1
|
Xia N, Liu A, Han H, Jiang S, Cao Q, Luo J, Zhang J, Hao W, Sun Z, Chen N, Zhang H, Zheng W, Zhu J. Porcine cGAS-STING signalling induced apoptosis negatively regulates STING downstream IFN response and autophagy via different mechanisms. Virulence 2025; 16:2496436. [PMID: 40310883 PMCID: PMC12051576 DOI: 10.1080/21505594.2025.2496436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/08/2025] [Accepted: 04/10/2025] [Indexed: 05/03/2025] Open
Abstract
The innate immune cGAS-STING signalling pathway recognizes double-stranded DNA and induces the interferon (IFN) response, autophagy and apoptosis, exerting a broad antiviral effect. However, the mechanisms and interrelationship between STING induced downstream IFN, autophagy, and apoptosis in livestock have not been fully elucidated. Our previous study defined porcine STING (pSTING) induced IFN, autophagy and apoptosis, and showed that IFN does not affect autophagy and apoptosis, whereas autophagy inhibits both IFN and apoptosis, likely by promoting pSTING degradation. In this study, we further explored the underlying mechanism of pSTING induced apoptosis and the regulation of IFN and autophagy by apoptosis. First, pSTING induces endoplasmic reticulum (ER) stress and mitochondrial damage to activate caspases 9, 3, and 7, which drive intrinsic apoptosis. Second, pSTING triggered apoptosis inhibits the IFN response by activating caspase 7, which cleaves pIRF3 at the species specific D197/D198 site. Third, pSTING activated apoptotic caspases 9, 3, and 7 reduce the expression of ATG proteins, and cleave the ATG5-ATG12L1 complex, effectively inhibiting autophagy. Fourth, knockout of pSTING activated apoptosis heightens the IFN response and autophagy, while suppressing the replication of Herpes Simplex Virus type 1 (HSV-1), Vesicular Stomatitis Virus (VSV) and Pseudorabies Virus (PRV). This study sheds light on the molecular mechanisms of innate immunity in pigs.
Collapse
Affiliation(s)
- Nengwen Xia
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Anjing Liu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjian Han
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Sen Jiang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Qi Cao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jia Luo
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiajia Zhang
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weilin Hao
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ziyan Sun
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Nanhua Chen
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | | | - Wanglong Zheng
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianzhong Zhu
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Zhang Z, Wang X, Zhao C, Zhu H, Liao X, Tsai HI. STING and metabolism-related diseases: Roles, mechanisms, and applications. Cell Signal 2025; 132:111833. [PMID: 40294833 DOI: 10.1016/j.cellsig.2025.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The stimulator of interferon genes (STING) pathway plays a critical role in innate immunity, acting as a central mediator that links cytosolic DNA sensing to inflammatory signaling. STING not only responds to cellular metabolic states but also actively regulates key metabolic processes, including glycolysis, lipid metabolism, and redox balance. This bidirectional interaction underscores the existence of a dynamic feedback mechanism between STING signaling and metabolic pathways, which is essential for maintaining cellular homeostasis. This review provides a comprehensive analysis, beginning with an in-depth overview of the classical STING signaling pathway, followed by a detailed examination of its reciprocal regulation of various metabolic pathways. Additionally, it explores the role and mechanisms of STING signaling in metabolic disorders, including obesity, diabetes, and atherosclerosis. By integrating these insights into the mutual regulation between STING and its metabolism, novel therapeutic strategies targeting this pathway in metabolic diseases have been proposed.
Collapse
Affiliation(s)
- Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xirui Wang
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou 221000, China
| | - Chuangchuang Zhao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Haitao Zhu
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiang Liao
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China.
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang 212001, China; Department of Medical Imaging, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
3
|
Wu K, Xu Y, Liu P, Chen K, Zhao Y. STING inhibitors and degraders: Potential therapeutic agents in inflammatory diseases. Eur J Med Chem 2025; 291:117632. [PMID: 40262301 DOI: 10.1016/j.ejmech.2025.117632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/24/2025]
Abstract
The regulation of the STING (stimulator of interferon genes) pathway represents a promising target for a range of inflammatory diseases. This review provides an overview of the structure of STING and discusses the mechanisms by which the cyclic GMP-AMP synthase (cGAS)-STING pathway is associated with various autoinflammatory and autoimmune diseases. We explore how targeting STING inhibition or degradation can alleviate excessive inflammatory signaling and improve efficacy. Emerging strategies include inhibiting STING expression by covalently binding compounds or using ligands that target the binding pocket. In addition, selective degradation of STING via the ubiquitin-proteasome system or the lysosomal pathway shows promise. In addition, we explore the implications of modulating the cGAS-STING pathway in the context of various inflammatory diseases. Finally, we summarize the chemical properties of recently developed STING compounds and their potential clinical applications. By comprehensively reviewing the current understanding of the role of STING in inflammation and the therapeutic potential of targeting STING, we aim to identify new avenues of intervention that could improve outcomes for patients with inflammatory diseases. This review highlights the important role of STING in the regulation of inflammation and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Kerong Wu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yiwen Xu
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Peizhao Liu
- Research Institute of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Kexin Chen
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yun Zhao
- Department of General Surgery, Clinical Translational Research Center for Surgical Infection and Immunity of Nanjing Medical University, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Yang H, Xia Y, Ma Y, Gao M, Hou S, Xu S, Wang Y. Inhibition of the cGAS-STING pathway: contributing to the treatment of cerebral ischemia-reperfusion injury. Neural Regen Res 2025; 20:1900-1918. [PMID: 38993125 PMCID: PMC11691458 DOI: 10.4103/nrr.nrr-d-24-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 05/02/2024] [Indexed: 07/13/2024] Open
Abstract
The cGAS-STING pathway plays an important role in ischemia-reperfusion injury in the heart, liver, brain, and kidney, but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed. Here, we outline the components of the cGAS-STING pathway and then analyze its role in autophagy, ferroptosis, cellular pyroptosis, disequilibrium of calcium homeostasis, inflammatory responses, disruption of the blood-brain barrier, microglia transformation, and complement system activation following cerebral ischemia-reperfusion injury. We further analyze the value of cGAS-STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms. Inhibition of the cGAS-STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hang Yang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yulei Xia
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Yue Ma
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Mingtong Gao
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Shuai Hou
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong Province, China
| | - Shanshan Xu
- Department of Emergency, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| | - Yanqiang Wang
- Department of Neurology II, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
| |
Collapse
|
5
|
Luo H, Cai Y, Shi H, Ma L, Zhang S, Yung KKL, Zhou P. Repurposing oxiconazole to inhibit STING trafficking via OSBP and alleviate autoimmune pathology in Trex1 -/- mice. Int Immunopharmacol 2025; 157:114742. [PMID: 40319749 DOI: 10.1016/j.intimp.2025.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The cGAS-STING pathway is a critical component of the innate immune response to cytosolic DNA, driving the production of type I interferons (IFNs) and pro-inflammatory cytokines. However, excessive activation of this pathway is associated with various autoimmune and inflammatory diseases. In this study, we evaluated the regulation of FDA-approved azole antifungal drugs on the cGAS-STING pathway. Among these drugs, oxiconazole, miconazole, and itraconazole demonstrate significant inhibitory effects, with oxiconazole showing the strongest activity. Our data demonstrates that oxiconazole significantly suppressed type I IFN production and downstream inflammatory responses in macrophages and fibroblasts stimulated with synthetic DNA or infected with HSV-1. Mechanistically, oxiconazole hindered STING trafficking via oxysterol-binding protein OSBP. Using the Listeria monocytogenes infection model and the Trex1-/- mouse disease model, both representing in vivo models of inflammation driven by excessive cGAS-STING activation, we demonstrate that oxiconazole enhanced bacterial clearance and reduced tissue damage in the Listeria monocytogenes infection model. Moreover, oxiconazole treatment significantly alleviated multi-organ inflammation and normalized aberrant IFN responses in the Trex1-/- autoimmune disease mouse model. These findings highlight the potential of oxiconazole as a promising therapeutic agent for STING-driven autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Luo
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yijing Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanhui Shi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liang Ma
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shiqing Zhang
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ken Kin Lam Yung
- Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, Department of Science and Environmental Studies, the Education University of Hong Kong, Hong Kong, SAR 999077, China
| | - Pingzheng Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China.
| |
Collapse
|
6
|
Zhang H, Xu X, Li S, Huang H, Zhang K, Li W, Wang X, Yang J, Yin X, Qu C, Ni J, Dong X. Advances in nanoplatform-based multimodal combination therapy activating STING pathway for enhanced anti-tumor immunotherapy. Colloids Surf B Biointerfaces 2025; 250:114573. [PMID: 39983453 DOI: 10.1016/j.colsurfb.2025.114573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Activation of the cyclic GMP-AMP synthase(cGAS)-stimulator of interferon genes (STING) has great potential to promote antitumor immunity. As a major effector of the cell to sense and respond to the aberrant presence of cytoplasmic double-stranded DNA (dsDNA), inducing the expression and secretion of type I interferons (IFN) and STING, cGAS-STING signaling pathway establishes an effective natural immune response, which is one of the fundamental mechanisms of host defense in organisms. In addition to the release of heterologous DNA due to pathogen invasion and replication, mitochondrial damage and massive cell death can also cause abnormal leakage of the body's own dsDNA, which is then recognized by the DNA receptor cGAS and activates the cGAS-STING signaling pathway. However, small molecule STING agonists suffer from rapid excretion, low bioavailability, non-specificity and adverse effects, which limits their therapeutic efficacy and in vivo application. Various types of nano-delivery systems, on the other hand, make use of the different unique structures and surface modifications of nanoparticles to circumvent the defects of small molecule STING agonists such as fast metabolism and low bioavailability. Also, the nanoparticles are precisely directed to the focal site, with their own appropriate particle size combined with the characteristics of passive or active targeting. Herein, combined with the cGAS-STING pathway to activate the immune system and kill tumor tissues directly or indirectly, which help maximize the use of the functions of chemotherapy, photothermal therapy(PTT), chemodynamic therapy(CDT), and radiotherapy(RT). In this review, we will discuss the mechanism of action of the cGAS-STING pathway and introduce nanoparticle-mediated tumor combination therapy based on the STING pathway. Collectively, the effective multimodal nanoplatform, which can activate cGAS-STING pathway for enhanced anti-tumor immunotherapy, has promising avenue clinical applications for cancer treatment.
Collapse
Affiliation(s)
- Huizhong Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohan Xu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiman Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Huating Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ke Zhang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wenjing Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinzhu Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingwen Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xingbin Yin
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Changhai Qu
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Ni
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Xiaoxv Dong
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
7
|
Li C, Zhang H, Liu Y, Zhang T, Gu F. Gpr109A in TAMs promoted hepatocellular carcinoma via increasing PKA/PPARγ/MerTK/IL-10/TGFβ induced M2c polarization. Sci Rep 2025; 15:18820. [PMID: 40442173 PMCID: PMC12122892 DOI: 10.1038/s41598-025-02447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/13/2025] [Indexed: 06/02/2025] Open
Abstract
To delineate Gpr109A's role and mechanisms in modulating the immune microenvironment of hepatocellular carcinoma. Employing Gpr109A-knockout mice and in vitro co-cultures of hepatocellular carcinoma cells with macrophages, this study utilized a suite of techniques, including lentiviral vectors for stable cell line establishment, Western blotting, cell scratch, CCK-8, transwell assays, flow cytometry, immunohistochemistry and phagocytosis assay to assess various cellular behaviors and interactions. Gpr109A deletion markedly reduced the oncogenic potential of H22 cells, both in vivo and when co-cultured with knockout macrophages, impairing their growth, invasion, and migration. In Gpr109A-knockout macrophages, an upregulation of MerTK and a reduction in immunosuppressive cytokine release were observed, indicating a shift towards an M2c macrophage phenotype. This shift is linked to Gpr109A's role in promoting protease overexpression and inhibiting SHP2 phosphorylation, crucial for enhancing cancer cell proliferation and invasiveness. Gpr109A significantly influences macrophage polarization to the M2c type, augmenting hepatocellular carcinoma cell aggressiveness.
Collapse
Affiliation(s)
- Cong Li
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Hongan Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Yanchun Liu
- Department of Pediatrics, North China Petroleum Administration General Hospital, Renqiu, China
| | - Ting Zhang
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China
| | - Feng Gu
- Hepatobiliary Department, Hebei University Affiliated Hospital, Baoding, China.
| |
Collapse
|
8
|
Liu Y, Hu Y, Shan ZL. Mitochondrial DNA release mediates metabolic-associated steatohepatitis via activation of inflammatory pathways. Shijie Huaren Xiaohua Zazhi 2025; 33:344-360. [DOI: 10.11569/wcjd.v33.i5.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/25/2025] [Accepted: 05/19/2025] [Indexed: 05/28/2025] Open
Affiliation(s)
- Ying Liu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Yang Hu
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| | - Zhao-Liang Shan
- Gannan Institute of Medical Innovation and Translational Medicine, Gannan Medical University, Ganzhou 431000, Jiangxi Province, China
| |
Collapse
|
9
|
Zhang X, Du H, Qiu T, Fu H, Dai J, Lian Q, Yan F, Guo D, Lin J, Xu S, Li D, Chen Q, Huang Z. Tanshinone IIA alleviates myocarditis in Trex1-D18N lupus-like mice by inhibiting the interaction between STING and SEC24C. Int Immunopharmacol 2025; 156:114659. [PMID: 40252465 DOI: 10.1016/j.intimp.2025.114659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway serves as a crucial component of the innate immune defense, playing a vital role in combating pathogen invasion. However, its dysregulation or abnormal activation can trigger the development of autoimmune diseases. This study demonstrated that Tanshinone IIA, a major lipid-soluble component of Salvia miltiorrhiza Bunge, can effectively inhibit the activation of the cGAS-STING signaling pathway. Mechanistically, Tanshinone IIA inhibits the transport of STING from the ER to the Golgi apparatus by weakening the interaction between STING and SEC24C, thereby preventing the activation of the cGAS-STING signaling pathway. Furthermore, Tanshinone IIA significantly ameliorated myocardial inflammation in WT and Trex1D18N/D18N mice. Our research indicates that Tanshinone IIA shows potential therapeutic value in alleviating autoimmune diseases by effectively inhibiting the abnormal activation of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxiong Zhang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China; Department of Pathology, The First Affiliated Hospital, Fujian Medical University, 20 Chazhong Road, Fuzhou 350005, China
| | - Tao Qiu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Honggao Fu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350005, China
| | - Jiawei Dai
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200030, China
| | - Qiying Lian
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Fang Yan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Dong Guo
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Jinpei Lin
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Zhengrong Huang
- Department of Integrative Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
10
|
Zhou Q, Luo J, Chai X, Yang J, Zhong S, Zhang Z, Chang X, Wang H. Therapeutic targeting the cGAS-STING pathway associated with protein and gene: An emerging and promising novel strategy for aging-related neurodegenerative disease. Int Immunopharmacol 2025; 156:114679. [PMID: 40252469 DOI: 10.1016/j.intimp.2025.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a rapidly escalating global health challenge, contributing significantly to the worldwide disease burden and posing substantial threats to public health systems across nations. Among the many risk factors for neurodegeneration, aging is the major risk factor. In the context of aging, multiple factors lead to the release of endogenous DNA (especially mitochondrial DNA, mtDNA), which is an important trigger for the activation of the cGAS-STING innate immune pathway. Recent studies have identified an increasing role for activation of the cGAS-STING signaling pathway as a driver of senescence-associated secretory phenotypes (SASPs) in aging and NDDs. The cGAS-STING pathway mediates the immune sensing of DNA and is a key driver of chronic inflammation and functional decline during the aging process. Blocking cGAS-STING signaling may reduce the inflammatory response by preventing mtDNA release and enhancing mitophagy. Targeted inhibition of the cGAS-STING pathway by biological macromolecules such as natural products shows promise in therapeutic strategies for age-related NDDs. This review aims to systematically and comprehensively introduces the role of the cGAS-STING pathway in age-related NDDs in the context of aging while revealing the molecular mechanisms of the cGAS-STING pathway and its downstream signaling pathways and to develop more targeted and effective therapeutic strategies for NDDs.
Collapse
Affiliation(s)
- Qiongli Zhou
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jinghao Luo
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xueting Chai
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Jirui Yang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Shiyin Zhong
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Zhimin Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China
| | - Hui Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Gansu 730000, China.
| |
Collapse
|
11
|
Wang JL, Li Z, Song ZX, Zhao S, Zhao LB, Shuang PZ, Liu FF, Li HZ, Wang XL, Liu P. The effect of spinal cord STING/ATG5-mediated autophagy activation on the development of diabetic neuropathic pain in rats. Biochem Biophys Res Commun 2025; 760:151686. [PMID: 40174367 DOI: 10.1016/j.bbrc.2025.151686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025]
Abstract
Diabetic neuropathic pain (DNP) is associated with concurrent spinal cord autophagy activation, mTOR pathway activation, and neuroinflammation. However, the mechanistic interplay between these processes remains unclear, as mTOR activation typically suppresses autophagy under physiological conditions. This study investigates the role of spinal STING/ATG5-mediated autophagy in DNP pathogenesis and its relationship with mTOR signaling and neuroinflammatory pathways. Utilizing a rat model of DNP, we observed significant increases in spinal autophagosome density, LC3-II/LC3-I ratio, and STING/ATG5 expression, accompanied by elevated p-mTOR/mTOR ratios, compared to healthy controls. Notably, Beclin-1 expression remained unchanged. Pharmacological inhibition of STING or ATG5 silencing via intrathecal administration attenuated mechanical allodynia and reduced LC3-II/LC3-I ratios, whereas STING activation exacerbated pain behaviors while further upregulating STING/ATG5 expression and LC3-II/LC3-I ratios, but paradoxically decreased p-mTOR/mTOR ratios. mTOR inhibition with rapamycin alleviated DNP symptoms and suppressed TNF-α/IL-1β-mediated neuroinflammation, yet failed to modulate LC3-II/LC3-I ratios despite increasing Beclin-1 expression. Crucially, STING/ATG5 pathway manipulation did not alter pro-inflammatory cytokine levels, while rapamycin's analgesic effects correlated with anti-inflammatory activity. These findings demonstrate that STING/ATG5-driven autophagy contributes to DNP progression through a mechanism independent of both canonical mTOR-dependent autophagy regulation and inflammatory cytokine modulation. Conversely, mTOR inhibition exerts therapeutic effects predominantly via anti-inflammatory pathways rather than autophagy regulation. This study identifies a novel non-canonical autophagy pathway in DNP pathophysiology and clarifies distinct mechanistic bases for STING/ATG5-versus mTOR-targeted interventions.
Collapse
Affiliation(s)
- Jia-Lu Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhao Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Zhi-Xue Song
- HeBei Medical University, No. 361, Zhong Shan Road, Shi jia zhuang, 050000, China
| | - Shuang Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Long-Biao Zhao
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng-Zhan Shuang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Fei-Fei Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Hui-Zhou Li
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Xiu-Li Wang
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China
| | - Peng Liu
- Department of Anesthesiology, HeBei Medical University Third Hospital, No. 139 Zi qiang Road, Shijiazhuang, 050051, China.
| |
Collapse
|
12
|
Wang L, Hou P, Ma W, Jin R, Wei X, Li X, He H, Wang H. Unveiling EXOC4/SEC8: a key player in enhancing antiviral immunity by inhibiting the FBXL19-STING1-SQSTM1 signaling axis. Autophagy 2025. [PMID: 40413753 DOI: 10.1080/15548627.2025.2511077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 05/14/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
As a core aptamer for anti-DNA viral immunity, STING1 (stimulator of interferon response cGAMP interactor 1) is tightly regulated to ensure the proper functioning of the natural antiviral immune response. However, many mechanisms underlying the regulation of STING1 remain largely unknown. In this study, we identify EXOC4/SEC8 (exocyst complex component 4) as a novel positive regulator of DNA virus-triggered type I interferon signaling responses through stabilizing STING1, thereby inhibiting DNA viral replication. Mechanistically, EXOC4 suppresses K27-linked ubiquitination of STING1 at K338, K347, and K370 catalyzed by the E3 ligase FBXL19 (F-box and leucine rich repeat protein 19), thereby preventing ubiquitinated-STING1 from recognition by SQSTM1 (sequestosome 1) for autophagic degradation. Importantly, mice conditionally knocked out for Exoc4/Sec8 are more susceptible to herpes simplex virus type 1 (HSV-1) infection and exhibit more severe lung pathology compared to control mice. This further confirms the important role of EXOC4/SEC8 in antiviral natural immunity. Taken together, our study reveals the importance of EXOC4/SEC8 in promoting STING1-centered antiviral natural immunity and highlights its potential as an anti-DNA viral therapeutic target.
Collapse
Affiliation(s)
- Lin Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Rong Jin
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xinxin Wei
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Xingyu Li
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Key Laboratory of Animal Resistant Biology of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
13
|
Dhapola R, Paidlewar M, Kumari S, Sharma P, Vellingiri B, Medhi B, HariKrishnaReddy D. cGAS-STING and neurodegenerative diseases: A molecular crosstalk and therapeutic perspective. Int Immunopharmacol 2025; 159:114902. [PMID: 40403503 DOI: 10.1016/j.intimp.2025.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/05/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), Multiple Sclerosis (MS) and Frontotemporal Dementia (FTD) share key pathological features, including neuroinflammation, oxidative stress, mitochondrial dysfunction, autophagic dysfunction, and DNA damage. By identifying cytosolic DNA and triggering the type I interferon response, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway regulates neuroinflammation. Dysregulated cGAS-STING signaling has been linked to neuroinflammation and neuronal degeneration across multiple neurodegenerative conditions. In many neurodegenerative disorders, neuroinflammation is mediated by the cGAS-STING pathway. Mitochondrial malfunction and impaired autophagy cause cytosolic DNA buildup in Huntington's, Parkinson's, and Alzheimer's diseases, which activates cGAS-STING and drives chronic inflammation. This pathway is triggered by TDP-43 pathology and nucleic acid dysregulation in ALS and FTD, which leads to neuronal destruction. Both central demyelination and peripheral immunological responses are linked to cGAS-STING activation in multiple sclerosis. Various inhibitors, such as RU.521, H-151, and naturally occurring compounds like metformin, potentially attenuate cGAS-STING-mediated neuroinflammation and associated pathologies. H-151 significantly decreased the expression of pro-inflammatory markers in murine macrophage J774 cells activated with cGAMP: TNF-α by 68 %, IFN-β by 84 %, and CXCL10 by 96 %. cGAS-STING inhibitors target neuroinflammation, offering a disease-modifying approach unlike current symptomatic treatments. However, challenges like blood-brain barrier penetration, off-target effects, and immune suppression hinder clinical translation, necessitating optimized drug delivery and immune modulation. With a focus on its potential for future clinical applications, this review explores the role of the cGAS-STING pathway in neurodegeneration and new treatment approaches.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, 151401 Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India.
| |
Collapse
|
14
|
Li L, He Y, Chen Y, Zhou X. cGAS-STING Pathway's Impact on Intestinal Barrier. J Gastroenterol Hepatol 2025. [PMID: 40377214 DOI: 10.1111/jgh.16974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/09/2025] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
Intestinal inflammation and increased permeability have been linked to metabolic dysregulation in patients with compromised intestinal barrier function. Among the pathways, garnering attention is the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway. Upon binding to double-stranded DNA (dsDNA), cGAS catalyzes the conversion of ATP and GTP into cyclic GMP-AMP (cGAMP). Subsequently, cGAMP binds to STING, triggering the activation of tank-binding kinase 1 (TBK1), which activates interferon regulatory factor 3 (IRF3), thus inducing the production of type I interferon. Activated TBK1 can also induce the activation of nuclear factor κB (NF-κB), thus mediating the production of proinflammatory cytokines. The effects of this process vary among innate and adaptive immune cells, as well as intestinal epithelial cells (IECs). This review aims to elucidate the impact and role of the cGAS-STING pathway on intestinal barrier function.
Collapse
Affiliation(s)
- Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yingge He
- Department of Thyroid and Breast Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaoshu Zhou
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Szegő ÉM, Höfs L, Antoniou A, Dinter E, Bernhardt N, Schneider A, Di Monte DA, Falkenburger BH. Intermittent fasting reduces alpha-synuclein pathology and functional decline in a mouse model of Parkinson's disease. Nat Commun 2025; 16:4470. [PMID: 40368903 PMCID: PMC12078643 DOI: 10.1038/s41467-025-59249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (aSyn) accumulation. Environmental factors play a significant role in PD progression, highlighting the potential of non-pharmacological interventions. This study investigates the therapeutic effects of intermittent fasting (IF) in an rAAV-aSyn mouse model of PD. IF, initiated four weeks post-induction of aSyn pathology, improved motor function and reduced dopaminergic neuron and axon terminal degeneration. Additionally, IF preserved dopamine levels and synaptic integrity in the striatum. Mechanistically, IF enhanced autophagic activity, promoting phosphorylated-aSyn clearance and reducing its accumulation in insoluble brain fractions. Transcriptome analysis revealed IF-induced modulation of inflammation-related genes and microglial activation. Validation in primary cultures confirmed that autophagy activation and inflammatory modulators (CCL17, IL-36RN) mitigate aSyn pathology. These findings suggest that IF exerts neuroprotective effects, supporting further exploration of IF and IF-mimicking therapies as potential PD treatments.
Collapse
Affiliation(s)
- Éva M Szegő
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Lennart Höfs
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anna Antoniou
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Elisabeth Dinter
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| |
Collapse
|
16
|
Wang XT, Zhu X, Lian ZH, Liu Q, Yan HH, Qiu Y, Ge XY. AUP1 and UBE2G2 complex targets STING signaling and regulates virus-induced innate immunity. mBio 2025; 16:e0060225. [PMID: 40237449 PMCID: PMC12077101 DOI: 10.1128/mbio.00602-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Stimulator of interferon genes (STING) is an endoplasmic reticulum (ER) signaling adaptor that is essential for the host immune response triggered by DNA pathogens. Precise regulation of STING is crucial for maintaining a balanced immune response and preventing harmful autoinflammation. Activation of STING requires its translocation from the ER to the Golgi apparatus. However, the mechanisms that maintain STING in its resting state remain largely unclear. Here, we find that deficiency of the ancient ubiquitous protein 1 (AUP1) causes spontaneous activation of STING and enhances the expression of type I interferons (IFNs) under resting conditions. Furthermore, deficiency of UBE2G2, a cofactor of AUP1, also promotes the abnormal activation of STING. AUP1 deficiency significantly enhances STING signaling induced by DNA virus, and AUP1 deficiency exhibits increased resistance to DNA virus infection in vitro and in vivo. Mechanistically, AUP1 may form a complex with UBE2G2 to interact with STING, preventing its exit from the ER membrane. Notably, infection with the RNA virus vesicular stomatitis virus (VSV) promotes the accumulation of lipid droplets (LDs) and AUP1 proteins. Additionally, AUP1 deficiency markedly inhibits the replication of VSV because AUP1 deficiency reduces lipid accumulation and alters the expression of lipid metabolism genes, such as carnitine palmitoyltransferase 1A (CPT1A), monoglyceride lipase (MGLL), and sterol regulatory element-binding transcription factor 1 (SREBF1). This study uncovers the essential roles of AUP1 in the STING signaling pathway and lipid metabolism pathway, highlighting its dual role in regulating virus replication.IMPORTANCEThe stimulator of interferon genes (STING) signaling cascade plays an essential role in coordinating innate immunity against DNA pathogens and autoimmunity. Precise regulation of the innate immune response is essential for maintaining homeostasis. In this study, we demonstrate that ancient ubiquitous protein 1 (AUP1) and UBE2G2 act as negative regulators of the innate immune response by targeting STING. Notably, AUP1 interacts with STING to retain STING in the endoplasmic reticulum (ER), preventing STING translocation and thereby limiting STING signaling in the resting state. In addition, deficiency of AUP1 markedly inhibits the replication of DNA virus and RNA virus. Our findings provide new insights into the regulation of STING signaling and confirm AUP1 has a dual role in regulating virus replication.
Collapse
Affiliation(s)
- Xin-Tao Wang
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xi Zhu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Zhong-Hao Lian
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Qian Liu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Hui-Hui Yan
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Ye Qiu
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xing-Yi Ge
- Hunan Provincial Key Laboratory of Medical Virology, Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, Hunan, China
| |
Collapse
|
17
|
Zerbib J, Bloomberg A, Ben-David U. Targeting vulnerabilities of aneuploid cells for cancer therapy. Trends Cancer 2025:S2405-8033(25)00097-4. [PMID: 40368673 DOI: 10.1016/j.trecan.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 05/16/2025]
Abstract
Aneuploidy is a common feature of cancer that drives tumor evolution, but it also creates cellular vulnerabilities that might be exploited therapeutically. Recent advances in genomic technologies and experimental models have uncovered diverse cellular consequences of aneuploidy, revealing dependencies on mitotic regulation, DNA replication and repair, proteostasis, metabolism, and immune interactions. Harnessing aneuploidy for precision oncology requires the combination of genomic, functional, and clinical studies that will enable translation of our improved understanding of aneuploidy to targeted therapies. In this review we discuss approaches to targeting both highly aneuploid cells and cells with specific common aneuploidies, summarize the biological underpinning of these aneuploidy-induced vulnerabilities, and explore their therapeutic implications.
Collapse
Affiliation(s)
- Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Bloomberg
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Gray Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Acharya D, Sayyad Z, Hoenigsperger H, Hirschenberger M, Zurenski M, Balakrishnan K, Zhu J, Gableske S, Kato J, Zhang SY, Casanova JL, Moss J, Sparrer KMJ, Gack MU. TRIM23 mediates cGAS-induced autophagy in anti-HSV defense. Nat Commun 2025; 16:4418. [PMID: 40360474 PMCID: PMC12075517 DOI: 10.1038/s41467-025-59338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | | | | | - Matthew Zurenski
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Kannan Balakrishnan
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Sebastian Gableske
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Eisai GmbH, Frankfurt am Main, Germany
| | - Jiro Kato
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Joel Moss
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Peng S, Hou X, Liu J, Huang F. Advances in polymer nanomaterials targeting cGAS-STING pathway for enhanced cancer immunotherapy. J Control Release 2025; 381:113560. [PMID: 40023225 DOI: 10.1016/j.jconrel.2025.02.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists. In particular, polymer nanomaterials possess inherent advantages including controllable structure, tunable function and degradability. These properties afford them the capacity to serve as delivery vehicles for small-molecule STING agonists. Furthermore, the superior characteristics of polymer nanomaterials can enable their utilization as a novel STING agonist to stimulate anti-tumor immunity. In this review, the molecular mechanisms of cGAS-STING pathway activation are discussed. The recent development of small-molecules STING agonists is described. Then polymer nanomaterials are discussed as carriers for STING agonists in cancer immunotherapy, including polymersomes, polymer micelles, polymer capsules, and polymer nanogels. Additionally, polymer nanomaterials are identified as a novel class of STING agonists for efficient cancer immunotherapy, encompassing both polymer materials and polymer-STING agonists conjugates. The review also presents the combination of polymer-based cGAS-STING immunotherapy with chemotherapy, radiotherapy, phototherapy (both photodynamic and photothermal), chemodynamic therapy, and other therapeutic strategies. Furthermore, the discussion highlights recent advancements targeting the cGAS-STING pathway in clinically approved polymer nanomaterials and corresponding potent innovations. Finally, the potential challenges and perspectives of polymer nanomaterials for activating cGAS-STING pathway are outlined, emphasizing the critical scientific issue and hoping to offer guidance for their clinical translation.
Collapse
Affiliation(s)
- Shiyu Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianfeng Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Fan Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
20
|
Kaur A, Aran KR. Unraveling the cGAS-STING pathway in Alzheimer's disease: A new Frontier in neuroinflammation and therapeutic strategies. Neuroscience 2025; 573:430-441. [PMID: 40185388 DOI: 10.1016/j.neuroscience.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent type of neurological disorder characterized by cognitive decline and memory loss, marked by the accumulation of amyloid beta (Aβ) plaques and hyperphosphorylated tau protein, causing extensive neuronal death and neuroinflammation. There is growing evidence that AD development extends beyond the neuronal compartment and has a major impact on the immunological functions of the brain. The cyclic GMP-AMP synthase (cGAS) detects cytosolic DNA, including pathogenic foreign DNA and self-DNA from cellular injury, triggering a type I interferon (IFN-I) response through activation of the stimulator of interferon genes (STING). The activation of the cGAS-STING pathway in response to mitochondrial dysfunction drives neuroinflammation in AD, which is mediated by the release of IFN-I cytokines. Furthermore, the release of oxidized mtDNA is necessary for the stimulation of the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, which is a family of protein complexes that macrophages can produce to induce inflammation. AD becomes severe by the stimulation of the cGAS-STING pathway, which results in sterile inflammation and microglial dysfunction. This review aims to explore the potential impact of the cGAS-STING signaling pathway in the pathogenesis and progression of AD. Additionally; after overviewing recent findings, this article highlights the molecular mechanism involved in the onset of disease and its modulation regarding the therapeutic approach of AD. Finally, deliberated a deep insight, the cGAS-STING axis could provide novel therapeutic avenues for slowing or halting the progression of AD, thereby offering new prospects for treatment development.
Collapse
Affiliation(s)
- Arshdeep Kaur
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab 142001, India.
| |
Collapse
|
21
|
Corneliussen JK, Madsen HB, Zelander NT, Nissen MH, Desler C. Modular activation of macrophage-like cells by beta-2-microglobulin via mitochondria and the cGAS-STING pathway. Cell Immunol 2025; 413:104962. [PMID: 40345004 DOI: 10.1016/j.cellimm.2025.104962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/03/2025] [Accepted: 05/03/2025] [Indexed: 05/11/2025]
Abstract
Beta-2-microglobulin (β2m) is a component of the major histocompatibility complex class I. β2m is released into cellular fluids in response to various stimuli, including pro-inflammatory cytokines. Elevated β2m levels have been found associated with autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Crohn's disease, as well as in various hematological cancers and viral infections. Despite an established correlation between immune activation of especially monocytes and macrophages, and circulating β2m levels, the causative relationship remains unclear. Here, we investigate the effects of exogenous β2m and a complement C1s cleaved form, dK58β2m, on two murine macrophage-like cell lines J774 and RAW. We demonstrate that β2m, and to a greater extent dK58β2m, can affect mitochondrial activity. Furthermore, the presence of IFN-γ amplifies the effect, causing altered bioenergetics, and increased production of mitochondrial reactive oxygen species and nitric oxide. In addition, we found activation of the cGAS-STING pathway by β2m and dK58β2m in the presence of IFN-γ. Only dK58β2m in combination with IFN-γ caused apoptosis and cell death. Our findings highlight the modular nature of a β2m-induced macrophage response, potentiated by dK58β2m and IFN-γ, and provide information on the underlying mechanisms responsible for the immune activation properties of β2m.
Collapse
Affiliation(s)
- Josefine Kofoed Corneliussen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Nadia Thaulov Zelander
- Department of Molecular and Cellular Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Holst Nissen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Yang X, Lv L, Zhang Y, Zhang Z, Zeng S, Zhang X, Wang Q, Dorf M, Li S, Fu B. ATP2A2 regulates STING1/MITA-driven signal transduction including selective autophagy. Autophagy 2025:1-16. [PMID: 40265346 DOI: 10.1080/15548627.2025.2496786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025] Open
Abstract
STING1/MITA not only induces innate immune responses but also triggers macroautophagy/autophagy to selectively degrade signaling molecules. However, the molecular mechanisms regulating STING1-mediated selective autophagy remain unclear. Here, we first report that ATP2A2 directly interacts with STING1, regulating STING1-mediated innate immune response by modulating its polymerization and trafficking, thereby inhibiting DNA virus infection. Notably, while screening for reticulophagy receptors involved in STING1-mediated selective autophagy, we identified SEC62 as an important receptor protein in STING1-mediated reticulophagy. Mechanistically, SEC62 strengthens its interaction with STING1 upon activation and concurrently facilitates STING1-mediated reticulophagy upon starvation, which are dependent on ATP2A2. Furthermore, knocking down SEC62 in WT cells inhibits STING1-mediated MAP1LC3B/LC3B lipidation and autophagosome formation, an effect that is lost in ATP2A2 knockout cells, suggesting that SEC62's role in STING1-mediated selective autophagy is ATP2A2 dependent. Thus, our findings identify the reticulophagy receptor SEC62 as a novel receptor protein regulating STING1-mediated selective autophagy, providing new insight into the mechanism regarding a reticulophagy receptor in the process of STING1-induced selective autophagy.Abbrevations: aa: amino acids; AP-MS: affinity tag purification-mass spectrometry; ATP2A1: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1; ATP2A2: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2; ATP2A3: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3; CANX: calnexin; CCPG1: cell cycle progression 1; CGAS: cyclic GMP-AMP synthase; ctDNA: calf thymus DNA; dsRNA: double-stranded RNA; diABZI: diamidobenzimidazole; ER: endoplasmic reticulum; ERGIC: ER-Golgi intermediate compartment; EBSS: Earle's Balanced Salt Solution; EV: empty vector; FL: full length; GOLGA2/GM130: golgin A2; HSV-1: herpes simplex virus type 1; IRF3: interferon regulatory factor 3; IFNs: type I interferons; ISD: interferon stimulatory DNA; KO: knockout; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; poly(I:C): polyinosinic-polycytidylic acid; NBR1: NBR1 autophagy cargo receptor; PRR: pattern recognition receptor; reticulophagy: selective autophagic degradation of the ER; RETREG1/FAM134B: reticulophagy regulator 1; RIGI: RNA sensor RIG-I; RTN3L: reticulon 3; SEC62: SEC62 homolog, preprotein translocation factor; SeV: Sendai virus; STIM1: stromal interaction molecule 1; STING1/MITA: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TEX264: testis expressed 264, ER-phagy receptor; TMX1: thioredoxin related transmembrane protein 1; VSV: vesicular stomatitis virus; VACV: vaccinia virus; ZMPSTE24: zinc metallopeptidase STE24.
Collapse
Affiliation(s)
- Xue Yang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Linyue Lv
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Yuelan Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zhuyou Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Shaowei Zeng
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xinyi Zhang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Qinyang Wang
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Martin Dorf
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Bishi Fu
- Department of Rheumatology and Immunology, State Key Laboratory of Virology and Biosafety, Zhongnan Hospital, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Qu Y, Li Z, Yin J, Huang H, Ma J, Jiang Z, Zhou Q, Tang Y, Li Y, Huang M, Zeng Z, Guo A, Fang F, Shen Y, Zhao R, Wang Y, Gao D. cGAS mRNA-Based Immune Agonist Promotes Vaccine Responses and Antitumor Immunity. Cancer Immunol Res 2025; 13:680-695. [PMID: 40067177 DOI: 10.1158/2326-6066.cir-24-0804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 03/05/2025] [Indexed: 05/03/2025]
Abstract
mRNA vaccines are a potent tool for immunization against viral diseases and cancer. However, the lack of a vaccine adjuvant limits the efficacy of these treatments. In this study, we used cGAS mRNA, which encodes the DNA innate immune sensor, complexed with lipid nanoparticles (LNP), to boost the immune response. By introducing specific mutations in human cGAS mRNA (hcGASK187N/L195R), we significantly enhanced cGAS activity, resulting in a more potent and sustained stimulator of interferon gene (STING)-mediated IFN response. cGAS mRNA-LNPs exhibited stimulatory effects on maturation, antigen engulfment, and antigen presentation by antigen-presenting cells, both in vitro and in vivo. Moreover, the hcGASK187N/L195R mRNA-LNP combination demonstrated a robust adjuvant effect and amplified the potency of mRNA and protein vaccines, which was a result of strong humoral and cell-mediated responses. Remarkably, the hcGASK187N/L195R mRNA-LNP complex, either alone or in combination with antigens, demonstrated exceptional efficacy in eliciting antitumor immunity. In addition to its immune-boosting properties, hcGASK187N/L195R mRNA-LNP exerted antitumor effects with IFNγ directly on tumor cells, further promoting tumor restriction. In conclusion, we developed a cGAS mRNA-based immunostimulatory adjuvant compatible with various vaccine forms to boost the adaptive immune response and cancer immunotherapies.
Collapse
Affiliation(s)
- Yali Qu
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhibin Li
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiahao Yin
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - He Huang
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Jialu Ma
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Zhelin Jiang
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Qian Zhou
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Ying Tang
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Yuting Li
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Minpeng Huang
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhutian Zeng
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ao Guo
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Fang Fang
- The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanqiong Shen
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ruibo Zhao
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| | - Yucai Wang
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
- Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Daxing Gao
- National Key Laboratory of Immune Response and Immunotherapy, Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Center for Advanced Interdisciplinary Science & Biomedicine IHM, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, China
| |
Collapse
|
24
|
Zheng SN, Zhang J, Li T, Li CH, Deng J, Li JX, Wang PH. STING-∆C, a novel splice isoform of STING, inhibits DNA virus-induced innate immunity and autophagy. Int J Biol Macromol 2025; 311:143894. [PMID: 40319960 DOI: 10.1016/j.ijbiomac.2025.143894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 04/08/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Stimulator of interferon genes (STING) plays a critical role in the innate immune response to cytosolic DNA, primarily activating type I interferons (IFNs). Although alternative splicing is known to modulate immune pathways, the influence of STING splice isoforms requires further exploration. Here, we identified STING-∆C, a novel splice isoform of STING generated by retention of intron 6, resulting in a truncated C-terminus. While STING-∆C shares its N-terminal domain with full-length STING, it contains a unique C-terminal sequence. STING-∆C acts as a dominant negative regulator of cGAS-STING signaling pathway by suppressing cGAS-, 2'3'-cGAMP-, and STING-mediated activation of the IFN response. Gain- and loss-of-function experiments showed that STING-∆C inhibited IFN production in response to double-stranded DNA and DNA virus, including HSV-1 and HPV. Furthermore, STING-∆C promoted HSV-1 replication and reduces STING-induced autophagy. Mechanistically, STING-∆C interacts with full-length STING, preventing its oligomerization and assembly with TBK1, a vital component of the STING-TBK1-IRF3 signalsome. This interaction blocks IRF3 phosphorylation and nuclear translocation, thereby halting IFN production. STING-∆C thus represents a newly identified splice isoform that negatively regulates cGAS-STING signaling. These findings broaden our understanding of STING's regulatory mechanisms and may guide therapeutic strategies for autoimmune diseases and viral infections linked to excessive STING activation.
Collapse
Affiliation(s)
- Sheng-Nan Zheng
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing Zhang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Tao Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Cheng-Hao Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jian Deng
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Jin-Xin Li
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China
| | - Pei-Hui Wang
- Department of Infectious Disease and Hepatology, The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong, China; Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
25
|
Chen F, Wen X, Li S, Wu J, Luo Y, Gao Y, Yu X, Chen L. Targeting hypoxia-mediated chemo-immuno resistance by a hybrid NBDHEX-Pt(IV) prodrug via declining nuclear STING1-promoted AhR-CIN in human lung squamous cell carcinoma. Transl Oncol 2025; 55:102350. [PMID: 40138855 PMCID: PMC11985067 DOI: 10.1016/j.tranon.2025.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
As found in human lung squamous cell carcinoma (LUSC), STING1 involved in ER-Golgi intermediate compartment (ERGIC) could coordinate immune responses to ectopic DNA triggered by DNA-targeted chemotherapy. ERGIC STING1 is considered to compete with nuclear STING1 to decline aryl hydrocarbon receptor (AhR)-chromosomal instability (CIN)-triggered chronic STING activation which could cause therapeutic resistance. Moreover, GSTP1 was proved to inhibit ERGIC-STING1 via promoting S-glutathione modification of STING1. Hence, a potent GSTP1-targeted Pt(IV) hybrid NBDHEX-DN604, was designed via conjugating a GSTP1 inhibitor NBDHEX to the axial position of Pt(IV) prodrug. As mentioned, hypoxia is mainly observed in malignant tumors and develops acquired drug resistance. In vitro bio-properties of hypoxic SK-MES-1/cDDP cells demonstrated that NBDHEX-DN604 could reverse chemo-immuno resistance via intercepting GSTP1 to activate ERGIC STING1, leading to the decrease of nuclear STING1. The mechanistic data indicated that NBDHEX-DN604 could elevate ERGIC STING1 to mitigate nuclear STING1-mediated AhR-TLS-CIN-chronic activation. Meanwhile, NBDHEX-DN604 was found to decline STING1-AhR-CIN to circumvent chemo-immuno resistance, resulting in predominant in vivo antitumor effect in HY-KLN-205/cDDP-inoculated BALB/c mice. The data provide a novel rationale for the mixed chemo-immunotherapy of NBDHEX-DN604 as a potent Pt(IV) therapeutic method for patients with resistant LUSC.
Collapse
Affiliation(s)
- Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shan Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yaxuan Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuan Gao
- Senior Department of Obstetrics & Gynecology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| | - Xiaoxuan Yu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Li Chen
- Suzhou Institute for Drug Control, Suzhou 215104, PR China.
| |
Collapse
|
26
|
Zhou XY, Zhang NC, Zhang XN, Sun XD, Ruan ZL, Yang Q, Hu MM, Shu HB. The carcinogenic metabolite acetaldehyde impairs cGAS activity to negatively regulate antiviral and antitumor immunity. Cancer Lett 2025; 617:217615. [PMID: 40056967 DOI: 10.1016/j.canlet.2025.217615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
The cGAS-MITA/STING pathway plays critical roles in both host defense against DNA virus and intrinsic antitumor immunity by sensing viral genomic DNA or dis-located mitochondrial/cellular DNA. Whether carcinogenic metabolites can target the cGAS-MITA axis to promote tumorigenesis is unknown. In this study, we identified acetaldehyde, a carcinogenic metabolite, as a suppressor of the cGAS-MITA pathway. Acetaldehyde inhibits the DNA virus herpes simplex virus 1 (HSV-1)- and transfected DNA-triggered but not cGAMP-induced activation of downstream components and induction of downstream effector genes. Mechanistically, acetaldehyde impairs the binding of cGAS to DNA as well as the phase separation of the cGAS-DNA complex in cells. In mouse models, acetaldehyde inhibits antiviral cytokine production, promotes viral replication and lethality upon HSV-1 infection. In a colorectal tumor xenograft model, acetaldehyde promotes tumor growth and inhibits CD8+ T cell infiltration by targeting cGAS in both the tumor cells and immune cells in mice. Bioinformatic analysis indicates that expression of acetaldehyde dehydrogenase 2 (ALDH2), which converts acetaldehyde to acetic acid, is negatively correlated with stimulatory immune signatures in clinical colorectal tumors, and higher ALDH2 expression exhibits better prognosis of colorectal cancer patients. Collectively, our results suggest that acetaldehyde impairs cGAS activity to inhibit the cGAS-MITA axis, which contributes to its effects on carcinogenesis.
Collapse
Affiliation(s)
- Xiao-Yue Zhou
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Nian-Chao Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Xia-Nan Zhang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Xue-Dan Sun
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Zi-Lun Ruan
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Qing Yang
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology, State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
27
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1309-1323. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
28
|
Lang J, Bergner T, Zinngrebe J, Lepelley A, Vill K, Leiz S, Wlaschek M, Wagner M, Scharffetter-Kochanek K, Fischer-Posovszky P, Read C, Crow YJ, Hirschenberger M, Sparrer KMJ. Distinct pathogenic mutations in ARF1 allow dissection of its dual role in cGAS-STING signalling. EMBO Rep 2025; 26:2232-2261. [PMID: 40128408 PMCID: PMC7617634 DOI: 10.1038/s44319-025-00423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Tight control of cGAS-STING-mediated DNA sensing is crucial to avoid auto-inflammation. The GTPase ADP-ribosylation factor 1 (ARF1) is crucial to maintain cGAS-STING homeostasis and various pathogenic ARF1 variants are associated with type I interferonopathies. Functional ARF1 inhibits STING activity by maintaining mitochondrial integrity and facilitating COPI-mediated retrograde STING trafficking and deactivation. Yet the factors governing the two distinct functions of ARF1 remained unexplored. Here, we dissect ARF1's dual role by a comparative analysis of disease-associated ARF1 variants and their impact on STING signalling. We identify a de novo heterozygous s.55 C > T/p.R19C ARF1 variant in a patient with type I interferonopathy symptoms. The GTPase-deficient variant ARF1 R19C selectively disrupts COPI binding and retrograde transport of STING, thereby prolonging innate immune activation without affecting mitochondrial integrity. Treatment of patient fibroblasts in vitro with the STING signalling inhibitors H-151 and amlexanox reduces chronic interferon signalling. Summarizing, our data reveal the molecular basis of a ARF1-associated type I interferonopathy allowing dissection of the two roles of ARF1, and suggest that pharmacological targeting of STING may alleviate ARF1-associated auto-inflammation.
Collapse
Affiliation(s)
- Johannes Lang
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Tim Bergner
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Julia Zinngrebe
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Alice Lepelley
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
| | - Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauner Children's Hospital, LMU-University of Munich, Munich, Germany
| | - Steffen Leiz
- Division of Neuropediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University Medical Center, Ulm, Germany
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munich, Munich, Germany
| | | | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), Partner site Ulm, Ulm, Germany
| | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Yanick J Crow
- Institut Imagine-Inserm UMR1163, Laboratory of Neurogenetics and Neuroinflammation, Université Paris Cité, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
29
|
Xie X, Lian S, Yang W, He S, He J, Wang Y, Zeng Y, Lu F, Jiang J. Natural products for the treatment of age-related macular degeneration: New insights focusing on mitochondrial quality control and cGAS/STING pathway. J Pharm Anal 2025; 15:101145. [PMID: 40491424 PMCID: PMC12146544 DOI: 10.1016/j.jpha.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 06/11/2025] Open
Abstract
Age-related macular degeneration (AMD) is a disease that affects the vision of elderly individuals worldwide. Although current therapeutics have shown effectiveness against AMD, some patients may remain unresponsive and continue to experience disease progression. Therefore, in-depth knowledge of the mechanism underlying AMD pathogenesis is urgently required to identify potential drug targets for AMD treatment. Recently, studies have suggested that dysfunction of mitochondria can lead to the aggregation of reactive oxygen species (ROS) and activation of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) innate immunity pathways, ultimately resulting in sterile inflammation and cell death in various cells, such as cardiomyocytes and macrophages. Therefore, combining strategies targeting mitochondrial dysfunction and inflammatory mediators may hold great potential in facilitating AMD management. Notably, emerging evidence indicates that natural products targeting mitochondrial quality control (MQC) and the cGAS/STING innate immunity pathways exhibit promise in treating AMD. Here, we summarize phytochemicals that could directly or indirectly influence the MQC and the cGAS/STING innate immunity pathways, as well as their interconnected mediators, which have the potential to mitigate oxidative stress and suppress excessive inflammatory responses, thereby hoping to offer new insights into therapeutic interventions for AMD treatment.
Collapse
Affiliation(s)
- Xuelu Xie
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
- Department of Neurosurgery, Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Shan Lian
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Wenyong Yang
- Department of Neurosurgery, Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, The Third People's Hospital of Chengdu, Chengdu, 610014, China
| | - Sheng He
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingqiu He
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Yuke Wang
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Yan Zeng
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| | - Jingwen Jiang
- Department of Ophthalmology, West China Hospital and West China School of Public Health and West China Fourth Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Tianfu Jincheng Laboratory, Chengdu, 610041, China
| |
Collapse
|
30
|
Zheng X, Fang D, Shan H, Xiao B, Wei D, Ouyang Y, Huo L, Zhang Z, Wu Y, Zhang R, Kang T, Gao Y. The assembly of RAB22A/TMEM33/RTN4 initiates a secretory ER-phagy pathway. Cell Discov 2025; 11:41. [PMID: 40301304 PMCID: PMC12041605 DOI: 10.1038/s41421-025-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.
Collapse
Affiliation(s)
- Xueping Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Dongmei Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Hao Shan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yingyi Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Lanqing Huo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Zhonghan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| | - Ying Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Song K, Heng L, Yan N. STING: a multifaced player in cellular homeostasis. Hum Mol Genet 2025:ddae175. [PMID: 40292755 DOI: 10.1093/hmg/ddae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
The stimulator of interferon gene (STING) is an important innate immune mediator of the cytoplasmic DNA sensing pathway. As a mediator known for its role in the immune response to infections, STING is also surprisingly at the center of a variety of non-infectious human diseases, including cancer, autoimmune diseases and neurodegenerative diseases. Recent studies have shown that STING has many signaling activities, including type I interferon (IFN-I) and other IFN-independent activities, many of which are poorly understood. STING also has the unique property of being continuous transported from the ER to the Golgi then to the lysosome. Mutations of STING or trafficking cofactors are associated with human diseases affecting multiple immune and non-immune organs. Here, we review recent advances in STING trafficking and signaling mechanisms based in part on studies of STING-associated monogenic inborn error diseases.
Collapse
Affiliation(s)
- Kun Song
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Lyu Heng
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, United States
| |
Collapse
|
32
|
Wang X, Chen T, Chen S, Zhang J, Cai L, Liu C, Zhang Y, Wu X, Li N, Ma Z, Cao L, Li Q, Guo C, Deng Q, Qi W, Hou Y, Ren R, Sui W, Zheng H, Zhang Y, Zhang M, Zhang C. STING aggravates ferroptosis-dependent myocardial ischemia-reperfusion injury by targeting GPX4 for autophagic degradation. Signal Transduct Target Ther 2025; 10:136. [PMID: 40274801 PMCID: PMC12022026 DOI: 10.1038/s41392-025-02216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Despite advancements in interventional coronary reperfusion technologies following myocardial infarction, a notable portion of patients continue to experience elevated mortality rates as a result of myocardial ischemia-reperfusion (MI/R) injury. An in-depth understanding of the mechanisms underlying MI/R injury is crucial for devising strategies to minimize myocardial damage and enhance patient survival. Here, it is discovered that during MI/R, double-stranded DNA (dsDNA)-cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal accumulates, accompanied by high rates of myocardial ferroptosis. The specific deletion of cgas or Sting in cardiomyocytes, resulting in the inhibition of oxidative stress, has been shown to mitigate ferroptosis and I/R injury. Conversely, activation of STING exacerbates ferroptosis and I/R injury. Mechanistically, STING directly targets glutathione peroxidase 4 (GPX4) to facilitate its degradation through autophagy, by promoting the fusion of autophagosomes and lysosomes. This STING-GPX4 axis contributes to cardiomyocyte ferroptosis and forms a positive feedback circuit. Blocking the STING-GPX4 interaction through mutations in T267 of STING or N146 of GPX4 stabilizes GPX4. Therapeutically, AAV-mediated GPX4 administration alleviates ferroptosis induced by STING, resulting in enhanced cardiac functional recovery from MI/R injury. Additionally, the inhibition of STING by H-151 stabilizes GPX4 to reverse GPX4-induced ferroptosis and alleviate MI/R injury. Collectively, a novel autophagy-dependent ferroptosis mechanism is identified in this study. Specifically, STING autophagy induced by anoxia or ischemia-reperfusion leads to GPX4 degradation, thereby presenting a promising therapeutic target for heart diseases associated with I/R.
Collapse
Affiliation(s)
- Xiaohong Wang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Tao Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Sizhe Chen
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Liangyu Cai
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Changhao Liu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yujie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao Wu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Na Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhiyong Ma
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lei Cao
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qian Li
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chenghu Guo
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Qiming Deng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wenqian Qi
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yonghao Hou
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ruiqing Ren
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Haonan Zheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Meng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
Wang SY, Chen YS, Jin BY, Bilal A. The cGAS-STING pathway in atherosclerosis. Front Cardiovasc Med 2025; 12:1550930. [PMID: 40351606 PMCID: PMC12062000 DOI: 10.3389/fcvm.2025.1550930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Atherosclerosis (AS), a chronic inflammatory disease, remains a leading contributor to cardiovascular morbidity and mortality. Recent studies highlight the critical role of the cGAS-STING pathway-a key innate immune signaling cascade-in driving AS progression. This pathway is activated by cytoplasmic DNA from damaged cells, thereby triggering inflammation and accelerating plaque formation. While risk factors such as aging, obesity, smoking, hypertension, and diabetes are known to exacerbate AS, emerging evidence suggests that these factors may also enhance cGAS-STING pathway, which amplifies inflammatory responses. Targeting this pathway offers a promising therapeutic strategy to reduce the burden of cardiovascular diseases (CVD). In this review, we summarize the mechanisms of the cGAS-STING pathway, explore its role in AS, and evaluate potential inhibitors as future therapeutic candidates. By integrating current knowledge, we aim to provide insights for developing novel treatments to mitigate AS and CVD burden.
Collapse
Affiliation(s)
- Si-yu Wang
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yu-shan Chen
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Bo-yuan Jin
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ahmad Bilal
- Department of Cardiology, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
- The First Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Han D, Zhang B, Wang Z, Mi Y. Cell-Autonomous Immunity: From Cytosolic Sensing to Self-Defense. Int J Mol Sci 2025; 26:4025. [PMID: 40362284 PMCID: PMC12071787 DOI: 10.3390/ijms26094025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
As an evolutionarily conserved and ubiquitous mechanism of host defense, non-immune cells in vertebrates possess the intrinsic ability to autonomously detect and combat intracellular pathogens. This process, termed cell-autonomous immunity, is distinct from classical innate immunity. In this review, we comprehensively examine the defense mechanisms employed by non-immune cells in response to intracellular pathogen invasion. We provide a detailed analysis of the cytosolic sensors that recognize aberrant nucleic acids, lipopolysaccharide (LPS), and other pathogen-associated molecular patterns (PAMPs). Specifically, we elucidate the molecular mechanisms underlying key signaling pathways, including the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway, the retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mitochondrial antiviral signaling (MAVS) axis, and the guanylate-binding proteins (GBPs)-mediated pathway. Furthermore, we critically evaluate the involvement of these pathways in the pathogenesis of various diseases, including autoimmune disorders, inflammatory conditions, and malignancies, while highlighting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Danlin Han
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Bozheng Zhang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Zhe Wang
- The First Clinical Medical College, Zhengzhou University, Zhengzhou 450052, China; (D.H.); (B.Z.); (Z.W.)
| | - Yang Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
35
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Tapia PJ, Martina JA, Contreras PS, Prashar A, Jeong E, De Nardo D, Puertollano R. TFEB and TFE3 regulate STING1-dependent immune responses by controlling type I interferon signaling. Autophagy 2025:1-18. [PMID: 40195022 DOI: 10.1080/15548627.2025.2487036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
STING1 is an essential component of the innate immune defense against a wide variety of pathogens. Whereas induction of type I interferon (IFN) responses is one of the best-defined functions of STING1, our transcriptomic analysis revealed IFN-independent activities of STING1 in macrophages, including transcriptional upregulation of numerous lysosomal and autophagic genes. This upregulation was mediated by the STING1-induced activation of the transcription factors TFEB and TFE3, and led to increased autophagy, lysosomal biogenesis, and lysosomal acidification. TFEB and TFE3 also modulated IFN-dependent STING1 signaling by controlling IRF3 activation. IFN production and cell death were increased in TFEB- and TFE3-depleted iBMDMs. Conversely, TFEB overexpression led to reduced IRF3 activation and an almost complete inhibition of IFN synthesis and secretion, resulting in decreased CASP3 activation and increased cell survival. Our study reveals a key role of TFEB and TFE3 as regulators of STING1-mediated innate antiviral immunity.Abbreviation: ACOD1/IRG1, aconitate decarboxylase 1; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; CGAS, cyclic GMP-AMP synthase; DMXAA, 5,6-dimethylxanthenone-4-acetic acid; EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1; GABARAP, GABA type A receptor-associated protein; HSV-1, herpes simplex virus type; iBMDMs, immortalized bone marrow-derived macrophages; IFN, type I interferon; IFNB, interferon beta; IKBKE, inhibitor of nuclear factor kappa B kinase subunit epsilon; IRF3, interferon regulatory factor 3; LAMP1, lysosomal associated membrane protein 1; LAMP2, lysosomal associated membrane protein 2; MTORC1, mechanistic target of rapamycin kinase complex 1; RPS6, ribosomal protein S6; STING1, stimulator of interferon response cGAMP interactor 1; TBK1, TANK binding kinase 1; TFE3, transcription factor binding to IGHM enhancer 3; TFEB, transcription factor EB.
Collapse
Affiliation(s)
- Pablo J Tapia
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - José A Martina
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Akriti Prashar
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eutteum Jeong
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Tang Z, Xing C, Araszkiewicz A, Yang K, Huai W, Jeltema D, Dobbs N, Zhang Y, Sun LO, Yan N. STING mediates lysosomal quality control and recovery through its proton channel function and TFEB activation in lysosomal storage disorders. Mol Cell 2025; 85:1624-1639.e5. [PMID: 40185098 PMCID: PMC12009194 DOI: 10.1016/j.molcel.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/22/2024] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Lysosomes are essential organelles for cellular homeostasis. Defective lysosomes are associated with diseases like lysosomal storage disorders (LSDs). How lysosomal defects are detected and lysosomal function restored remain incompletely understood. Here, we show that STING mediates a neuroinflammatory gene signature in three distinct LSD mouse models, Galctwi/twi, Ppt1-/-, and Cln7-/-. Transcriptomic analysis of Galctwi/twi mouse brain tissue revealed that STING also mediates the expression of lysosomal genes that are regulated by transcriptional factor EB (TFEB). Immunohistochemical and single-nucleus RNA-sequencing (snRNA-seq) analysis show that STING regulates lysosomal gene expression in microglia. Mechanistically, we show that STING activation leads to TFEB dephosphorylation, nuclear translocation, and expression of lysosomal genes. This process requires STING's proton channel function, the V-ATPase-ATG5-ATG8 cascade, and is independent of immune signaling. Furthermore, we show that the STING-TFEB axis facilitates lysosomal repair. Together, our data identify STING-TFEB as a lysosomal quality control mechanism that responds to lysosomal dysfunction.
Collapse
Affiliation(s)
- Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Antonina Araszkiewicz
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanwan Huai
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Devon Jeltema
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicole Dobbs
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yihe Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lu O Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
38
|
Xu F, Yu D, Guo J, Hu J, Zhao Y, Jiang C, Meng X, Cai J, Zhao Y. From pathology to therapy: A comprehensive review of ATRX mutation related molecular functions and disorders. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108537. [PMID: 40250797 DOI: 10.1016/j.mrrev.2025.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
ATRX (alpha-thalassemia/mental retardation, X-linked), a chromatin remodeler, is one of the most commonly mutated genes in human cancer. The ATRX protein functions as a histone chaperone, facilitating the proper folding and assembly of histone proteins into nucleosome cores. Investigations into its molecular mechanisms have significantly advanced our understanding of its roles in diseases associated with chromosomal instability and defective DNA repair. In this comprehensive review, we delineate ATRX's critical function in maintaining heterochromatin integrity and genomic stability under physiological conditions. We further explore the pathogenesis of ATRX-deficient tumors and ATRX syndrome, systematically evaluate current therapeutic strategies for these conditions, and propose novel perspectives on potential targeted therapies for ATRX-mutated malignancies. This review provides useful resource for regarding the etiology and treatment of ATRX deficiency-related diseases.
Collapse
Affiliation(s)
- Fan Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jiazheng Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Jingze Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Yunlei Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China; The Sixth Affiliated Hospital of Harbin Medical University, #998 AiYing Street, Harbin, Heilongjiang Province 150023, PR China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China; Heilongjiang Provincial Clinical Research Center for Glioma, PR China.
| | - Yan Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, #246 Xuefu Road, Harbin, Heilongjiang Province 150086, PR China.
| |
Collapse
|
39
|
Dang Y, Ma M, Wang Y, Zhao M, Cao Y, Su H, Liu T, Zheng M, Gao J, Wu X, Xu J, Chen L, Xi JJ, Fei Y, Liu H. Carvedilol sensitizes chemotherapy by targeting STING to boost anti-tumor immunity. Cell Rep 2025; 44:115572. [PMID: 40249703 DOI: 10.1016/j.celrep.2025.115572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/26/2025] [Indexed: 04/20/2025] Open
Abstract
The stimulator of interferon genes (STING)-mediated type I interferon (IFN) response is critical for mounting anti-tumor immunity and sensitizing chemotherapy by remodeling the tumor immune microenvironment. However, no clinically available drugs have been applied for STING activation. Based on high-throughput screening of small-molecule microarrays, we found that carvedilol, an adrenergic receptor blocker used to treat essential hypertension and symptomatic heart failure, is a STING activator. Mechanistically, carvedilol interacts with STING at threonine 263 and enhances its dimerization. Importantly, carvedilol enhances the therapeutic effect of etoposide in both the allografted tumor model and patient-derived tumor-like cell clusters (PTCs) by promoting etoposide-induced STING activation. Our findings identify carvedilol as a STING activator and provide a theoretical basis for combining carvedilol and etoposide in cancer therapy.
Collapse
Affiliation(s)
- Yifang Dang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China; Central Laboratory, Taicang Hospital Affiliated to Soochow University, Taicang 215400, China
| | - Mingtong Ma
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yajuan Cao
- Department of Integrated Traditional Chinese and Western Medicine, Tongji University School of Medicine, Shanghai 200433, China
| | - Hang Su
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Tianhao Liu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Mengge Zheng
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China
| | - Jiani Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Xiangyang Wu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Junfang Xu
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Department of Microbiology and Immunology, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
40
|
Luo C, Ma C, Xu G, Lu C, Ma J, Huang Y, Nie L, Yu C, Xia Y, Liu Z, Zhu Y, Liu S. Hepatitis B surface antigen hijacks TANK-binding kinase 1 to suppress type I interferon and induce early autophagy. Cell Death Dis 2025; 16:304. [PMID: 40234418 PMCID: PMC12000394 DOI: 10.1038/s41419-025-07605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
There are close links between innate immunity and autophagy. However, the crosstalk between innate immunity and autophagy in host cells infected with hepatitis B virus (HBV) remains unclear. Here, we reported that HBsAg suppressed type I interferon production and induced the accumulation of autophagosomes. HBsAg boosted TANK-binding kinase 1 (TBK1) phosphorylation and depressed interferon regulatory factor 3 (IRF3) phosphorylation ex vivo and in vivo. Mechanistic studies showed that HBsAg interaction with the kinase domain (KD) of TBK1 augmented its dimerization but disrupted TBK1-IRF3 complexes. Using the TBK1 inhibitor, BX795, we discovered that HBsAg-enhanced TBK1 dimerization, promoting sequestosome-1 (p62) phosphorylation, was necessary for HBV-induced autophagy and HBV replication. Moreover, HBsAg blocked autophagosome-lysosome fusion by inhibiting the synaptosomal-associated protein 29 (SNAP29) promoter. Notably, liver tissues from HBsAg transgenic mice or chronic HBV patients revealed that IFNβ signaling was inhibited and incomplete autophagy was induced. These findings suggest a novel mechanism by which HBsAg targets TBK1 to inhibit type I interferon and induce early autophagy, possibly leading to persistent HBV infection. Molecular mechanisms of HBsAg suppression of the IFNβ signaling pathway and triggering of early autophagy. HBsAg targets the kinase domain of TBK1, thereby disrupting the TBK1-IRF3 complex and inhibiting type I interferon production. On the other hand, HBsAg enhances TBK1 dimerization and phosphorylation, which upregulates the phosphorylation of p62 to induce p62-mediated autophagy. Furthermore, HBV infection causes the accumulation of autophagosomes. This is achieved by HBsAg suppressing the SNAP29 promoter activity, which blocks autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Chuanjin Luo
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Caijiao Ma
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengbo Lu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - June Ma
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Longyu Nie
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Yu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongfang Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
41
|
Gharpure A, Sulpizio A, Loeffler JR, Fernández-Quintero ML, Tran AS, Lairson LL, Ward AB. Distinct oligomeric assemblies of STING induced by non-nucleotide agonists. Nat Commun 2025; 16:3440. [PMID: 40216780 PMCID: PMC11992164 DOI: 10.1038/s41467-025-58641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
STING plays essential roles coordinating innate immune responses to processes that range from pathogenic infection to genomic instability. Its adaptor function is activated by cyclic dinucleotide (CDN) secondary messengers originating from self (2'3'-cGAMP) or bacterial sources (3'3'-CDNs). Different classes of CDNs possess distinct binding modes, stabilizing STING's ligand-binding domain (LBD) in either a closed or open conformation. The closed conformation, induced by the endogenous ligand 2'3'-cGAMP, has been extensively studied using cryo-EM. However, significant questions remain regarding the structural basis of STING activation by open conformation-inducing ligands. Using cryo-EM, we investigate potential differences in conformational changes and oligomeric assemblies of STING for closed and open conformation-inducing synthetic agonists. While we observe a characteristic 180° rotation for both classes, the open-LBD inducing agonist diABZI-3 uniquely induces a quaternary structure reminiscent but distinct from the reported autoinhibited state of apo-STING. Additionally, we observe slower rates of activation for this ligand class in functional assays, which collectively suggests the existence of a potential additional regulatory mechanism for open conformation-inducing ligands that involves head-to-head interactions and restriction of curved oligomer formation. These observations have potential implications in the selection of an optimal class of STING agonist in the context of a defined therapeutic application.
Collapse
Affiliation(s)
- Anant Gharpure
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Ariana Sulpizio
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Johannes R Loeffler
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | | | - Andy S Tran
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
42
|
Terraza-Silvestre E, Villamuera R, Bandera-Linero J, Letek M, Oña-Sánchez D, Ramón-Barros C, Moyano-Jimeno C, Pimentel-Muiños FX. An unconventional autophagic pathway that inhibits ATP secretion during apoptotic cell death. Nat Commun 2025; 16:3409. [PMID: 40210636 PMCID: PMC11986000 DOI: 10.1038/s41467-025-58619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
Mobilisation of Damage-Associated Molecular Patterns (DAMPs) determines the immunogenic properties of apoptosis, but the mechanisms that control DAMP exposure are still unclear. Here we describe an unconventional autophagic pathway that inhibits the release of ATP, a critical DAMP in immunogenic apoptosis, from dying cells. Mitochondrial BAK activated by BH3-only molecules interacts with prohibitins and stomatin-1 through its latch domain, indicating the existence of an interactome specifically assembled by unfolded BAK. This complex engages the WD40 domain of the autophagic effector ATG16L1 to induce unconventional autophagy, and the resulting LC3-positive vesicles contain ATP. Functional interference with the pathway increases ATP release during cell death, reduces ATP levels remaining in the apoptotic bodies, and improves phagocyte activation. These results reveal that an unconventional component of the autophagic burst that often accompanies apoptosis sequesters intracellular ATP to prevent its release, thus favouring the immunosilent nature of apoptotic cell death.
Collapse
Affiliation(s)
- Elena Terraza-Silvestre
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Raquel Villamuera
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Julia Bandera-Linero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Michal Letek
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071, León, Spain
| | - Daniel Oña-Sánchez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Cristina Ramón-Barros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Clara Moyano-Jimeno
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain
| | - Felipe X Pimentel-Muiños
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, 28049, Madrid, Spain.
| |
Collapse
|
43
|
Song M, Ren J, Zhu Z, Yi Z, Wang C, Liang L, Tian J, Mao G, Mao G, Chen M. The STING Signaling: A Novel Target for Central Nervous System Diseases. Cell Mol Neurobiol 2025; 45:33. [PMID: 40195137 PMCID: PMC11977075 DOI: 10.1007/s10571-025-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
The canonical cyclic GMP-AMP (cGAMP) synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway has been widely recognized as a crucial mediator of inflammation in many diseases, including tumors, infections, and tissue damage. STING signaling can also be activated in a cGAS- or cGAMP-independent manner, although the specific mechanisms remain unclear. In-depth studies on the structural and molecular biology of the STING pathway have led to the development of therapeutic strategies involving STING modulators and their targeted delivery. These strategies may effectively penetrate the blood-brain barrier (BBB) and target STING signaling in multiple central nervous system (CNS) diseases in humans. In this review, we outline both canonical and non-canonical pathways of STING activation and describe the general mechanisms and associations between STING activity and CNS diseases. Finally, we discuss the prospects for the targeted delivery and clinical application of STING agonists and inhibitors, highlighting the STING signaling pathway as a novel therapeutic target in CNS diseases.
Collapse
Affiliation(s)
- Min Song
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Jianxun Ren
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Zhipeng Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
- Department of Neurosurgery, Shangrao People's Hospital, Shangrao, Jiangxi Province, China
| | - Zhaohui Yi
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Chengyun Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Lirong Liang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Jiahui Tian
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Guofu Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China
| | - Guohua Mao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China.
| | - Min Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1 Minde Road, Nanchang, Jiangxi, China.
| |
Collapse
|
44
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
45
|
Cancado de Faria R, Silva L, Teodoro-Castro B, McCommis KS, Shashkova EV, Gonzalo S. A non-canonical cGAS-STING pathway drives cellular and organismal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.645994. [PMID: 40236012 PMCID: PMC11996560 DOI: 10.1101/2025.04.03.645994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Accumulation of cytosolic DNA has emerged as a hallmark of aging, inducing sterile inflammation. STING (Stimulator of Interferon Genes) protein translates the sensing of cytosolic DNA by cGAS (cyclic-GMP-AMP synthase) into an inflammatory response. However, the molecular mechanisms whereby cytosolic DNA-induced cGAS-STING pathway leads to aging remain poorly understood. We show that STING does not follow the canonical pathway of activation in human fibroblasts passaged (aging) in culture, senescent fibroblasts, or progeria fibroblasts (from Hutchinson Gilford Progeria Syndrome patients). Despite cytosolic DNA buildup, features of the canonical cGAS-STING pathway like increased cGAMP production, STING phosphorylation, and STING trafficking to perinuclear compartment are not observed in progeria/senescent/aging fibroblasts. Instead, STING localizes at endoplasmic reticulum, nuclear envelope, and chromatin. Despite the non-conventional STING behavior, aging/senescent/progeria cells activate inflammatory programs such as the senescence-associated secretory phenotype (SASP) and the interferon (IFN) response, in a cGAS and STING-dependent manner, revealing a non-canonical pathway in aging. Importantly, progeria/aging/senescent cells are hindered in their ability to activate the canonical cGAS-STING pathway with synthetic DNA, compared to young cells. This deficiency is rescued by activating vitamin D receptor signaling, unveiling new mechanisms regulating the cGAS-STING pathway in aging. Significantly, in HGPS, inhibition of the non-canonical cGAS-STING pathway ameliorates cellular hallmarks of aging, reduces tissue degeneration, and extends the lifespan of progeria mice. Our study reveals that a new feature of aging is the progressively reduced ability to activate the canonical cGAS-STING pathway in response to cytosolic DNA, triggering instead a non-canonical pathway that drives senescence/aging phenotypes. Significance Statement Our study provides novel insights into the mechanisms driving sterile inflammation in aging and progeria. We reveal a previously unrecognized characteristic of aging cells: the progressive loss of ability to activate the canonical response to foreign or self-DNA at the cytoplasm. Instead, aging, senescent, and progeria cells activate inflammatory programs via a non-conventional pathway driven by cGAS and the adaptor protein STING. Importantly, pharmacological inhibition of the non-canonical cGAS-STING pathway ameliorates cellular, tissue and organismal decline in a devastating accelerated aging disease (Hutchinson Gilford Progeria Syndrome), highlighting it as a promising therapeutic target for age-related pathologies.
Collapse
|
46
|
Vasiyani H, Wadhwa B. STING activation and overcoming the challenges associated with STING agonists using ADC (antibody-drug conjugate) and other delivery systems. Cell Signal 2025; 128:111647. [PMID: 39922441 DOI: 10.1016/j.cellsig.2025.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
In current immunotherapy cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon genes) pathway considered as most focused area after CAR-T cell. Exploitation of host immunity against cancer using STING agonists generates the most interest as a therapeutic target. Classically cGAS activation through cytoplasmic DNA generates 2'3'cGAMP that is naturally identified STING agonist. Activation of STING leads to activation of type-1 interferon response and pro-inflammatory cytokines through TBK/IRF-3, TBK/NF-κB pathways. Pro-inflammatory cytokines attract immune cells to the tumor microenvironment and type-1 interferon exposes tumor antigens to T cells and NK cells, which leads to the activation of cellular immunity against tumor cells and eliminates tumor cells. Initially bacterial-derived c-di-AMP and c-di-GMP were identified as CDNs (Cyclic-dinucleotide) STING agonists. Moreover, chemically modified CDNs and completely synthetic STING agonists have been developed. Even though the breakthrough preclinical development none of the STING agonists were approved the by FDA for cancer therapy. All identified natural CDNs have poor pharmacokinetic properties due to high hydrophilicity and negative charge. Moreover, phosphodiester bonds in CDNs are most vulnerable to enzymatic degradation. Synthetic STING agonists have an off-target effect that generates autoimmunity and cytokine storm. STING agonist needs to improve for pharmacokinetics, efficacy, and safety. In this scenario delivery systems can overcome the challenges associated with STING agonists. Here, we highlight the ways of STING agonisms as direct and indirect, and further, we also discuss the existing STING agonists associated challenges and ongoing efforts for delivery of STING agonists in the tumor microenvironment (TME) via different non-targeted carriers like Nanoparticle, Hydrogel, Micelle, Liposome. We also discussed the most advanced targeted deliveries of ADC (Antibody-drug conjugate) and aptamers-based delivery.
Collapse
Affiliation(s)
- Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA.
| | - Bhumika Wadhwa
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| |
Collapse
|
47
|
Li X, Xu S, Su Z, Shao Z, Huang X. Unleashing the Potential of Metal Ions in cGAS-STING Activation: Advancing Nanomaterial-Based Tumor Immunotherapy. ACS OMEGA 2025; 10:11723-11742. [PMID: 40191377 PMCID: PMC11966298 DOI: 10.1021/acsomega.4c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 04/09/2025]
Abstract
Immunotherapy is a critical modality in cancer treatment with diverse activation pathways. In recent years, the stimulator of interferon genes (STING) signaling pathway has exhibited significant potential in tumor immunotherapy. This pathway exerts notable antitumor effects by activating innate and adaptive immunity and regulating the tumor immune microenvironment. Various metal ions have been identified as effective activators of the STING pathway and, through the design and synthesis of nanodelivery platforms, have been applied in immunotherapy as well as in combination therapies, such as chemotherapy, chemodynamic therapy, photodynamic therapy, and cancer vaccines. Metal nanomaterials showcase unique advantages in immunotherapy; however, there are still aspects that require optimization. This review systematically examines existing metal-based nanomaterials, elaborates on the mechanisms by which different metal ions activate the STING pathway, and discusses their application models in tumor combination therapies. We also provide a comparative analysis of the advantages of metal nanomaterials over other treatment methods. Our exploration highlights the broad application prospects of metal nanomaterials in cancer treatment, offering new insights and directions for the advancement of tumor immunotherapy.
Collapse
Affiliation(s)
- Xingyin Li
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaojie Xu
- Department
of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziliang Su
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Huang
- Department
of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
48
|
Han X, Wang X, Han F, Yan H, Sun J, Zhang X, Moog C, Zhang C, Su B. The cGAS-STING pathway in HIV-1 and Mycobacterium tuberculosis coinfection. Infection 2025; 53:495-511. [PMID: 39509013 DOI: 10.1007/s15010-024-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection is the most common opportunistic infection in human immunodeficiency virus-1 (HIV-1)-infected individuals, and the mutual reinforcement of these two pathogens may accelerate disease progression and lead to rapid mortality. Therefore, HIV-1/M. tuberculosis coinfection is one of the major global public health concerns. HIV-1 infection is the greatest risk factor for M. tuberculosis infection and increases the likelihood of endogenous relapse and exogenous reinfection with M. tuberculosis. Moreover, M. tuberculosis further increases HIV-1 replication and the occurrence of chronic immune activation, accelerating the progression of HIV-1 disease. Exploring the pathogenesis of HIV-1/M. tuberculosis coinfections is essential for the development of novel treatments to reduce the global burden of tuberculosis. Innate immunity, which is the first line of host immune defense, plays a critical role in resisting HIV-1 and M. tuberculosis infections. The role of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, which is a major DNA-sensing innate immune signaling pathway, in HIV-1 infection and M. tuberculosis infection has been intensively studied. This paper reviews the role of the cGAS-STING signaling pathway in HIV-1 infection and M. tuberculosis infection and discusses the possible role of this pathway in HIV-1/M. tuberculosis coinfection to provide new insight into the pathogenesis of HIV-1/M. tuberculosis coinfection and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Laboratoire d'ImmunoRhumatologie Moléculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Transplantex, Strasbourg, NG, 67000, France
- Vaccine Research Institute (VRI), Créteil, 94000, France
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
49
|
Smarduch S, Moreno-Velasquez SD, Ilic D, Dadsena S, Morant R, Ciprinidis A, Pereira G, Binder M, García-Sáez AJ, Acebrón SP. A novel biosensor for the spatiotemporal analysis of STING activation during innate immune responses to dsDNA. EMBO J 2025; 44:2157-2182. [PMID: 39984755 PMCID: PMC11962129 DOI: 10.1038/s44318-025-00370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 02/23/2025] Open
Abstract
The cGAS-STING signalling pathway has a central role in the innate immune response to extrinsic and intrinsic sources of cytoplasmic dsDNA. At the core of this pathway is cGAS-dependent production of the intra- and extra-cellular messenger cGAMP, which activates STING and leads to IRF3-dependent expression of cytokines and interferons. Despite its relevance to viral and bacterial infections, cell death, and genome instability, the lack of specific live-cell reporters has precluded spatiotemporal analyses of cGAS-STING signalling. Here, we generate a fluorescent biosensor termed SIRF (STING-IRF3), which reports on the functional interaction between activated STING and IRF3 at the Golgi. We show that cells harbouring SIRF react in a time- and concentration-dependent manner both to STING agonists and to microenvironmental cGAMP. We demonstrate that the new biosensor is suitable for single-cell characterisation of immune responses to HSV-1 infection, mtDNA release upon apoptosis, or other sources of cytoplasmic dsDNA. Furthermore, our results indicate that STING signalling is not activated by ruptured micronuclei, suggesting that other cytosolic pattern recognition receptors underlie the interferon responses to chromosomal instability.
Collapse
Affiliation(s)
- Steve Smarduch
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | | | - Doroteja Ilic
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shashank Dadsena
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
| | - Ryan Morant
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anja Ciprinidis
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gislene Pereira
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
- Molecular Biology of Centrosome and Cilia, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Division of Virus-associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Institute of Genetics, CECAD, University of Cologne, Cologne, Germany
- Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
- IKERBASQUE, Basque Foundation of Science, Bilbao, Spain.
- University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
50
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|