1
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
2
|
Tomasiak P, Janisiak J, Rogińska D, Perużyńska M, Machaliński B, Tarnowski M. Garcinol and Anacardic Acid, Natural Inhibitors of Histone Acetyltransferases, Inhibit Rhabdomyosarcoma Growth and Proliferation. Molecules 2023; 28:5292. [PMID: 37513165 PMCID: PMC10383693 DOI: 10.3390/molecules28145292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of the soft tissues. There are two main histopathological types: alveolar and embryonal. RMS occurs mainly in childhood and is a result of the deregulation of growth and differentiation of muscle cell precursors. There is an increasing amount of data indicating that numerous epigenetic alterations within chromatin and histone proteins are involved in the pathogenesis of this malignancy. Histone acetylation is one of the most important epigenetic modifications that is catalysed by enzymes from the group of histone acetyltransferases (HAT). In this study, the impact of the natural histone acetyltransferase inhibitors (HATi)-garcinol (GAR) and anacardic acid (AA)-on the biology of RMS cells was evaluated through a series of in vitro tests measuring proliferation, viability, clonogenicity, cell cycle and apoptosis. Moreover, using oligonucleotide microarrays and real-time PCR, we identified several genes whose expression changed after GAR and AA treatment. The examined HATi significantly reduce the invasive phenotype of RMS cells by inhibiting the growth rate, viability and clonogenic abilities. What is more, these substances cause cell cycle arrest in the G2/M phase, induce apoptosis and affect the genetic expression of the endoplasmic reticulum stress sensors. GAR and AA may serve as promising potential anti-cancer drugs since they sensitize the RMS cells to chemotherapeutic treatment.
Collapse
Affiliation(s)
- Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Joanna Janisiak
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dorota Rogińska
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Magdalena Perużyńska
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| |
Collapse
|
3
|
Duvvuri B, Pachman LM, Hermanson P, Wang T, Moore R, Ding-Hwa Wang D, Long A, Morgan GA, Doty S, Tian R, Sancak Y, Lood C. Role of mitochondria in the myopathy of juvenile dermatomyositis and implications for skeletal muscle calcinosis. J Autoimmun 2023; 138:103061. [PMID: 37244073 PMCID: PMC10330803 DOI: 10.1016/j.jaut.2023.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVES To elucidate mechanisms contributing to skeletal muscle calcinosis in patients with juvenile dermatomyositis. METHODS A well-characterized cohorts of JDM (n = 68), disease controls (polymyositis, n = 7; juvenile SLE, n = 10, and RNP + overlap syndrome, n = 12), and age-matched health controls (n = 17) were analyzed for circulating levels of mitochondrial (mt) markers including mtDNA, mt-nd6, and anti-mitochondrial antibodies (AMAs) using standard qPCR, ELISA, and novel-in-house assays, respectively. Mitochondrial calcification of affected tissue biopsies was confirmed using electron microscopy and energy dispersive X-ray analysis. A human skeletal muscle cell line, RH30, was used to generate an in vitro calcification model. Intracellular calcification is measured by flow cytometry and microscopy. Mitochondria were assessed for mtROS production and membrane potential by flow cytometry and real-time oxygen consumption rate by Seahorse bioanalyzer. Inflammation (interferon-stimulated genes) was measured by qPCR. RESULTS In the current study, patients with JDM exhibited elevated levels of mitochondrial markers associated with muscle damage and calcinosis. Of particular interest are AMAs predictive of calcinosis. Human skeletal muscle cells undergo time- and dose-dependent accumulation of calcium phosphate salts with preferential localization to mitochondria. Calcification renders skeletal muscle cells mitochondria stressed, dysfunctional, destabilized, and interferogenic. Further, we report that inflammation induced by interferon-alpha amplifies mitochondrial calcification of human skeletal muscle cells via the generation of mitochondrial reactive oxygen species (mtROS). CONCLUSIONS Overall, our study demonstrates the mitochondrial involvement in the skeletal muscle pathology and calcinosis of JDM and mtROS as a central player in the calcification of human skeletal muscle cells. Therapeutic targeting of mtROS and/or upstream inducers, such as inflammation, may alleviate mitochondrial dysfunction, leading to calcinosis. AMAs can potentially identify patients with JDM at risk for developing calcinosis.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Ting Wang
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Richard Moore
- Cedars Sinai Med Ctr, Division of Rheumatology, Los Angeles, CA, USA
| | | | - Aaron Long
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Gabrielle A Morgan
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
5
|
You Y, Niu Y, Zhang J, Huang S, Ding P, Sun F, Wang X. U0126: Not only a MAPK kinase inhibitor. Front Pharmacol 2022; 13:927083. [PMID: 36091807 PMCID: PMC9452634 DOI: 10.3389/fphar.2022.927083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
U0126, as an inhibitor of the MAPK signaling pathway, is closely related to various biological processes, such as differentiation, cell growth, autophagy, apoptosis, and stress responses. It makes U0126 play an essential role in balancing cellular homeostasis. Although U0126 has been suggested to inhibit various cancers, its complete mechanisms have not been clarified in cancers. This review summarized the most recent and relevant research on the many applications of U0126 and described its role and mechanisms in different cancer cell types. Moreover, some acknowledged functions of U0126 researched in the laboratory were listed in our review. We discussed the probability of using U0126 to restain cancers or suppress the MAPK pathway as a novel way of cancer treatment.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
6
|
Protein Arginine Methyltransferase (PRMT) Inhibitors-AMI-1 and SAH Are Effective in Attenuating Rhabdomyosarcoma Growth and Proliferation in Cell Cultures. Int J Mol Sci 2021; 22:ijms22158023. [PMID: 34360791 PMCID: PMC8348967 DOI: 10.3390/ijms22158023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a malignant soft tissue cancer that develops mostly in children and young adults. With regard to histopathology, four rhabdomyosarcoma types are distinguishable: embryonal, alveolar, pleomorphic and spindle/sclerosing. Currently, increased amounts of evidence indicate that not only gene mutations, but also epigenetic modifications may be involved in the development of RMS. Epigenomic changes regulate the chromatin architecture and affect the interaction between DNA strands, histones and chromatin binding proteins, thus, are able to control gene expression. The main aim of the study was to assess the role of protein arginine methyltransferases (PRMT) in the cellular biology of rhabdomyosarcoma. In the study we used two pan-inhibitors of PRMT, called AMI-1 and SAH, and evaluated their effects on proliferation and apoptosis of RMS cells. We observed that AMI-1 and SAH reduce the invasive phenotype of rhabdomyosarcoma cells by decreasing their proliferation rate, cell viability and ability to form cell colonies. In addition, microarray analysis revealed that these inhibitors attenuate the activity of the PI3K-Akt signaling pathway and affect expression of genes related to it.
Collapse
|
7
|
Kokkorakis N, Gaitanou M. Minibrain-related kinase/dual-specificity tyrosine-regulated kinase 1B implication in stem/cancer stem cells biology. World J Stem Cells 2020; 12:1553-1575. [PMID: 33505600 PMCID: PMC7789127 DOI: 10.4252/wjsc.v12.i12.1553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1B (DYRK1B), also known as minibrain-related kinase (MIRK) is one of the best functionally studied members of the DYRK kinase family. DYRKs comprise a family of protein kinases that are emerging modulators of signal transduction pathways, cell proliferation and differentiation, survival, and cell motility. DYRKs were found to participate in several signaling pathways critical for development and cell homeostasis. In this review, we focus on the DYRK1B protein kinase from a functional point of view concerning the signaling pathways through which DYRK1B exerts its cell type-dependent function in a positive or negative manner, in development and human diseases. In particular, we focus on the physiological role of DYRK1B in behavior of stem cells in myogenesis, adipogenesis, spermatogenesis and neurogenesis, as well as in its pathological implication in cancer and metabolic syndrome. Thus, understanding of the molecular mechanisms that regulate signaling pathways is of high importance. Recent studies have identified a close regulatory connection between DYRK1B and the hedgehog (HH) signaling pathway. Here, we aim to bring together what is known about the functional integration and cross-talk between DYRK1B and several signaling pathways, such as HH, RAS and PI3K/mTOR/AKT, as well as how this might affect cellular and molecular processes in development, physiology, and pathology. Thus, this review summarizes the major known functions of DYRK1B kinase, as well as the mechanisms by which DYRK1B exerts its functions in development and human diseases focusing on the homeostasis of stem and cancer stem cells.
Collapse
Affiliation(s)
- Nikolaos Kokkorakis
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece.
| |
Collapse
|
8
|
Camero S, Camicia L, Marampon F, Ceccarelli S, Shukla R, Mannarino O, Pizer B, Schiavetti A, Pizzuti A, Tombolini V, Marchese C, Dominici C, Megiorni F. BET inhibition therapy counteracts cancer cell survival, clonogenic potential and radioresistance mechanisms in rhabdomyosarcoma cells. Cancer Lett 2020; 479:71-88. [PMID: 32200036 DOI: 10.1016/j.canlet.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
The antitumour effects of OTX015, a first-in-class BET inhibitor (BETi), were investigated as a single agent or in combination with ionizing radiation (IR) in preclinical in vitro models of rhabdomyosarcoma (RMS), the most common childhood soft tissue sarcoma. Herein, we demonstrated the upregulation of BET Bromodomain gene expression in RMS tumour biopsies and cell lines compared to normal skeletal muscle. In vitro experiments showed that OTX015 significantly reduced RMS cell proliferation by altering cell cycle modulators and apoptotic related proteins due to the accumulation of DNA breaks that cells are unable to repair. Interestingly, OTX015 also impaired migration capacity and tumour-sphere architecture by downregulating pro-stemness genes and was able to potentiate ionizing radiation effects by reducing the expression of different drivers of tumour dissemination and resistance mechanisms, including the GNL3 gene, that we correlated for the first time with the RMS phenotype. In conclusion, our research sheds further light on the molecular events of OTX015 action against RMS cells and indicates this novel BETi as an effective option to improve therapeutic strategies and overcome the development of resistant cancer cells in patients with RMS.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Lucrezia Camicia
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Simona Ceccarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - Olga Mannarino
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP, UK.
| | - Amalia Schiavetti
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Antonio Pizzuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Cinzia Marchese
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| | - Carlo Dominici
- Department of Maternal, Infantile, and Urological Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Francesca Megiorni
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Figeac N, Pruller J, Hofer I, Fortier M, Ortuste Quiroga HP, Banerji CRS, Zammit PS. DEPDC1B is a key regulator of myoblast proliferation in mouse and man. Cell Prolif 2020; 53:e12717. [PMID: 31825138 PMCID: PMC6985657 DOI: 10.1111/cpr.12717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES DISHEVELLED, EGL-10, PLECKSTRIN (DEP) domain-containing 1B (DEPDC1B) promotes dismantling of focal adhesions and coordinates detachment events during cell cycle progression. DEPDC1B is overexpressed in several cancers with expression inversely correlated with patient survival. Here, we analysed the role of DEPDC1B in the regulation of murine and human skeletal myogenesis. MATERIALS AND METHODS Expression dynamics of DEPDC1B were examined in murine and human myoblasts and rhabdomyosarcoma cells in vitro by RT-qPCR and/or immunolabelling. DEPDC1B function was mainly tested via siRNA-mediated gene knockdown. RESULTS DEPDC1B was expressed in proliferating murine and human myoblasts, with expression then decreasing markedly during myogenic differentiation. SiRNA-mediated knockdown of DEPDC1B reduced myoblast proliferation and induced entry into myogenic differentiation, with deregulation of key cell cycle regulators (cyclins, CDK, CDKi). DEPDC1B and β-catenin co-knockdown was unable to rescue proliferation in myoblasts, suggesting that DEPDC1B functions independently of canonical WNT signalling during myogenesis. DEPDC1B can also suppress RHOA activity in some cell types, but DEPDC1B and RHOA co-knockdown actually had an additive effect by both further reducing proliferation and enhancing myogenic differentiation. DEPDC1B was expressed in human Rh30 rhabdomyosarcoma cells, where DEPDC1B or RHOA knockdown promoted myogenic differentiation, but without influencing proliferation. CONCLUSION DEPDC1B plays a central role in myoblasts by driving proliferation and preventing precocious myogenic differentiation during skeletal myogenesis in both mouse and human.
Collapse
Affiliation(s)
- Nicolas Figeac
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Johanna Pruller
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Isabella Hofer
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | - Mathieu Fortier
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| | | | | | - Peter S. Zammit
- King's College LondonRandall Centre for Cell and Molecular BiophysicsLondonUK
| |
Collapse
|
10
|
Ciuffoli V, Lena AM, Gambacurta A, Melino G, Candi E. Myoblasts rely on TAp63 to control basal mitochondria respiration. Aging (Albany NY) 2019; 10:3558-3573. [PMID: 30487319 PMCID: PMC6286837 DOI: 10.18632/aging.101668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022]
Abstract
p53, with its family members p63 and p73, have been shown to promote myoblast differentiation by regulation of the function of the retinoblastoma protein and by direct activation of p21Cip/Waf1 and p57Kip2, promoting cell cycle exit. In previous studies, we have demonstrated that the TAp63γ isoform is the only member of the p53 family that accumulates during in vitro myoblasts differentiation, and that its silencing led to delay in myotube fusion. To better dissect the role of TAp63γ in myoblast physiology, we have generated both sh-p63 and Tet-On inducible TAp63γ clones. Gene array analysis of sh-p63 C2C7 clones showed a significant modulation of genes involved in proliferation and cellular metabolism. Indeed, we found that sh-p63 C2C7 myoblasts present a higher proliferation rate and that, conversely, TAp63γ ectopic expression decreases myoblasts proliferation, indicating that TAp63γ specifically contributes to myoblasts proliferation, independently of p53 and p73. In addition, sh-p63 cells have a defect in mitochondria respiration highlighted by a reduction in spare respiratory capacity and a decrease in complex I, IV protein levels. These results demonstrated that, beside contributing to cell cycle exit, TAp63γ participates to myoblasts metabolism control.
Collapse
Affiliation(s)
- Veronica Ciuffoli
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Anna Maria Lena
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,MRC-Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Eleonora Candi
- Department of Experimental Medicine and TOR, University of Rome "Tor Vergata", Rome, Italy.,IDI-IRCCS, Biochemistry laboratory, Rome, Italy
| |
Collapse
|
11
|
Concomitant targeting of Hedgehog signaling and MCL-1 synergistically induces cell death in Hedgehog-driven cancer cells. Cancer Lett 2019; 465:1-11. [PMID: 31465840 DOI: 10.1016/j.canlet.2019.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
In the present study, we show that concomitant inhibition of Hedgehog (HH) signaling by the glioma-associated oncogene homolog1 (GLI1)-targeting agent GANT61 and the antiapoptotic BCL-2 protein family member MCL-1 by A-1210477 synergistically induces cell death in HH-driven cancers, i.e. rhabdomyosarcoma (RMS) and medulloblastoma (MB) cells. Combined genetic and pharmacological inhibition emphasized that co-treatment of GANT61 and A-1210477 indeed relies on inhibition of GLI1 (by GANT61) and MCL-1 (by A-1210477). Mechanistic studies revealed that A-1210477 triggers the release of BIM from MCL-1 and its shuttling to BCL-xL and BCL-2. Indeed, BIM proved to be required for GANT61/A-1210477-induced cell death, as genetic silencing of BIM using siRNA significantly rescues cell death upon GANT61/A-1210477 co-treatment. Similarly, genetic silencing of NOXA results in a significant reduction of GANT61/A-1210477-mediated cell death. Also, overexpression of MCL-1 or BCL-2 significantly protects RMS cells from GANT61/A-1210477-triggered cell death. Addition of the pan-caspase inhibitor zVAD.fmk significantly decreases GANT61/A-1210477-stimulated cell demise, indicating apoptotic cell death. In conclusion, GANT61 and A-1210477 synergize to engage mitochondrial apoptosis. These findings provide the rationale for further evaluation of dual inhibition of HH signaling and MCL-1 in HH-driven cancers.
Collapse
|
12
|
Trihia HJ, Novkovic N, Provatas I, Mavrogiorgis A, Lianos E. Primary Alveolar Rhabdomyosarcoma of the Breast in an Adult: An Extremely Rare Case. Case Rep Pathol 2019; 2019:6098747. [PMID: 31032134 PMCID: PMC6458917 DOI: 10.1155/2019/6098747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 02/05/2023] Open
Abstract
Sarcomas of the breast constitute less than 1% of all malignant breast tumors and primary rhabdomyosarcoma (RMS) is a very rare entity with limited case reports in the literature. RMS is common in children and adolescents and rare in adults. Primary RMS arising from the breast is exceedingly rare in adults. We report a case of a primary RMS of the breast in a 60-year-old woman, who presented in an early stage, mimicking invasive ductal carcinoma clinically and is in complete remission after three years of diagnosis and one year of treatment.
Collapse
Affiliation(s)
- Helen J. Trihia
- Department of Pathology, Metaxas Memorial Cancer Hospital, Piraeus, Greece
| | - Natasa Novkovic
- Department of Pathology, Metaxas Memorial Cancer Hospital, Piraeus, Greece
| | - Ioannis Provatas
- Department of Pathology, Metaxas Memorial Cancer Hospital, Piraeus, Greece
| | | | - Evangelos Lianos
- Department of Medical Oncology, Metaxas Memorial Cancer Hospital, Piraeus, Greece
| |
Collapse
|
13
|
Curran T. Reproducibility of academic preclinical translational research: lessons from the development of Hedgehog pathway inhibitors to treat cancer. Open Biol 2019; 8:rsob.180098. [PMID: 30068568 PMCID: PMC6119869 DOI: 10.1098/rsob.180098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Academic translational research is growing at a great pace at a time in which questions have been raised about the reproducibility of preclinical findings. The development of Hedgehog (HH) pathway inhibitors for the treatment of cancer over the past two decades offers a case study for understanding the root causes of failure to predict clinical outcomes arising from academic preclinical translational research. Although such inhibitors were once hoped to be efficacious in up to 25% of human cancer, clinical studies showed responses only in basal cell carcinoma and the HH subtype of medulloblastoma. Close examination of the published studies reveals limitations in the models used, lack of quantitative standards, utilization of high drug concentrations associated with non-specific toxicities and improper use of cell line and mouse models. In part, these issues arise from scientific complexity, for example, the failure of tumour cell lines to maintain HH pathway activity in vitro, but a greater contributing factor appears to be the influence of unconscious bias. There was a strong expectation that HH pathway inhibitors would make a profound impact on human cancer and experiments were designed with this assumption in mind.
Collapse
Affiliation(s)
- Tom Curran
- Children's Research Institute, Children's Mercy Kansas City, 2401 Gillham Road, Kansas City, MI 64108, USA
| |
Collapse
|
14
|
Eguchi-Ishimae M, Tezuka M, Kokeguchi T, Nagai K, Moritani K, Yonezawa S, Tauchi H, Tokuda K, Ishida Y, Ishii E, Eguchi M. Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 2019; 58:521-529. [PMID: 30739374 DOI: 10.1002/gcc.22734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/31/2022] Open
Abstract
Cell-free DNA (cfDNA), which are small DNA fragments in blood derived from dead cells including tumor cells, could serve as useful biomarkers and provide valuable genetic information about the tumors. cfDNA is now used for the genetic analysis of several types of cancers, as a surrogate for tumor biopsy, designated as "liquid biopsy." Rhabdomyosarcoma (RMS), the most frequent soft tissue tumor in childhood, can arise in any part of the body, and radiological imaging is the only available method for estimating the tumor burden, because no useful specific biological markers are present in the blood. Because tumor volume is one of the determinants of treatment response and outcome, early detection at diagnosis as well as relapse is essential for improving the treatment outcome. A 15-year-old male patient was diagnosed with alveolar RMS of prostate origin with bone marrow invasion. The PAX3-FOXO1 fusion was identified in the tumor cells in the bone marrow. After the diagnosis, cfDNA was serially collected to detect the PAX3-FOXO1 fusion sequence as a tumor marker. cfDNA could be an appropriate source for detecting the fusion gene; assays using cfDNA have proved to be useful for the early detection of tumor progression/recurrence. Additionally, the fusion gene dosage estimated by quantitative polymerase chain reaction reflected the tumor volume during the course of the treatment. We suggest that for fusion gene-positive RMSs, and other soft tissue tumors, the fusion sequence should be used for monitoring the tumor burden in the body to determine the diagnosis and treatment options for the patients.
Collapse
Affiliation(s)
| | - Mari Tezuka
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tomoki Kokeguchi
- Division of Pediatrics, Ehime Prefectural Niihama Hospital, Niihama, Ehime, Japan
| | - Kozo Nagai
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kyoko Moritani
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Sachiko Yonezawa
- Division of Pediatrics, Matsuyama Red Cross Hospital, Matsuyama, Ehime, Japan
| | - Hisamichi Tauchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kiriko Tokuda
- Division of Pediatrics/Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Yasushi Ishida
- Division of Pediatrics/Pediatric Medical Center, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
15
|
De Giovanni C, Nanni P, Landuzzi L, Ianzano ML, Nicoletti G, Croci S, Palladini A, Lollini PL. Immune targeting of autocrine IGF2 hampers rhabdomyosarcoma growth and metastasis. BMC Cancer 2019; 19:126. [PMID: 30732578 PMCID: PMC6367747 DOI: 10.1186/s12885-019-5339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/31/2019] [Indexed: 11/18/2022] Open
Abstract
Background Insulin-like Growth Factor Receptor-1 (IGF1R) system sustains the genesis of rhabdomyosarcoma through IGF2 autocrine overexpression. While several IGF1R-targeted strategies have been investigated to interphere with rhabdomyosarcoma growth, no attempt to neutralize IGF2 has been reported. We therefore studied the possibility to hamper rhabdomyosarcoma growth with passive and active immune approaches targeting IGF2. Methods A murine model developing IGF2-overexpressing pelvic rhabdomyosarcoma, along with IGF2-independent salivary carcinoma, was used to investigate the efficacy and specificity of passive anti-IGFs antibody treatment. Active vaccinations with electroporated DNA plasmids encoding murine or human IGF2 were performed to elicit autochthonous anti-IGF2 antibodies. Vaccinated mice received the intravenous injection of rhabdomyosarcoma cells to study the effects of anti-IGF2 antibodies against developing metastases. Results Passive administration of antibodies neutralizing IGFs delayed the onset of IGF2-overexpressing rhabdomyosarcoma but not of IGF2-independent salivary carcinoma. A DNA vaccine against murine IGF2 did not elicit antibodies, even when combined with Treg-depletion, while a DNA vaccine encoding the human IGF2 gene elicited antibodies crossreacting with murine IGF2. Mice with anti-IGF2 antibodies were partially protected against the metastatic growth of IGF2-addicted rhabdomyosarcoma cells. Conclusions Immune targeting of autocrine IGF2 inhibited rhabdomyosarcoma genesis and metastatic growth.
Collapse
Affiliation(s)
- Carla De Giovanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Croci
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.,Present address: Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.
| |
Collapse
|
16
|
The Possible Role of Complete Loss of Myostatin in Limiting Excessive Proliferation of Muscle Cells (C2C12) via Activation of MicroRNAs. Int J Mol Sci 2019; 20:ijms20030643. [PMID: 30717351 PMCID: PMC6386905 DOI: 10.3390/ijms20030643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Myostatin (MSTN) is a member of the TGF-β superfamily that negatively regulates skeletal muscle growth and differentiation. However, the mechanism by which complete MSTN deletion limits excessive proliferation of muscle cells remains unclear. In this study, we knocked out MSTN in mouse myoblast lines using a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) system and sequenced the mRNA and miRNA transcriptomes. The results show that complete loss of MSTN upregulates seven miRNAs targeting an interaction network composed of 28 downregulated genes, including TGFB1, FOS and RB1. These genes are closely associated with tumorigenesis and cell proliferation. Our study suggests that complete loss of MSTN may limit excessive cell proliferation via activation of miRNAs. These data will contribute to the treatment of rhabdomyosarcoma (RMS).
Collapse
|
17
|
Camero S, Ceccarelli S, De Felice F, Marampon F, Mannarino O, Camicia L, Vescarelli E, Pontecorvi P, Pizer B, Shukla R, Schiavetti A, Mollace MG, Pizzuti A, Tombolini V, Marchese C, Megiorni F, Dominici C. PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 2019; 145:137-152. [PMID: 30357520 PMCID: PMC6326011 DOI: 10.1007/s00432-018-2774-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
PURPOSE PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR). METHODS Cell viability was monitored by trypan blue exclusion dye assays. Cell cycle progression and apoptosis were measured by flow cytometry, and alterations of specific molecular markers were investigated by, Real Time PCR, Western blotting and immunofluorescence experiments. Irradiations were carried out at a dose rate of 2 Gy (190 UM/min) or 4 Gy (380 UM/min). Radiosensitivity was assessed by using clonogenic assays. RESULTS Olaparib and AZD2461 dose-dependently reduced growth of both RH30 and RD cells by arresting growth at G2/M phase and by modulating the expression, activation and subcellular localization of specific cell cycle regulators. Downregulation of phospho-AKT levels and accumulation of γH2AX, a specific marker of DNA damage, were significantly and persistently induced by Olaparib and AZD2461 exposure, this leading to apoptosis-related cell death. Both PARPi significantly enhanced the effects of IR by accumulating DNA damage, increasing G2 arrest and drastically reducing the clonogenic capacity of RMS-cotreated cells. CONCLUSIONS This study suggests that the combined exposure to PARPi and IR might display a role in the treatment of RMS tumours compared with single-agent exposure, since stronger cytotoxic effects are induced, and compensatory survival mechanisms are prevented.
Collapse
Affiliation(s)
- Simona Camero
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca De Felice
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Olga Mannarino
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Lucrezia Camicia
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Enrica Vescarelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Paola Pontecorvi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children’s NHS Foundation Trust, Eaton Road, Liverpool, L12 2AP UK
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children’s NHS Foundation Trust, Liverpool, UK
| | - Amalia Schiavetti
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Maria Giovanna Mollace
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Antonio Pizzuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Megiorni
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
18
|
Meister MT, Boedicker C, Klingebiel T, Fulda S. Hedgehog signaling negatively co-regulates BH3-only protein Noxa and TAp73 in TP53-mutated cells. Cancer Lett 2018; 429:19-28. [PMID: 29702195 DOI: 10.1016/j.canlet.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
In the present study, we show that pharmacological repression by the Hedgehog (Hh) pathway inhibitor (HPI) GANT61 induces expression of the proapoptotic protein Noxa in TP53-mutated embryonal pediatric tumor cells driven by Hh signaling (i.e. rhabdomyosarcoma (RMS) and medulloblastoma (MB)). Similarly, genetic silencing of Gli1 by siRNA causes increased Noxa mRNA and protein levels, while overexpression of Gli1 results in decreased Noxa expression. Furthermore, TAp73 mRNA and protein levels are increased upon Gli1 knockdown, while Gli1 overexpression reduces TAp73 mRNA and protein levels. However, knockdown of TAp73 fails to block Noxa induction in GANT61-treated cells, suggesting that Noxa is not primarily regulated by TAp73. Interestingly, mRNA levels of the transcription factor EGR1 correlate with those of Noxa and TAp73. Silencing of EGR1 results in decreased Noxa and TAp73 mRNA levels, indicating that EGR1 is involved in regulating transcriptional activity of Noxa and TAp73. These findings suggest that Gli1 represses Noxa and TAp73, possibly via EGR1. These findings could be exploited for the treatment of Hh-driven tumors, e.g. for their sensitization to chemotherapeutic agents.
Collapse
Affiliation(s)
- Michael Torsten Meister
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Klingebiel
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528, Frankfurt, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Dräger J, Simon-Keller K, Pukrop T, Klemm F, Wilting J, Sticht C, Dittmann K, Schulz M, Leuschner I, Marx A, Hahn H. LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma. Oncotarget 2018; 8:3259-3273. [PMID: 27965462 PMCID: PMC5356880 DOI: 10.18632/oncotarget.13887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas β-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS.
Collapse
Affiliation(s)
- Julia Dräger
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Tobias Pukrop
- Clinic for Internal Medicine III, Hematology and Medical Oncology, University Regensburg, Regensburg 93053, Germany.,Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Florian Klemm
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, Mannheim 68167, Germany
| | - Kai Dittmann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Matthias Schulz
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| |
Collapse
|
20
|
Imbriano C, Molinari S. Alternative Splicing of Transcription Factors Genes in Muscle Physiology and Pathology. Genes (Basel) 2018; 9:genes9020107. [PMID: 29463057 PMCID: PMC5852603 DOI: 10.3390/genes9020107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle formation is a multi-step process that is governed by complex networks of transcription factors. The regulation of their functions is in turn multifaceted, including several mechanisms, among them alternative splicing (AS) plays a primary role. On the other hand, altered AS has a role in the pathogenesis of numerous muscular pathologies. Despite these premises, the causal role played by the altered splicing pattern of transcripts encoding myogenic transcription factors in neuromuscular diseases has been neglected so far. In this review, we systematically investigate what has been described about the AS patterns of transcription factors both in the physiology of the skeletal muscle formation process and in neuromuscular diseases, in the hope that this may be useful in re-evaluating the potential role of altered splicing of transcription factors in such diseases.
Collapse
Affiliation(s)
- Carol Imbriano
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| | - Susanna Molinari
- University of Modena and Reggio Emilia, Department of Life Sciences, Modena, Italy.
| |
Collapse
|
21
|
Saini M, Verma A, Mathew SJ. SPRY2 is a novel MET interactor that regulates metastatic potential and differentiation in rhabdomyosarcoma. Cell Death Dis 2018; 9:237. [PMID: 29445192 PMCID: PMC5833614 DOI: 10.1038/s41419-018-0261-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/27/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022]
Abstract
Rhabdomyosarcoma (RMS) is a predominantly pediatric soft-tissue cancer where the tumor cells exhibit characteristics of the developing skeletal muscle, and the two most common sub-types are embryonal and alveolar RMS. Elevated activation of the receptor tyrosine kinase (RTK) MET is frequent in RMS and is thought to cause increased tumor metastasis and lack of differentiation. However, the reasons underlying dysregulated MET expression and activation in RMS are not well understood. Therefore, we explored the role of Sprouty 2 (SPRY2), a modulator of RTK signaling, in regulating MET. We identify SPRY2 as a novel MET interactor that colocalizes with and binds MET in both embryonal and alveolar RMS. We find that depletion of SPRY2 leads to MET degradation, resulting in reduced migratory and clonogenic potential, and induction of differentiation in both embryonal and alveolar RMS, outcomes that are identical to depletion of MET. Activation of the ERK/MAPK pathway, known to be crucial for regulating cell migration and whose inhibition is required for myogenic differentiation, was downregulated upon depletion of MET or SPRY2. This provides a direct connection to the decreased migration and induction of differentiation upon depletion of MET or SPRY2. Thus, these data indicate that SPRY2 interacts with MET and stabilizes it in order to maintain signaling downstream of MET, which keeps the ERK/MAPK pathway active, resulting in metastatic potential and inhibition of differentiation in RMS. Our results identify a novel mechanism by which MET signaling is stabilized in RMS, and is a potential target for therapeutic intervention in RMS.
Collapse
Affiliation(s)
- Masum Saini
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Aakanksha Verma
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India
| | - Sam J Mathew
- Laboratory of Developmental Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, 121001, India.
| |
Collapse
|
22
|
Prohibitin 2 localizes in nucleolus to regulate ribosomal RNA transcription and facilitate cell proliferation in RD cells. Sci Rep 2018; 8:1479. [PMID: 29367618 PMCID: PMC5784149 DOI: 10.1038/s41598-018-19917-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/09/2018] [Indexed: 01/03/2023] Open
Abstract
Prohibitin 2 (PHB2), as a conserved multifunctional protein, is traditionally localized in the mitochondrial inner membrane and essential for maintenance of mitochondrial function. Here, we investigated the role of PHB2 in human rhabdomyosarcoma (RMS) RD cells and found substantial localization of PHB2 in the nucleolus. We demonstrated that PHB2 knockdown inhibited RD cell proliferation through inducing cell cycle arrest and suppressing DNA synthesis. Meanwhile, down-regulation of PHB2 also induced apoptosis and promoted differentiation in fractions of RD cells. In addition, PHB2 silencing led to altered nucleolar morphology, as observed by transmission electron microscopy, and impaired nucleolar function, as evidenced by down-regulation of 45S and 18S ribosomal RNA synthesis. Consistently, upon PHB2 knockdown, occupancy of c-Myc at the ribosomal DNA (rDNA) promoter was attenuated, while more myoblast determination protein 1 (MyoD) molecules bound to the rDNA promoter. In conclusion, our findings suggest that nucleolar PHB2 is involved in maintaining nucleolar morphology and function in RD cells by regulating a variety of transcription factors, which is likely to be one of the underlying mechanisms by which PHB2 promotes tumor proliferation and represses differentiation. Our study provides new insight into the pathogenesis of RMS and novel characterizations of the highly conserved PHB2 protein.
Collapse
|
23
|
Abstract
INTRODUCTION Proteomics has been used in soft tissue sarcoma (STS) research in the attempts to improve the understanding of the disease background and develop novel clinical applications. Using various proteomics modalities, aberrant regulations of numerous intriguing proteins were identified in STSs, and the possible utilities of identified proteins as biomarkers or therapeutic targets have been explored. STS is an exceptionally diverse group of malignant diseases with highly complex molecular backgrounds and, therefore, an overview of the achievements and prospects of STS proteomics could enhance our knowledge of the possibilities and limitations of cancer proteomics. Areas covered: This review examines all STSs that have been examined using proteomics modalities, discussing unique aspects, limitations, and possible improvements of individual reports. To contribute to the current progress in cancer treatment development using novel anti-cancer drugs, proteomics plays a central role in linking cutting-edge technologies, application of proteogenomics, patient-derived cancer models, and biobanking system. Expert commentary: Therefore, proteomic-based STS research will be developed as an interdisciplinary science. STS proteomics will be further developed based on the interaction of oncologists with basic researchers in various fields, aimed at obtaining an enhanced understanding of the biology of the disease and achieving superior clinical outcomes for patients.
Collapse
Affiliation(s)
- Tadashi Kondo
- a Division of Rare Cancer Research , National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
24
|
Lee RJ, Lee KK, Lin T, Arshi A, Lee SA, Christensen RE. Rhabdomyosarcoma of the head and neck: impact of demographic and clinicopathologic factors on survival. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:271-279. [DOI: 10.1016/j.oooo.2017.05.507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
|
25
|
An Examination of the Role of Transcriptional and Posttranscriptional Regulation in Rhabdomyosarcoma. Stem Cells Int 2017. [PMID: 28638414 PMCID: PMC5468592 DOI: 10.1155/2017/2480375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.
Collapse
|
26
|
Niba ETE, Yamanaka R, Rani AQM, Awano H, Matsumoto M, Nishio H, Matsuo M. DMD transcripts in CRL-2061 rhabdomyosarcoma cells show high levels of intron retention by intron-specific PCR amplification. Cancer Cell Int 2017; 17:58. [PMID: 28546788 PMCID: PMC5442858 DOI: 10.1186/s12935-017-0428-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The DMD gene encoding dystrophin is mutated in Duchenne muscular dystrophy, a fatal progressive muscle wasting disease. DMD has also been shown to act as a tumor suppressor gene. Rhabdomyosarcoma (RMS) is a mesodermal sarcoma that shares characteristics of skeletal muscle precursors. Products of the DMD gene in RMS have not yet been fully clarified. Here, DMD products were analyzed in CRL-2061 cells established from alveolar RMS. METHODS The 14-kb long DMD cDNA was PCR amplified as 20 separated fragments, as were nine short intron regions. Dystrophin was analyzed by Western blotting using an antibody against the C-terminal region of dystrophin. RESULTS Sixteen of the 20 DMD cDNA fragments could be amplified from CRL-2061 cells as muscle cDNA. Three fragments included aberrant gene products, including one in which exon 71 was omitted and one each with retention of introns 40 and 58. In one fragment, extending from exon 70 to 79, no normally spliced product was obtained. Rather, six alternatively spliced products were identified, including a new product deleting exon 73, with the most abundant product showing deletion of exon 78. Although dystrophin expression was expected in CRL-2061 cells, western blotting of cell lysates showed no evidence of dystrophin, suggesting that translation of full-length DMD mRNA was inhibited by intron retention that generated a premature stop codon. Intron specific PCR amplification of nine short introns, showed retention of introns 40, 58, and 70, which constituted about 60, 25 and 9%, respectively, of the total PCR amplified products. The most abundant DMD transcript contained two abnormalities, intron 40 retention and exon 78 skipping. CONCLUSIONS Intron-specific PCR amplification showed that DMD transcripts contained high levels of introns 40, 58 and 70. Retention of these introns may have been responsible for the lack of dystrophin expression by CRL-2061 cells, thereby abolishing the tumor suppressor activity of dystrophin.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| | - Ryo Yamanaka
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| | - Abdul Qawee Mahyoob Rani
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan.,Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Sciences, Kobe University Graduate School of Medicine, Chuo, Kobe, 6500017 Japan
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani, Nishi, Kobe, 6512180 Japan
| |
Collapse
|
27
|
Liu J, Wang Z, Li X, Zhang X, Zhang C. Inhibition of centrosomal protein 164 sensitizes rhabdomyosarcoma cells to radiotherapy. Exp Ther Med 2017; 13:2311-2315. [PMID: 28565843 PMCID: PMC5443223 DOI: 10.3892/etm.2017.4281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
Rhabdomyosarcoma is the second most common malignant tumor of the heart in infants and children and cannot often be resected completely. Chemotherapy and radiotherapy have a critical role in relieving symptoms and prolonging survival; therefore, enhancing the sensitivity of rhabdomyosarcoma to radiotherapy is an important area of investigation in order to improve the prognosis of patients. It has been reported that centrosomal protein 164 (CEP164) has a key role in the DNA damage-activated signaling cascade. CEP164 is often overexpressed in tumors and is associated with poor prognosis in various types of cancer. In the present study, the influence of CEP164 on the radiosensitivity of rhabdomyosarcoma cells was investigated. Results demonstrated that CEP164 is involved in the radiation-induced cellular response. CEP164 is increased upon radiation and influences the cell cycle, cell viability and cell apoptosis. CEP164 depletion enhanced cellular sensitivity to radiation, promoted cell apoptosis, decreased cell viability and induced gap 2/mitosis arrest of the cell cycle. The present study identified the function of CEP164 in radiation resistance in rhabdomyosarcoma, providing a potential therapeutic target for rhabdomyosarcoma treatment by disrupting CEP164.
Collapse
Affiliation(s)
- Jianzhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Zhiju Wang
- Department of Physiology, School of Basic Medicine Science, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaofeng Li
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Xu Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
28
|
Disruption of myoblast alignment by highly motile rhabdomyosarcoma cell in tissue structure. J Biosci Bioeng 2017; 123:259-264. [DOI: 10.1016/j.jbiosc.2016.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022]
|
29
|
Meister MT, Boedicker C, Graab U, Hugle M, Hahn H, Klingebiel T, Fulda S. Arsenic trioxide induces Noxa-dependent apoptosis in rhabdomyosarcoma cells and synergizes with antimicrotubule drugs. Cancer Lett 2016; 381:287-95. [PMID: 27521572 DOI: 10.1016/j.canlet.2016.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/23/2022]
Abstract
The prognosis of metastatic or relapsed rhabdomyosarcoma (RMS) is poor, highlighting the need of new treatment options. In the present study, we evaluated the in vitro efficacy of arsenic trioxide (ATO) in RMS, a FDA-approved drug used in pediatric leukemia. Here, we report that ATO exerts antitumor activity against RMS cells both as single agent and in combination with microtubule-targeting drugs. Monotherapy with ATO reduces cell viability, triggers apoptosis and suppresses clonogenic survival of RMS cells, at least in part, by transcriptional induction of the proapoptotic BH3-only protein Noxa. siRNA-mediated knockdown of Noxa significantly rescues ATO-mediated cell death, demonstrating that Noxa is required for cell death. Also, ATO suppresses endogenous Hedgehog (Hh) signaling, as it significantly reduces Gli1 transcriptional activity and expression levels of several Hh target genes. Furthermore, we identify synergistic induction of apoptosis by ATO together with several antimicrotubule agents including vincristine (VCR), vinblastine and eribulin. The addition of the broad-range caspase inhibitor zVAD.fmk or overexpression of the antiapoptotic protein Bcl-2 significantly reduce ATO/VCR-induced cell death, indicating that the ATO/VCR combination triggers caspase-dependent apoptosis via the mitochondrial pathway. In summary, ATO exerts antitumor activity against RMS, especially in combination with antimicrotubule drugs. These findings have important implications for the development of novel therapeutic strategies for RMS.
Collapse
Affiliation(s)
- Michael Torsten Meister
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Cathinka Boedicker
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Manuela Hugle
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas Klingebiel
- German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Komturstr. 3a, 60528 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
30
|
FoxF1 and FoxF2 transcription factors synergistically promote rhabdomyosarcoma carcinogenesis by repressing transcription of p21 Cip1 CDK inhibitor. Oncogene 2016; 36:850-862. [PMID: 27425595 PMCID: PMC5243941 DOI: 10.1038/onc.2016.254] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 02/23/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
The role of Forkhead Box F1 (FoxF1) transcription factor in carcinogenesis is not well characterized. Depending on tissue and histological type of cancer, FoxF1 was shown to be either oncogene or tumor suppressor. Alveolar rhabdomyosarcoma (RMS) is the most aggressive pediatric soft tissue sarcoma. While FoxF1 is highly expressed in alveolar RMS, the functional role of FoxF1 in RMS is unknown. The present study demonstrates that expression of FoxF1 and its closely related transcription factor FoxF2 are essential for rhabdomyosarcoma tumor growth. Depletion of FoxF1 or FoxF2 in rhabdomyosarcoma cells decreased tumor growth in orthotopic mouse models of RMS. The decreased tumorigenesis was associated with the reduced tumor cell proliferation. Cell cycle regulatory proteins Cdk2, Cdk4/6, Cyclin D1 and Cyclin E2 were decreased in FoxF1- and FoxF2-deficient RMS tumors. Depletion of either FoxF1 or FoxF2 delayed G1-S cell cycle progression, decreased levels of phosphorylated Rb and increased protein levels of the CDK inhibitors, p21Cip1 and p27Kip1. Depletion of both FoxF1 and FoxF2 in tumor cells completely abrogated RMS tumor growth in mice. Overexpression of either FoxF1 or FoxF2 in tumor cells was sufficient to increase carcinogenesis in orthotopic RMS mouse model. FoxF1 and FoxF2 directly bound to and repressed transcriptional activity of p21Cip1 promoter through −556/−545 bp region, but did not affect p27Kip1 transcription. Knockdown of p21Cip1 restored cell cycle progression in the FoxF1- or FoxF2-deficient tumor cells. Altogether, FoxF1 and FoxF2 promoted RMS tumorigenesis by inducing tumor cell proliferation via transcriptional repression of p21Cip1 gene promoter. Due to robust oncogenic activity in RMS tumors, FoxF1 and FoxF2 may represent promising targets for anti-tumor therapy.
Collapse
|
31
|
Thuault S, Comunale F, Hasna J, Fortier M, Planchon D, Elarouci N, De Reynies A, Bodin S, Blangy A, Gauthier-Rouvière C. The RhoE/ROCK/ARHGAP25 signaling pathway controls cell invasion by inhibition of Rac activity. Mol Biol Cell 2016; 27:2653-61. [PMID: 27413008 PMCID: PMC5007086 DOI: 10.1091/mbc.e16-01-0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of skeletal muscle origin in children and adolescents. Among RMS subtypes, alveolar rhabdomyosarcoma (ARMS), which is characterized by the presence of the PAX3-FOXO1A or PAX7-FOXO1A chimeric oncogenic transcription factor, is associated with poor prognosis and a strong risk of metastasis compared with the embryonal subtype (ERMS). To identify molecular pathways involved in ARMS aggressiveness, we first characterized the migratory behavior of cell lines derived from ARMS and ERMS biopsies using a three-dimensional spheroid cell invasion assay. ARMS cells were more invasive than ERMS cells and adopted an ellipsoidal morphology to efficiently invade the extracellular matrix. Moreover, the invasive potential of ARMS cells depended on ROCK activity, which is regulated by the GTPase RhoE. Specifically, RhoE expression was low in ARMS biopsies, and its overexpression in ARMS cells reduced their invasion potential. Conversely, ARHGAP25, a GTPase-activating protein for Rac, was up-regulated in ARMS biopsies. Moreover, we found that ARHGAP25 inhibits Rac activity downstream of ROCKII and is required for ARMS cell invasion. Our results indicate that the RhoE/ROCK/ARHGAP25 signaling pathway promotes ARMS invasive potential and identify these proteins as potential therapeutic targets for ARMS treatment.
Collapse
Affiliation(s)
- Sylvie Thuault
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Franck Comunale
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Jessy Hasna
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Mathieu Fortier
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Damien Planchon
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Nabila Elarouci
- Ligue Nationale Contre le Cancer, Cartes d'Identité des Tumeurs, 75013 Paris, France
| | - Aurélien De Reynies
- Ligue Nationale Contre le Cancer, Cartes d'Identité des Tumeurs, 75013 Paris, France
| | - Stéphane Bodin
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | - Anne Blangy
- Université de Montpellier, CRBM, CNRS, UMR 5237, 34293 Montpellier, France
| | | |
Collapse
|
32
|
Casini N, Forte IM, Mastrogiovanni G, Pentimalli F, Angelucci A, Festuccia C, Tomei V, Ceccherini E, Di Marzo D, Schenone S, Botta M, Giordano A, Indovina P. SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation. Oncotarget 2016; 6:12421-35. [PMID: 25762618 PMCID: PMC4494948 DOI: 10.18632/oncotarget.3043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023] Open
Abstract
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS.
Collapse
Affiliation(s)
- Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gianmarco Mastrogiovanni
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Tomei
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Elisa Ceccherini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Domenico Di Marzo
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | | | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Paola Indovina
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| |
Collapse
|
33
|
Morena D, Maestro N, Bersani F, Forni PE, Lingua MF, Foglizzo V, Šćepanović P, Miretti S, Morotti A, Shern JF, Khan J, Ala U, Provero P, Sala V, Crepaldi T, Gasparini P, Casanova M, Ferrari A, Sozzi G, Chiarle R, Ponzetto C, Taulli R. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. eLife 2016; 5. [PMID: 26987019 PMCID: PMC4811764 DOI: 10.7554/elife.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/26/2016] [Indexed: 11/24/2022] Open
Abstract
Embryonal Rhabdomyosarcoma (ERMS) and Undifferentiated Pleomorphic Sarcoma (UPS) are distinct sarcoma subtypes. Here we investigate the relevance of the satellite cell (SC) niche in sarcoma development by using Hepatocyte Growth Factor (HGF) to perturb the niche microenvironment. In a Pax7 wild type background, HGF stimulation mainly causes ERMS that originate from satellite cells following a process of multistep progression. Conversely, in a Pax7 null genotype ERMS incidence drops, while UPS becomes the most frequent subtype. Murine EfRMS display genetic heterogeneity similar to their human counterpart. Altogether, our data demonstrate that selective perturbation of the SC niche results in distinct sarcoma subtypes in a Pax7 lineage-dependent manner, and define a critical role for the Met axis in sarcoma initiation. Finally, our results provide a rationale for the use of combination therapy, tailored on specific amplifications and activated signaling pathways, to minimize resistance emerging from sarcomas heterogeneity. DOI:http://dx.doi.org/10.7554/eLife.12116.001 Soft tissue sarcomas are rare cancers that originate in tissues such as muscles, tendons, cartilage and fat. These cancers are further classified into subtypes based on their appearance. For example, rhabdomyosarcoma cells resemble the cells that normally develop into muscle, while other soft tissue tumors that do not look like a distinct cell type are called undifferentiated pleomorphic sarcomas. Recent experiments have suggested that although these subtypes appear different, they may both arise from the cells that build muscles. However, this had not been confirmed. Morena et al. investigated whether changing the environment – also known as the “niche” – of muscle stem cells could influence what type of sarcoma developed in mice that were prone to cancer. Normally muscle stem cells in an adult only regenerate injured muscles, and need to receive the correct cues before they divide. Among these cues is a protein called Hepatocyte Growth Factor (or HGF for short), which is produced by cells in the muscle stem cells’ niche. Morena et al. engineered mice so that the production of HGF in the muscles could be switched on or off at will. Mice that were already prone to cancer and produced a lot of HGF tended to develop rhabdomyosarcomas. However, when HGF was turned on in similar mice that also lacked normal muscle stem cells, the resulting sarcomas were predominantly undifferentiated pleomorphic sarcomas. These data indicate that rhabdomyosarcomas probably originate from muscle stem cells, whereas undifferentiated pleomorphic sarcomas develop from other cells in the niche. Lastly, Morena et al. studied the sarcomas in their mice in more detail and observed that, similar to what has been found in human rhabdomyosarcomas, individual tumors had different genetic mutations. These differences make it difficult to treat sarcomas with a single anti-cancer drug. However, the new results suggest that a combination of targeted drugs may prove effective in blocking tumor growth and in preventing resistance. DOI:http://dx.doi.org/10.7554/eLife.12116.002
Collapse
Affiliation(s)
- Deborah Morena
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Nicola Maestro
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Francesca Bersani
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Paolo Emanuele Forni
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Marcello Francesco Lingua
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Valentina Foglizzo
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Petar Šćepanović
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Jack F Shern
- Pediatric Oncology Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, United States
| | - Javed Khan
- Pediatric Oncology Branch, Oncogenomics Section, Center for Cancer Research, National Institutes of Health (NIH), Bethesda, United States
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Valentina Sala
- Department of Oncology, University of Turin, Turin, Italy
| | | | - Patrizia Gasparini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Michela Casanova
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Andrea Ferrari
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Gabriella Sozzi
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Roberto Chiarle
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, United States
| | - Carola Ponzetto
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Turin, Italy.,CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| |
Collapse
|
34
|
Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle 2016; 14:1389-402. [PMID: 25644430 DOI: 10.1080/15384101.2015.1005993] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.
Collapse
Key Words
- DCA, Dichloroacetate
- DHEA, Dehydroepiandrosterone
- G6PD, Glucose 6 Phosphate Dehydrogenase
- HMT, Histone MethylTransferase
- MREs, MicroRNA Responsive Elements
- MRFs, Myogenic Regulatory Factors
- PDH, Pyruvate Dehydrogenase
- PDK, Pyruvate Dehydrogenase Kinase
- PPP, Pentose Phosphate Pathway
- RMS, Rhabdomyosarcoma
- Rhabdomyosarcoma
- SMYD1, SET and MYND domain-containing protein 1
- TCA cycle, TriCarboxylic Acid cycle
- differentiation therapy
- metabolism and cancer
- miR-206
- myomiRs, muscle-specific microRNAs
Collapse
|
35
|
Lee SJ, Yoo M, Go GY, Kim DH, Choi H, Leem YE, Kim YK, Seo DW, Ryu JH, Kang JS, Bae GU. Bakuchiol augments MyoD activation leading to enhanced myoblast differentiation. Chem Biol Interact 2016; 248:60-7. [PMID: 26902638 DOI: 10.1016/j.cbi.2016.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/22/2016] [Accepted: 02/09/2016] [Indexed: 11/29/2022]
Abstract
Myoblast differentiation is fundamental to skeletal muscle development and regeneration after injury and defects in this process are implicated in muscle atrophy associated with aging or pathological conditions. MyoD family transcription factors function as mater regulators in induction of muscle-specific genes during myoblast differentiation. We have identified bakuchiol, a prenylated phenolic monoterpene, as an inducer of MyoD-mediated transcription and myogenic differentiation. C2C12 myoblasts treated with bakuchiol exhibit enhanced muscle-specific gene expression and myotube formation. A key promyogenic kinase p38MAPK is activated dramatically by bakuchiol which in turn induced the formation of MyoD/E protein active transcription complexes. Consistently, the recruitment of MyoD and Baf60c to the Myogenin promoter is enhanced in bakuchiol-treated myoblasts. Furthermore, bakuchiol rescues defective p38MAPK activation and myogenic differentiation caused by Cdo-depletion or in RD rhabdomyosarcoma cells. Taken together, these results indicate that bakuchiol enhances myogenic differentiation through p38MAPK and MyoD activation. Thus bakuchiol can be developed into a potential agent to improve muscular regeneration and repair to treat muscular atrophy.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Miran Yoo
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ga-Yeon Go
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Do Hee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hyunmo Choi
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea
| | - Yong Kee Kim
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 330-714, Republic of Korea
| | - Jae-Ha Ryu
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746, Republic of Korea.
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
36
|
Ruiz-Mesa C, Goldberg JM, Coronado Munoz AJ, Dumont SN, Trent JC. Rhabdomyosarcoma in adults: new perspectives on therapy. Curr Treat Options Oncol 2016; 16:27. [PMID: 25975442 DOI: 10.1007/s11864-015-0342-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Rhabdomyosarcoma (RMS) is well known as a pediatric disease. Most of the knowledge, like biology, genetics, and treatments of this disease, comes from studies done in that age group. The two subtypes of RMS, embryonic RMS and alveolar RMS, that affect mainly the pediatric population are well described in the literature and that has had an impact on the improvement in overall survival during the past 20 years. RMS in the adult population has a low incidence, therefor the study of RMS in this group is challenging. Pleomorphic RMS is the subtype that mainly affects adults and its biology and genetics are not yet completely understood and described. The risk factors for this tumor and the differences among adults and children is also poorly understood. The treatments for adults that have RMS are not standardized having an impact on the overall survival. Pleomorphic RMS has, compared to other adult sarcomas, poor overall survival. Adult patients with RMS have poor prognosis. The standardization of treatments for the adult population is necessary as maybe new treatments for this specific group. There are new treatment options that are being studied mostly in pediatrics and young adults. Immunotherapy is currently proposed as an important treatment possibility including different techniques like vaccination, antigen-mediated therapy, and immune checkpoints. Even if we have a better understanding of RMS, there are still unanswered questions. The improvements seen in the pediatric population are encouraging, but there is still the need to enhance better therapies for adults with RMS.
Collapse
Affiliation(s)
- Catalina Ruiz-Mesa
- Department of Pediatrics, University of Miami/Holtz Children's Hospital at Jackson Health System, 1611 NW 12th Ave, Holtz Hospital 6th floor, Miami, FL, 33136, USA,
| | | | | | | | | |
Collapse
|
37
|
Wan X, Yeung C, Heske C, Mendoza A, Helman LJ. IGF-1R Inhibition Activates a YES/SFK Bypass Resistance Pathway: Rational Basis for Co-Targeting IGF-1R and Yes/SFK Kinase in Rhabdomyosarcoma. Neoplasia 2016; 17:358-66. [PMID: 25925378 PMCID: PMC4415145 DOI: 10.1016/j.neo.2015.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/02/2015] [Accepted: 03/09/2015] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) has surfaced as a significant target in multiple solid cancers due to its fundamental roles in pro-survival and anti-apoptotic signaling. However, development of resistance to IGF-1R blockade represents a significant hindrance and limits treatment efficacy in the clinic. In this study, we identified acquired resistance to IGF-1R blockade with R1507, an antibody against IGF-1R, and with BMS-754807, a small molecular inhibitor of IGF-1R/insulin receptor (IR). We showed that treatment with an IGF-IR antibody, R1507, or an IR/IGF-IR kinase inhibitor, BMS-754807, was associated with increased activation of YES/SRC family tyrosine kinase (SFK) in rhabdomyosarcoma (RMS). Combining anti–IGF-1R agents with SFK inhibitors resulted in blockade of IGF-1R inhibition–induced activation of YES/SFK and displayed advantageous antitumor activity in vitro and in vivo. Our data provide evidence that IGF-1R blockade results in activation of the YES/SRC family kinase bypass resistance pathway in vitro and in vivo. This may be of particular clinical relevance since both Yes and IGF components are overexpressed in RMS. Increased YES/SFK activation might serve as a clinical biomarker for predicting tumor resistance to IGF-1R inhibition. Dual inhibition of IGF-1R and SFK may have a broader and enhanced clinical benefit for patients with RMS.
Collapse
Affiliation(s)
- Xiaolin Wan
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Choh Yeung
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christine Heske
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lee J Helman
- Molecular Oncology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
38
|
Basma H, Ghayad SE, Rammal G, Mancinelli A, Harajly M, Ghamloush F, Dweik L, El-Eit R, Zalzali H, Rabeh W, Pisano C, Darwiche N, Saab R. The synthetic retinoid ST1926 as a novel therapeutic agent in rhabdomyosarcoma. Int J Cancer 2015; 138:1528-37. [PMID: 26453552 DOI: 10.1002/ijc.29886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. Despite multiple attempts at intensifying chemotherapeutic approaches to treatment, only moderate improvements in survival have been made for patients with advanced disease. Retinoic acid is a differentiation agent that has shown some antitumor efficacy in RMS cells in vitro; however, the effects are of low magnitude. E-3-(4'-hydroxyl-3'-adamantylbiphenyl-4-yl) acrylic acid (ST1926) is a novel orally available synthetic atypical retinoid, shown to have more potent activity than retinoic acid in several types of cancer cells. We used in vitro and in vivo models of RMS to explore the efficacy of ST1926 as a possible therapeutic agent in this sarcoma. We found that ST1926 reduced RMS cell viability in all tested alveolar (ARMS) and embryonal (ERMS) RMS cell lines, at readily achievable micromolar concentrations in mice. ST1926 induced an early DNA damage response (DDR), which led to increase in apoptosis, in addition to S-phase cell cycle arrest and a reduction in protein levels of the cell cycle kinase CDK1. Effects were irrespective of TP53 mutational status. Interestingly, in ARMS cells, ST1926 treatment decreased PAX3-FOXO1 fusion oncoprotein levels, and this suppression occurred at a post-transcriptional level. In vivo, ST1926 was effective in inhibiting growth of ARMS and ERMS xenografts, and induced a prominent DDR. We conclude that ST1926 has preclinical efficacy against RMS, and should be further developed in this disease in clinical trials.
Collapse
Affiliation(s)
- Hussein Basma
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Sandra E Ghayad
- Department of Biology, Faculty of Science, EDST, Lebanese University, Beirut, Lebanon
| | - Ghina Rammal
- Department of Biology, Faculty of Science, EDST, Lebanese University, Beirut, Lebanon
| | - Angelo Mancinelli
- Medicinal Investigational Research, Biogem Research Institute, Ariano Irpino, Italy
| | - Mohammad Harajly
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Farah Ghamloush
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Loai Dweik
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Rabab El-Eit
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Hassan Zalzali
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Wissam Rabeh
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon
| | - Claudio Pisano
- Medicinal Investigational Research, Biogem Research Institute, Ariano Irpino, Italy
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Raya Saab
- Children's Cancer Institute, American University of Beirut, Beirut, Lebanon.,Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
39
|
Nitzki F, Cuvelier N, Dräger J, Schneider A, Braun T, Hahn H. Hedgehog/Patched-associated rhabdomyosarcoma formation from delta1-expressing mesodermal cells. Oncogene 2015; 35:2923-31. [PMID: 26387541 DOI: 10.1038/onc.2015.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/31/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma. In children, the 2 major RMS subtypes are alveolar and embryonal RMS. Aberrant Hedgehog/Patched1 (Hh/Ptch) signaling is a hallmark of embryonal RMS. We demonstrate that mice carrying a Ptch mutation in mesodermal Delta1-expressing cells develop embryonal-like RMS at a similar rate as mice harboring a Ptch mutation in the germline or the brachury-expressing mesoderm. The tumor incidence decreases dramatically when Ptch is mutated in Myf5- or Pax3-expressing cells. No RMS develop from Myogenin/Mef2c-expressing cells. This suggests that Hh/Ptch-associated RMS are derived from Delta1-positive, Myf5-negative, Myogenin-negative and Pax3-negative mesodermal progenitors that can undergo myogenic differentiation but lack stable lineage commitment. Additional preliminary genetic data and data on mesodermal progenitors further imply an interplay of Hh/Ptch and Delta/Notch signaling activity during RMS initiation. In contrast, Wnt signals supposedly suppress RMS formation because RMS multiplicity decreases after inactivation of the Wnt-inhibitor Wif1. Finally, our results strongly suggest that the tumor-initiating event determines the lineage of RMS origin.
Collapse
Affiliation(s)
- F Nitzki
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - N Cuvelier
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - J Dräger
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| | - A Schneider
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - T Braun
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - H Hahn
- Department of Human Genetics, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
40
|
Shen J, Hong Y, Zhao Q, Zhang JL. Preclinical evaluation of perifosine as a potential promising anti-rhabdomyosarcoma agent. Tumour Biol 2015; 37:1025-33. [PMID: 26269112 DOI: 10.1007/s13277-015-3740-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a highly malignant and metastatic pediatric cancer that arises from the skeletal muscle. Recent studies have identified an important role of AKT signaling in RMS progression. In the current study, we investigated the activity of perifosine, an oral alkylphospholipid AKT inhibitor, against human RMS cells (RD and Rh-30 lines) both in vivo and in vitro, and studied the underlying mechanisms. We showed that perifosine significantly inhibited RMS cell growth in concentration- and time-dependent manners. Meanwhile, perifosine induced dramatic apoptosis in RMS cells. At the signaling level, perifosine blocked AKT activation, while inducing reactive oxygen species (ROS) production as well as JNK and P38 phosphorylations in RMS cells. Restoring AKT activation by introducing a constitutively active-AKT (CA-AKT) only alleviated (not abolished) perifosine-induced cytotoxicity in RD cells. Yet, the ROS scavenger N-acetyl cysteine (NAC) as well as pharmacological inhibitors against JNK (SP-600125) or P38 (SB-203580) suppressed perifosine-induced cytotoxicity in RMS cells. Thus, perifosine induces growth inhibition and apoptosis in RMS cells through mechanisms more than just blocking AKT. In vivo, oral administration of perifosine significantly inhibited growth of Rh-30 xenografts in severe combined immunodeficient (SCID) mice. Our data indicate that perifosine might be further investigated as a promising anti-RMS agent.
Collapse
Affiliation(s)
- Jie Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yue Hong
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qiong Zhao
- Department of Thoracic Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, 310003, People's Republic of China.
| | - Jian-Li Zhang
- Department of Respiratory Diseases, The First Affiliated Hospital of Zhejiang University, No. 79 Qing-chun Road, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
41
|
Noncoding RNAs, Emerging Regulators of Skeletal Muscle Development and Diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:676575. [PMID: 26258142 PMCID: PMC4516831 DOI: 10.1155/2015/676575] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 02/07/2023]
Abstract
A healthy and independent life requires skeletal muscles to maintain optimal function throughout the lifespan, which is in turn dependent on efficient activation of processes that regulate muscle development, homeostasis, and metabolism. Thus, identifying mechanisms that modulate these processes is of crucial priority. Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have emerged as a class of previously unrecognized transcripts whose importance in a wide range of biological processes and human disease is only starting to be appreciated. In this review, we summarize the roles of recently identified miRNAs and lncRNAs during skeletal muscle development and pathophysiology. We also discuss several molecular mechanisms of these noncoding RNAs. Undoubtedly, further systematic understanding of these noncoding RNAs' functions and mechanisms will not only greatly expand our knowledge of basic skeletal muscle biology, but also significantly facilitate the development of therapies for various muscle diseases, such as muscular dystrophies, cachexia, and sarcopenia.
Collapse
|
42
|
Faggi F, Codenotti S, Poliani PL, Cominelli M, Chiarelli N, Colombi M, Vezzoli M, Monti E, Bono F, Tulipano G, Fiorentini C, Zanola A, Lo HP, Parton RG, Keller C, Fanzani A. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS One 2015; 10:e0130287. [PMID: 26086601 PMCID: PMC4472524 DOI: 10.1371/journal.pone.0130287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/19/2015] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Nicola Chiarelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marika Vezzoli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanni Tulipano
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Alessandra Zanola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Harriet P. Lo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Charles Keller
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States of America
- Children’s Cancer Therapy Development Institute, Fort Collins, CO, United States of America
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Rome, Italy
- * E-mail:
| |
Collapse
|
43
|
Mu Y, Liu Y, Li L, Tian C, Zhou H, Zhang Q, Yan B. The novel tubulin polymerization inhibitor MHPT exhibits selective anti-tumor activity against rhabdomyosarcoma in vitro and in vivo. PLoS One 2015; 10:e0121806. [PMID: 25811876 PMCID: PMC4374867 DOI: 10.1371/journal.pone.0121806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 02/04/2015] [Indexed: 02/03/2023] Open
Abstract
The dose-limiting toxicity caused by standard chemotherapy has become a major roadblock to successful rhabdomyosarcoma chemotherapy. By screening a thiazolidinone library including 372 compounds, a novel synthetic compound, 2-((4-hydroxyphenyl)imino)-5-(3-methoxybenzylidene)thiazolidin-4-one (MHPT), was identified as a potent and selective anti-rhabdomyosarcoma agent. MHPT inhibited 50% of the growth of the rhabdomyosarcoma cell lines RD and SJ-RH30 at 0.44 μM and 1.35 μM, respectively, while displaying no obvious toxicity against normal human fibroblast cells at 100 μM. Further investigation revealed that MHPT suppressed the polymerization of tubulin, leading to rhabdomyosarcoma cell growth arrest at the G2/M phase followed by apoptosis. In vivo, MHPT inhibited tumor growth by 48.6% relative to the vehicle control after 5 intraperitoneal injections of 40 mg/kg without appreciable toxicity to normal tissues and systems in an RD xenograft mouse model, while vincristine caused lethal toxicity when similar growth inhibition was achieved. As a moderate tubulin polymerization inhibitor compared with vincristine, MHPT requires a more dynamic tubulin to exert its cytotoxicity, which is a situation that only exists in cancer cells. This attribute may account for the low toxicity of MHPT in normal cells. Our data suggest that MHPT has the potential to be further developed into a selective anti-rhabdomyosarcoma drug with low toxicity.
Collapse
Affiliation(s)
- Yan Mu
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
| | - Liwen Li
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
| | - Cong Tian
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
| | - Hongyu Zhou
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
| | - Qiu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
- * E-mail: (QZ); (BY)
| | - Bing Yan
- School of Chemistry and Chemical Engineering, Shandong University, Shandong Province, Jinan, China
- * E-mail: (QZ); (BY)
| |
Collapse
|
44
|
Huang HJ, Liu J, Hua H, Li SE, Zhao J, Yue S, Yu TT, Jin YC, Cheng SY. MiR-214 and N-ras regulatory loop suppresses rhabdomyosarcoma cell growth and xenograft tumorigenesis. Oncotarget 2015; 5:2161-75. [PMID: 24811402 PMCID: PMC4039153 DOI: 10.18632/oncotarget.1855] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a childhood malignant soft tissue cancer that is derived from myogenic progenitors trapped in a permanent mode of growth. Here, we report that miR-214 is markedly down-regulated in human RMS cell lines. Although not required for embryogenesis in mice, miR-214 suppresses mouse embryonic fibroblast (MEF) proliferation. When re-introduced into RD cells, a line of human embryonal RMS cells, miR-214 showed inhibition of tumor cell growth, induction of myogenic differentiation and apoptosis, as well as suppression of colony formation and xenograft tumorigenesis. We show that in the absence of miR-214, expression of proto-oncogene N-ras is markedly elevated in miR-214−/− MEFs, and manipulations of miR-214 levels using microRNA mimics or inhibitor in RD cells reciprocally altered N-ras expression. We further demonstrate that forced expression of N-ras from a cDNA that lacks its 3'-untranslated region neutralized the pro-myogenic and anti-proliferative activities of miR-214. Finally, we show that N-ras is a conserved target of miR-214 in its suppression of xenograft tumor growth, and N-ras expression is up-regulated in xenograft tumor models as well as actual human RMS tissue sections. Taken together, these data indicate that miR-214 is a bona fide suppressor of human RMS tumorigensis.
Collapse
Affiliation(s)
- Hui-jie Huang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Liu N, Bassel-Duby R. Regulation of skeletal muscle development and disease by microRNAs. Results Probl Cell Differ 2015; 56:165-90. [PMID: 25344671 DOI: 10.1007/978-3-662-44608-9_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The identification of microRNAs (miRNA) in vertebrates has uncovered new mechanisms regulating skeletal muscle development and disease. miRNAs are inhibitors and act by silencing specific mRNAs or by repressing protein translation. In many cases, miRNAs are involved in physiological or pathological stress, suggesting they function to exacerbate or protect the organism during stress or disease. Although many skeletal muscle diseases differ in clinical and pathological manifestations, they all have a common feature of dysregulation of miRNA expression. In particular, analysis of miRNA expression patterns in skeletal muscle diseases reveals miRNA signatures, showing many miRNAs are dysregulated during disease. Emerging identification of miRNA targets and involvement in genetic regulatory networks serve to reveal new regulatory pathways in skeletal muscle biology. This chapter features the findings pertaining to skeletal muscle miRNAs in skeletal muscle development and disease and highlights therapeutic applications of miRNA-based technology in diagnosis and treatment of skeletal muscle myopathies.
Collapse
Affiliation(s)
- Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA,
| | | |
Collapse
|
46
|
p53 suppresses muscle differentiation at the myogenin step in response to genotoxic stress. Cell Death Differ 2014; 22:560-73. [PMID: 25501595 DOI: 10.1038/cdd.2014.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022] Open
Abstract
Acute muscle injury and physiological stress from chronic muscle diseases and aging lead to impairment of skeletal muscle function. This raises the question of whether p53, a cellular stress sensor, regulates muscle tissue repair under stress conditions. By investigating muscle differentiation in the presence of genotoxic stress, we discovered that p53 binds directly to the myogenin promoter and represses transcription of myogenin, a member of the MyoD family of transcription factors that plays a critical role in driving terminal muscle differentiation. This reduction of myogenin protein is observed in G1-arrested cells and leads to decreased expression of late but not early differentiation markers. In response to acute genotoxic stress, p53-mediated repression of myogenin reduces post-mitotic nuclear abnormalities in terminally differentiated cells. This study reveals a mechanistic link previously unknown between p53 and muscle differentiation, and suggests new avenues for managing p53-mediated stress responses in chronic muscle diseases or during muscle aging.
Collapse
|
47
|
Megiorni F, Cialfi S, McDowell HP, Felsani A, Camero S, Guffanti A, Pizer B, Clerico A, De Grazia A, Pizzuti A, Moles A, Dominici C. Deep Sequencing the microRNA profile in rhabdomyosarcoma reveals down-regulation of miR-378 family members. BMC Cancer 2014; 14:880. [PMID: 25427715 PMCID: PMC4289215 DOI: 10.1186/1471-2407-14-880] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is a highly malignant tumour accounting for nearly half of soft tissue sarcomas in children. MicroRNAs (miRNAs) represent a class of short, non-coding, regulatory RNAs which play a critical role in different cellular processes. Altered miRNA levels have been reported in human cancers, including RMS. METHODS Using deep sequencing technology, a total of 685 miRNAs were investigated in a group of alveolar RMSs (ARMSs), embryonal RMSs (ERMSs) as well as in normal skeletal muscle (NSM). Q-PCR, MTT, cytofluorimetry, migration assay, western blot and immunofluorescence experiments were carried out to determine the role of miR-378a-3p in cancer cell growth, apoptosis, migration and differentiation. Bioinformatics pipelines were used for miRNA target prediction and clustering analysis. RESULTS Ninety-seven miRNAs were significantly deregulated in ARMS and ERMS when compared to NSM. MiR-378 family members were dramatically decreased in RMS tumour tissue and cell lines. Interestingly, members of the miR-378 family presented as a possible target the insulin-like growth factor receptor 1 (IGF1R), a key signalling molecule in RMS. MiR-378a-3p over-expression in an RMS-derived cell line suppressed IGF1R expression and affected phosphorylated-Akt protein levels. Ectopic expression of miR-378a-3p caused significant changes in apoptosis, cell migration, cytoskeleton organization as well as a modulation of the muscular markers MyoD1, MyoR, desmin and MyHC. In addition, DNA demethylation by 5-aza-2'-deoxycytidine (5-aza-dC) was able to up-regulate miR-378a-3p levels with a concomitant induction of apoptosis, decrease in cell viability and cell cycle arrest in G2-phase. Cells treated with 5-aza-dC clearly changed their morphology and expressed moderate levels of MyHC. CONCLUSIONS MiR-378a-3p may function as a tumour suppressor in RMS and the restoration of its expression would be of therapeutic benefit in RMS. Furthermore, the role of epigenetic modifications in RMS deserves further investigations.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang M, Zhu B, Davie J. Alternative splicing of MEF2C pre-mRNA controls its activity in normal myogenesis and promotes tumorigenicity in rhabdomyosarcoma cells. J Biol Chem 2014; 290:310-24. [PMID: 25404735 DOI: 10.1074/jbc.m114.606277] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Many cellular disruptions contribute to the progression of this pediatric cancer, including aberrant alternative splicing. The MEF2 family of transcription factors regulates many developmental programs, including myogenesis. MEF2 gene transcripts are subject to alternate splicing to generate protein isoforms with divergent functions. We found that MEF2Cα1 was the ubiquitously expressed isoform that exhibited no myogenic activity and that MEF2Cα2, the muscle-specific MEF2C isoform, was required for efficient differentiation. We showed that exon α in MEF2C was aberrantly alternatively spliced in RMS cells, with the ratio of α2/α1 highly down-regulated in RMS cells compared with normal myoblasts. Compared with MEF2Cα2, MEF2Cα1 interacted more strongly with and recruited HDAC5 to myogenic gene promoters to repress muscle-specific genes. Overexpression of the MEF2Cα2 isoform in RMS cells increased myogenic activity and promoted differentiation in RMS cells. We also identified a serine protein kinase, SRPK3, that was down-regulated in RMS cells and found that expression of SRPK3 promoted the splicing of the MEF2Cα2 isoform and induced differentiation. Restoration of either MEF2Cα2 or SPRK3 inhibited both proliferation and anchorage-independent growth of RMS cells. Together, our findings indicate that the alternative splicing of MEF2C plays an important role in normal myogenesis and RMS development. An improved understanding of alternative splicing events in RMS cells will potentially reveal novel therapeutic targets for RMS treatment.
Collapse
Affiliation(s)
- Meiling Zhang
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Bo Zhu
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| | - Judith Davie
- From the Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University, School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
49
|
Rajurkar M, Huang H, Cotton JL, Brooks JK, Sicklick J, McMahon AP, Mao J. Distinct cellular origin and genetic requirement of Hedgehog-Gli in postnatal rhabdomyosarcoma genesis. Oncogene 2014; 33:5370-8. [PMID: 24276242 PMCID: PMC4309268 DOI: 10.1038/onc.2013.480] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 09/09/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022]
Abstract
Dysregulation of the Hedgehog (Hh)-Gli signaling pathway is implicated in a variety of human cancers, including basal cell carcinoma (BCC), medulloblastoma (MB) and embryonal rhabdhomyosarcoma (eRMS), three principle tumors associated with human Gorlin syndrome. However, the cells of origin of these tumors, including eRMS, remain poorly understood. In this study, we explore the cell populations that give rise to Hh-related tumors by specifically activating Smoothened (Smo) in both Hh-producing and -responsive cell lineages in postnatal mice. Interestingly, we find that unlike BCC and MB, eRMS originates from the stem/progenitor populations that do not normally receive active Hh signaling. Furthermore, we find that the myogenic lineage in postnatal mice is largely Hh quiescent and that Pax7-expressing muscle satellite cells are not able to give rise to eRMS upon Smo or Gli1/2 overactivation in vivo, suggesting that Hh-induced skeletal muscle eRMS arises from Hh/Gli quiescent non-myogenic cells. In addition, using the Gli1 null allele and a Gli3 repressor allele, we reveal a specific genetic requirement for Gli proteins in Hh-induced eRMS formation and provide molecular evidence for the involvement of Sox4/11 in eRMS cell survival and differentiation.
Collapse
Affiliation(s)
- Mihir Rajurkar
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - He Huang
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
- Department of Histology & Embryology, Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jennifer L. Cotton
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie K. Brooks
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jason Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center for Regenerative Medicine and Stem Cell Research, WM Keck School of Medicine of the University of Southern California, Los Angeles, CA 90015
| | - Junhao Mao
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
50
|
Zhu B, Zhang M, Byrum SD, Tackett AJ, Davie JK. TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. Int J Cancer 2014; 135:785-97. [PMID: 24470334 DOI: 10.1002/ijc.28721] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 11/11/2022]
Abstract
Rhabdomyosarcomas (RMSs) are the most frequent soft tissue sarcomas in children that share many features of developing skeletal muscle. We have discovered that a T-box family member, TBX2, is highly upregulated in tumor cells of both major RMS subtypes. TBX2 is a repressor that is often overexpressed in cancer cells and is thought to function in bypassing cell growth control, including repression of p14 and p21. The cell cycle regulator p21 is required for the terminal differentiation of skeletal muscle cells and is silenced in RMS cells. We have found that TBX2 interacts with the myogenic regulatory factors MyoD and myogenin and inhibits the activity of these factors. TBX2 is expressed in primary myoblasts and C2C12 cells, but is strongly downregulated upon differentiation. TBX2 recruits the histone deacetylase HDAC1 and is a potent inhibitor of the expression of muscle-specific genes and the cell cycle regulators, p21 and p14. TBX2 promotes the proliferation of RMS cells and either depletions of TBX2 or dominant negative TBX2 upregulate p21- and muscle-specific genes. Significantly, depletion or interference with TBX2 completely inhibits tumor growth in a xenograft assay, highlighting the oncogenic role of TBX2 in RMS cells. Thus, the data demonstrate that elevated expression of TBX2 contributes to the pathology of RMS cells by promoting proliferation and repressing differentiation-specific gene expression. These results show that deregulated TBX2 serves as an oncogene in RMS, suggesting that TBX2 may serve as a new diagnostic marker or therapeutic target for RMS tumors.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Biochemistry and Molecular Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Carbondale, IL
| | | | | | | | | |
Collapse
|