1
|
Mehta P, Chattopadhyay P, Ravi V, Tarai B, Budhiraja S, Pandey R. SARS-CoV-2 infection severity and mortality is modulated by repeat-mediated regulation of alternative splicing. Microbiol Spectr 2023; 11:e0135123. [PMID: 37604131 PMCID: PMC10580830 DOI: 10.1128/spectrum.01351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/16/2023] [Indexed: 08/23/2023] Open
Abstract
Like single-stranded RNA viruses, SARS-CoV-2 hijacks the host transcriptional machinery for its own replication. Numerous traditional differential gene expression-based investigations have examined the diverse clinical symptoms caused by SARS-CoV-2 infection. The virus, on the other hand, also affects the host splicing machinery, causing host transcriptional dysregulation, which can lead to diverse clinical outcomes. Hence, in this study, we performed host transcriptome sequencing of 125 hospital-admitted COVID-19 patients to understand the transcriptomic differences between the severity sub-phenotypes of mild, moderate, severe, and mortality. We performed transcript-level differential expression analysis, investigated differential isoform usage, looked at the splicing patterns within the differentially expressed transcripts (DET), and elucidated the possible genome regulatory features. Our DTE analysis showed evidence of diminished transcript length and diversity as well as altered promoter site usage in the differentially expressed protein-coding transcripts in the COVID-19 mortality patients. We also investigated the potential mechanisms driving the alternate splicing and discovered a compelling differential enrichment of repeats in the promoter region and a specific enrichment of SINE (Alu) near the splicing sites of differentially expressed transcripts. These findings suggested a repeat-mediated plausible regulation of alternative splicing as a potential modulator of COVID-19 disease severity. In this work, we emphasize the role of scarcely elucidated functional role of alternative splicing in influencing COVID-19 disease severity sub-phenotypes, clinical outcomes, and its putative mechanism. IMPORTANCE The wide range of clinical symptoms reported during the COVID-19 pandemic inherently highlights the numerous factors that influence the progression and prognosis of SARS-CoV-2 infection. While several studies have investigated the host response and discovered immunological dysregulation during severe infection, most of them have the common theme of focusing only up to the gene level. Viruses, especially RNA viruses, are renowned for hijacking the host splicing machinery for their own proliferation, which inadvertently puts pressure on the host transcriptome, exposing another side of the host response to the pathogen challenge. Therefore, in this study, we examine host response at the transcript-level to discover a transcriptional difference that culminates in differential gene-level expression. Importantly, this study highlights diminished transcript diversity and possible regulation of transcription by differentially abundant repeat elements near the promoter region and splicing sites in COVID-19 mortality patients, which together with differentially expressed isoforms hold the potential to elaborate disease severity and outcome.
Collapse
Affiliation(s)
- Priyanka Mehta
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Partha Chattopadhyay
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Balagannavar G, Basavaraju K, Bajpai AK, Davuluri S, Kannan S, S Srini V, S Chandrashekar D, Chitturi N, K Acharya K. Transcriptomic analysis of the Non-Obstructive Azoospermia (NOA) to address gene expression regulation in human testis. Syst Biol Reprod Med 2023; 69:196-214. [PMID: 36883778 DOI: 10.1080/19396368.2023.2176268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
There is a need to understand the molecular basis of testes under Non-Obstructive Azoospermia (NOA), a state of failed spermatogenesis. There has been a lack of attention to the transcriptome at the level of alternatively spliced mRNAs (iso-mRNAs) and the mechanism of gene expression regulation. Hence, we aimed to establish a reliable iso-mRNA profile of NOA-testes, and explore molecular mechanisms - especially those related to gene expression regulation. We sequenced mRNAs from testicular samples of donors with complete spermatogenesis (control samples) and a failure of spermatogenesis (NOA samples). We identified differentially expressed genes and their iso-mRNAs via standard NGS data analyses. We then listed these iso-mRNAs hierarchically based on the extent of consistency of differential quantities across samples and groups, and validated the lists via RT-qPCRs (for 80 iso-mRNAs). In addition, we performed extensive bioinformatic analysis of the splicing features, domains, interactions, and functions of differentially expressed genes and iso-mRNAs. Many top-ranking down-regulated genes and iso-mRNAs, i.e., those down-regulated more consistently across the NOA samples, are associated with mitosis, replication, meiosis, cilium, RNA regulation, and post-translational modifications such as ubiquitination and phosphorylation. Most down-regulated iso-mRNAs correspond to full-length proteins that include all expected domains. The predominance of alternative promoters and termination sites in these iso-mRNAs indicate their gene expression regulation via promoters and UTRs. We compiled a new, comprehensive list of human transcription factors (TFs) and used it to identify TF-'TF gene' interactions with potential significance in down-regulating genes under the NOA condition. The results indicate that RAD51 suppression by HSF4 prevents SP1-activation, and SP1, in turn, could regulate multiple TF genes. This potential regulatory axis and other TF interactions identified in this study could explain the down-regulation of multiple genes in NOA-testes. Such molecular interactions may also have key regulatory roles during normal human spermatogenesis.
Collapse
Affiliation(s)
- Govindkumar Balagannavar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,Research Scholar, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavyashree Basavaraju
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Akhilesh Kumar Bajpai
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Sravanthi Davuluri
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Shruthi Kannan
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Vasan S Srini
- Manipal Fertility, Manipal Hospital, Bengaluru, Karnataka, India
| | | | - Neelima Chitturi
- BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| | - Kshitish K Acharya
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India.,BdataA: Biological data Analyzers' Association (virtual organization http://startbioinfo.com/BdataA/), India
| |
Collapse
|
3
|
Ashok G, Miryala SK, Saju MT, Anbarasu A, Ramaiah S. FN1 encoding fibronectin as a pivotal signaling gene for therapeutic intervention against pancreatic cancer. Mol Genet Genomics 2022; 297:1565-1580. [PMID: 35982245 DOI: 10.1007/s00438-022-01943-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
The delayed diagnosis of pancreatic cancer has resulted in rising mortality rate and low survival rate that can be circumvented using potent theranostics biomarkers. The treatment gets complicated with delayed detection resulting in lowered 5-year relative survival rate. In our present study, we employed systems biology approach to identify central genes that play crucial roles in tumor progression. Pancreatic cancer genes collected from various databases were used to construct a statistically significant interactome with 812 genes that was further analysed thoroughly using topological parameters and functional enrichment analysis. The significant genes in the network were then identified based on the maximum degree parameter. The overall survival analysis indicated through hazard ratio [HR] and gene expression [log Fold Change] across pancreatic adenocarcinoma revealed the critical role of FN1 [HR 1.4; log2(FC) 5.748], FGA [HR 0.78; log2(FC) 1.639] FGG [HR 0.9; log2(FC) 1.597], C3 [HR 1.1; log2(FC) 2.637], and QSOX1 [HR 1.4; log2(FC) 2.371]. The functional significance of the identified hub genes signified the enrichment of integrin cell surface interactions and proteoglycan syndecan-mediated cell signaling. The differential expression, low overall survival and functional significance of FN1 gene implied its possible role in controlling metastasis in pancreatic cancer. Furthermore, alternate splice variants of FN1 gene showed 10 protein coding transcripts with conserved cell attachment site and functional domains indicating the variants' potential role in pancreatic cancer. The strong association of the identified hub-genes can be better directed to design potential theranostics biomarkers for metastasized pancreatic tumor.
Collapse
Affiliation(s)
- Gayathri Ashok
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sravan Kumar Miryala
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Treesa Saju
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.,Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India. .,Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Alanazi IO, Alamery SF, Ebrahimie E, Mohammadi-Dehcheshmeh M. Splice-disrupt genomic variants in prostate cancer. Mol Biol Rep 2022; 49:4237-4246. [PMID: 35286517 PMCID: PMC9262760 DOI: 10.1007/s11033-022-07257-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022]
Abstract
Background Splice-disrupt genomic variants are one of the causes of cancer-causing errors in gene expression. Little is known about splice-disrupt genomic variants. Methods and results Here, pattern of splice-disrupt variants was investigated using 21,842,764 genomic variants in different types of prostate cancer. A particular attention was paid to genomic locations of splice-disrupt variants on target genes. HLA-A in prostate cancer, MSR1 in familial prostate cancer, and EGFR in both castration-resistant prostate cancer and metastatic castration-resistant had the highest allele frequencies of splice-disrupt variations. Some splice-disrupt variants, located on coding sequences of NCOR2, PTPRC, and CRP, were solely present in the advanced metastatic castration-resistant prostate cancer. High-risk splice-disrupt variants were identified based on computationally calculated Polymorphism Phenotyping (PolyPhen), Sorting Intolerant From Tolerant (SIFT), and Genomic Evolutionary Rate Profiling (GERP) + + scores as well as the recorded clinical significance in dbSNP database of NCBI. Functional annotation of damaging splice-disrupt variants highlighted important cancer-associated functions, including endocrine resistance, lipid metabolic process, steroid metabolic process, regulation of mitotic cell cycle, and regulation of metabolic process. This is the first study that profiles the splice-disrupt genomic variants and their target genes in prostate cancer. Literature mining based variant analysis highlighted the importance of rs1800716 variant, located on the CYP2D6 gene, involved in a range of important functions, such as RNA spicing, drug interaction, death, and urotoxicity. Conclusions This is the first study that profiles the splice-disrupt genomic variants and their target genes in different types of prostate cancer. Unravelling alternative splicing opens a new avenue towards the establishment of new diagnostic and prognostic markers for prostate cancer progression and metastasis. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07257-9.
Collapse
Affiliation(s)
- Ibrahim O. Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Salman F. Alamery
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010 Australia
| | - Manijeh Mohammadi-Dehcheshmeh
- Genomics Research Platform, School of Life Sciences, La Trobe University, Melbourne, VIC 3086 Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, 5371 Australia
| |
Collapse
|
5
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
6
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Alanazi IO, Al Shehri ZS, Ebrahimie E, Giahi H, Mohammadi-Dehcheshmeh M. Non-coding and coding genomic variants distinguish prostate cancer, castration-resistant prostate cancer, familial prostate cancer, and metastatic castration-resistant prostate cancer from each other. Mol Carcinog 2019; 58:862-874. [PMID: 30644608 DOI: 10.1002/mc.22975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022]
Abstract
A considerable number of deposited variants has provided new possibilities for knowledge discovery in different types of prostate cancer. Here, we analyzed variants located on 3'UTR, 5'UTR, CDs, Intergenic, and Intronic regions in castration-resistant prostate cancer (8496 variants), familial prostate cancer (3241 variants), metastatic castration-resistant prostate cancer (3693 variants), and prostate cancer (16599 variants). Chromosome regions 10p15-p14 and 2p13 were highly enriched (P < 0.00001) for variants located in 3'UTR, 5'UTR, CDs, intergenic, and intronic regions in castration-resistant prostate cancer. In contrast, 10p15-p14, 10q23.3, 12q13.11, 13q12.3, 1q25, and 8p22 regions were enriched (P < 0.001) in familial prostate cancer. In metastatic castration-resistant prostate cancer, 10p15-p14, 10q23.3, 11q22-q23, 14q21.1, and 14q32.13 were highly variant regions (P < 0.001). Chromosome 2 and chromosome 1 hosted many enriched variant regions. AKR1C3, BRCA1, BRCA2, CHGA, CYP19A1, HOXB13, KLK3, and PTEN contained the highest number of 3'UTR, 5'UTR, CDs, Intergenic, and Intronic variants. Network analysis showed that these genes are upstream of important functions including prostate gland development, tumor recurrence, prostate cancer-specific survival, tumor progression, cancer mortality, long-term survival, cancer recurrence, angiogenesis, and AR. Interestingly, all of EGFR, JAK2, NR3C1, PDZD2, and SEMA3C genes had single nucleotide polymorphisms (SNP) in castration-resistant prostate cancer, consistent with high selection pressure on these genes during drug treatment and consequent resistance. High occurrence of variants in 3'UTRs suggests the importance of regulatory variants in different types of prostate cancer; an area that has been neglected compared with coding variants. This study provides a comprehensive overview of genomic regions contributing to different types of prostate cancer.
Collapse
Affiliation(s)
- Ibrahim O Alanazi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Zafer S Al Shehri
- Clinical Laboratory Department, College of Applied Medical Sciences, Shaqra University, KSA, Al dawadmi, Saudi Arabia
| | - Esmaeil Ebrahimie
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, The University of South Australia, Adelaide, SA, Australia.,Institute of Biotechnology, Shiraz University, Shiraz, Iran.,Faculty of Science and Engineering, School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Hassan Giahi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Manijeh Mohammadi-Dehcheshmeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, South Australia, Australia
| |
Collapse
|