo
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
| | | | - Veronica Vella
- School of Human and Social Science, University “Kore” of Enna, Enna, Italy
- Department of Clinical and Molecular Bio-Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Medical Center, Catania, Italy
- *Correspondence: Veronica Vella, School of Human and Social Sciences, University “Kore” of Enna, via delle Olimpiadi, Enna 94100, Italy e-mail:
| |
Collapse
|
29
|
Li YH, Gao HF, Wang Y, Liu F, Tian XF, Zhang Y. Overexpression of Gli1 in cancer interstitial tissues predicts early relapse after radical operation of breast cancer. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0263-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Tumor suppressor protein VHL inhibits Hedgehog-Gli activation through suppression of Gli1 nuclear localization. FEBS Lett 2013; 587:826-32. [DOI: 10.1016/j.febslet.2013.01.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 11/20/2022]
|
31
|
Li YH, Gao HF, Wang Y, Liu F, Tian XF, Zhang Y. Overexpression of Gli1 in cancer interstitial tissues predicts early relapse after radical operation of breast cancer. Chin J Cancer Res 2013; 24:263-74. [PMID: 23358704 DOI: 10.3978/j.issn.1000-9604.2012.10.04] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 04/13/2012] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate whether Gli1 expression is important in relapse after radical operation of breast cancer. METHODS Using immunohistochemistry, Gli1 expression was analyzed in human primary breast cancer (n=284) and paracancerous tissues (n=20), and also in local lymph nodes (n=28) and metastatic lymph nodes (n=28). RESULTS Initial analysis of Gli1 expression in a small cohort of 20 breast tumors and their paracancerous tissues showed a tendency towards Gli1 overexpression in breast cancer tissues (P<0.001). Further, Gli1 expression in 284 breast cancer tissue samples was analyzed and a significant correlation was found between increased expression of nuclear Gli1 and unfavorable recurrence-free survival (RFS) (P<0.05). The nuclear expression of Gli1 in metastatic lymph nodes following relapse after radical operation was much higher than that in the local lymph nodes of primary carcinoma (P<0.05). Most interestingly, the expression of Gli1 was much higher in the interstitial tissues of the relapsed group than of the non-relapsed group (P<0.001). CONCLUSIONS Breast cancer shows a high prevalence of Gli1 expression, which is significantly correlated with aggressive features and unfavorable RFS. Nuclear Gli1 overexpression, especially in the interstitial tissues, signified early relapse after radical operation of breast cancer.
Collapse
Affiliation(s)
- Ying-Hua Li
- Department of Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | | | | | | | | | | |
Collapse
|
32
|
DeSouza KR, Saha M, Carpenter AR, Scott M, McHugh KM. Analysis of the Sonic Hedgehog signaling pathway in normal and abnormal bladder development. PLoS One 2013; 8:e53675. [PMID: 23308271 PMCID: PMC3538723 DOI: 10.1371/journal.pone.0053675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 12/03/2012] [Indexed: 11/18/2022] Open
Abstract
In this study, we examined the expression of Sonic Hedgehog, Patched, Gli1, Gli2, Gli3 and Myocardin in the developing bladders of male and female normal and megabladder (mgb-/-) mutant mice at embryonic days 12 through 16 by in situ hybridization. This analysis indicated that each member of the Sonic Hedgehog signaling pathway as well as Myocardin displayed distinct temporal and spatial patterns of expression during normal bladder development. In contrast, mgb-/- bladders showed both temporal and spatial changes in the expression of Patched, Gli1 and Gli3 as well as a complete lack of Myocardin expression. These changes occurred primarily in the outer mesenchyme of developing mgb-/- bladders consistent with the development of an amuscular bladder phenotype in these animals. These results provide the first comprehensive analysis of the Sonic Hedgehog signaling pathway during normal bladder development and provide strong evidence that this key signaling cascade is critical in establishing radial patterning in the developing bladder. In addition, the lack of detrusor smooth muscle development observed in mgb-/- mice is associated with bladder-specific temporospatial changes in Sonic Hedgehog signaling coupled with a lack of Myocardin expression that appears to result in altered patterning of the outer mesenchyme and poor initiation and differentiation of smooth muscle cells within this region of the developing bladder.
Collapse
Affiliation(s)
- Kristin R DeSouza
- Center for Molecular and Human Genetics, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States of America.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The Hedgehog (Hh) pathway is a conserved signalling system essential for embryonic development and for the maintenance of self-renewal pathways in progenitor cells. Mutations that deregulate Hh signalling are directly implicated in basal cell carcinoma and medulloblastoma. The mechanisms of Hh pathway activation in cancers in which no pathway mutations have been identified are less clear, but of great translational significance. Small molecule inhibitors of the pathway, many of which are in early phase clinical trials, may shed further light on this question. Canonical Hh signalling promotes the expression of target genes through the Glioma-associated oncogene (GLI) transcription factors. There is now increasing evidence suggesting that 'non-canonical' Hh signalling mechanisms, some of which are independent of GLI-mediated transcription, may be important in cancer and development. The focus of this review is to summarise some of the known mechanisms of Hh signalling as well as its emerging role in cancer.
Collapse
Affiliation(s)
- Kieren D Marini
- Monash Institute of Medical Research, Centre for Cancer Research, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
34
|
Santos DCC, Zaphiropoulos PG, Neto CF, Pimentel ERA, Sanches JA, Ruiz IRG. PTCH1 gene mutations in exon 17 and loss of heterozygosity on D9S180 microsatellite in sporadic and inherited human basal cell carcinomas. Int J Dermatol 2011; 50:838-43. [PMID: 21699520 DOI: 10.1111/j.1365-4632.2010.04866.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Basal cell carcinomas (BCCs) are the most frequent human cancer that results from malignant transformation of basal cells in the epidermis. Gorlin syndrome is a rare inherited autosomal dominant disease that predisposes with multiple BCCs and other birth defects. Both sporadic and inherited BCCs are associated with mutations in the tumor suppressor gene PTCH1, but there is still uncertainty on the role of its homolog PTCH2. OBJECTIVES To search for mutations and genomic instability in sporadic and inherited BCCs. METHODS DNA obtained from leukocytes and tumor cells was amplified by polymerase chain reaction regarding five exons of PTCH1 and PTCH2 and neighboring microsatellites. Exons were sequenced and compared with the GenBank database. RESULTS Only D9S180, of six microsatellites, showed loss of heterozygosity in three BCCs (two sporadic and one inherited). One sporadic BCC presented the mutation g.2885G>C in exon 17 of PTCH1, which predicts the substitution p.R962T in an external domain of the protein. In addition, the leukocytes and tumor cells of one patient with Gorlin syndrome showed the mutation g.2839T>G in the same exon and gene, which predicts a p.E947stop and truncated protein. All control and tumor samples presented IVS9 + 217T in intron 9 of PTCH1. CONCLUSION Mutations found in the PTCH1 gene and neighboring repetitive sequences may have contributed to the development of the studied BCCs.
Collapse
|
35
|
Abstract
To determine whether the zinc finger transcription factors GLI1 to GLI3 and suppressor of fused (SUFU) components of the Sonic hedgehog signaling pathway may be prognostic markers and potential therapeutic targets in pediatric medulloblastoma (MB), we investigated the relationship of the expression of these proteins to prognosis in the MB of 124 patients who had undergone surgery at the Hospital for Sick Children (Toronto, Ontario, Canada). The expressions of GLI1 (p = 0.011) and GLI2 (p = 0.003), but not of GLI3 (p = 0.774) or SUFU (p = 0.137), in the MB were associated with a worse overall survival by Kaplan-Meier analysis. Overall survival of patients positive for GLI1 and GLI2 was 6.01 ± 0.85 years and 5.27 ± 1.44 years, respectively, versus 10.11 ± 1.52 years and 10.18 ± 0.22 years for patients negative for GLI1 and GLI2, respectively. Knockdown of GLI2 in 3 MB cell lines resulted in decreased cell number and viability, as determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay; knockdown of GLI1 had no effect. The decrease in cell number with GLI2 knockdown was caused by G0 cell cycle arrest; there was no induction of apoptosis. These results suggest that targeting the Sonic hedgehog pathway in positive patients may be a useful adjuvant therapeutic strategy for MB.
Collapse
|
36
|
A novel signaling pathway mediated by the nuclear targeting of C-terminal fragments of mammalian Patched 1. PLoS One 2011; 6:e18638. [PMID: 21533246 PMCID: PMC3076429 DOI: 10.1371/journal.pone.0018638] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 03/14/2011] [Indexed: 12/20/2022] Open
Abstract
Background Patched 1 (Ptc1) is a polytopic receptor protein that is essential for growth and differentiation. Its extracellular domains accept its ligand, Sonic Hedgehog, while the function of its C-terminal intracellular domain is largely obscure. Principal Findings In this study, we stably expressed human Ptc1 protein in HeLa cells and found that it is subjected to proteolytic cleavage at the C-terminus, resulting in the generation of soluble C-terminal fragments. These fragments accumulated in the nucleus, while the N-terminal region of Ptc1 remained in the cytoplasmic membrane fractions. Using an anti-Ptc1 C-terminal domain antibody, we provide conclusive evidence that C-terminal fragments of endogenous Ptc1 accumulate in the nucleus of C3H10T1/2 cells. Similar nuclear accumulation of endogenous C-terminal fragments was observed not only in C3H10T1/2 cells but also in mouse embryonic primary cells. Importantly, the C-terminal fragments of Ptc1 modulate transcriptional activity of Gli1. Conclusions Although Ptc1 protein was originally thought to be restricted to cell membrane fractions, our findings suggest that its C-terminal fragments can function as an alternative signal transducer that is directly transported to the cell nucleus.
Collapse
|
37
|
Chung CH, Dignam JJ, Hammond ME, Klimowicz AC, Petrillo SK, Magliocco A, Jordan R, Trotti A, Spencer S, Cooper JS, Le QT, Ang KK. Glioma-associated oncogene family zinc finger 1 expression and metastasis in patients with head and neck squamous cell carcinoma treated with radiation therapy (RTOG 9003). J Clin Oncol 2011; 29:1326-34. [PMID: 21357786 DOI: 10.1200/jco.2010.32.3295] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Glioma-associated oncogene family zinc finger 1 (GLI1) expression was assessed to determine a potential role of hedgehog (Hh) signaling in head and neck squamous cell carcinoma (HNSCC). Additional proteins known to be modulated by Hh signaling, including beta-catenin (CTNNB1) and epidermal growth factor receptor (EGFR), were also assessed to determine the correlation among these distinct signaling pathways. PATIENTS AND METHODS Nuclear GLI1 and CTNNB1 expression levels were determined in tumors from patients enrolled on Radiation Therapy Oncology Group (RTOG) 9003, a radiation fractionation trial. The results were also correlated with previously determined EGFR expression. The expression levels were evaluated in relation to three end points: time to metastasis (TTM), time to disease progression (TDP), and overall survival (OS). RESULTS Among 1,068 eligible patients, data on GLI1, CTNNB1, and EGFR were available in 339, 164, and 300 patients, respectively. Although CTNNB1 expression did not differentiate prognosis, GLI1 was associated with poorer outcomes, adjusted for age, TNM stages, and Karnofsky performance score, and the significant influence persisted in a multivariable analysis (quartile 4 [Q4] v Q1 to Q3: TTM hazard ratio [HR], 2.7; 95% CI, 1.5 to 4.9; TDP HR, 1.6; 95% CI, 1.1 to 2.5; OS HR, 1.9; 95% CI, 1.4 to 2.7). The significance of GLI1 persisted in a multivariable analysis that included EGFR expression levels. CONCLUSION These data suggest that Hh signaling may play an important role in metastasis and that GLI1 could serve as a marker in HNSCC, but the regulatory mechanisms and oncogenic significance need further investigation. Risk classification based on this analysis needs a validation in independent cohorts.
Collapse
Affiliation(s)
- Christine H Chung
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St, CRB-1 Room 344, Baltimore, MD 21231-1000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Skin Deep and Deeper: Multiple Pathways in Basal Cell Carcinogenesis: Fig. 1. Cancer Prev Res (Phila) 2010; 3:1213-6. [DOI: 10.1158/1940-6207.capr-10-0203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Lauth M, Rohnalter V, Bergström A, Kooshesh M, Svenningsson P, Toftgård R. Antipsychotic drugs regulate hedgehog signaling by modulation of 7-dehydrocholesterol reductase levels. Mol Pharmacol 2010; 78:486-96. [PMID: 20558592 DOI: 10.1124/mol.110.066431] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently we identified GANT61, a small-molecule antagonist of Gli transcription factors, which are the final effectors of the mammalian Hedgehog (HH) signaling pathway. Here we describe a diamine substructure of GANT61 that carries the biological activity and show that this part of the molecule is structurally related to trans-1,4-bis(2-chlorobenzaminomethyl)cyclohexane dihydrochloride (AY9944), an inhibitor of the enzymatic activity and transcriptional inducer of 7-dehydrocholesterol-reductase (Dhcr7, EC 1.3.1.21). Treatment of cells with the GANT61 diamine, AY9944, or overexpression of DHCR7 results in the attenuation of Smoothened-dependent and -independent HH signaling. Whereas GANT61 function is independent of Dhcr7, AY9944 does require up-regulation of endogenous Dhcr7. In line with these findings, Dhcr7-modulating antipsychotic (clozapine, chlorpromazine, haloperidol) and antidepressant (imipramine) drugs regulate HH signaling in vitro and in vivo. Modulation of HH signaling may represent a hitherto undiscovered biological (side) effect of therapeutics used to treat schizophrenia and depression.
Collapse
Affiliation(s)
- Matthias Lauth
- Institute of Molecular Biology and Tumor Research, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Mimeault M, Batra SK. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies. Pharmacol Rev 2010; 62:497-524. [PMID: 20716670 PMCID: PMC2964899 DOI: 10.1124/pr.109.002329] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The hedgehog (Hh)/glioma-associated oncogene (GLI) signaling network is among the most important and fascinating signal transduction systems that provide critical functions in the regulation of many developmental and physiological processes. The coordinated spatiotemporal interplay of the Hh ligands and other growth factors is necessary for the stringent control of the behavior of diverse types of tissue-resident stem/progenitor cells and their progenies. The activation of the Hh cascade might promote the tissue regeneration and repair after severe injury in numerous organs, insulin production in pancreatic beta-cells, and neovascularization. Consequently, the stimulation of the Hh pathway constitutes a potential therapeutic strategy to treat diverse human disorders, including severe tissue injuries; diabetes mellitus; and brain, skin, and cardiovascular disorders. In counterbalance, a deregulation of the Hh signaling network might lead to major tissular disorders and the development of a wide variety of aggressive and metastatic cancers. The target gene products induced through the persistent Hh activation can contribute to the self-renewal, survival, migration, and metastasis of cancer stem/progenitor cells and their progenies. Moreover, the pivotal role mediated through the Hh/GLI cascade during cancer progression also implicates the cooperation with other oncogenic products, such as mutated K-RAS and complex cross-talk with different growth factor pathways, including tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), Wnt/beta-catenin, and transforming growth factor-beta (TGF-beta)/TGF-beta receptors. Therefore, the molecular targeting of distinct deregulated gene products, including Hh and EGFR signaling components and other signaling elements that are frequently deregulated in highly tumorigenic cancer-initiating cells and their progenies, might constitute a potential therapeutic strategy to eradicate the total cancer cell mass. Of clinical interest is that these multitargeted approaches offer great promise as adjuvant treatments for improving the current antihormonal therapies, radiotherapies, and/or chemotherapies against locally advanced and metastatic cancers, thereby preventing disease relapse and the death of patients with cancer.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer, and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | |
Collapse
|
41
|
Sauk JJ, Nikitakis NG, Scheper MA. Are we on the brink of nonsurgical treatment for ameloblastoma? ACTA ACUST UNITED AC 2010; 110:68-78. [DOI: 10.1016/j.tripleo.2010.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/26/2010] [Indexed: 12/17/2022]
|
42
|
Palaniswamy R, Teglund S, Lauth M, Zaphiropoulos PG, Shimokawa T. Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1. BMC Mol Biol 2010; 11:32. [PMID: 20433698 PMCID: PMC2880320 DOI: 10.1186/1471-2199-11-32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs) of mRNAs, the understanding of the significance and the regulation of these variations is rather limited. Results We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional effector of the Hedgehog (HH) signaling pathway. In addition to identifying novel transcription start sites, we demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-skipped mRNA variants being most effective. Conclusions Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the mouse HH signaling cascade.
Collapse
Affiliation(s)
- Ramesh Palaniswamy
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-14157 Sweden
| | | | | | | | | |
Collapse
|
43
|
Mizuarai S, Kawagishi A, Kotani H. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines. Mol Cancer 2009; 8:44. [PMID: 19575820 PMCID: PMC2714036 DOI: 10.1186/1476-4598-8-44] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 07/06/2009] [Indexed: 12/21/2022] Open
Abstract
Background The Hedgehog (HH) pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC). Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9) was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.
Collapse
Affiliation(s)
- Shinji Mizuarai
- Department of Oncology, Tsukuba Research Institute, Merck Research Laboratories, Banyu Pharmaceutical Co Ltd, Tsukuba, Ibaraki, Japan.
| | | | | |
Collapse
|
44
|
Eichenmüller M, Gruner I, Hagl B, Häberle B, Müller-Höcker J, von Schweinitz D, Kappler R. Blocking the hedgehog pathway inhibits hepatoblastoma growth. Hepatology 2009; 49:482-90. [PMID: 19177589 DOI: 10.1002/hep.22649] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Recent evidence has indicated that Hedgehog (Hh) signaling significantly contributes to liver development and regeneration and that activation of the pathway may contribute to growth of hepatocellular carcinoma (HCC) in adults. However, the role of Hh signaling in pediatric liver tumors remains to be elucidated. In this study, we show that Hh signaling is activated in hepatoblastoma (HB), the most common liver tumor in childhood, with most occurrences before the age of 3 years. The Hh target genes glioma-associated oncogene homolog 1 (GLI1) and Patched (PTCH1) showed increased transcript levels in 65% and 30% of HB samples, respectively, compared with normal liver tissues. Most interestingly, the gene encoding the hedgehog interacting protein (HHIP) is transcriptionally silenced by cytosine-phospho-guanosine (CpG) island promoter hypermethylation in 26% of HB cases and treatment with the DNA-demethylating agent 5-aza-2'-deoxycytidine partially restored HHIP expression. Blocking Hh signaling with the antagonist cyclopamine had a strong inhibitory effect on cell proliferation of HB cell lines with an activated pathway. We further demonstrate that this decrease in cell viability is caused by a massive induction of apoptosis, as shown by morphological changes and phosphatidylserine membrane asymmetry. In cyclopamine-exposed HB cells, caspase 3 and poly(adenosine diphosphate-ribose) polymerase proteins were specifically activated by their proteolytic cleavage. CONCLUSION This study demonstrates, for the first time, the frequent occurrence of GLI1 and PTCH1 overexpression and HHIP promoter methylation in early childhood HB, thus indicating a key role for Hh signaling activation in the malignant transformation of embryonal liver cells.
Collapse
Affiliation(s)
- Melanie Eichenmüller
- Department of Pediatric Surgery, Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Shimokawa T, Tostar U, Lauth M, Palaniswamy R, Kasper M, Toftgård R, Zaphiropoulos PG. Novel human glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanisms in the terminal transduction of the hedgehog signal. J Biol Chem 2008; 283:14345-54. [PMID: 18378682 PMCID: PMC2386930 DOI: 10.1074/jbc.m800299200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/21/2008] [Indexed: 01/12/2023] Open
Abstract
Hedgehog (HH) signaling is one of the key pathways with major significance for embryogenesis, tumorigenesis, and stem cell maintenance. Glioma-associated oncogene 1 (GLI1) is a transcription factor that acts as the terminal signaling effector but also represents a pathway target gene. Here we report the identification and functional properties of novel GLI1 splice variants generated by skipping exons 2 and 3 and encoding an N-terminal truncated GLI1 protein (GLI1DeltaN). Analysis of the GLI1DeltaN mRNAs in adult human tissues revealed comparable expression levels to the full-length GLI1 (GLI1FL), whereas in tumor cell lines a generally lower and more variable expression pattern was observed. Furthermore, GLI1DeltaN is up-regulated by HH signaling to the same extent as GLI1FL but has a weaker capacity to activate transcription. However, in specific cellular contexts GLI1DeltaN may be more potent than GLI1FL in activating endogenous gene expression. Moreover, the dual-specificity tyrosine phosphorylation-regulated kinase 1 (Dyrk1) potentiates the transcriptional activity of GLI1FL but not GLI1DeltaN. Interestingly, GLI1FL, in contrast to GLI1DeltaN, is localized solely at the nucleus, in line with its increased transcriptional capacity. The negative regulator of the pathway, Suppressor of Fused (SUFU), elicits a cytoplasmic retention of the GLI1 isoforms, which is more pronounced for GLI1FL, as this contains an N-terminal SUFU binding domain. Collectively, our findings reveal that the activation mechanism of the terminal transducer of the pathway, GLI1, is mediated not only by GLI1FL but also by the GLI1DeltaN variant.
Collapse
Affiliation(s)
- Takashi Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Crompton T, Outram SV, Hager-Theodorides AL. Sonic hedgehog signalling in T-cell development and activation. Nat Rev Immunol 2007; 7:726-35. [PMID: 17690714 DOI: 10.1038/nri2151] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of mature functional T cells in the thymus requires signals from the thymic epithelium. Here, we review recent experiments showing that one way in which the epithelium controls the production of mature T cells is by the secretion of sonic hedgehog (SHH). We consider the increasing evidence that SHH-induced signalling is not only important for the differentiation and proliferation of early thymocyte progenitors, but also for modulating T-cell receptor signalling during repertoire selection, with implications for positive selection, CD4 versus CD8 lineage commitment, and clonal deletion of autoreactive cells. We also review the influence of hedgehog signalling in peripheral T-cell activation.
Collapse
Affiliation(s)
- Tessa Crompton
- Immunobiology Unit, University College London Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
47
|
Shimokawa T, Svärd J, Heby-Henricson K, Teglund S, Toftgård R, Zaphiropoulos PG. Distinct roles of first exon variants of the tumor-suppressor Patched1 in Hedgehog signaling. Oncogene 2007; 26:4889-96. [PMID: 17310997 DOI: 10.1038/sj.onc.1210301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Patched1 (PTCH1) is one of the key molecules involved in the Hedgehog (HH) signaling pathway and acts as the receptor of HH ligands. Additionally, PTCH1 inhibits the positive signal transductor Smoothened (SMO). Several PTCH1 splice variants are known but the functional differences among them are not clear. Here, we demonstrate the unique biological properties of the PTCH1 isoforms generated by alternative first exon usage. All isoforms examined worked as functional receptors of both Sonic HH and Desert HH. However, the signaling upregulated isoforms PTCH1-1B and -1C inhibited SMO and the pathway transcription factors glioma 1 (GLI1) and GLI2 to a higher extent than PTCH1-1 and -1Ckid. Moreover, in situ hybridizations allowed the detection of the Ptch1 isoforms in specific structures of the developing mouse embryo. Additionally, the differences in the N-terminal tail had a dramatic influence on the steady states of the proteins, with PTCH1-1B and -1C levels being significantly higher than PTCH1-1 and -1Ckid. This implies that the pronounced signaling inhibitory properties of PTCH1-1B and -1C may be mostly due to this high-protein expression rather than to intrinsic functional differences. Thus, our study supports a role of splicing variation and promoter choice for HH signaling regulation.
Collapse
Affiliation(s)
- T Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW, Owzar K, Chen W, Torbenson MS, Diehl AM. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis 2005; 27:748-57. [PMID: 16339184 DOI: 10.1093/carcin/bgi292] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hedgehog (Hh) pathway activation promotes tumors in several endodermally derived tissues, but its role in the pathogenesis of hepatocellular carcinoma (HCC) is unknown. Although normal hepatocytes lack Hh signaling, activation of the Hh pathway in endodermal progenitors is required for liver development. Thus, we hypothesized that hepatocarcinogenesis may involve regulation of Hh signaling. This pathway is activated when Hh ligand binds to its receptor, Patched (PTC). In an unoccupied state, PTC normally functions as a tumor suppressor that inhibits Smoothened (SMO), a proto-oncoprotein, from activating downstream components and transcription of target genes. Here we show that in HCCs, overexpression of the Smo proto-oncogene, as well as an increase in the stoichiometric ratio of Smo to Ptc mRNA levels, correlated with tumor size, a prognostic indicator in HCC biology. In one tumor we identified a novel Smo mutation in an evolutionarily conserved residue. We also demonstrated that HCC cell lines (HepG2 and Hep3B) expressed Hh pathway components and activated Hh transcriptional targets. In Hep3B cells, cyclopamine, an inhibitor of wild-type SMO, had no effect, but KAAD-cyclopamine, a blocker of oncogenic SMO, inhibited Hh signaling activity by 50%, decreased expression of the hepatocarcinogenic oncogene, c-myc, by 8-fold, and inhibited the growth rate of Hep3B cells by 94%. These data support our hypothesis that Hh signaling is dysregulated in human hepatocarcinogenesis. We demonstrate that overexpression and/or tumorigenic activation of the Smo proto-oncogene mediates c-myc overexpression which plays a critical role in hepatocarcinogenesis and suggests that Smo is a prognostic factor in HCC tumorigenesis.
Collapse
Affiliation(s)
- Jason K Sicklick
- Department of Surgery and Division of Surgical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|