1
|
Xu Y, Qiu Z, Chen J, Huang L, Zhang J, Lin J. LINC00460 promotes neuroblastoma tumorigenesis and cisplatin resistance by targeting miR-149-5p/DLL1 axis and activating Notch pathway in vitro and in vivo. Drug Deliv Transl Res 2024; 14:2003-2018. [PMID: 38161194 DOI: 10.1007/s13346-023-01505-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to participate in neuroblastoma cisplatin resistance and tumorigenesis. LncRNA LINC00460 was previously reported to play a critical regulatory role in many cancer development. Nevertheless, its role in modulating neuroblastoma cisplatin resistance has not been explored till now. Cisplatin-resistant neuroblastoma cell lines were established by exposing neuroblastoma cell lines to progressively increasing concentrations of cisplatin for 6 months. LINC00460, microRNA (miR)-149-5p, and delta-like ligand 1 (DLL1) mRNA expression was measured through RT-qPCR. The protein levels of DLL1, epithelial-to-mesenchymal transition (EMT) markers, and the Notch signaling-related molecules were measured via western blotting. The IC50 value for cisplatin, cell growth, metastasis and apoptosis were analyzed in cisplatin-resistant neuroblastoma cells. The binding between LINC00460 (or DLL1) and miR-149-5p was validated through dual-luciferase reporter assay. The murine xenograft model was established to perform in vivo assays. LINC00460 and DLL1 levels were elevated, while miR-149-5p level was reduced in cisplatin-resistant neuroblastoma cells. LINC00460 depletion attenuated IC50 values for cisplatin, weakened cell growth, metastasis, and EMT, and enhanced apoptosis in cisplatin-resistant neuroblastoma cells. Mechanically, LINC00460 sponged miR-338-3p to increase DLL1 level, thereby activating Notch signaling pathway. DLL1 overexpression antagonized LINC00460 silencing-induced suppression on neuroblastoma cell cisplatin resistance and malignant behaviors, while such effects were further reversed by treatment with DAPT, the inhibitor of Notch pathway. Additionally, LINC00460 knockdown further augmented cisplatin-induced impairment on tumor growth in vivo. LINC00460 contributes to neuroblastoma cisplatin resistance and tumorigenesis through miR-149-5p/DLL1/Notch pathway, providing new directions to improve the therapeutic efficacy of chemotherapy drugs applied in patients with neuroblastoma.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Zhixin Qiu
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Jinwen Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China
| | - Lihong Huang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Jiaqi Zhang
- The First Clinical Medical School, Fujian Medical University, Fuzhou, 350005, China
| | - Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Taijiang District, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Xiang T, Li Y, Liu G, Li X. NR1D1-transactivated lncRNA NUTM2A-AS1 promotes chemoresistance and immune evasion in neuroblastoma via inhibiting B7-H3 degradation. J Cell Mol Med 2024; 28:e18360. [PMID: 38785199 PMCID: PMC11117458 DOI: 10.1111/jcmm.18360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Neuroblastoma (NB), a common solid tumour in young children originating from the sympathetic nervous system during embryonic development, poses challenges despite therapeutic advances like high-dose chemotherapy and immunotherapy. Some survivors still grapple with severe side effects and drug resistance. The role of lncRNA NUTM2A-AS1 has been explored in various cancers, but its function in drug-resistant NB progression is unclear. Our study found that NUTM2A-AS1 expression in cisplatin-resistant NB cells increased in a time- and dose-dependent manner. Knockdown of NUTM2A-AS1 significantly improved NB cell sensitivity to cisplatin and inhibited metastatic abilities. Additionally, we identified B7-H3, an immune checkpoint-related protein, as a NUTM2A-AS1-associated protein in NB cells. NUTM2A-AS1 was shown to inhibit the protein degradation of B7-H3. Moreover, NUTM2A-AS1 modulated immune evasion in cisplatin-resistant NB cells through B7-H3. Furthermore, NUTM2A-AS1 expression in cisplatin-resistant NB cells was transactivated by NR1D1. In summary, our results unveil the molecular or biological relationship within the NR1D1/NUTM2A-AS1/B7-H3 axis in NB cells under cisplatin treatment, providing an intriguing avenue for fundamental research into cisplatin-resistant NB.
Collapse
Affiliation(s)
- Tian Xiang
- Department of Clinical Laboratory CenterCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Yejing Li
- Department of Clinical Laboratory CenterCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Gao Liu
- Department of Gastrointestinal SurgeryCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| | - Xianyun Li
- Department of Clinical Laboratory CenterCentral Hospital of Enshi Tujia and Miao Autonomous PrefectureEnshiChina
| |
Collapse
|
3
|
Serter Kocoglu S, Oy C, Secme M, Sunay FB. Investigation of the anticancer mechanism of monensin via apoptosis-related factors in SH-SY5Y neuroblastoma cells. Clin Transl Sci 2023; 16:1725-1735. [PMID: 37477356 PMCID: PMC10499413 DOI: 10.1111/cts.13593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Monensin is an ionophore antibiotic that inhibits the growth of cancer cells. The aim of this study was to investigate the apoptosis-mediated anticarcinogenic effects of monensin in SH-SY5Y neuroblastoma cells. The effects of monensin on cell viability, invasion, migration, and colony formation were determined by XTT, matrigel-chamber, wound healing, and colony formation tests, respectively. The effects of monensin on apoptosis were determined by real-time polymerase chain reaction, TUNEL, Western blot, and Annexin V assay. We have shown that monensin suppresses neuroblastoma cell viability, invasion, migration, and colony formation. Moreover, we reported that monensin inhibits cell viability by triggering apoptosis of neuroblastoma cells. Monensin caused apoptosis by increasing caspase-3, 7, 8, and 9 expressions and decreasing Bax and Bcl-2 expressions in neuroblastoma cells. In Annexin V results, the rates of apoptotic cells were found to be 9.66 ± 0.01% (p < 0.001), 29.28 ± 0.88% (p < 0.01), and 62.55 ± 2.36% (p < 0.01) in the 8, 16, and 32 μM monensin groups, respectively. In TUNEL results, these values were, respectively; 35 ± 2% (p < 0.001), 34 ± 0.57% (p < 0.001), and 75 ± 2.51% (p < 0.001). Our results suggest that monensin may be a safe and effective therapeutic candidate for treating pediatric neuroblastoma.
Collapse
Affiliation(s)
- Sema Serter Kocoglu
- Department of Histology and EmbryologySchool of Medicine, Balikesir UniversityBalikesirTurkey
| | - Ceren Oy
- Department of Histology and EmbryologySchool of Medicine, Bursa Uludag UniversityBursaTurkey
| | - Mücahit Secme
- Department of Medical BiologySchool of Medicine, Ordu UniversityDenizliTurkey
| | - F. Bahar Sunay
- Department of Histology and EmbryologySchool of Medicine, Balikesir UniversityBalikesirTurkey
| |
Collapse
|
4
|
Reyes-Castellanos G, Abdel Hadi N, Gallardo-Arriaga S, Masoud R, Garcia J, Lac S, El Kaoutari A, Gicquel T, Planque M, Fendt SM, Linares LK, Gayet O, Guillaumond F, Dusetti N, Iovanna J, Carrier A. Combining the antianginal drug perhexiline with chemotherapy induces complete pancreatic cancer regression in vivo. iScience 2023; 26:106899. [PMID: 37305702 PMCID: PMC10250830 DOI: 10.1016/j.isci.2023.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the human cancers with the poorest prognosis. Interestingly, we found that mitochondrial respiration in primary human PDAC cells depends mainly on the fatty acid oxidation (FAO) to meet basic energy requirements. Therefore, we treated PDAC cells with perhexiline, a well-recognized FAO inhibitor used in cardiac diseases. Some PDAC cells respond efficiently to perhexiline, which acts synergistically with chemotherapy (gemcitabine) in vitro and in two xenografts in vivo. Importantly, perhexiline in combination with gemcitabine induces complete tumor regression in one PDAC xenograft. Mechanistically, this co-treatment causes energy and oxidative stress promoting apoptosis but does not exert inhibition of FAO. Yet, our molecular analysis indicates that the carnitine palmitoyltransferase 1C (CPT1C) isoform is a key player in the response to perhexiline and that patients with high CPT1C expression have better prognosis. Our study reveals that repurposing perhexiline in combination with chemotherapy is a promising approach to treat PDAC.
Collapse
Affiliation(s)
| | - Nadine Abdel Hadi
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Rawand Masoud
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Julie Garcia
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Sophie Lac
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | | | - Tristan Gicquel
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Laetitia Karine Linares
- INSERM, Université de Montpellier, IRCM, Institut Régional Du Cancer de Montpellier, Montpellier, France
| | - Odile Gayet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fabienne Guillaumond
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Nelson Dusetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Juan Iovanna
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
5
|
Dhakal B, Tomita Y, Drew P, Price T, Maddern G, Smith E, Fenix K. Perhexiline: Old Drug, New Tricks? A Summary of Its Anti-Cancer Effects. Molecules 2023; 28:molecules28083624. [PMID: 37110858 PMCID: PMC10145508 DOI: 10.3390/molecules28083624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer metabolic plasticity, including changes in fatty acid metabolism utilisation, is now widely appreciated as a key driver for cancer cell growth, survival and malignancy. Hence, cancer metabolic pathways have been the focus of much recent drug development. Perhexiline is a prophylactic antianginal drug known to act by inhibiting carnitine palmitoyltransferase 1 (CPT1) and 2 (CPT2), mitochondrial enzymes critical for fatty acid metabolism. In this review, we discuss the growing evidence that perhexiline has potent anti-cancer properties when tested as a monotherapy or in combination with traditional chemotherapeutics. We review the CPT1/2 dependent and independent mechanisms of its anti-cancer activities. Finally, we speculate on the clinical feasibility and utility of repurposing perhexiline as an anti-cancer agent, its limitations including known side effects and its potential added benefit of limiting cardiotoxicity induced by other chemotherapeutics.
Collapse
Affiliation(s)
- Bimala Dhakal
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Yoko Tomita
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Paul Drew
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Timothy Price
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Guy Maddern
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Eric Smith
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
- Medical Oncology, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| | - Kevin Fenix
- Discipline of Surgery, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Adelaide, SA 5011, Australia
| |
Collapse
|
6
|
Guan X, Liu Y, Xin W, Qin S, Gong S, Xiao T, Zhang D, Li Y, Xiong J, Yang K, He T, Zhao J, Huang Y. Activation of EP4 alleviates AKI-to-CKD transition through inducing CPT2-mediated lipophagy in renal macrophages. Front Pharmacol 2022; 13:1030800. [PMID: 36467025 PMCID: PMC9709464 DOI: 10.3389/fphar.2022.1030800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 02/01/2025] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with complex pathogenesis, characterized by a rapid decline in kidney function in the short term. Worse still, the incomplete recovery from AKI increases the risk of progression to chronic kidney disease (CKD). However, the pathogenesis and underlying mechanism remain largely unknown. Macrophages play an important role during kidney injury and tissue repair, but its role in AKI-to-CKD transition remains elusive. Herein, single nucleus RNA sequencing (snRNA-Seq) and flow cytometry validations showed that E-type prostaglandin receptor 4 (EP4) was selectively activated in renal macrophages, rather than proximal tubules, in ischemia-reperfusion injury (IRI)-induced AKI-to-CKD transition mouse model. EP4 inhibition aggravated AKI-to-CKD transition, while EP4 activation impeded the progression of AKI to CKD though regulating macrophage polarization. Mechanistically, network pharmacological analysis and subsequent experimental verifications revealed that the activated EP4 inhibited macrophage polarization through inducing Carnitine palmitoyltransferase 2 (CPT2)-mediated lipophagy in macrophages. Further, CPT2 inhibition abrogated the protective effect of EP4 on AKI-to-CKD transition. Taken together, our findings demonstrate that EP4-CPT2 signaling-mediated lipophagy in macrophages plays a pivotal role in the transition of AKI to CKD and targeting EP4-CPT2 axis could serve as a promising therapeutic approach for retarding AKI and its progression to CKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jinghong Zhao
- The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Department of Nephrology, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yinghui Huang
- The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Department of Nephrology, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
7
|
Chong CR, Liu S, Imam H, Heresztyn T, Sallustio BC, Chirkov YY, Horowitz JD. Perhexiline Therapy in Patients with Type 2 Diabetes: Incremental Insulin Resistance despite Potentiation of Nitric Oxide Signaling. Biomedicines 2022; 10:2381. [PMID: 36289640 PMCID: PMC9598312 DOI: 10.3390/biomedicines10102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Perhexiline (Px) inhibits carnitine palmitoyltransferase 1 (CPT1), which controls uptake of long chain fatty acids into mitochondria. However, occasional cases of hypoglycaemia have been reported in Px-treated patients, raising the possibility that Px may also increase sensitivity to insulin. Furthermore, Px increases anti-aggregatory responses to nitric oxide (NO), an effect which may theoretically parallel insulin sensitization. We therefore sought to examine these relationships in patients with stable Type 2 diabetes (T2D) and cardiovascular disease (n = 30). Px was initiated, and dosage was titrated, to reach the therapeutic range and thus prevent toxicity. Investigations were performed before and after 2 weeks, to examine changes in insulin sensitivity and, utilizing aggregometry in whole blood, platelet responsiveness to the anti-aggregatory effects of the NO donor sodium nitroprusside (SNP). Other parameters that affect may affect NO signalling were also evaluated. Px substantially potentiated inhibition of platelet aggregation by SNP (from 16.7 ± 3.0 to 27.3 ± 3.7%; p = 0.005). Px did not change fasting blood glucose concentrations but reduced insulin sensitivity (HOMA-IR score increased from median of 4.47 to 6.08; p = 0.028), and increased fasting plasma insulin concentrations (median 16.5 to 19.0 mU/L; p = 0.014). Increases in SNP responses tended (r = -0.30; p = 0.11) to be reciprocally related to increases in HOMA-IR, and increases in HOMA-IR were greater (p = 0.002) in patients without NO-sensitizing effects. No patient developed symptomatic hypoglycaemia, nor was there any other short-term toxicity of Px. Thus, in patients with stable T2D and cardiovascular disease, Px increases anti-aggregatory responsiveness to NO, but is not an insulin sensitizer, and does not induce hypoglycaemia. Absence of NO-sensitizing effect occurs in approximately 30% of Px-treated patients with T2D, and is associated with induction of insulin resistance in these patients.
Collapse
Affiliation(s)
- Cher-Rin Chong
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| | - Saifei Liu
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| | - Hasan Imam
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| | - Tamila Heresztyn
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| | - Benedetta C. Sallustio
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
- School of Medical Sciences, The University of Adelaide, Adelaide 5000, Australia
| | - Yuliy Y. Chirkov
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| | - John D. Horowitz
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South 5011, Australia
| |
Collapse
|
8
|
Vidoni C, Ferraresi A, Esposito A, Maheshwari C, Dhanasekaran DN, Mollace V, Isidoro C. Calorie Restriction for Cancer Prevention and Therapy: Mechanisms, Expectations, and Efficacy. J Cancer Prev 2021; 26:224-236. [PMID: 35047448 PMCID: PMC8749320 DOI: 10.15430/jcp.2021.26.4.224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is one of the most frequently diagnosed diseases, and despite the continuous efforts in searching for new and more effective treatments, its morbidity and mortality remain a significant health problem worldwide. Calorie restriction, a dietary manipulation that consists in a reduction of the calorie intake, is gaining attention as a potential adjuvant intervention for preventing and/or fighting cancer. Several forms of energy reduction intake, which includes caloric restriction tout-court, dietary restrictions, and intermittent fasting, are being explored for their ability to prevent or slow down cancer progression. Additionally, another anti-cancer approach being under investigation relies on the use of nutraceuticals known as “Caloric Restriction Mimetics” that can provide caloric restriction-mediated benefits without subjecting the patients to a strict diet. Preclinical in vitro and in vivo studies consistently show that diet modifiers reducing the calorie have impact on tumor microenvironment and cancer metabolism, resulting in reduced growth and progression of cancer. Preliminary clinical studies show that patients subjected to a reduced nutrient/energy intake experience improved outcomes from chemo- and radiotherapy while better tolerating the side effects. Here, we review the state of the art on the therapeutic potential of calorie restriction and of caloric restriction mimetics in preventing or retarding tumor development by modulating a subset of cellular processes. The most recent clinical progresses with caloric restriction mimetics in the clinical practice are also discussed.
Collapse
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Esposito
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Chinmay Maheshwari
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vincenzo Mollace
- Department of Health Sciences, Università degli Studi di Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
9
|
Huang D, Chowdhury S, Wang H, Savage SR, Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, Larson MC, Eskandari N, Delisi DA, Gentile S, Huntoon CJ, Voytovich UJ, Shire ZJ, Yu Q, Gygi SP, Hoofnagle AN, Herbert ZT, Lorentzen TD, Calinawan A, Karnitz LM, Weroha SJ, Kaufmann SH, Zhang B, Wang P, Birrer MJ, Paulovich AG. Multiomic analysis identifies CPT1A as a potential therapeutic target in platinum-refractory, high-grade serous ovarian cancer. Cell Rep Med 2021; 2:100471. [PMID: 35028612 PMCID: PMC8714940 DOI: 10.1016/j.xcrm.2021.100471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
Resistance to platinum compounds is a major determinant of patient survival in high-grade serous ovarian cancer (HGSOC). To understand mechanisms of platinum resistance and identify potential therapeutic targets in resistant HGSOC, we generated a data resource composed of dynamic (±carboplatin) protein, post-translational modification, and RNA sequencing (RNA-seq) profiles from intra-patient cell line pairs derived from 3 HGSOC patients before and after acquiring platinum resistance. These profiles reveal extensive responses to carboplatin that differ between sensitive and resistant cells. Higher fatty acid oxidation (FAO) pathway expression is associated with platinum resistance, and both pharmacologic inhibition and CRISPR knockout of carnitine palmitoyltransferase 1A (CPT1A), which represents a rate limiting step of FAO, sensitize HGSOC cells to platinum. The results are further validated in patient-derived xenograft models, indicating that CPT1A is a candidate therapeutic target to overcome platinum resistance. All multiomic data can be queried via an intuitive gene-query user interface (https://sites.google.com/view/ptrc-cell-line).
Collapse
Affiliation(s)
- Dongqing Huang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hong Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard G Ivey
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob J Kennedy
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey R Whiteaker
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chenwei Lin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Xiaonan Hou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L Oberg
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Melissa C Larson
- Department of Quantitative Health Sciences, Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
| | - Najmeh Eskandari
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Davide A Delisi
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Saverio Gentile
- Division of Hematology and Oncology, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | - Uliana J Voytovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zahra J Shire
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew N Hoofnagle
- Department of Lab Medicine, University of Washington, Seattle, WA 98195, USA
| | - Zachary T Herbert
- Molecular Biology Core Facilities, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Travis D Lorentzen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Larry M Karnitz
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - S John Weroha
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael J Birrer
- University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Amanda G Paulovich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
10
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
11
|
Efficacy of a Three Drug-Based Therapy for Neuroblastoma in Mice. Int J Mol Sci 2021; 22:ijms22136753. [PMID: 34201814 PMCID: PMC8268736 DOI: 10.3390/ijms22136753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/21/2022] Open
Abstract
High-risk neuroblastoma (HR-NB) still remains the most dangerous tumor in early childhood. For this reason, the identification of new therapeutic approaches is of fundamental importance. Recently, we combined the conventional pharmacological approach to NB, represented by cisplatin, with fendiline hydrochloride, an inhibitor of several transporters involved in multidrug resistance of cancer cells, which demonstrated an enhancement of the ability of cisplatin to induce apoptosis. In this work, we co-administrated acetazolamide, a carbonic anhydrase isoform IX (CAIX) inhibitor which was reported to increase chemotherapy efficacy in various cancer types, to the cisplatin/fendiline approach in SKNBE2 xenografts in NOD-SCID mice with the aim of identifying a novel and more effective treatment. We observed that the combination of the three drugs increases more than twelvefold the differences in the cytotoxic activity of cisplatin alone, leading to a remarkable decrease of the expression of malignancy markers. Our conclusion is that this approach, based on three FDA-approved drugs, may constitute an appropriate improvement of the pharmacological approach to HR-NB.
Collapse
|
12
|
Baldini F, Calderoni M, Vergani L, Modesto P, Florio T, Pagano A. An Overview of Long Non-Coding (lnc)RNAs in Neuroblastoma. Int J Mol Sci 2021; 22:ijms22084234. [PMID: 33921816 PMCID: PMC8072620 DOI: 10.3390/ijms22084234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogeneous developmental tumor occurring in childhood, which arises from the embryonic sympathoadrenal cells of the neural crest. Although the recent progress that has been done on this tumor, the mechanisms involved in NB are still partially unknown. Despite some genetic aberrations having been identified, the sporadic cases represent the majority. Due to its wide heterogeneity in clinical behavior and etiology, NB represents a challenge in terms of prevention and treatment. Since a definitive therapy is lacking so far, there is an urgent necessity to unveil the molecular mechanisms behind NB onset and progression to develop new therapeutic approaches. Long non-coding RNAs (lncRNAs) are a group of RNAs longer than 200 nucleotides. Whether lncRNAs are destined to become a protein or not, they exert multiple biological functions such as regulating gene expression and functions. In recent decades, different research has highlighted the possible role of lncRNAs in the pathogenesis of many diseases, including cancer. Moreover, lncRNAs may represent potential markers or targets for diagnosis and treatment of diseases. This mini-review aimed to briefly summarize the most recent findings on the involvement of some lncRNAs in NB disease by focusing on their mechanisms of action and possible role in unveiling NB onset and progression.
Collapse
Affiliation(s)
- Francesca Baldini
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Matilde Calderoni
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences DISTAV, University of Genova, 16132 Genova, Italy;
| | - Paola Modesto
- National Reference Center for Veterinary and Comparative Oncology-Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Torino, Italy;
| | - Tullio Florio
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine (DIMI), University of Genova, 16132 Genova, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy; (F.B.); (M.C.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
13
|
Brizzolara A, Garbati P, Vella S, Calderoni M, Quattrone A, Tonini GP, Capasso M, Longo L, Barbieri R, Florio T, Pagano A. Co-Administration of Fendiline Hydrochloride Enhances Chemotherapeutic Efficacy of Cisplatin in Neuroblastoma Treatment. Molecules 2020; 25:molecules25225234. [PMID: 33182713 PMCID: PMC7698186 DOI: 10.3390/molecules25225234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/20/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Despite significant improvement of neuroblastoma (NB) patients’ survival due to recent treatment advancements in recent years, NB is still associated with high mortality rate. In search of novel strategies to increase NB’s susceptibility to pharmacological treatments, we investigated the in vitro and in vivo effects of fendiline hydrochloride as an enhancer of cisplatin antitumor activity. To assess the modulation of fendiline treatment on cisplatin responses, we used in vitro (evaluating NB cell proliferation by XCELLigence technology and colony formation, and gene expression by RT-PCR) and in vivo (NB cell grafts in NOD-SCID mice) models of NB. NB cell treatment with fendiline induced the expression of the ncRNA NDM29, leading to cell differentiation and to the reduction of the expression of MDRs/ABC transporters linked to multidrug resistance. These events were correlated to higher NB cell susceptibility to cisplatin and, consequently, increased its cytotoxic potency. In vivo, this drug interaction causes an enhanced ability of cisplatin to induce apoptosis in NB masses, resulting in tumor growth reduction and prolonged animal survival rate. Thus, the administration of fendiline might be a possible novel therapeutic approach to increase cisplatin efficacy in aggressive and poorly responsive NB cases.
Collapse
Affiliation(s)
| | - Patrizia Garbati
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, Institute of Hospitalization and Care of a Scientific Nature—Mediterranean Institute for Transplantation and Highly Specialized Therapies (IRCCS- ISMETT), 90127 Palermo, Italy;
- Anemocyte S.r.l., 21040 Gerenzano, Italy
| | - Matilde Calderoni
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, 38123 Trento, Italy;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, The “Città della Speranza” Foundation, 35128 Padua, Italy;
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80145 Naples, Italy;
- CEINGE Biotecnologie Avanzate, 80131 Naples, Italy
- SDN Research Institute Diagnostics and Nuclear, 80133 Naples, Italy
| | - Luca Longo
- Lung Cancer Unit, Division of Medical Oncology II, IRCCS San Martino Polyclinic Hospital, 16132 Genova, Italy;
| | - Raffaella Barbieri
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
| | - Tullio Florio
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Internal Medicine (DIMI), University of Genova, 16126 Genova, Italy
| | - Aldo Pagano
- IRCCS AOU San Martino Polyclinic Hospital, 16132 Genova, Italy; (A.B.); (T.F.)
- Department of Experimental Medicine (DIMES), University of Genova, 16126 Genova, Italy; (P.G.); (M.C.); (R.B.)
- Correspondence: ; Tel.: +39-010-5558213
| |
Collapse
|
14
|
MCM2 and Carbonic Anhydrase 9 Are Novel Potential Targets for Neuroblastoma Pharmacological Treatment. Biomedicines 2020; 8:biomedicines8110471. [PMID: 33153038 PMCID: PMC7692293 DOI: 10.3390/biomedicines8110471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023] Open
Abstract
To overcome the lack of effective pharmacological treatments for high-risk neuroblastoma (HR-NB), the development of novel in vitro and in vivo models that better recapitulate the disease is required. Here, we used an in vitro multiclonal cell model encompassing NB cell differentiation stages, to identify potential novel pharmacological targets. This model allowed us to identify, by low-density RT-PCR arrays, two gene sets, one over-expressed during NB cell differentiation, and the other up-regulated in more malignant cells. Challenging two HR-NB gene expression datasets, we found that these two gene sets are related to high and low survival, respectively. Using mouse NB cisplatin-treated xenografts, we identified two genes within the list associated to the malignant stage (MCM2 and carbonic anhydrase 9), whose expression is positively correlated with tumor growth. Thus, we tested their pharmacological targeting as potential therapeutic strategy. We measured mice survival and tumor growth rate after xenografts of human NB treated with cisplatin in the presence of MCM2/carbonic anhydrase 9 inhibitors (ciprofloxacin and acetazolamide). MCM2 or carbonic anhydrase 9 inhibition significantly increased cisplatin activity, supporting their possible testing for NB therapy.
Collapse
|
15
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|
16
|
Nassar ZD, Mah CY, Centenera MM, Irani S, Sadowski MC, Scott JS, Nguyen EV, Nagarajan SR, Moldovan M, Lynn DJ, Daly RJ, Hoy AJ, Butler LM. Fatty Acid Oxidation Is an Adaptive Survival Pathway Induced in Prostate Tumors by HSP90 Inhibition. Mol Cancer Res 2020; 18:1500-1511. [DOI: 10.1158/1541-7786.mcr-20-0570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
|
17
|
Karakus OO, Godugu K, Rajabi M, Mousa SA. Dual Targeting of Norepinephrine Transporter (NET) Function and Thyrointegrin αvβ3 Receptors in the Treatment of Neuroblastoma. J Med Chem 2020; 63:7653-7662. [DOI: 10.1021/acs.jmedchem.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| |
Collapse
|
18
|
SNHG16 promotes tumorigenesis and cisplatin resistance by regulating miR-338-3p/PLK4 pathway in neuroblastoma cells. Cancer Cell Int 2020; 20:236. [PMID: 32536824 PMCID: PMC7291484 DOI: 10.1186/s12935-020-01291-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Long noncoding RNA small nucleolar RNA host gene 16 (lncRNA SNHG16) has been revealed to be involved in the tumorigenesis of neuroblastoma. However, the role of SNHG16 in regulating cisplatin sensitivity in neuroblastoma remains largely unknown. Methods The expression of SNHG16, microRNA (miR)-338-3p and polo-like kinase 4 (PLK4) mRNA was measured using quantitative real-time polymerase chain reaction. The protein levels of PLK4, multidrug resistance protein 1 (MRP1), multidrug-resistance gene 1-type p-glycoprotein (P-gp) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway-related proteins were detected by Western blot. The half maximal inhibitory concentration (IC50) value, cell proliferation, migration and invasion were analyzed using Cell Counting Kit-8 assays or Transwell assay. Apoptotic cells were measured by Flow cytometry. The interaction between miR-338-3p and SNHG16 or PLK4 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. In vivo experiments were conducted through the murine xenograft model. Results SNHG16 was up-regulated, while miR-338-3p was down-regulated in cisplatin-resistant neuroblastoma tissues and cells. SNHG16 silencing weakened cisplatin resistance, reflected by the reduction of IC50 value, down-regulation of MRP-1 and P-gp protein expression, suppression of proliferation, migration and invasion, as well as enhancement of apoptosis in SNHG16 deletion cisplatin-resistant neuroblastoma cells. Besides that, SNHG16 could regulate PLK4 expression by sponging miR-338-3p and SNHG16/miR-338-3p/PLK4 axis could affect the activation of PI3K/AKT pathway in cisplatin-resistant neuroblastoma cells. MiR-338-3p inhibition attenuated SNHG16 deletion-mediated impairment on cisplatin resistance and PLK4 overexpression reversed the decrease of cisplatin-resistance induced by miR-338-3p re-expression. Furthermore, SNHG16 knockdown contributed to the anti-tumor effect of cisplatin in neuroblastoma in vivo. Conclusion SNHG16 contributed to the tumorigenesis and cisplatin resistance in neuroblastoma possibly through miR-338-3p/PLK4 pathway, indicating a novel insight for overcoming chemoresistance in neuroblastoma patients.
Collapse
|
19
|
Wen X, Liu S, Sheng J, Cui M. Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ 2020; 8:e9234. [PMID: 32523813 PMCID: PMC7263300 DOI: 10.7717/peerj.9234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shui Liu
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jiyao Sheng
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
20
|
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39:127-148. [PMID: 31919619 DOI: 10.1007/s10555-019-09840-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Mohamad K Elajami
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Talal El Zarif
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Campus, CHSC 6101, Byblos, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon.
| |
Collapse
|
21
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
22
|
Montrose DC, Galluzzi L. Drugging cancer metabolism: Expectations vs. reality. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:1-26. [PMID: 31451211 DOI: 10.1016/bs.ircmb.2019.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
As compared to their normal counterparts, neoplastic cells exhibit a variety of metabolic changes that reflect not only genetic and epigenetic defects underlying malignant transformation, but also the nutritional and immunobiological conditions of the tumor microenvironment. Such alterations, including the so-called Warburg effect (an increase in glucose uptake largely feeding anabolic and antioxidant metabolism), have attracted considerable attention as potential targets for the development of novel anticancer therapeutics. However, very few drugs specifically conceived to target bioenergetic cancer metabolism are currently approved by regulatory agencies for use in humans. This reflects the elevated degree of heterogeneity and redundancy in the metabolic circuitries exploited by neoplastic cells from different tumors (even of the same type), as well as the resemblance of such metabolic pathways to those employed by highly proliferating normal cells. Here, we summarize the major metabolic alterations that accompany oncogenesis, the potential of targeting bioenergetic metabolism for cancer therapy, and the obstacles that still prevent the clinical translation of such a promising therapeutic paradigm.
Collapse
Affiliation(s)
- David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, United States.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
23
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
24
|
Zhu J, Wu G, Song L, Cao L, Tan Z, Tang M, Li Z, Shi D, Zhang S, Li J. NKX2-8 deletion-induced reprogramming of fatty acid metabolism confers chemoresistance in epithelial ovarian cancer. EBioMedicine 2019; 43:238-252. [PMID: 31047858 PMCID: PMC6562195 DOI: 10.1016/j.ebiom.2019.04.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/04/2023] Open
Abstract
Background Aberrant fatty acid (FA) metabolism is a unique vulnerability of cancer cells and may present a promising target for cancer therapy. Our study aims to elucidate the molecular mechanisms by which NKX2–8 deletion reprogrammed FA metabolism-induced chemoresistance in epithelial ovarian cancer (EOC). Methods The deletion frequency and expression of NKX2–8 in 144 EOC specimens were assayed using Fluorescence in situ hybridization and immunochemical assays. The effects of NKX2–8 deletion and the fatty acid oxidation (FAO) antagonist Perhexiline on chemoresistance were examined by Annexin V and colony formation in vitro, and via an intraperitoneal tumor model in vivo. The mechanisms of NKX2–8 deletion in reprogrammed FA metabolism was determined using Chip-seq, metabolomic analysis, FAO assays and immunoprecipitation assays. Findings NKX2–8 deletion was correlated with the overall and relapse-free survival of EOC patients. NKX2–8 inhibited the FAO pathway by epigenetically suppressing multiple key components of the FAO cascade, including CPT1A and CPT2. Loss of NKX2–8 resulted in reprogramming of FA metabolism of EOC cells in an adipose microenvironment and leading to platinum resistance. Importantly, pharmacological inhibition of FAO pathway using Perhexiline significantly counteracted NKX2–8 deletion-induced chemoresistance and enhanced platinum's therapeutic efficacy in EOC. Interpretation Our results demonstrate that NKX2–8 deletion-reprogrammed FA metabolism contributes to chemoresistance and Perhexiline might serve as a potential tailored treatment for patients with NKX2–8-deleted EOC. Fund This work was supported by Natural Science Foundation of China; Guangzhou Science and Technology Plan Projects; Natural Science Foundation of Guangdong Province; The Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Jinrong Zhu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Geyan Wu
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Libing Song
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Lixue Cao
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Zhanyao Tan
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Miaoling Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Ziwen Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China
| | - Dongni Shi
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China
| | - Shuxia Zhang
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jun Li
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, China; Department of biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
25
|
Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab 2019; 29:592-610. [PMID: 30840912 DOI: 10.1016/j.cmet.2019.01.018] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increase in life expectancy has boosted the incidence of age-related pathologies beyond social and economic sustainability. Consequently, there is an urgent need for interventions that revert or at least prevent the pathogenic age-associated deterioration. The permanent or periodic reduction of calorie intake without malnutrition (caloric restriction and fasting) is the only strategy that reliably extends healthspan in mammals including non-human primates. However, the strict and life-long compliance with these regimens is difficult, which has promoted the emergence of caloric restriction mimetics (CRMs). We define CRMs as compounds that ignite the protective pathways of caloric restriction by promoting autophagy, a cytoplasmic recycling mechanism, via a reduction in protein acetylation. Here, we describe the current knowledge on molecular, cellular, and organismal effects of known and putative CRMs in mice and humans. We anticipate that CRMs will become part of the pharmacological armamentarium against aging and age-related cardiovascular, neurodegenerative, and malignant diseases.
Collapse
Affiliation(s)
- Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| | | | - Sebastian J Hofer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Center, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden; Center of Systems Medicine, Chinese Academy of Science, Suzhou, China.
| |
Collapse
|
26
|
The Role of Long Noncoding RNAs in Diabetic Alzheimer's Disease. J Clin Med 2018; 7:jcm7110461. [PMID: 30469430 PMCID: PMC6262561 DOI: 10.3390/jcm7110461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in diverse physiological and pathological processes by modulating gene expression. They have been found to be dysregulated in the brain and cerebrospinal fluid of patients with neurodegenerative diseases, and are considered promising therapeutic targets for treatment. Among the various neurodegenerative diseases, diabetic Alzheimer's disease (AD) has been recently emerging as an important issue due to several unexpected reports suggesting that metabolic issues in the brain, such as insulin resistance and glucose dysregulation, could be important risk factors for AD. To facilitate understanding of the role of lncRNAs in this field, here we review recent studies on lncRNAs in AD and diabetes, and summarize them with different categories associated with the pathogenesis of the diseases including neurogenesis, synaptic dysfunction, amyloid beta accumulation, neuroinflammation, insulin resistance, and glucose dysregulation. It is essential to understand the role of lncRNAs in the pathogenesis of diabetic AD from various perspectives for therapeutic utilization of lncRNAs in the near future.
Collapse
|
27
|
Relationship between long non-coding RNAs and Alzheimer's disease: a systematic review. Pathol Res Pract 2018; 215:12-20. [PMID: 30470438 DOI: 10.1016/j.prp.2018.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer disease (AD), is a typical progressive and destructive neurodegenerative disease. It is the leading cause of senile dementia that is mainly represented as neurocognitive symptoms, including progressive memory impairment, cognitive disorder, personality change and language barrier, etc. The pathogeny and nosogenesis of AD have not been clearly explained. AD is characterized by extracellular senile plaques (SP) formed by beta amyloid (Aβ) deposition and neurofibrillary tangles in neuronal cells formed by hyperphosphorylation of tau, as well as the deficiency of neuronal with gliosis. However, the complete spectrum of regulating factors in molecular level that affect the pathogenesis of AD is unclear. Long non-coding RNAs (lncRNAs) are involved in numerous neurodegenerative diseases, such as Parkinson's disease (PD) and AD. It is increasingly recognized that lncRNAs is tightly related to the pathogenesis and prevention and cure of AD. In the review, we highlighted the roles of lncRNAs in AD pathways and discussed increasing interest in targeting and regulating lncRNAs for the therapeutics of AD.
Collapse
|
28
|
Iwata M, Hirose L, Kohara H, Liao J, Sawada R, Akiyoshi S, Tani K, Yamanishi Y. Pathway-Based Drug Repositioning for Cancers: Computational Prediction and Experimental Validation. J Med Chem 2018; 61:9583-9595. [PMID: 30371064 DOI: 10.1021/acs.jmedchem.8b01044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developing drugs with anticancer activity and low toxic side-effects at low costs is a challenging issue for cancer chemotherapy. In this work, we propose to use molecular pathways as the therapeutic targets and develop a novel computational approach for drug repositioning for cancer treatment. We analyzed chemically induced gene expression data of 1112 drugs on 66 human cell lines and searched for drugs that inactivate pathways involved in the growth of cancer cells (cell cycle) and activate pathways that contribute to the death of cancer cells (e.g., apoptosis and p53 signaling). Finally, we performed a large-scale prediction of potential anticancer effects for all the drugs and experimentally validated the prediction results via three in vitro cellular assays that evaluate cell viability, cytotoxicity, and apoptosis induction. Using this strategy, we successfully identified several potential anticancer drugs. The proposed pathway-based method has great potential to improve drug repositioning research for cancer treatment.
Collapse
Affiliation(s)
- Michio Iwata
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering , Kyushu Institute of Technology , 680-4 Kawazu , Iizuka , Fukuoka 820-8502 , Japan
| | - Lisa Hirose
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan
| | - Hiroshi Kohara
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Jiyuan Liao
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Ryusuke Sawada
- Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Sayaka Akiyoshi
- Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Kenzaburo Tani
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science , The University of Tokyo , 4-6-1 Shirokanedai , Minato-ku , Tokyo 108-8639 , Japan.,Division of Molecular Design, Research Center for Systems Immunology, Medical Institute of Bioregulation , Kyushu University , 3-1-1 Maidashi , Higashi-ku , Fukuoka, Fukuoka 812-8582 , Japan
| | - Yoshihiro Yamanishi
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering , Kyushu Institute of Technology , 680-4 Kawazu , Iizuka , Fukuoka 820-8502 , Japan.,PRESTO , Japan Science and Technology Agency , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
29
|
Lukina MM, Dudenkova VV, Shimolina LE, Snopova LB, Zagaynova EV, Shirmanova MV. In vivo metabolic and SHG imaging for monitoring of tumor response to chemotherapy. Cytometry A 2018; 95:47-55. [PMID: 30329217 DOI: 10.1002/cyto.a.23607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan. The metabolic activity of the tumor cells was assessed using fluorescence lifetime imaging of the metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H. Second harmonic generation (SHG) imaging was used to analyze the extent and properties of collagen within the tumors. We detected an early decrease in the free/bound NAD(P)H ratio in all treated tumors, indicating a shift toward a more oxidative metabolism. Monitoring of collagen showed an early increase in the amount of collagen followed by an increase in the extent of its orientation in tumors treated with cisplatin and paclitaxel, and decrease in collagen content in the case of irinotecan. Our study suggests that changes in cellular metabolism and fibrotic stroma organization precede morphological alterations and tumor size reduction, and that this indicates that NAD(P)H and collagen can be considered as intrinsic indicators of the response to treatment. This is the first time that these parameters have been investigated in tumors in vivo in the course of chemotherapy with drugs having different mechanisms of action. © 2018 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Maria M Lukina
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Varvara V Dudenkova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Lyubov' E Shimolina
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ludmila B Snopova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| | - Elena V Zagaynova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| | - Marina V Shirmanova
- Institute of Biomedical Technologies, Privolzhskiy Research Medical University, Nizhny Novgorod, Russia
| |
Collapse
|
30
|
Alameddine AK, Conlin FT, Binnall BJ, Alameddine YA, Alameddine KO. How do cancer cells replenish their fuel supply? Cancer Rep (Hoboken) 2018; 1:e1003. [PMID: 32729259 PMCID: PMC7941513 DOI: 10.1002/cnr2.1003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Multiple genetic changes, availability of cellular nutrients and metabolic alterations play a pivotal role in oncogenesis AIMS: We focus on cancer cell's metabolic properties, and we outline the cross talks between cellular oncogenic growth pathways in cancer metabolism. The review also provides a synopsis of the relevant cancer drugs targeting metabolic activities that are at various stages of clinical development. METHODS We review literature published within the last decade to include select articles that have highlighted energy metabolism crucial to the development of cancer phenotypes. RESULTS Cancer cells maintain their potent metabolism and keep a balanced redox status by enhancing glycolysis and autophagy and rerouting Krebs cycle intermediates and products of β-oxydation. CONCLUSIONS The processes underlying cancer pathogenesis are extremely complex and remain elusive. The new field of systems biology provides a mathematical framework in which these homeostatic dysregulation principles may be examined for better understanding of cancer phenotypes. Knowledge of key players in cancer-related metabolic reprograming may pave the way for new therapeutic metabolism-targeted drugs and ultimately improve patient care.
Collapse
Affiliation(s)
| | - Frederick T. Conlin
- AnesthesiologyBaystate Medical CenterSpringfieldMAUSA
- University of Massachusetts Medical SchoolBostonMAUSA
| | - Brian J. Binnall
- Division of Cardiac SurgeryBaystate Medical CenterSpringfieldMAUSA
| | | | | |
Collapse
|
31
|
Sidarovich V, De Mariano M, Aveic S, Pancher M, Adami V, Gatto P, Pizzini S, Pasini L, Croce M, Parodi F, Cimmino F, Avitabile M, Emionite L, Cilli M, Ferrini S, Pagano A, Capasso M, Quattrone A, Tonini GP, Longo L. A High-Content Screening of Anticancer Compounds Suggests the Multiple Tyrosine Kinase Inhibitor Ponatinib for Repurposing in Neuroblastoma Therapy. Mol Cancer Ther 2018; 17:1405-1415. [PMID: 29695637 DOI: 10.1158/1535-7163.mct-17-0841] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/12/2018] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
Abstract
Novel druggable targets have been discovered in neuroblastoma (NB), paving the way for more effective treatments. However, children with high-risk NB still show high mortality rates prompting for a search of novel therapeutic options. Here, we aimed at repurposing FDA-approved drugs for NB treatment by performing a high-content screening of a 349 anticancer compounds library. In the primary screening, we employed three NB cell lines, grown as three-dimensional (3D) multicellular spheroids, which were treated with 10 μmol/L of the library compounds for 72 hours. The viability of 3D spheroids was evaluated using a high-content imaging approach, resulting in a primary hit list of 193 compounds. We selected 60 FDA-approved molecules and prioritized drugs with multi-target activity, discarding those already in use for NB treatment or enrolled in NB clinical trials. Hence, 20 drugs were further tested for their efficacy in inhibiting NB cell viability, both in two-dimensional and 3D models. Dose-response curves were then supplemented with the data on side effects, therapeutic index, and molecular targets, suggesting two multiple tyrosine kinase inhibitors, ponatinib and axitinib, as promising candidates for repositioning in NB. Indeed, both drugs showed induction of cell-cycle block and apoptosis, as well as inhibition of colony formation. However, only ponatinib consistently affected migration and inhibited invasion of NB cells. Finally, ponatinib also proved effective inhibition of tumor growth in orthotopic NB mice, providing the rationale for its repurposing in NB therapy. Mol Cancer Ther; 17(7); 1405-15. ©2018 AACR.
Collapse
Affiliation(s)
| | | | - Sanja Aveic
- Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Michael Pancher
- High Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
| | - Valentina Adami
- High Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
| | - Pamela Gatto
- High Throughput Screening Core Facility, CIBIO, University of Trento, Trento, Italy
| | - Silvia Pizzini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Luigi Pasini
- Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michela Croce
- UOC Bioterapie, Ospedale Policlinico San Martino, Genova, Italy
| | - Federica Parodi
- UOC Bioterapie, Ospedale Policlinico San Martino, Genova, Italy
| | - Flora Cimmino
- University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Marianna Avitabile
- University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Laura Emionite
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Michele Cilli
- Animal Facility, Ospedale Policlinico San Martino, Genova, Italy
| | - Silvano Ferrini
- UOC Bioterapie, Ospedale Policlinico San Martino, Genova, Italy
| | - Aldo Pagano
- University of Genova, Genova, Italy.,Ospedale Policlinico San Martino, Genova, Italy
| | - Mario Capasso
- University of Naples Federico II, Napoli, Italy.,CEINGE Biotecnologie Avanzate, Napoli, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Napoli, Italy
| | | | - Gian Paolo Tonini
- Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy
| | - Luca Longo
- UOC Bioterapie, Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
32
|
Yang C, Tan J, Zhu J, Wang S, Wei G. YAP promotes tumorigenesis and cisplatin resistance in neuroblastoma. Oncotarget 2018; 8:37154-37163. [PMID: 28415761 PMCID: PMC5514898 DOI: 10.18632/oncotarget.16209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
The transcriptional co-activator Yes-associated protein (YAP) is essential for Hippo pathway-driven tumorigenesis in various cancers. However, the expression and function of YAP in neuroblastoma remains elusive. Here, we show that YAP was highly expressed in Neuroblastoma (NB) and expression levels correlated with advanced tumor staging. Knockdown of YAP significantly impaired neuroblastoma proliferation, tumorigenesis, and invasion in vitro. Injection of the YAP inhibitor, Peptide 17, dramatically prevented neuroblastoma subcutaneous tumor growth by efficiently downregulating YAP expression in tumors. Additionally, less proliferative and more apoptotic cells were found in the Peptide 17 treatment group. Furthermore, YAP inhibition significantly inhibited cisplatin-resistant neuroblastoma proliferation, tumorigenesis, and invasion in vitro. The combination of Peptide 17 with low-dose cisplatin efficiently impaired cisplatin-resistant NB subcutaneous tumor growth, being as effective as high-dose cisplatin. Notably, the combination therapy caused lesser liver toxicity in mice compared to the high-dose cisplatin treatment group. Collectively, this work identifies YAP as a novel regulator of neuroblastoma proliferation, tumorigenesis, and invasion and indicates that YAP is a potential therapeutic target for cisplatin-resistant neuroblastoma.
Collapse
Affiliation(s)
- Chao Yang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Juan Tan
- Clinical Department of Children's Hospital of Chongqing Medical University, Lijia Campus, Chongqing, China
| | - Jun Zhu
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Pathology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Guanghui Wei
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
33
|
Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, Zhang Y. Long Noncoding RNA EBF3-AS Promotes Neuron Apoptosis in Alzheimer's Disease. DNA Cell Biol 2018; 37:220-226. [PMID: 29298096 DOI: 10.1089/dna.2017.4012] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia; its pathophysiological mechanism remains unclear. Long noncoding RNAs (lncRNAs) play key roles in AD. lncRNA EBF3-AS has been found dysregulated in AD, which is abundantly expressed in the brain. The aim of this study was to investigate the role of EBF3-AS in AD. Results showed that the expressions of lncRNA EBF3-AS and EBF3 (early B cell factor 3) were upregulated in hippocampus of APP/PS1 mice (AD model mice). EBF3-AS knockdown by siRNA inhibited the apoptosis induced by Aβ25-35 and okadaic acid (OA) in SH-SY5Y. The expression of EBF3 was downregulated in Aβ25-35- and OA-treated SH-SY5Y, which was reversed by EBF3-AS knockdown. EBF3 knockdown can reverse the Aβ25-35-induced apoptosis in SH-SY5Y. These results revealed that lncRNA EBF3-AS promoted neuron apoptosis in AD, and involved in regulating EBF3 expression. EBF3-AS may be a new therapeutic target for treatment of AD.
Collapse
Affiliation(s)
- Cheng Gu
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| | - Cheng Chen
- 2 Department of Galactophore, The First Hospital of Lanzhou University , Lanzhou, China
| | - Ruipeng Wu
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| | - Tong Dong
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| | - Xiaojuan Hu
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| | - Yuping Yao
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| | - Yi Zhang
- 1 Department of Neurology, Gansu Provincial Hospital , Lanzhou, China
| |
Collapse
|
34
|
Itkonen HM, Brown M, Urbanucci A, Tredwell G, Lau CH, Barfeld S, Hart C, Guldvik IJ, Takhar M, Heemers HV, Erho N, Bloch K, Davicioni E, Derua R, Waelkens E, Mohler JL, Clarke N, Swinnen JV, Keun HC, Rekvig OP, Mills IG. Lipid degradation promotes prostate cancer cell survival. Oncotarget 2017; 8:38264-38275. [PMID: 28415728 PMCID: PMC5503531 DOI: 10.18632/oncotarget.16123] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/01/2017] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.
Collapse
Affiliation(s)
- Harri M Itkonen
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Michael Brown
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Alfonso Urbanucci
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
| | - Gregory Tredwell
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Chung Ho Lau
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Stefan Barfeld
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Claire Hart
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Ingrid J. Guldvik
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
| | - Mandeep Takhar
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Hannelore V. Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Urology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas Erho
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Katarzyna Bloch
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Elai Davicioni
- GenomeDx Biosciences, Vancouver, British Columbia, Canada
| | - Rita Derua
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, Laboratory of Protein Phosphorylation and Proteomics, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L. Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Noel Clarke
- Genito Urinary Cancer Research Group, Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, CRUK Manchester Institute for Cancer Research, University of Manchester, Manchester, UK
- Department of Urology, The Christie NHS Foundation Trust, Manchester, UK
| | - Johan V. Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI Leuven Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Hector C. Keun
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ole P. Rekvig
- Department of Medical Biology, University of Tromso, Tromso, Norway
| | - Ian G. Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Molecular Oncology, Institute for Cancer Research and Oslo University Hospital, Oslo, Norway
- PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| |
Collapse
|
35
|
PPAR Gamma in Neuroblastoma: The Translational Perspectives of Hypoglycemic Drugs. PPAR Res 2016; 2016:3038164. [PMID: 27799938 PMCID: PMC5069360 DOI: 10.1155/2016/3038164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is the most common and aggressive pediatric cancer, characterized by a remarkable phenotypic diversity and high malignancy. The heterogeneous clinical behavior, ranging from spontaneous remission to fatal metastatic disease, is attributable to NB biology and genetics. Despite major advances in therapies, NB is still associated with a high morbidity and mortality. Thus, novel diagnostic, prognostic, and therapeutic approaches are required, mainly to improve treatment outcomes of high-risk NB patients. Among neuroepithelial cancers, NB is the most studied tumor as far as PPAR ligands are concerned. PPAR ligands are endowed with antitumoral effects, mainly acting on cancer stem cells, and constitute a possible add-on therapy to antiblastic drugs, in particular for NB with unfavourable prognosis. While discussing clinical background, this review will provide a synopsis of the major studies about PPAR expression in NB, focusing on the potential beneficial effects of hypoglycemic drugs, thiazolidinediones and metformin, to reduce the occurrence of relapses as well as tumor regrowth in NB patients.
Collapse
|
36
|
Alloisio S, Garbati P, Viti F, Dante S, Barbieri R, Arnaldi G, Petrelli A, Gigoni A, Giannoni P, Quarto R, Nobile M, Vassalli M, Pagano A. Generation of a Functional Human Neural Network by NDM29 Overexpression in Neuroblastoma Cancer Cells. Mol Neurobiol 2016; 54:6097-6106. [PMID: 27699601 DOI: 10.1007/s12035-016-0161-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 11/28/2022]
Abstract
Recent advances in life sciences suggest that human and rodent cell responses to stimuli might differ significantly. In this context, the results achieved in neurotoxicology and biomedical research practices using neural networks obtained from mouse or rat primary culture of neurons would benefit of the parallel evaluation of the same parameters using fully differentiated neurons with a human genetic background, thus emphasizing the current need of neuronal cells with human origin. In this work, we developed a human functionally active neural network derived by human neuroblastoma cancer cells genetically engineered to overexpress NDM29, a non-coding RNA whose increased synthesis causes the differentiation toward a neuronal phenotype. These cells are here analyzed accurately showing functional and morphological traits of neurons such as the expression of neuron-specific proteins and the possibility to generate the expected neuronal current traces and action potentials. Their morphometrical analysis is carried out by quantitative phase microscopy showing soma and axon sizes compatible with those of functional neurons. The ability of these cells to connect autonomously forming physical junctions recapitulates that of hippocampal neurons, as resulting by connect-ability test. Lastly, these cells self-organize in neural networks able to produce spontaneous firing, in which spikes can be clustered in bursts. Altogether, these results show that the neural network obtained by NDM29-dependent differentiation of neuroblastoma cells is a suitable tool for biomedical research practices.
Collapse
Affiliation(s)
- Susanna Alloisio
- ETT Spa, via Sestri 37, 16154, Genoa, Italy.,National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | | | - Federica Viti
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Silvia Dante
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | | | - Giovanni Arnaldi
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Alessia Petrelli
- Istituto Italiano di Tecnologia, Via Morego 30, I-16163, Genova, Italy
| | - Arianna Gigoni
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Rodolfo Quarto
- IRCCS-AOU San Martino-IST, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Mario Nobile
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Massimo Vassalli
- National Research Council, Institute of Biophysics, via De Marini 6, 16149, Genoa, Italy
| | - Aldo Pagano
- IRCCS-AOU San Martino-IST, Genova, Italy. .,Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| |
Collapse
|
37
|
Abstract
Long noncoding RNAs (lncRNAs) are typically defined as transcripts longer than 200 nucleotides. lncRNAs can regulate gene expression at epigenetic, transcriptional, and posttranscriptional levels. Recent studies have shown that lncRNAs are involved in many neurological diseases such as epilepsy, neurodegenerative conditions, and genetic disorders. Alzheimer's disease is a neurodegenerative disease, which accounts for >80% of dementia in elderly subjects. In this review, we will highlight recent studies investigating the role of lncRNAs in Alzheimer's disease and focus on some specific lncRNAs that may underlie Alzheimer's disease pathophysiology and therefore could be potential therapeutic targets.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Neurology, Jinshan Hospital
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital
- Department of Neurology, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|