1
|
Zhang S, Li S, Li X, Wan C, Cui L, Wang Y. Anti-fibrosis effect of astragaloside IV in animal models of cardiovascular diseases and its mechanisms: a systematic review. PHARMACEUTICAL BIOLOGY 2025; 63:250-263. [PMID: 40260854 PMCID: PMC12016237 DOI: 10.1080/13880209.2025.2488994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
CONTEXT Myocardial fibrosis is a common manifestation of end-stage cardiovascular disease, but there is a lack of means to reverse fibrosis. Astragaloside IV (AS-IV), the major active component of Astragalus membranaceus Fisch. ex Bunge Fabaceae, possesses diverse biological activities that have beneficial effects against cardiovascular disease. OBJECTIVE This systematic review aims to summarize the anti-fibrosis effect of AS-IV in animal models (rats or mice only) and its underlying mechanisms, and provide potential directions for the clinical use of AS-IV. METHODS PubMed, EMBASE, Web of Science, CNKI, Wanfang database, and SinoMed were searched from inception to 31 December 2024. The following characteristics of the included studies were extracted and summarized: animal model, route of administration, dose/concentration, measurement indicators, and potential mechanisms. The quality of the included studies was assessed used a 10-item scale from SYRCLE. RESULTS AND CONCLUSION AS-IV represents a promising multi-target candidate for myocardial fibrosis treatment in the 24 eligible studies included in the analysis. This systematic review is the first to comprehensively evaluate the anti-fibrosis mechanisms of AS-IV across heterogeneous cardiovascular disease animal models, including myocardial infarction, hypertension, ischemia-reperfusion injury, and myocarditis. The underlying mechanisms of the anti-fibrosis effects of AS-IV may include collagen metabolism, anti-apoptosis, anti-inflammation and, pyroptosis, antioxidants, improving mitochondrial function, regulating senescence, etc. Current evidence remains preclinical, with critical gaps in toxicological profiles, human safety thresholds, and clinical adverse reaction data. Future research must integrate robust toxicological evaluations, optimized combination therapies, and adaptive clinical trials to validate translational potential.
Collapse
Affiliation(s)
- Shiyu Zhang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Shijie Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xue Li
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Chen Wan
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Lin Cui
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Youping Wang
- Division of Cardiology and Central Laboratory, First Affiliated Hospital, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Fang QQ, Gu YJ, Wang Y, Wang ZC, Lin XY, Guo K, Zhuang ZM, Zhong XC, Zhang LY, Chen J, Tan WQ. The therapeutic potential of Rosiglitazone in modulating scar formation through PPAR-γ pathway. Eur J Pharmacol 2025; 996:177445. [PMID: 40054722 DOI: 10.1016/j.ejphar.2025.177445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/12/2025]
Abstract
The prevention and treatment of scars has always posed a challenge in the medical field. Researchers have reached the consensus that safe, effective and affordable treatments are needed. Here, by conducting non-targeted metabolomics and RNA sequencing experiments, we revealed that a significant number of metabolites and genes related to glucose and lipid metabolism underwent changes during scar formation, with peroxisome proliferator-activated receptor-γ (PPAR-γ) exerting a profound influence. Considering that rosiglitazone is a selective orally active PPAR-γ receptor agonist, scar models were induced in rats, and rosiglitazone was administered at different dosages. We characterized rosiglitazone as a crucial mediator in a rat scar model in vivo and in vitro in two models of transforming growth factor β1(TGF-β1) stimulated fibroblasts (NIH 3T3 and 3T3 L1). Functionally, activation of PPAR-γ with rosiglitazone effectively impedes fibrosis and mitigates scar formation. Rosiglitazone also inhibits some inflammatory factors, and downregulates triglyceride, lactic acid, glycogen and lactic dehydrogenase levels in rat scars. Conversely, rosiglitazone increases adenosine triphosphate (ATP) production and increases free fatty acid levels and the activity of acetyl-CoA carboxylase, fatty acid synthetase, succinate dehydrogenase. Collectively, these findings shed light on the underlying mechanisms and suggest that the use of rosiglitazone could be a promising therapeutic approach to alleviate fibrosis and reduce scar formation.
Collapse
Affiliation(s)
- Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Yang-Jun Gu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, PR China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| | - Jian Chen
- Department of Ultrasound Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, PR China.
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Qiao L, Zhao X, Yuan A, Liu C, Wang Z, Huo X, Bi S, Tian J, Yu B, Lin Z, Zhang Y, Zhang J. Mechanism Analysis of Zuogui and Yougui Pills on Diabetic Nephropathy Through Transcriptional Regulatory Networks of HIF1A and PPARA. Food Sci Nutr 2025; 13:e70317. [PMID: 40417738 PMCID: PMC12102528 DOI: 10.1002/fsn3.70317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 05/08/2025] [Indexed: 05/27/2025] Open
Abstract
Diabetic nephropathy, a serious diabetes complication, lacks effective treatments. Traditional Chinese medicine Zuogui Pill (ZGP) and Yougui Pill (YGP) have a definite clinical adjunctive effect on diabetic nephropathy. Given their similar compositions, studying their shared mechanisms could provide novel perspectives into discovering therapeutic targets for diabetic nephropathy. Extraction of ZGP (EZP) and YGP (EYP) was prepared by in vitro digestion. EZP and EYP inhibited the gene expression of FN1 and MMP9 in a renal fibrosis cell model. A transcriptional regulatory network revealed EZP and EYP have similar mechanisms, with HIF1A as a key transcription factor. In an insulin resistance cell model, EZP and EYP led to the decrease in glucose consumption. A transcriptional regulatory network suggested that EZP and EYP have different regulatory panels, but PPARA was the common transcriptional factor. CA9 and PDK1, the downstream genes of HIF1A, and PDK4, the downstream gene of PPARA, were activated by both EZP and EYP, which showed the potential new targets of diabetic nephropathy. A total of 42 compounds from EZP and EYP were screened as the potential mediators of HIF1AN and EGLN1, interacted proteins and common targets of HIF1A. A total of 8 compounds, including verbascoside, were screened as the potential PPARA agonists based on molecular docking. Verbascoside improved the decrease in glucose consumption. The study clarified the mechanism of the ZGP and YGP by regulating the transcriptional regulatory network of HIF1A and PPARA and provided new ideas for the discovery of potential targets for the treatment of diabetic nephropathy and the development of natural nutrients.
Collapse
Affiliation(s)
- Liansheng Qiao
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaopeng Zhao
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
- Beijing Tongrentang Co., Ltd.BeijingChina
| | - Anlei Yuan
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Chaoqun Liu
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Zewen Wang
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoqian Huo
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Shijie Bi
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiaye Tian
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Bin Yu
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Zhaozhou Lin
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
- Beijing Tongrentang Co., Ltd.BeijingChina
| | - Yanling Zhang
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jiwang Zhang
- Key Laboratory of TCM‐Information Engineer of State Administration of TCM, School of Chinese Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
4
|
Chen X, Wu C, Tang F, Zhou J, Mo L, Li Y, He J. The Immune Microenvironment: New Therapeutic Implications in Organ Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e05067. [PMID: 40391706 DOI: 10.1002/advs.202505067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Indexed: 05/22/2025]
Abstract
Fibrosis, characterized by abnormal deposition of structural proteins, is a major cause of tissue dysfunction in chronic diseases. The disease burden associated with progressive fibrosis is substantial, and currently approved drugs are unable to effectively reverse it. Immune cells are increasingly recognized as crucial regulators in the pathological process of fibrosis by releasing effector molecules, such as cytokines, chemokines, extracellular vesicles, metabolites, proteases, or intercellular contact. Therefore, targeting the immune microenvironment can be a potential strategy for fibrosis reduction and reversion. This review summarizes the recent advances in the understanding of the immune microenvironment in fibrosis including phenotypic and functional transformations of immune cells and the interaction of immune cells with other cells. The novel opportunities for the discovery and development of drugs for immune microenvironment remodeling and their associated challenges are also discussed.
Collapse
Affiliation(s)
- Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Wu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fei Tang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jingyue Zhou
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Garitano N, Aguado-Alvaro LP, Pelacho B. Emerging Epigenetic Therapies for the Treatment of Cardiac Fibrosis. Biomedicines 2025; 13:1170. [PMID: 40426997 DOI: 10.3390/biomedicines13051170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/29/2025] Open
Abstract
Fibrosis is a pathological process characterized by excessive extracellular matrix (ECM) deposition, leading to tissue stiffening and organ dysfunction. It is a major contributor to chronic diseases affecting various organs, with limited therapeutic options available. Among the different forms of fibrosis, cardiac fibrosis is particularly relevant due to its impact on cardiovascular diseases (CVDs), which remain the leading cause of morbidity and mortality worldwide. This process is driven by activated cardiac fibroblasts (CFs), which promote ECM accumulation in response to chronic stressors. Epigenetic mechanisms, including DNA methylation, histone modifications, and chromatin remodeling, are key regulators of fibroblast activation and fibrotic gene expression. Enzymes such as DNA methyltransferases (DNMTs), histone methyltransferases (HMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs) have emerged as potential therapeutic targets, and epigenetic inhibitors have shown promise in modulating these enzymes to attenuate fibrosis by controlling fibroblast function and ECM deposition. These small-molecule compounds offer advantages such as reversibility and precise temporal control, making them attractive candidates for therapeutic intervention. This review aims to provide a comprehensive overview of the mechanisms by which epigenetic regulators influence cardiac fibrosis and examines the latest advances in preclinical epigenetic therapies. By integrating recent data from functional studies, single-cell profiling, and drug development, it highlights key molecular targets, emerging therapeutic strategies, and current limitations, offering a critical framework to guide future research and clinical translation.
Collapse
Affiliation(s)
- Nerea Garitano
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Laura Pilar Aguado-Alvaro
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Beatriz Pelacho
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
6
|
Zhang D, Zhang YH, Liu B, Yang HX, Li GT, Zhou HL, Wang YS. Role of peroxisomes in the pathogenesis and therapy of renal fibrosis. Metabolism 2025; 166:156173. [PMID: 39993498 DOI: 10.1016/j.metabol.2025.156173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Renal fibrosis is a pathological consequence of end-stage chronic kidney disease, driven by factors such as oxidative stress, dysregulated fatty acid metabolism, extracellular matrix (ECM) imbalance, and epithelial-to-mesenchymal transition. Peroxisomes play a critical role in fatty acid β-oxidation and the scavenging of reactive oxygen species, interacting closely with mitochondrial functions. Nonetheless, current research often prioritizes the mitochondrial influence on renal fibrosis, often overlooking the contribution of peroxisomes. This comprehensive review systematically elucidates the fundamental biological functions of peroxisomes and delineates the molecular mechanisms underlying peroxisomal dysfunction in renal fibrosis pathogenesis. Here, we discuss the impact of peroxisome dysfunction and pexophagy on oxidative stress, ECM deposition, and renal fibrosis in various cell types including mesangial cells, endothelial cells, podocytes, epithelial cells, and macrophages. Furthermore, this review highlights the recent advancements in peroxisome-targeted therapeutic strategies to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Yang-He Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Hong-Xia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Guang-Tao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Fang Z, Yang X, Wang C, Shang L. Microfluidics-Based Microcarriers for Live-Cell Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414410. [PMID: 40184613 PMCID: PMC12079516 DOI: 10.1002/advs.202414410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/25/2025] [Indexed: 04/06/2025]
Abstract
Live-cell therapy has emerged as a revolutionary treatment modality, providing a novel therapeutic avenue for intractable diseases. However, a major challenge in live-cell therapy is to maintain live-cell viability and efficacy during the treatment. Microcarriers are crucial for enhancing cell retention, viability, and functions by providing a protective scaffold and creating a supportive environment for live-cell proliferation and metabolism. For microcarrier construction, the microfluidic technology demonstrates excellent characteristics in terms of controllability over microcarrier size and morphology as well as potential for high-throughput production. To date, multiple live-cell delivery microcarrier types (e.g., microspheres, microfibers, and microneedles) are prepared via microfluidic liquid templates to meet different therapeutic needs. In this review, recent developments in microfluidics-based microcarriers for live-cell delivery are presented. It is focused on categorizing the structural design of microfluidic-derived cell-laden microcarriers, and summarizing various therapeutic applications. Finally, an outlook is provided on the future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Zhonglin Fang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Xinyuan Yang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Chong Wang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical Epigeneticsthe International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
8
|
Song C, Yang J, Gu Z. Latest developments of microphysiological systems (MPS) in aging-related and geriatric diseases research: A review. Ageing Res Rev 2025; 107:102728. [PMID: 40058462 DOI: 10.1016/j.arr.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Aging is a gradual and irreversible process accompanied by the decline in tissue function and a significantly increased risk of various aging-related and geriatric diseases. Especially in the paradoxical context of accelerated global aging and the widespread emergence of pandemics, aging-related and geriatric diseases have become leading causes of individual mortality and disability, drawing increasing attention from researchers and investors alike. Despite the utility of current in vitro systems and in vivo animal models for studying aging, these approaches are limited by insurmountable inherent constraints. In response, microphysiological systems (MPS), leveraging advances in tissue engineering and microfluidics, have emerged as highly promising platforms. MPS are capable of replicating key features of the tissue microenvironment within microfabricated devices, offering biomimetic tissue culture conditions that enhance the in vitro simulation of intact or precise human body structure and function. This capability improves the predictability of clinical trial outcomes while reducing time and cost. In this review, we focus on recent advancements in MPS used to study age-related and geriatric diseases, with particular emphasis on the application of organoids and organ-on-a-chip technologies in understanding cardiovascular diseases, cerebrovascular diseases, neurodegenerative diseases, fibrotic diseases, locomotor and sensory degenerative disorders, and rare diseases. And we aim to provide readers with critical guidelines and an overview of examples for modeling age-related and geriatric diseases using MPS, exploring mechanisms, treatments, drug screening, and other subsequent applications, from a physiopathological perspective, emphasizing the characteristic of age-related and geriatric diseases and their established correlations with the aging process. We also discuss the limitations of current models and propose future directions for MPS in aging research, highlighting the potential of interdisciplinary approaches to address unresolved challenges in the field.
Collapse
Affiliation(s)
- Chao Song
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Jiachen Yang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, China; School of Biological Science & Medical Engineering, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Blasiak J, Pawlowska E, Helotera H, Ionov M, Derwich M, Kaarniranta K. Potential of autophagy in subretinal fibrosis in neovascular age-related macular degeneration. Cell Mol Biol Lett 2025; 30:54. [PMID: 40307700 PMCID: PMC12044759 DOI: 10.1186/s11658-025-00732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease that can lead to legal blindness and vision loss. In its advanced stages, it is classified into dry and neovascular AMD. In neovascular AMD, the formation of new blood vessels disrupts the structure of the retina and induces an inflammatory response. Treatment for neovascular AMD involves antibodies and fusion proteins targeting vascular endothelial growth factor A (VEGFA) and its receptors to inhibit neovascularization and slow vision loss. However, a fraction of patients with neovascular AMD do not respond to therapy. Many of these patients exhibit a subretinal fibrotic scar. Thus, retinal fibrosis may contribute to resistance against anti-VEGFA therapy and the cause of irreversible vision loss in neovascular AMD patients. Retinal pigment epithelium cells, choroidal fibroblasts, and retinal glial cells are crucial in the development of the fibrotic scar as they can undergo a mesenchymal transition mediated by transforming growth factor beta and other molecules, leading to their transdifferentiation into myofibroblasts, which are key players in subretinal fibrosis. Autophagy, a process that removes cellular debris and contributes to the pathogenesis of AMD, regardless of its type, may be stimulated by epithelial-mesenchymal transition and later inhibited. The mesenchymal transition of retinal cells and the dysfunction of the extracellular matrix-the two main aspects of fibrotic scar formation-are associated with impaired autophagy. Nonetheless, the causal relationship between autophagy and subretinal fibrosis remains unknown. This narrative/perspective review presents information on neovascular AMD, subretinal fibrosis, and autophagy, arguing that impaired autophagy may be significant for fibrosis-related resistance to anti-VEGFA therapy in neovascular AMD.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402, Plock, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Hanna Helotera
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
| | - Maksim Ionov
- Faculty of Health Sciences, Mazovian Academy in Plock, 09-402, Plock, Poland
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, 70210, Kuopio, Finland
| |
Collapse
|
10
|
Feng Y, Mao T, Yi J, Zhang N, Gu Y, Shen H, Chen J. Runt-related transcription factors: from pathogenesis to therapeutic targets in multiple-organ fibrosis. Front Cell Dev Biol 2025; 13:1528645. [PMID: 40356603 PMCID: PMC12066561 DOI: 10.3389/fcell.2025.1528645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/26/2025] [Indexed: 05/15/2025] Open
Abstract
Fibrosis is a partially manageable process that leads to scarring and tissue hardening by prompting myofibroblasts to deposit significant amounts of extracellular matrix (ECM) following injury. It results in detrimental consequences and pathological characteristics, which hinder the functioning of associated organs and increase mortality rates. Runt-related transcription factors (RUNX) are part of a highly conserved family of heterodimer transcription factors, comprising RUNX1, RUNX2, and RUNX3. They are involved in several biological processes and undergo various forms of post-translational modification. RUNX regulates multiple targets and pathways to impact fibrosis, indicating promise for clinical application. Therefore, its significance in the fibrosis process should not be disregarded. The review begins with an objective description of the structure, transcriptional mechanism, and biological function of RUNX1, RUNX2, and RUNX3. A subsequent analysis is made of their physiological relationship with heart, lung, kidney, and liver, followed by a focus on the signaling mechanism of RUNX in regulating fibrosis of these organs. Furthermore, potential agents or drugs targeting RUNX for treating organ fibrosis are summarized, along with an evaluation of the therapeutic prospects and potential value of RUNX in fibrosis. Further research into RUNX could contribute to the development of novel therapeutic approaches for fibrosis.
Collapse
Affiliation(s)
- Yuan Feng
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Tianshi Mao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jifei Yi
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Na Zhang
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yinying Gu
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Huifen Shen
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Jie Chen
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Shimizu Y, Horibata Y, Domae M, Nakamura Y, Yokoyama T, Arai R, Shiobara T, Takemasa A, Koike R, Uchida N, Masawa M, Tei R, Watanabe T, Morita H, Miyoshi M, Soda S, Niho S, Igami K, Sugimoto H. Dysregulated metabolic pathways of pulmonary fibrosis and the lipids associated with the effects of nintedanib therapy. Respir Res 2025; 26:166. [PMID: 40296094 PMCID: PMC12038997 DOI: 10.1186/s12931-025-03239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a disease with a poor prognosis, and its pathogenesis is not fully understood. Identifying dysregulation of lipid metabolism in PF may provide insight and promote the development of novel therapies. The present study was designed to clarify the dysregulated lipid pathways and identify lipids correlated with treatment response. METHODS This research comprised two prospective cohort studies. Study 1 aimed to identify dysregulated metabolic pathways and lipids in the peripheral blood of PF patients, compared with healthy control (HC) subjects. Study 2 aimed to identify lipids associated with the decline in % forced vital capacity (%FVC) and survival in PF patients treated with the anti-fibrotic drug, nintedanib. As a preliminary ancillary experiment, we attempted to identify the lipids associated with endothelial cells and fibroblasts. RESULTS In Study 1, 38 lipids were identified that differed between the PF (n = 66) and HC (n = 63) groups. Compared with the HC subjects, phosphatidylcholine (PC) 36:5 was the most up-regulated and lysophosphatidylcholine (LPC) 18:0 was the most down-regulated in PF patients. Glycerophospholipid metabolism was the most enriched pathway. Plasmenyl phosphatidylethanolamine (pPE) and plasmanyl phosphatidylcholine (pPC) were determined to be endothelial-related lipids, and phosphatidylethanolamine (PE) were fibroblast-related lipids in PF. In Study 2, 10 lipids were identified that differed between the absolute decline in %FVC < 2.5% group (6 M responders, n = 14) and the decline in %FVC > 2.5% group (6 M non-responders, n = 6) after 6 M of nintedanib therapy, and 6 lipids were identified that differed between the absolute decline in %FVC < 5% group (12 M responders, n = 15) and the decline in %FVC > 5% group (12 M non-responders, n = 5) after 12 M of nintedanib therapy. Four lipids were consistently detected at 6 M and 12 M, and among them, higher levels of pPE 18:0p/22:6 at 6 M showed a poorer prognosis for 24 M survival (p < 0.05, HR = 6.547, 95% CI = 1.471-29.13). Under nintedanib therapy, pPE species were correlated with progressive fibrosis, and pPE 18:0p/22:6 was considered an endothelial-related lipid. CONCLUSIONS Lipidomic profiling revealed distinct pathways in PF patients. pPE species were strongly associated with the responses to nintedanib therapy. Targeting the lipids or catabolic enzymes involved in dysregulated pathways has the potential to ameliorate PF. TRIAL REGISTRATION Registry for UMIN, Lipidomic analysis on plasma in idiopathic pulmonary fibrosis patients. Trial registry number, UMIN000020872. Registered 3 February 2016, https://center6.umin.ac.jp/cgiopenbin/ctr/index.cgi .
Collapse
Affiliation(s)
- Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan.
| | | | - Mariko Domae
- Department of Biochemistry, Mibu, Tochigi, 321-0293, Japan
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Tatsuya Yokoyama
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ryo Arai
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Taichi Shiobara
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ryosuke Koike
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Nobuhiko Uchida
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Meitetsu Masawa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Rinna Tei
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Taiji Watanabe
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Hiroko Morita
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Masaaki Miyoshi
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Sayo Soda
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University, Mibu, Tochigi, 321-0293, Japan
| | - Ko Igami
- Kyushu Pro Search Limited Liability Partnership, 4-1, Kyudaishinmachi, Nishi-ku, Fukuoka, 819-0388, Japan
| | | |
Collapse
|
12
|
Wang W, Gao X, Niu W, Yin J, He K. Targeting Metabolism: Innovative Therapies for MASLD Unveiled. Int J Mol Sci 2025; 26:4077. [PMID: 40362316 PMCID: PMC12071536 DOI: 10.3390/ijms26094077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The recent introduction of the term metabolic-dysfunction-associated steatotic liver disease (MASLD) has highlighted the critical role of metabolism in the disease's pathophysiology. This innovative nomenclature signifies a shift from the previous designation of non-alcoholic fatty liver disease (NAFLD), emphasizing the condition's progressive nature. Simultaneously, MASLD has become one of the most prevalent liver diseases worldwide, highlighting the urgent need for research to elucidate its etiology and develop effective treatment strategies. This review examines and delineates the revised definition of MASLD, exploring its epidemiology and the pathological changes occurring at various stages of the disease. Additionally, it identifies metabolically relevant targets within MASLD and provides a summary of the latest metabolically targeted drugs under development, including those in clinical and some preclinical stages. The review finishes with a look ahead to the future of targeted therapy for MASLD, with the goal of summarizing and providing fresh ideas and insights.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Xin Gao
- School of Public Health, Jilin University, Changchun 130021, China;
| | - Wentong Niu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| | - Jinping Yin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130041, China;
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.W.); (W.N.)
| |
Collapse
|
13
|
Lyu Y, Zhang T, Zhong W, Yi S, Zhu L. Exposure to Sodium p-Perfluorous Nonenoxybenzenesulfonate Induces Renal Fibrosis in Mice by Disrupting Lysine Metabolism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7461-7473. [PMID: 40116701 DOI: 10.1021/acs.est.4c10724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental exposure is one driving factor of chronic kidney disease (CKD), yet the intrinsic molecular mechanisms are largely unexplored. As a persistent chemical, perfluorooctanesulfonate (PFOS) is regulated due to a great potential to induce multiple diseases, including renal fibrosis, a major pathological characteristic of CKD. It is hypothesized that sodium p-perfluorous nonenoxybenzenesulfonate (OBS), a typical alternative to PFOS, may also induce renal fibrosis. We observed distinct renal fibrosis in mice exposed to OBS. Metabolomics analysis showed that Nα-acetyllysine was the primary metabolite biomarker, whose level decreased greatly due to its excessive consumption by lysyloxidase (LOX). This suppressed the miR-140-5p expression, promoting upregulation of fibroblast growth factor 9 (FGF9), which activated the PI3K/Akt signaling pathway through fibroblast growth factor receptor 3 (FGFR3), thereby enhancing proliferation and activation of fibroblasts. Supplement of Nα-acetyllysine upregulated miR-140-5p expression, reduced expressions of FGF9 and FGFR3, and eventually ameliorated OBS-induced renal fibrosis. Similarly, treatment with miR-140-5p agomir and PI3K/Akt signaling pathway inhibitor LY294002 attenuated OBS-induced renal fibrosis. Taken together, OBS caused renal fibrosis through the LOX-Nα-acetyllysine-miR-140-5p-FGF9-FGFR3-PI3K/Akt-Bad-Bcl-2-fibroblast axis. The results of this study reveal a specific molecular axis for OBS to induce renal fibrosis and call for concerns in supervising the application of OBS.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Tianxu Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| |
Collapse
|
14
|
Zhang Y, Zhuang H, Chen K, Zhao Y, Wang D, Ran T, Zou D. Intestinal fibrosis associated with inflammatory bowel disease: Known and unknown. Chin Med J (Engl) 2025; 138:883-893. [PMID: 40012095 PMCID: PMC12037091 DOI: 10.1097/cm9.0000000000003545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT Intestinal fibrosis is a major complication of inflammatory bowel disease (IBD), leading to a high incidence of surgical interventions and significant disability. Despite its clinical relevance, no targeted pharmacological therapies are currently available. This review aims to explore the underlying mechanisms driving intestinal fibrosis and address unresolved scientific questions, offering insights into potential future therapeutic strategies. We conducted a literature review using data from PubMed up to October 2024, focusing on studies related to IBD and fibrosis. Intestinal fibrosis results from a complex network involving stromal cells, immune cells, epithelial cells, and the gut microbiota. Chronic inflammation, driven by factors such as dysbiosis, epithelial injury, and immune activation, leads to the production of cytokines like interleukin (IL)-1β, IL-17, and transforming growth factor (TGF)-β. These mediators activate various stromal cell populations, including fibroblasts, pericytes, and smooth muscle cells. The activated stromal cells secrete excessive extracellular matrix components, thereby promoting fibrosis. Additionally, stromal cells influence the immune microenvironment through cytokine production. Future research would focus on elucidating the temporal and spatial relationships between immune cell-driven inflammation and stromal cell-mediated fibrosis. Additionally, investigations are needed to clarify the differentiation origins of excessive extracellular matrix-producing cells, particularly fibroblast activation protein (FAP) + fibroblasts, in the context of intestinal fibrosis. In conclusion, aberrant stromal cell activation, triggered by upstream immune signals, is a key mechanism underlying intestinal fibrosis. Further investigations into immune-stromal cell interactions and stromal cell activation are essential for the development of therapeutic strategies to prevent, alleviate, and potentially reverse fibrosis.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haiming Zhuang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yizhou Zhao
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danshu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Taojing Ran
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
15
|
Xie SS, Hou R, Gao L, Yang Q, Li W, Dong ZH, Dong YH, Li SJ, Ma WX, Gao YY, Xu L, Li C, Chen Y, Yu JT, Wang JN, Ji ML, He RB, Suo XG, Liu MM, Jin J, Wen JG, Yang C, Meng XM. IGF-Binding Protein 7 and Cadmium-Induced Hepatorenal Fibrosis. J Am Soc Nephrol 2025:00001751-990000000-00624. [PMID: 40208692 DOI: 10.1681/asn.0000000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Key Points
IGF-binding protein 7 (IGFBP7) expression was elevated in kidney and liver tissues of mice subjected to chronic cadmium exposure.IGFBP7 deficiency protected against cadmium-induced hepatorenal dysfunction and fibrosis.Inhibition of the IGFBP7/α-enolase/H3K18la axis may be a potential therapeutic intervention for cadmium-induced hepatorenal fibrosis.
Background
Chronic cadmium exposure can induce the onset and progression of hepatorenal fibrosis; however, its molecular basis is unclear. IGF-binding protein 7 (IGFBP7) is not only a biomarker of AKI but also plays a functional role in promoting kidney injury and inflammation. Abnormal repair of AKI causes kidney fibrosis and CKD. IGFBP7 has also been reported as a more sensitive biomarker for liver fibrosis. However, its role in hepatorenal fibrosis requires further investigation.
Methods
IGFBP7 global and conditional knockout mice were used to determine the role of IGFBP7 in cadmium-induced hepatorenal fibrosis. Then, liquid chromatography–mass spectrometry, truncated mutants, coimmunoprecipitation, and microscale thermophoresis were used to unravel the downstream mechanisms.
Results
IGFBP7 expression was significantly elevated in kidney and liver tissues of mice subjected to chronic cadmium exposure. IGFBP7 deficiency attenuated cadmium-induced hepatorenal dysfunction and fibrosis, whereas restoration of IGFBP7 expression in IGFBP7-deficient mice reproduced hepatorenal fibrosis. Mechanistically, IGFBP7 interacted with α-enolase (ENO1) and inhibited its ubiquitination and degradation. Upregulated ENO1 further promoted glucose metabolic reprogramming and lactate accumulation. Conversely, lactate accumulation enhanced IGFBP7 transcription and expression through histone H3K18 lactylation. Importantly, therapy targeting IGFBP7 significantly ameliorated cadmium-induced hepatorenal fibrosis.
Conclusions
IGFBP7 promoted cadmium-induced hepatorenal fibrosis by enhancing ENO1-driven abnormal glycolysis and lactate accumulation.
Collapse
Affiliation(s)
- Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Li Gao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Qin Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Ze-Hui Dong
- Department of Pharmacy, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Shuang-Jian Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ying-Ying Gao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Long Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Ying Chen
- Anhui Provincial Chest Hospital, Hefei, China
| | - Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Ming-Lu Ji
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Ruo-Bing He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Xiao-Guo Suo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines, Ministry of Education, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Yang Y, Gong S, Zhou C, Xin W, Qin S, Yao M, Lan Q, Liao W, Zhao J, Huang Y. REST contributes to renal fibrosis through inducing mitochondrial energy metabolism imbalance in tubular epithelial cells. Cell Commun Signal 2025; 23:176. [PMID: 40200371 PMCID: PMC11980176 DOI: 10.1186/s12964-025-02166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/21/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Renal fibrosis represents the final common pathological manifestation of chronic kidney disease (CKD), yet the underlying mechanism remains elusive, and there is still a lack of effective targeted therapeutic strategy. Although previous research indicated that repressor element 1-silencing transcription factor (REST) contributed to acute kidney injury (AKI) in renal tubular epithelial cells (RTECs), its specific contribution to renal fibrosis and associated mechanisms remains largely unexplored. METHODS Renal biopsies from CKD patients were collected to evaluate the expression of REST. Kidney-specific Rest conditional knockout (Cdh16-Cre/Restflox/flox) mice were generated and employed unilateral ureter obstruction (UUO) models to investigate the role of REST in renal fibrosis. RNA sequencing was performed to elucidate the mechanism. Mitochondrial function was evaluated by transmission electron microscopy (TEM), reactive oxygen species (ROS), oxygen consumption rates (OCR), extracellular acidifcation rate (ECAR) and adenosine triphosphate (ATP). The severity of renal fibrosis was assessed through Western blot, immunofluorescent staining and immumohistochemical staining. Bioinformatic prediction, dual luciferase reporter gene assay, point mutation and chromatin immunoprecipitation (ChIP) assay were utilized to clarify the molecular mechanism. RESULTS REST was significantly up-regulated in the kidney tissues from CKD patients, UUO-induced fibrotic mouse models and TGF-β1-incubated RTECs. Notably, kidney-specific knockout of Rest prominently alleviated renal fibrosis by improving mitochondrial energy metabolism and restoring fatty acid oxidation. Mechanically, REST disturbed mitochondrial energy metabolism through repressing the transcription of oxoglutarate dehydrogenase-like (OGDHL) via directly binding to its promotor region. Further, pharmacological inhibition of REST using the specific REST inhibitor, X5050, significantly ameliorated the progression of renal fibrosis both in vitro and in vivo. CONCLUSIONS Our explorations revealed the upregulation of REST in renal fibrosis disrupts mitochondrial energy metabolism through transcriptionally suppressing OGDHL, which may act as a promising therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Yingxian Yang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shuiqin Gong
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Chun Zhou
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wang Xin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Shaozong Qin
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Mengying Yao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Qigang Lan
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Wenhao Liao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| | - Yinghui Huang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
17
|
Wang Y, Hu Y, Wang P, Hu R, Chen Z, Zhang T, Liu J, Noda M, Long J, Peng Y. Distinct Hepatic Metabolic Reprogramming in Acute and Chronic Sleep Deprivation and the Protective Effects of the Chalcone Analogue TAK. Int J Mol Sci 2025; 26:3485. [PMID: 40331934 PMCID: PMC12027424 DOI: 10.3390/ijms26083485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
The prevalence of sleep deprivation is increasing worldwide. Despite the vital roles that the liver plays in metabolism and immune response, hepatic dysfunctions in acute sleep deprivation (ASD) and chronic sleep deprivation (CSD) remain underexplored. Additionally, the effects of the newly developed chalcone analog, 1-(2,3,4-trimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)-acrylketone (TAK), were evaluated as a potential therapeutic chemical for mitigating SD-induced hepatic damage. A modified multi-platform method was employed to prepare animal models of 72 h ASD and 21-day CSD in rats. TAK (50 mg/kg/day) was administered through irrigation starting one week before the experiment and continuing until the end. ASD triggered hepatic lipid accumulation and inflammation, whereas CSD resulted in pathological portal area expansion and fibrosis, with comparatively fewer disturbances in liver metabolism and inflammation. TAK effectively alleviated ASD-induced disruptions in glycogen synthesis via PI3K/AKT/GSK3/GYS2 pathways, abnormal lipid accumulation via SREBP1/FASN/ACC, liver inflammation by balancing M1 and M2 macrophages, and liver fibrosis induced by ASD/CSD. This study provides valuable insights into the different mechanisms of liver damage induced by severe ASD and mild CSD. Additionally, TAK has been proposed as a potential therapeutic strategy for ultimate SD-related hepatic complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (Y.H.); (P.W.); (R.H.); (Z.C.); (T.Z.); (J.L.); (M.N.)
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.W.); (Y.H.); (P.W.); (R.H.); (Z.C.); (T.Z.); (J.L.); (M.N.)
| |
Collapse
|
18
|
Lu J, Wang Z, Zhang L. Single-cell transcriptome analysis revealing mechanotransduction via the Hippo/YAP pathway in promoting fibroblast-to-myofibroblast transition and idiopathic pulmonary fibrosis development. Gene 2025; 943:149271. [PMID: 39855369 DOI: 10.1016/j.gene.2025.149271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal interstitial lung disease, characterized by excessive extracellular matrix (ECM) secretion that disrupts normal alveolar structure. This study aims to explore the potential molecular mechanisms underlying the promotion of IPF development. METHODS Firstly, we compared the transcriptome and single-cell sequencing data from lung tissue samples of patients with IPF and healthy individuals. Subsequently, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on the differentially expressed genes (DEGs). Furthermore, we employed sodium alginate hydrogels with varying degrees of crosslinking to provide differential mechanical stress, mimicking the mechanical microenvironment in vivo during lung fibrosis. On this basis, we examined cytoskeletal remodeling in fibroblasts MRC-5, mRNA expression of multiple related genes, immunofluorescence localization, and cellular proliferation capacity. RESULTS Bioinformatics analysis revealed a series of DEGs associated with IPF. Further functional and pathway enrichment analyses indicated that these DEGs were primarily enriched in ECM-related biological processes. Single-cell sequencing data revealed that fibroblasts and myofibroblasts are the main contributors to excessive ECM secretion and suggested activation of mechanotransduction and the Hippo/YAP signaling pathway in myofibroblasts. Cellular experiments demonstrated that sodium alginate hydrogels with different stiffness can simulate different mechanical stress environments, thereby affecting cytoskeletal rearrangement and Hippo/YAP pathway activity in MRC-5 lung fibroblasts. Notably, high levels of mechanical stress promoted YAP nuclear translocation, increased expression of type I collagen and α-SMA, and enhanced proliferative capacity. Additionally, we also found that fibroblasts primarily participate in mechanotransduction through the Rho/ROCK and Integrin/FAK pathways under high mechanical stress conditions, ultimately upregulating the gene expression of CCNE1/2, CTGF, and FGF1. CONCLUSION Our study uncovers the crucial role of cytoskeletal mechanotransduction in myofibroblast transformation and IPF development through activation of the Hippo/YAP pathway, providing new insights into understanding the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jiaqi Lu
- Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, China.
| | - Zhenhua Wang
- Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, China
| | - Liguo Zhang
- Department of Oncology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, China
| |
Collapse
|
19
|
Meshkovska Y, Dzhuraeva B, Godugu C, Pooladanda V, Thatikonda S. Deciphering the interplay: circulating cell-free DNA, signaling pathways, and disease progression in idiopathic pulmonary fibrosis. 3 Biotech 2025; 15:102. [PMID: 40165930 PMCID: PMC11954786 DOI: 10.1007/s13205-025-04272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease with an unknown etiology and a short survival rate. There is no accurate method of early diagnosis, and it involves computed tomography (CT) or lung biopsy. Since diagnostic methods are not accurate due to their similarity to other lung pathologies, discovering new biomarkers is a key issue for diagnosticians. Currently, the use of ccf-DNA (circulating cell-free deoxyribonucleic acid) is an important focus due to its association with IPF-induced alterations in metabolic pathways, such as amino acid metabolism, energy metabolism, and lipid metabolism pathways. Other biomarkers associated with metabolic changes have been found, and they are related to changes in type II/type I alveolar epithelial cells (AECs I/II), changes in extracellular matrix (ECM), and inflammatory processes. Currently, IPF pathogenetic treatment remains unknown, and the mortality rates are increasing, and the patients are diagnosed at a late stage. Signaling pathways and metabolic dysfunction have a significant role in the disease occurrence, particularly the transforming growth factor-β (TGF-β) signaling pathway, which plays an essential role. TGF-β, Wnt, Hedgehog (Hh), and integrin signaling are the main drivers of fibrosis. These pathways activate the transformation of fibroblasts into myofibroblasts, extracellular matrix (ECM) deposition, and tissue remodeling fibrosis. Therapy targeting diverse signaling pathways to slow disease progression is crucial in the treatment of IPF. Two antifibrotic medications, including pirfenidone and nintedanib, are Food and Drug Administration (FDA)-approved for treatment. ccf-DNA could become a new biomarker for IPF diagnosis to detect the disease at the early stage, while FDA-approved therapies could help to prevent late conditions from forming and decrease mortality rates.
Collapse
Affiliation(s)
- Yeva Meshkovska
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Barchinai Dzhuraeva
- Department of Hospital Pediatrics, Moffitt Cancer Center, Tampa, FL 33612 USA
- Department of Hospital Pediatrics with a Course of Neonatology, National Center of Maternal and Child Health, Bishkek, 720017 Kyrgyzstan
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037 India
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom Street, Thier 9, Boston, MA 02114 USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Sowjanya Thatikonda
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| |
Collapse
|
20
|
Wang J, Yin J, Liu X, Liu Y, Jin X. Gut commensal bacterium Bacteroides vulgatus exacerbates helminth-induced cardiac fibrosis through succinate accumulation. PLoS Pathog 2025; 21:e1013069. [PMID: 40238740 PMCID: PMC12002503 DOI: 10.1371/journal.ppat.1013069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/21/2025] [Indexed: 04/18/2025] Open
Abstract
Trichinella spiralis (Ts) is known to cause cardiac fibrosis, which is a critical precursor to various heart diseases, and its progression is influenced by metabolic changes. However, the metabolic mechanisms remain unclear. Here, we observed that Ts-infected mice exhibited cardiac fibrosis along with elevated succinate levels in the heart using metabolomic analysis. Administration of succinate exacerbated fibrosis during Ts infection, while deficiency in succinate receptor 1 (Sucnr1) alleviated the condition, highlighting the role of the succinate-Sucnr1 axis in fibrosis development. Furthermore, metagenomics sequencing showed that Ts-infected mice had a higher abundance ratio of succinate-producing bacteria to succinate-consuming bacteria in the intestines. Notably, the succinate-producer Bacteroides vulgatus was enriched in Ts group. Oral supplementation with B. vulgatus aggravated Ts-induced cardiac fibrosis. In summary, our findings underscore the succinate-Sucnr1 axis as a critical pathway in helminth-induced cardiac fibrosis and highlight the potential of targeting this axis for therapeutic interventions. This study presents novel insights into the gut-heart axis, revealing innovative strategies for managing cardiovascular complications associated with helminth infections.
Collapse
Affiliation(s)
- Jiaqi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jiali Yin
- The Second Hospital of Jilin University, Changchun, China
| | - Xiaolei Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yi Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Xuemin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
21
|
Zhang D, Zhang H, Lv S, Zhu C, Gong S, Yu X, Wang Y, Huang X, Yuan S, Ding X, Zhang X. Sulforaphane alleviates renal fibrosis through dual regulation on mTOR-mediated autophagy pathway. Int Urol Nephrol 2025; 57:1277-1287. [PMID: 39602004 DOI: 10.1007/s11255-024-04295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Renal fibrosis is a common pathological process of progressive chronic kidney disease (CKD). However, effective therapy is constrained currently. Autophagy is an important mechanism in kidney injury and repairment but its exact role in renal fibrosis was discrepant according to previous studies. Sulforaphane (SFN), a natural plant compound, has been explored as a promising nutritional therapy for a variety of diseases. But the salutary effect and underlying mechanism of SFN on CKD have not been fully elucidated. In this study, we investigated the effect of SFN on renal fibrosis in unilateral ureteral obstruction (UUO) mice. Then we examined the regulatory effect of SFN on autophagy-related proteins in renal fibroblasts and renal tubular epithelial cells. Our results showed that sulforaphane could significantly alleviate renal fibrosis in UUO mice. In vitro, the expression levels of autophagy-related protein showed that SFN could upregulate the autophagy activity of renal interstitial fibroblasts and downregulate the autophagy activity of renal tubular epithelial cells. Furthermore, we found that phosphorylated mTOR protein levels was reduced in renal fibroblasts and increased in renal tubular epithelial cells after SFN treatment. Our results strongly suggested that SFN could alleviate renal fibrosis through dual regulation of mTOR-mediated autophagy pathway. This finding may provide a new perspective on the renal salutary effect of SFN and provide a preclinical rationale for exploring the therapeutic potential of SFN to slow down renal fibrosis.
Collapse
Affiliation(s)
- Di Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai, 200032, China
| | - Shiqi Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Cheng Zhu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai, 200032, China
| | - Shaomin Gong
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai, 200032, China
| | - Xixi Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Yulin Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xinhui Huang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - ShuangXin Yuan
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, Shanghai, China.
- Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Medical Center of Kidney Disease, Shanghai, China.
- Shanghai Institute of Kidney and Dialysis, No. 136 Medical College Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.
| |
Collapse
|
22
|
Keen AN, McConnell JC, Mackrill JJ, Marrin J, Holsgrove AJ, Crossley J, Henderson A, Galli GLJ, Crossley DA, Sherratt MJ, Gardner P, Shiels HA. Cold-induced fibrosis and metabolic remodeling in the turtle (Trachemys scripta) ventricle. Acta Physiol (Oxf) 2025; 241:e70026. [PMID: 40087894 PMCID: PMC11909586 DOI: 10.1111/apha.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
AIM Cardiac fibrosis contributes to systolic and diastolic dysfunction and can disrupt electrical pathways in the heart. There are currently no therapies that prevent or reverse fibrosis in human cardiac disease. However, animals like freshwater turtles undergo seasonal remodeling of their hearts, demonstrating the plasticity of fibrotic remodeling. In Trachemys scripta, cold temperature affects cardiac load, suppresses metabolism, and triggers a cardiac remodeling response that includes fibrosis. METHODS We investigated this remodeling using Fourier transform infrared (FTIR) imaging spectroscopy, together with functional assessment of muscle stiffness, and molecular, histological, and enzymatic analyses in control (25°C) T. scripta and after 8 weeks of cold (5°C) acclimation. RESULTS FTIR revealed an increase in absorption bands characteristic of protein, glycogen, and collagen following cold acclimation, with a corresponding decrease in bands characteristic of lipids and phosphates. Histology confirmed these responses. Functionally, micromechanical stiffness of the ventricle increased following cold exposure assessed via atomic force microscopy (AFM) and was associated with decreased activity of regulatory matrix metalloproteinases (MMPs) and increased expression of MMP inhibitors (TMPs) which regulate collagen deposition. CONCLUSIONS By defining the structural and metabolic underpinnings of the cold-induced remodeling response in the turtle heart, we show commonalities between metabolic and fibrotic triggers of pathological remodeling in human cardiac disease. We propose the turtle ventricle as a novel model for studying the mechanisms underlying fibrotic and metabolic cardiac remodeling.
Collapse
Affiliation(s)
- Adam N. Keen
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
- Manchester Institute of Biotechnology, University of ManchesterManchesterUK
- Present address:
Wellcome‐Wolfson Institute of Experimental MedicineQueen's University BelfastBelfastUK
| | - James C. McConnell
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
- Present address:
North‐West Genomic Laboratory HubManchester Centre for Genomic Medicine, Manchester University NHS Foundation TrustManchesterUK
| | | | - John Marrin
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Alex J. Holsgrove
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Janna Crossley
- Department of BiologyUniversity of North TexasDentonTexasUSA
| | - Alex Henderson
- Manchester Institute of Biotechnology, University of ManchesterManchesterUK
| | - Gina L. J. Galli
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | | | - Michael J. Sherratt
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and HealthUniversity of ManchesterManchesterUK
| | - Peter Gardner
- Department of Chemical EngineeringPhoton Science Institute, University of ManchesterManchesterUK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
23
|
Chen Y, Wang Z, Ma Q, Sun C. The role of autophagy in fibrosis: Mechanisms, progression and therapeutic potential (Review). Int J Mol Med 2025; 55:61. [PMID: 39950330 PMCID: PMC11878481 DOI: 10.3892/ijmm.2025.5502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Various forms of tissue damage can lead to fibrosis, an abnormal reparative reaction. In the industrialized countries, 45% of deaths are attributable to fibrotic disorders. Autophagy is a highly preserved process. Lysosomes break down organelles and cytoplasmic components during autophagy. The cytoplasm is cleared of pathogens and dysfunctional organelles, and its constituent components are recycled. With the growing body of research on autophagy, it is becoming clear that autophagy and its associated mechanisms may have a role in the development of numerous fibrotic disorders. However, a comprehensive understanding of autophagy in fibrosis is still lacking and the progression of fibrotic disease has not yet been thoroughly investigated in relation to autophagy‑associated processes. The present review focused on the latest findings and most comprehensive understanding of macrophage autophagy, endoplasmic reticulum stress‑mediated autophagy and autophagy‑mediated endothelial‑to‑mesenchymal transition in the initiation, progression and treatment of fibrosis. The article also discusses treatment strategies for fibrotic diseases and highlights recent developments in autophagy‑targeted therapies.
Collapse
Affiliation(s)
| | | | - Qinghong Ma
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Chao Sun
- Department of Spine Surgery, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
24
|
Ma K, Fujino M, Yang Y, Ding Z, Hu X, Ito H, Takahashi K, Nakajima M, Isaka Y, Li XK. 5-aminolaevulinic acid with sodium ferrous citrate alleviated kidney injury and fibrosis in a unilateral ureteral obstruction model. Int Immunopharmacol 2025; 150:114321. [PMID: 39970714 DOI: 10.1016/j.intimp.2025.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
PURPOSE This study aimed to investigate the potential therapeutic effects of 5-aminolaevulinic acid (5-ALA) combined with sodium ferrous citrate (SFC) on kidney injury and fibrosis in a mouse model of unilateral ureteral obstruction (UUO)-induced chronic kidney disease (CKD). METHODS A murine UUO model was used to mimic human CKD. The mice received daily intragastric administration of 5-ALA/SFC for 7 and 14 consecutive days. Serum creatinine (Cr) and blood urea nitrogen (BUN) levels and histological evaluations were performed to assess the renal function parameters underlying 5-ALA/SFC treatment in the UUO model. Differentially expressed genes (DEGs) were analyzed by RNA sequencing (RNA-Seq), and the results were validated by quantitative real-time PCR (qRT-PCR). The severity of renal fibrosis was evaluated using Sirius red and Masson's trichrome (MT) staining techniques, while the expression of fibrosis-related genes was examined using western blotting and immunohistochemistry. RESULTS Our findings demonstrated that 5-ALA/SFC treatment improved UUO-induced renal dysfunction, attenuated tubular damage, and significantly reduced serum Cr and BUN levels as well as the mRNA expression and secretion of pro-inflammatory and programmed cell death-related cytokines in kidney tissues. Furthermore, 5-ALA/SFC suppressed renal tissue fibrosis and downregulated the mRNA and protein expression of fibrosis-related genes. Notably, treatment with 5-ALA/SFC led to the significant upregulation of protein expression levels of PPAR gamma-coactivator-1α (PGC-1α), indicating its role in inhibiting inflammation and fibrosis through the activation of the PGC-1α signaling pathway. CONCLUSION 5-ALA/SFC exhibits renoprotective effects in UUO-induced CKD by attenuating inflammation, cell death, and suppressing renal fibrosis. These findings suggest a specific renal protective mechanism for 5-ALA/SFC, highlighting its potential as a novel therapeutic agent for human CKD treatment.
Collapse
Affiliation(s)
- Kuai Ma
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Department of Nephrology, Osaka University Graduate School of Medicine, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan; Research Center for Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Yang Yang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Zhaolun Ding
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | | | | | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.
| |
Collapse
|
25
|
Finch RH, Vitry G, Siew K, Walsh SB, Beheshti A, Hardiman G, da Silveira WA. Spaceflight causes strain-dependent gene expression changes in the kidneys of mice. NPJ Microgravity 2025; 11:11. [PMID: 40133368 PMCID: PMC11937539 DOI: 10.1038/s41526-025-00465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Incidence of kidney stones in astronauts is a major risk factor associated with long-term missions, caused by increased blood calcium levels due to bone demineralisation triggered by microgravity and space radiation. Transcriptomic changes have been observed in tissues during spaceflight, including the kidney. We analysed kidney transcriptome patterns in two different strains of mice flown on the International Space Station, C57BL/6J and BALB/c. Here we show a link between spaceflight and transcriptome patterns associated with dysregulation of lipid and extracellular matrix metabolism and altered transforming growth factor-beta signalling. A stronger response was seen in C57BL/6J mice than BALB/c. Genetic differences in hyaluronan metabolism between strains may confer protection against extracellular matrix remodelling through the downregulation of epithelial-mesenchymal transition. We intend for our findings to contribute to the development of new countermeasures against kidney disease in astronauts and people here on Earth.
Collapse
Affiliation(s)
- Rebecca H Finch
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK
| | - Geraldine Vitry
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Department of Oncology, 3970 Reservoir Rd, NW, New Research Building EP11, Washington, DC, 20057, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Afshin Beheshti
- Center for Space Biomedicine, McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15219, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Gary Hardiman
- Faculty of Medicine, Health and Life Sciences, Institute for Global Food Security (IGFS), School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Medicine, Medical University of South Carolina, MSC 403, 171 Ashley Ave Suite 419, Charleston, SC, 29425, USA
| | - Willian A da Silveira
- University of Staffordshire, Department of Sports and Science, School of Health, Education, Policing and Sciences, Science Centre, Leek Road, Stoke-on-Trent, ST4 2DF, UK.
- International Space University, 1 Rue Jean-Dominique Cassini, 67400, Illkirch-Graffenstaden, France.
- School of Science, Engineering and Environment. University of Salford, Manchester, M5 4WT, UK.
| |
Collapse
|
26
|
Del Valle JS, Van Helden RW, Moustakas I, Wei F, Asseler JD, Metzemaekers J, Pilgram GSK, Mummery CL, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Ex vivo removal of pro-fibrotic collagen and rescue of metabolic function in human ovarian fibrosis. iScience 2025; 28:112020. [PMID: 40104066 PMCID: PMC11914289 DOI: 10.1016/j.isci.2025.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Tissue fibrosis, with the excessive accumulation of extracellular matrix, leads to organ dysfunction. The ovary shows signs of fibrosis from an early age, creating a permissive environment for ovarian cancer. A robust culture-platform to study human ovarian fibrosis would enable screens for antifibrotic drugs to prevent or even reverse this process. Based on previous results showing that androgen therapy can induce ovarian fibrosis, we characterized the fibrotic state of ovaries from transmasculine donors of reproductive age. Anti-inflammatory and antioxidant drugs, such as Pirfenidone, Metformin, and Mitoquinone, could reduce and revert the excess collagen content of the ovarian cortical tissue during culture. We demonstrated that Metformin exerts an antioxidant role and prevents a glycolytic metabolic shift in non-immune ovarian stromal cells in the human ovary, while promoting early folliculogenesis during culture. These results may contribute to develop strategies to manage pro-tumorigenic fibrotic ovarian stroma in advanced age and metabolic disorders.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ruben W Van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Joyce D Asseler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Jeroen Metzemaekers
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Gonneke S K Pilgram
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | | | - Norah M van Mello
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Li Y, Cao Z, Liu J, Qiang R, Wang J, Lyu W. Current perspectives and trends of neutrophil extracellular traps in organ fibrosis: a bibliometric and visualization study. Front Immunol 2025; 16:1508909. [PMID: 40109341 PMCID: PMC11920176 DOI: 10.3389/fimmu.2025.1508909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
New insights into the role of immune responses in the fibrosis process provide valuable considerations for the treatment of organ fibrotic diseases. Neutrophil extracellular traps (NETs) represent a novel understanding of neutrophil functions, and their involvement in organ fibrotic diseases has garnered widespread attention in recent years. This study aims to conduct a bibliometric analysis and literature review focusing on the mechanisms by which NETs participate in fibrotic diseases. Specifically, we utilized a bibliometric dataset that includes 220 papers published in 139 journals, originating from 425 organizations across 39 countries, with a total citation count of 12,301. Keyword co-occurrence analysis indicates that the research focus on the mechanisms of NETs in organ fibrosis is likely to center on NETosis, immune responses, immune thrombosis, inflammation, and tissue damage associated with NET formation. In conclusion, our findings underscore the current status and emerging trends in NET research related to organ fibrosis, offering novel insights into the mechanisms by which NETs contribute to the pathogenesis of fibrotic diseases, as well as potential therapeutic strategies.
Collapse
Affiliation(s)
- Yanbo Li
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Zhengmin Cao
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Rui Qiang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine Shunyi Hospital, Beijing, China
| | - Jiuchong Wang
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| | - Wenliang Lyu
- Department of Infectious Diseases, Guang’anmen Hospital, China Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Huang Q, Shi Z, Zheng D, Chen H, Huang Q. Seabuckthorn polysaccharide alleviates renal fibrosis in a mouse model of diabetic nephropathy via p311/TGFβ1/Fstl1 signaling pathway. Pathol Res Pract 2025; 267:155808. [PMID: 39951942 DOI: 10.1016/j.prp.2024.155808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a primary microvascular complication of diabetes with characteristics of renal fibrosis. Seabuckthorn polysaccharide (SP) is an extract from Seabuckthron berries (Hippophae rhamnoides L.) with antioxidant, anti-fatigue, anti-inflammation, and hepatoprotective properties. This current work aimed to investigate the effect of SP on DN-induced kidney fibrosis. METHODS STZ-induced DN mouse model was constructed by intraperitoneally injecting 50 mg/kg STZ for five days. Various doses of SP were orally administered to mice. Biochemical analysis was performed to measure blood biochemical parameters. Masson's trichrome staining of renal tissues was conducted to analyze fibrotic area. Immunofluorescence staining was performed to assess E-cadherin and α-SMA expressions in kidney samples. Serum MMP2 level was evaluated by corresponding ELISA kit, and Timp2 level was subjected to RT-qPCR analysis. PCR and western blot were conducted to quantify p311, TGFβ1, and Fstl1 levels in renal samples. RESULTS SP reversed the changes in body weight, fasting blood glucose and renal function indicators in diabetic mice. SP lessened renal fibrotic areas in diabetic mice and inhibited epithelial-mesenchymal transition (EMT) by increasing E-cadherin level and reducing α-SMA expression. Fibrotic genes MMP2 and TIMP2 were highly expressed in mice with DN, and their dysregulated expressions were reversed by SP administration. Additionally, SP suppressed the activation of p311/TGFβ1/Fstl1 signaling pathway in renal tissues of diabetic mice. CONCLUSIONS SP alleviates diabetic nephropathy by improving renal functions, alleviating renal fibrosis, and hampering EMT process via downregulation of fibrotic genes and inactivation of the p311/TGFβ1/Fstl1 pathway.
Collapse
Affiliation(s)
- Qian Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Zilu Shi
- Department of Nephrology, First Hospital of Quanzhou Affiliated to Fujian Medical College, Quanzhou 362000, China.
| | - Dandan Zheng
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Huiqin Chen
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| | - Qiuhong Huang
- Department of Teaching and Research Section of Physiology, Basic Medicine Department, Quanzhou Medical College, Quanzhou 362011, China
| |
Collapse
|
29
|
Cheng Z, Zhan H, Yuan H, Wang N, Lan Y, Qu W, Lan X, Liao Z, Wang G, Chen M. Boeravinone C ameliorates lipid accumulation and inflammation in diabetic kidney disease by activating PPARα signaling. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119398. [PMID: 39880066 DOI: 10.1016/j.jep.2025.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Oxybaphus himalaicus Edgew. is a traditional Tibetan herbal medicine with kidney reinforcing and tonifying effects, which is commonly applied to treat nephritis. Boeravinone C has been identified as one of the primary constituents of O. himalaicus. However, the potential renal protective effects of boeravinone C remains unclear. AIM OF THE STUDY This research aimed to investigate the protective effects of boeravinone C on diabetic kidney disease and the underlying mechanisms. MATERIALS AND METHODS Streptozotocin (100 mg/kg) was intraperitoneally injected to induce DKD in mice. High glucose (50 mM)-induced HK-2 cells were utilized to investigate the mechanisms of boeravinone C against tubular injuries in vitro. Anti-DKD activity was assessed by measuring reactive oxygen species (ROS) levels, analyzing apoptosis through flow cytometry, and evaluating inflammation, apoptosis, and FAO-related proteins via Western blotting. Additionally, serum biochemical assays, as well as histopathological and immunohistochemical analyses of kidney tissues, were performed to explore the pharmacological effects of boeravinone C. RESULTS In vivo, boeravinone C administered significantly reduced the creatinine (CRE), blood urea nitrogen (BUN), triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels in serum of DKD mice. In vitro, boeravinone C significantly restored the apoptosis induced by HG in HK-2 cells, which is further validated by an upregulation of the apoptosis-inhibiting protein Bcl-2, along with a decreased expression of the apoptosis-promoting proteins Bax and caspase-3. Mechanistically, boeravinone C reversed HG-induced downregulation of peroxisome proliferator-activated receptor α (PPARα) expression. As a transcription factor, elevated expression of PPARα led to upregulation of CPT1A and ACOX1, which then enhanced fatty acid oxidation (FAO) to reduce lipid accumulation in HK-2 cells. Furthermore, boeravinone C-mediated high expression of PPARα sequestered p65 subunit of NF-κB in the cytoplasm, leading to reduced expression of proinflammatory cytokines such as iNOS, TNF-α and IL-6. To verify that the therapeutic effects of boeravinone C in diabetic kidney disease (DKD) are mediated via PPARα activation, we developed a PPARα knockdown HK-2 cell line. Our findings revealed that PPARα downregulation modified biological effects of boeravinone C, especially regarding fatty acid metabolism and the inflammatory response, with significant repercussions on apoptosis. CONCLUSION This study demonstrates that the major component boeravinone C from O. himalaicus promotes the fatty acid oxidation and suppresses inflammatory response by upregulating PPARα expression, thereby reducing apoptosis in HG-induced renal tubule cells. Consequently, boeravinone C restores tubular function in DKD mice. Collectively, this study provides a pharmacological basis for utilizing of O. himalaicus in treating DKD.
Collapse
Affiliation(s)
- Zhuoqing Cheng
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Honghong Zhan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Han Yuan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Nan Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Yi Lan
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Weijian Qu
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant R&D Center, Xizang Agriculture and Animal Husbandry College, Nyingchi, Tibet, 860000, PR China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing, 400715, PR China
| | - Guowei Wang
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Min Chen
- Chongqing Key Laboratory of New Drug Screening from Traditional Chinese Medicine, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
30
|
Li L, Jin W, Kim J, Bae G, Yang SH, Cho B, Han SH, Lee J, Kim D, Kim DK, Lim CS, Hong BH, Lee JP. Graphene Quantum Dots as Antifibrotic Therapy for Kidney Disease. ACS APPLIED BIO MATERIALS 2025; 8:980-991. [PMID: 39814584 DOI: 10.1021/acsabm.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Graphene quantum dots (GQDs) have received much attention for their biomedical applications, such as bioimaging and drug delivery. Additionally, they have antioxidant and anti-inflammatory properties. We used GQDs to treat renal fibrosis and confirmed their ability to protect renal cells from excessive oxidative stress in vitro and in vivo. Tubulointerstitial fibrosis was induced by unilateral ureteral obstruction (UUO) in 7- to 8-week-old male C57BL/6 mice. GQDs were administered by intravenous injection to mimic clinical treatment. The levels of oxidative stress, ROS production, apoptosis and proinflammatory cytokines and the activity of the TGFβ1/Smad pathway were evaluated after treatment with GQDs. In vitro, rhTGF-β1 was used to induce fibrosis in primary kidney tubule epithelial cells. GQDs alleviated fibrosis and morphological changes after UUO induction. At the mRNA and protein levels, GQDs significantly reduced the expression of fibrotic markers and proinflammatory cytokines, decreased ROS production and TGF-β1 expression, and affected Smad-dependent signaling pathways. In vitro, GQDs inhibited rhTGF-β1-induced epithelial-to-mesenchymal transition in primary kidney tubule epithelial cells and reduced apoptosis and ROS accumulation. This study revealed the role of GQDs in kidney fibrosis: GQDs effectively attenuated major fibrogenesis events by inhibiting ROS accumulation and the vicious cycle of the ROS and TGF-β1/Smad signaling pathways, as well as alleviating cell apoptosis and inflammation. Thus, GQDs may be a therapeutic option for chronic kidney disease progression.
Collapse
Affiliation(s)
- Lilin Li
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Critical Care Medicine, Yanbian University Hospital, Jilin 133000, China
| | - Wencheng Jin
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Juhee Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151747, Korea
| | - Gaeun Bae
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151747, Korea
| | - Seung Hee Yang
- Kidney Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Bogyeong Cho
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Seung Hyun Han
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Donghoon Kim
- Department of Pharmacology, College of Medicine, Dong-A University, Busan 49236, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Byung Hee Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151747, Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, College of Medicine, Seoul National University, Seoul 03080, Korea
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
- Kidney Research Institute, College of Medicine, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
31
|
Martínez García de la Torre RA, Vallverdú J, Xu Z, Ariño S, Ferrer-Lorente R, Zanatto L, Mercado-Gómez M, Aguilar-Bravo B, Ruiz-Blázquez P, Fernandez-Fernandez M, Navarro-Gascon A, Blasco-Roset A, Sànchez-Fernàndez-de-Landa P, Pera J, Romero-Moya D, Ayuso Garcia P, Martínez Sánchez C, Sererols Viñas L, Cantallops Vilà P, Cárcamo Giráldez CI, McQuillin A, Morgan MY, Moya-Rull D, Montserrat N, Eberlé D, Staels B, Antoine B, Azkargorta M, Lozano JJ, Martínez-Chantar ML, Giorgetti A, Elortza F, Planavila A, Varela-Rey M, Woodhoo A, Zorzano A, Graupera I, Moles A, Coll M, Affo S, Sancho-Bru P. Trajectory analysis of hepatic stellate cell differentiation reveals metabolic regulation of cell commitment and fibrosis. Nat Commun 2025; 16:1489. [PMID: 39929812 PMCID: PMC11811062 DOI: 10.1038/s41467-025-56024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Defining the trajectory of cells during differentiation and disease is key for uncovering the mechanisms driving cell fate and identity. However, trajectories of human cells remain largely unexplored due to the challenges of studying them with human samples. In this study, we investigate the proteome trajectory of iPSCs differentiation to hepatic stellate cells (diHSCs) and identify RORA as a key transcription factor governing the metabolic reprogramming of HSCs necessary for diHSCs' commitment, identity, and activation. Using RORA deficient iPSCs and pharmacologic interventions, we show that RORA is required for early differentiation and prevents diHSCs activation by reducing the high energetic state of the cells. While RORA knockout mice have enhanced fibrosis, RORA agonists rescue multi-organ fibrosis in in vivo models. Notably, RORA expression correlates negatively with liver fibrosis and HSCs activation markers in patients with liver disease. This study reveals that RORA regulates cell metabolic plasticity, important for mesoderm differentiation, pericyte quiescence, and fibrosis, influencing cell commitment and disease.
Collapse
Affiliation(s)
| | - Julia Vallverdú
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Zhenqing Xu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Silvia Ariño
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Raquel Ferrer-Lorente
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Zanatto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Maria Mercado-Gómez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Maria Fernandez-Fernandez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Artur Navarro-Gascon
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Sànchez-Fernàndez-de-Landa
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Joan Pera
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Damia Romero-Moya
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Paula Ayuso Garcia
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Celia Martínez Sánchez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Laura Sererols Viñas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Paula Cantallops Vilà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | | | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, WC1E 6DE, UK
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Daniel Moya-Rull
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, Spain
| | - Núria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 15-21, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig de Lluís Companys 23, Barcelona, Spain
| | - Delphine Eberlé
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, 59000, Lille, France
| | - Bénédicte Antoine
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
| | - Mikel Azkargorta
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, Derio, Spain
| | - Juan-José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria L Martínez-Chantar
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Alessandra Giorgetti
- Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Félix Elortza
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Proteomics Platform, CIC BioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park, Derio, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Varela-Rey
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Barcelona University, Barcelona, Spain
| | - Ashwin Woodhoo
- Gene Regulatory Control in Disease Laboratory, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain
- Oportunius Research Professor at CIMUS/USC, Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, A Coruña, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Spain
- CIBER Fisitopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Graupera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Anna Moles
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Department of Experimental Pathology, Institute of Biomedical Research of Barcelona, Spanish National Research Council (IIBB-CSIC), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
- Medicine Department, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
32
|
Feng G, Han Y, Yang W, Shikora S, Mahawar K, Cheung TT, Targher G, Byrne CD, Hernandez-Gea V, Tilg H, Zheng MH. Recompensation in MASLD-related cirrhosis via metabolic bariatric surgery. Trends Endocrinol Metab 2025; 36:118-132. [PMID: 38908982 DOI: 10.1016/j.tem.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
The prognosis of patients with decompensated cirrhosis is poor, with significantly increased liver-related mortality rates. With the rising tide of decompensated cirrhosis associated with metabolic dysfunction-associated steatotic liver disease (MASLD), the role of metabolic bariatric surgery (MBS) in achieving hepatic recompensation is garnering increasing attention. However, the complexity of preoperative assessment, the risk of postoperative disease recurrence, and the potential for patients to experience surgical complications of the MBS present challenges. In this opinion article we analyze the potential of MBS to induce recompensation in MASLD-related cirrhosis, discuss the mechanisms by which MBS may affect recompensation, and compare the characteristics of different MBS procedures; we highlight the therapeutic potential of MBS in MASLD-related cirrhosis recompensation and advocate for research in this complex area.
Collapse
Affiliation(s)
- Gong Feng
- Xi'an Medical University, Xi'an, China; The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wah Yang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, No. 613, Huangpu Avenue West, Guangzhou, China
| | - Scott Shikora
- Bariatric Surgery, Brigham and Women's Hospital, 75 Francis Street, ASBII-3rd Floor, Boston, MA 02115, USA
| | - Kamal Mahawar
- Bariatric Unit, Sunderland Royal Hospital, Sunderland, SR4 7TP, UK
| | - Tan To Cheung
- Department of Surgery, the University of Hong Kong, Hong Kong, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella (VR), Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic Barcelona, IDIBAPS, University of Barcelona, Centro de Investigación Biomédica Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
33
|
Geng X, Huang W, Deng L, Xiong Y, Zhao Y, Yao H, Zhou Z, Xu B, Xu F, Wang F, Wang X, Li Y, Tao W, Li Z, Yang Y. Renal Protection of HWL-088and ZLY-032, Two Dual GPR40/PPARδ Agonists, in Adenine-Induced Renal Fibrosis Model. Chem Biodivers 2025; 22:e202401598. [PMID: 39376036 PMCID: PMC11826300 DOI: 10.1002/cbdv.202401598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
This research examined the potential of novel GPR40/PPARδ dual agonists, HWL-088 and ZLY-032, to protect the kidneys in a mouse model of adenine-induced renal fibrosis. Mice were given a diet containing 0.25 % adenine to develop renal fibrosis and then received different dosages of HWL-088 or ZLY-032. After being euthanized, tissue and serum samples were collected for morphological, histological, and molecular examination. Compared to the control group, mice fed adenine showed an increase in kidney-to-body weight ratio, serum creatinine, and urea levels. Hematoxylin and eosin staining revealed alleviated glomerulosclerosis, tubular dilation, and inflammatory cell infiltration in mice treated with HWL-088 or ZLY-032. Furthermore, Masson staining and immunohistochemistry demonstrated that these dual agonists protected against renal interstitial fibrosis and inflammation, corroborated by decreased expression levels of fibrosis-related proteins (TGF-β, Collα1, TIMP-1) and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). Accordingly, it can be inferred that GPR40/PPARδ dual agonists HWL-088 and ZLY-032 could yield significant renoprotective effects by inhibiting inflammation and fibrosis. Overall, these results may contribute to the development of novel therapeutic strategies for renal fibrosis.
Collapse
Affiliation(s)
- Xinqian Geng
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Wanqiu Huang
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Liming Deng
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Yuxin Xiong
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Yunli Zhao
- Key Laboratory of Medicinal Chemistry for Natural ResourceMinistry of EducationYunnan Provincial Center for Research & Development of Natural ProductsSchool of Chemical Science and TechnologyYunnan UniversityKunming650091People's Republic of China
| | - Huixin Yao
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Zongtao Zhou
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Bo Xu
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Fan Xu
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Feiying Wang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Xiaoling Wang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Yiping Li
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Wenyu Tao
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| | - Zheng Li
- School of PharmacyGuangdong Pharmaceutical UniversityGuangzhou510006PR China
- Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education DepartmentGuangdong Pharmaceutical UniversityGuangzhou510006PR China
| | - Ying Yang
- Department of EndocrinologyThe Affiliated Hospital of Yunnan University and the Second People's Hospital of Yunnan ProvinceKunming, Yunnan650021PR China
| |
Collapse
|
34
|
Cai H, Wang M, Zhu H, Song P, Pei K, Duan Y, Bao Y, Cao G. Phytochemical component profiling and anti-renal fibrosis effects of crude and salt-stir fried Eucommiae Cortex extracts on renal fibrosis rats caused by high-purine diet. Food Chem 2025; 464:141784. [PMID: 39476582 DOI: 10.1016/j.foodchem.2024.141784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
A prolonged diet laden with purine-rich foods represents a significant contributor to renal fibrosis (RF). Eucommia ulmoides Oliver, a plant homologous to food and medicinal materials, has long been employed to recover kidney function. This investigation presents a strategy integrating chemistry, biochemistry, and metabolomics to evaluate bioactive components and efficiency mechanism of crude and salt-stir fried Eucommiae Cortex (EC) extracts against RF. Firstly, 155 chemical components were identified in the EC extracts and the contents of 19 and 27 compounds decreased and increased respectively after salt-stir frying. Secondly, various biochemical indicators displayed that salt-stir fried EC (SEC) extracts had the optimal anti-RF effects in adenine-induced RF model rats, which were associated with the attenuation of TGF-β signaling pathway. Finally, untargeted metabolomics analysis demonstrated that after treatments with EC and SEC extracts, 30 and 32 efficacy biomarkers were significantly restored in the RF + EC and RF + SEC groups respectively, involving five metabolic pathways.
Collapse
Affiliation(s)
- Hao Cai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Mengqing Wang
- School of Pharmacy, Jiangsu Food and Pharmaceutical Science College, Huaian 223001, PR China
| | - Hui Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peixiang Song
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ke Pei
- School of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China
| | - Yu Duan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Yini Bao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
35
|
Greenman R, Weston CJ. CCL24 and Fibrosis: A Narrative Review of Existing Evidence and Mechanisms. Cells 2025; 14:105. [PMID: 39851534 PMCID: PMC11763828 DOI: 10.3390/cells14020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Tissue fibrosis results from a dysregulated and chronic wound healing response accompanied by chronic inflammation and angiogenesis. Regardless of the affected organ, fibrosis shares the following common hallmarks: the recruitment of immune cells, fibroblast activation/proliferation, and excessive extracellular matrix deposition. Chemokines play a pivotal role in initiating and advancing these fibrotic processes. CCL24 (eotaxin-2) is a chemokine secreted by immune cells and epithelial cells, which promotes the trafficking of immune cells and the activation of profibrotic cells through CCR3 receptor binding. Higher levels of CCL24 and CCR3 were found in the tissue and sera of patients with fibro-inflammatory diseases, including primary sclerosing cholangitis (PSC), systemic sclerosis (SSc), and metabolic dysfunction-associated steatohepatitis (MASH). This review delves into the intricate role of CCL24 in fibrotic diseases, highlighting its impact on fibrotic, immune, and vascular pathways. We focus on the preclinical and clinical evidence supporting the therapeutic potential of blocking CCL24 in diseases that involve excessive inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Chris J. Weston
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
- National Institute for Health and Care Research (NIHR), Birmingham Biomedical Research Centre, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Wang RX, Zhou HB, Gao JX, Bai WF, Wang J, Bai YC, Jiang SY, Chang H, Shi SL. Metagenomics and metabolomics to investigate the effect of Amygdalus mongolica oil on intestinal microbiota and serum metabolites in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156335. [PMID: 39709798 DOI: 10.1016/j.phymed.2024.156335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Renal fibrosis (RF) is an inevitable consequence of multiple manifestations of progressive chronic kidney diseases (CKDs). Mechanism of Amygdalus mongolica (Maxim.) in the treatment of RF needs further investigation. PURPOSE The study further investigated the potential mechanism of A. mongolica in the treatment of RF. METHODS A rat model of RF was induced by unilateral ureteral obstruction (UUO), followed by treatment with varying dosages of A. mongolica oil for 4 weeks. Body weight was measured weekly. We detected serum levels of interleukin (IL)-6, IL-1β, type Ⅲ procollagen (Col-Ⅲ), type IV collagen (Col-Ⅳ), laminin (LN), hyaluronidase (HA), and tissue levels of albumin (ALB), blood urea nitrogen (BUN), creatinine (Cre), superoxide dismutase (SOD), malondialdehyde (MDA), and hydroxyproline (HYP). Shotgun metagenomics analyzed the composition of the intestinal microbiota. High-performance liquid chromatography coupled with a quadrupole-exactive mass spectrometer (HPLC-Q-Exactive-MS) monitored changes in metabolite levels in serum and gut. Multiple reaction monitoring-mass spectrometry (MRM-MS) determined the levels of amino acids in serum. RESULTS A. mongolica oil significantly alleviated indicators related to RF (p < 0.05). A. mongolica oil reduced the ratio of Firmicutes to Bacteroidetes and restored the balance of intestinal microbiota in rats with RF. A. mongolica oil modulated levels of metabolites in gut content and serum. It regulated 11 metabolic pathways including arachidonic acid metabolism. Targeted metabolomics of amino acids showed that 17 amino acids were significantly changed by A. mongolica oil, including L-glycine, L-serine and L-glutamine. CONCLUSION A. mongolica oil regulates intestinal microbiota and metabolites, restoring amino acid metabolism to treat RF.
Collapse
Affiliation(s)
- Run-Xi Wang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Hong-Bing Zhou
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China; Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Jia-Xing Gao
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Wan-Fu Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ying-Chun Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Shu-Yuan Jiang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China; Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China.
| | - Song-Li Shi
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China; Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China.
| |
Collapse
|
37
|
Mao Q, Zhang X, Yang J, Kong Q, Cheng H, Yu W, Cao X, Li Y, Li C, Liu L, Ding Z. HSPA12A acts as a scaffolding protein to inhibit cardiac fibroblast activation and cardiac fibrosis. J Adv Res 2025; 67:217-229. [PMID: 38219869 PMCID: PMC11725103 DOI: 10.1016/j.jare.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
INTRODUCTION Cardiac fibrosis is the main driver for adverse remodeling and progressive functional decline in nearly all types of heart disease including myocardial infarction (MI). The activation of cardiac fibroblasts (CF) into myofibroblasts is responsible for cardiac fibrosis. Unfortunately, no ideal approach for controlling CF activation currently exists. OBJECTIVES This study investigated the role of Heat shock protein A12A (HSPA12A), an atypical member of the HSP70 family, in CF activation and MI-induced cardiac fibrosis. METHODS Primary CF and Hspa12a knockout mice were used in the experiments. CF activation was indicated by the upregulation of myofibroblast characters including alpha-Smooth muscle actin (αSMA), Collagen, and Fibronectin. Cardiac fibrosis was illustrated by Masson's trichrome and picrosirius staining. Cardiac function was examined using echocardiography. Glycolytic activity was indicated by levels of extracellular lactate and the related protein expression. Protein stability was examined following cycloheximide and MG132 treatment. Protein-protein interaction was examined by immunoprecipitation-immunoblotting analysis. RESULTS HSPA12A displayed a high expression level in quiescent CF but showed a decreased expression in activated CF, while ablation of HSPA12A in mice promoted CF activation and cardiac fibrosis following MI. HSPA12A overexpression inhibited the activation of primary CF through inhibiting glycolysis, while HSPA12A knockdown showed the opposite effects. Moreover, HSPA12A upregulated the protein expression of transcription factor p53, by which mediated the HSPA12A-induced inhibition of glycolysis and CF activation. Mechanistically, this action of HSPA12A was achieved by acting as a scaffolding protein to bind p53 and ubiquitin specific protease 10 (USP10), thereby promoting the USP10-mediated p53 protein stability and the p53-medicated glycolysis inhibition. CONCLUSION The present study provided clear evidence that HSPA12A is a novel endogenous inhibitor of CF activation and cardiac fibrosis. Targeting HSPA12A in CF could represent a promising strategy for the management of cardiac fibrosis in patients.
Collapse
Affiliation(s)
- Qian Mao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jinna Yang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Kong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Cheng
- Department of Anesthesiology, The First Affiliated Hospital with Wannan Medical College, Wuhu, China
| | - Wansu Yu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuehua Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Chuanfu Li
- Departments of Surgery, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
38
|
Di X, Li Y, Wei J, Li T, Liao B. Targeting Fibrosis: From Molecular Mechanisms to Advanced Therapies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410416. [PMID: 39665319 PMCID: PMC11744640 DOI: 10.1002/advs.202410416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/27/2024] [Indexed: 12/13/2024]
Abstract
As the final stage of disease-related tissue injury and repair, fibrosis is characterized by excessive accumulation of the extracellular matrix. Unrestricted accumulation of stromal cells and matrix during fibrosis impairs the structure and function of organs, ultimately leading to organ failure. The major etiology of fibrosis is an injury caused by genetic heterogeneity, trauma, virus infection, alcohol, mechanical stimuli, and drug. Persistent abnormal activation of "quiescent" fibroblasts that interact with or do not interact with the immune system via complicated signaling cascades, in which parenchymal cells are also triggered, is identified as the main mechanism involved in the initiation and progression of fibrosis. Although the mechanisms of fibrosis are still largely unknown, multiple therapeutic strategies targeting identified molecular mechanisms have greatly attenuated fibrotic lesions in clinical trials. In this review, the organ-specific molecular mechanisms of fibrosis is systematically summarized, including cardiac fibrosis, hepatic fibrosis, renal fibrosis, and pulmonary fibrosis. Some important signaling pathways associated with fibrosis are also introduced. Finally, the current antifibrotic strategies based on therapeutic targets and clinical trials are discussed. A comprehensive interpretation of the current mechanisms and therapeutic strategies targeting fibrosis will provide the fundamental theoretical basis not only for fibrosis but also for the development of antifibrotic therapies.
Collapse
Affiliation(s)
- Xingpeng Di
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Ya Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Jingwen Wei
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Tianyue Li
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| | - Banghua Liao
- Department of Urology and Institute of UrologyWest China HospitalSichuan UniversityChengduP.R. China
| |
Collapse
|
39
|
Xiang T, Wang X, Huang S, Zhou K, Fei S, Zhou B, Yue K, Li Q, Xue S, Dai Y, Zhang J, Ni H, Sun C, Huang X. Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156324. [PMID: 39700636 DOI: 10.1016/j.phymed.2024.156324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Macrophage-myofibroblast transition (MMT) plays a significant role in the progression of renal fibrosis in chronic kidney disease (CKD), making inhibition of MMT a promising therapeutic strategy. Pyruvate kinase M2 (PKM2) and its metabolite lactate are implicated in the pathogenesis of renal fibrosis; however, the mechanisms through which they contribute to this process remain poorly understood. PURPOSE To investigate the effects of PKM2 inhibition by shikonin on renal fibrosis and the underly mechanisms. METHODS Mice were subjected to unilateral ureteral obstruction (UUO) to establish a CKD model. Renal fibrosis was assessed using histochemistry and western blotting. The MMT and histone lactylation levels were evaluated by immunofluorescence and western blotting. The interaction between the Tgfb1 promoter and lactylated histone H3 (K18) was examined using chromatin Immunoprecipitation (ChIP). RESULTS PKM2 expression was significantly elevated in the renal tubular cells of UUO mouse kidneys, resulting in increased pyruvate and lactate production. Similarly, lactate levels were elevated in TGF-β1-treated TCMK-1 cells and in the serum of CKD patients. In UUO mice, treatment with shikonin, a potent PKM2 inhibitor, effectively reduced lactate production, alleviated renal fibrosis, decreased TGF-β1 expression, and suppressed the MMT process. Mechanistic studies revealed that lactate treatment stimulates Tgfb1 expression in TCMK-1 cells. Consequently, TGF-β1 in conditioned media from lactate-treated TCMK-1 cells promoted M2 macrophage polarization and upregulated fibrotic gene expression in RAW264.7 cells. Pharmacological intervention demonstrated that TGF-β1 activates the Smad3 pathway to drive the MMT process. In TCMK-1 cells, both lactate treatment and PKM2 overexpression induced Tgfb1 expression by promoting histone H3K18 lactylation. CONCLUSIONS Our findings indicate that PKM2-induced excessive lactate production renal tubular cells contributes to renal fibrosis. Lactate promotes histone lactylation, leading to TGF-β1 expression in these cells, which subsequently activates the Smad3 pathway in macrophages, driving the MMT and fibrosis in the kidney. Therefore, targeting PKM2, as with shikonin treatment, may represent an effective therapeutic strategy for managing renal fibrosis in CKD.
Collapse
Affiliation(s)
- Tianya Xiang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Xijian Wang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shujiao Huang
- Xinglin College, Nantong University, Nantong, 226001, China
| | - Kexin Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shengnan Fei
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Bing Zhou
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Kun Yue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Qingxin Li
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Shengnan Xue
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Yongyi Dai
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Haoran Ni
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China; Medical School of Nantong University, Nantong, 226001, China
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory of Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, China
| | - Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
40
|
Mina IK, Iglesias-Martinez LF, Ley M, Fillinger L, Perco P, Siwy J, Mischak H, Jankowski V. Investigation of the Urinary Peptidome to Unravel Collagen Degradation in Health and Kidney Disease. Proteomics 2024:e202400279. [PMID: 39740102 DOI: 10.1002/pmic.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one. The strongest correlations were found for relationships where the parent differed by a maximum of three amino acids from the offspring, indicating an exopeptidase-regulated stepwise degradation process. Regression analysis indicated that CKD affects this degradation process. A comparison of matched CKD patients and control individuals (n = 612 each) showed that peptides at the start of the degradation process were consistently downregulated in CKD, indicating an attenuation of COL1A1 endopeptidase-mediated degradation. However, as these peptides undergo further degradation, likely mediated by exopeptidases, this downregulation can become less significant or even reverse, leading to an upregulation of later-stage fragments and potentially explaining the inconsistencies observed in previous studies.
Collapse
Affiliation(s)
- Ioanna K Mina
- Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Luis F Iglesias-Martinez
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Republic of Ireland
| | - Matthias Ley
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Vienna, Austria
| | - Lucas Fillinger
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
| | - Paul Perco
- Computational Biology Department, Delta4 GmbH, Vienna, Austria
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Vera Jankowski
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
41
|
Li L, Jiang F, Hao W, Wang Y, Li Y, Zhang D. Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation. Sci Rep 2024; 14:31181. [PMID: 39732791 DOI: 10.1038/s41598-024-82530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model. The rabbits were anaesthetized and randomly divided into two groups (n = 3 each group): a control group and an experimental group. Diaphragm nuclei for sequencing were prepared by dissociating and filtering muscle tissue. 10X Genomics Platform for single-nucleus RNA sequencing (snRNA-seq) was used to profile the cells. Normalization and clustering were performed by Seurat, and clusters were manually annotated as different cell types. In this study, we performed differentially expressed genes (DEGs) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, pseudotime analysis and high dimensional weighted gene coexpression network analysis (hdWGCNA) to identify the key genes and signaling pathways related to the pathogenesis of VIDD. We further performed quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting to verify the results of snRNA-seq. The snRNA-seq results showed that acute postmechanical ventilation diaphragm cell changes included an increase in the proportion of fibroblasts and a decrease in the proportion of myofibres. The DEGs, KEGG, hdWGCNA and pseudotime analyses demonstrated that fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT) and immune cell infiltration are the three main processes involved in early stage of fibrosis development, among which Pdgfd, Sema3a, Cxcr2, are the corresponding regulatory genes. Glycolysis and the gene Pfkfb3 are also important metabolic factors for fibrosis formation. Negr1 and Mef2c are involved in phrenic nerve ending loss and diaphragm fibre atrophy. The qRT-PCR data showed that the mRNA levels of the genes Pdgfd, Cxcr2, Pfkfb3 and Negr1 were significantly greater in the experimental group than in the control group (P < 0.01), and the expression levels of Sema3a and Mef2c were significantly lower (P < 0.01). Despite limitations, including the lack of functional evaluations to confirm ventilator-induced diaphragm dysfunction (VIDD) and the absence of data validating diaphragm unloading during ventilation, our findings suggest that FAP proliferation and immune cell infiltration may play a role in the early stage of driving diaphragm fibrosis during mechanical ventilation. However, future studies are needed to confirm these findings and investigate the potential mechanisms underlying them.
Collapse
Affiliation(s)
- Lei Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Feng Jiang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Wenyan Hao
- Department of Biomedical Engineering, Changzhi Medical College, Changzhi, 046012, China
| | - Yu Wang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Yaqian Li
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China
| | - Dong Zhang
- Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.
| |
Collapse
|
42
|
Wang Y, Yang L, Xu Q, Liu T, He H, Liu L, Yin L. Tenascin C-Guided Nanosystem for Precision Delivery of Obeticholic Acid in Liver Fibrosis Therapy. Pharmaceutics 2024; 17:32. [PMID: 39861681 PMCID: PMC11768695 DOI: 10.3390/pharmaceutics17010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Objective: Liver fibrosis, a hallmark of chronic liver diseases, is characterized by excessive extracellular matrix (ECM) deposition and scar tissue formation. Current antifibrotic nanomedicines face significant limitations, including poor penetration into fibrotic tissue, rapid clearance, and suboptimal therapeutic efficacy. The dense fibrotic ECM acts as a major physiological barrier, necessitating the development of a targeted delivery strategy to achieve effective therapeutic outcomes. Methods: We designed a liposomal delivery system functionalized with the GBI-10 aptamer and encapsulating obeticholic acid (OCA lips@Apt) to enhance selective delivery to fibrotic liver tissue while minimizing systemic toxicity. Results: Both in vitro and in vivo studies demonstrated that the aptamer-modified OCA liposomes effectively treated hepatic fibrosis through dual mechanisms: modulation of abnormal bile acid metabolism and attenuation of inflammation. The targeted delivery system leveraged the overexpression of Tenascin-C (TnC), a key ECM component in fibrotic tissues, for precise localization and enhanced endocytosis via the exposed cationic liposome surface. Conclusions: The OCA lips@Apt nanodrug demonstrated superior therapeutic efficacy with minimal off-target effects, offering a promising strategy to overcome critical barriers in liver fibrosis treatment. By precisely targeting the fibrotic ECM and modulating key pathological pathways, this TnC-guided liposomal delivery system provides a significant advancement in antifibrotic nanomedicine.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qing Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Taiyu Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Hongliang He
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210009, China
| | - Lisha Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
43
|
Yao X, Yang S, Chen L, Lin F, Ruan Y, Rao T, Cheng F. The bach1/G9a/Slc7a11 axis epigenetically promotes renal fibrosis by mediated ferroptosis. Int Immunopharmacol 2024; 143:113363. [PMID: 39393269 DOI: 10.1016/j.intimp.2024.113363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
A high percentage of individuals with renal fibrosis are susceptible to developing chronic kidney disease (CKD), and conventional therapy fails to halt the progression of renal fibrosis and CKD. Here, we assessed the potential functions of G9a in a unilateral ureteral obstruction (UUO)-induced renal fibrosis mouse model. The expression of G9a was significantly increased in the fibrotic kidneys of patients and mice. G9a knockout inhibited inflammatory cytokine production and collagen deposition in mice, whereas its overexpression aggravated renal fibrosis in mice. In vitro, the knockdown of G9a alleviated the production of inflammatory cytokines and renal fibrosis. G9a, a histone methyltransferase, interacts with transcription factor Bach1 and activates ferroptosis by suppressing the transcription of Slc7a11 via dimethylation of histone 3 lysine 9 (H3K9me2) both in vivo and in vitro. Collectively, our findings indicate that G9a could be an attractive therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Xiaobing Yao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijia Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ting Rao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
44
|
Wang J, Du H, Xie W, Bi J, Zhang H, Liu X, Wang Y, Zhang S, Lei A, He C, Yuan H, Zhang J, Li Y, Xu P, Liu S, Zhou Y, Shen J, Wu J, Cai Y, Yang C, Li Z, Liang Y, Zhao Y, Zhang J, Song M. CAR-Macrophage Therapy Alleviates Myocardial Ischemia-Reperfusion Injury. Circ Res 2024; 135:1161-1174. [PMID: 39465245 DOI: 10.1161/circresaha.124.325212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Given the growing acknowledgment of the detrimental effects of excessive myocardial fibrosis on pathological remodeling after myocardial ischemia-reperfusion injury (I/R), targeting the modulation of myocardial fibrosis may offer protective and therapeutic advantages. However, effective clinical interventions and therapies that target myocardial fibrosis remain limited. As a promising chimeric antigen receptor (CAR) cell therapy, whether CAR macrophages (CAR-Ms) can be used to treat I/R remains unclear. METHODS The expression of FAP (fibroblast activation protein) was studied in mouse hearts after I/R. FAP CAR-Ms were generated to target FAP-expressing cardiac fibroblasts in mouse hearts after I/R. The phagocytosis activity of FAP CAR-Ms was tested in vitro. The efficacy and safety of FAP CAR-Ms in treating I/R were evaluated in vivo. RESULTS FAP was significantly upregulated in activated cardiac fibroblasts as early as 3 days after I/R. Upon demonstrating their ability to engulf FAP-overexpressing fibroblasts, we intravenously administered FAP CAR-Ms to mice at 3 days after I/R and found that FAP CAR-Ms significantly improved cardiac function and reduced myocardial fibrosis in mice after I/R. No toxicities associated with FAP CAR-Ms were detected in the heart or other organs at 2 weeks after I/R. Finally, we found that FAP CAR-Ms conferred long-term cardioprotection against I/R. CONCLUSIONS Our proof-of-concept study demonstrates the therapeutic potential of FAP CAR-Ms in alleviating myocardial I/R and potentially opens new avenues for the treatment of a range of heart diseases that include a fibrotic phenotype.
Collapse
Affiliation(s)
- Jiawan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
| | - Heng Du
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
| | - Wanrun Xie
- Liangzhu Laboratory (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
| | - Jinmiao Bi
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Hao Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Xu Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Yuhan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Shaolong Zhang
- Liangzhu Laboratory (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
| | - Anhua Lei
- Liangzhu Laboratory (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
| | - Chuting He
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Hailong Yuan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Jiahe Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Yujing Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Pengfei Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Siqi Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Yanan Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Jianghua Shen
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Jingdong Wu
- Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (J. Wu, Y.C., Y. Zhao)
| | - Yihong Cai
- Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (J. Wu, Y.C., Y. Zhao)
| | - Chaofan Yang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Zeya Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Yingxin Liang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| | - Yang Zhao
- Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China (J. Wu, Y.C., Y. Zhao)
| | - Jin Zhang
- Beijing Chao-Yang Hospital, Department of Anesthesiology, Beijing, China (J. Wang)
- Liangzhu Laboratory (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital (W.X., S.Z., A.L., Jin Zhang), Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
- Center of Gene and Cell Therapy and Genome Medicine of Zhejiang Province, Hangzhou, China (W.X., S.Z., A.L., Jin Zhang)
| | - Moshi Song
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
- University of Chinese Academy of Sciences, Beijing, China (J. Wang, H.D., J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Y. Liang, M.S.)
- Beijing Institute for Stem Cell and Regenerative Medicine, China (J.B., H.Z., X.L., Y.W., C.H., H.Y., Jiahe Zhang, Y. Li, P.X., S.L., Y. Zhou, J.S., C.Y., Z.L., Y. Liang, M.S.)
| |
Collapse
|
45
|
Hu D, Wang L, Zhang Y, Liu X, Lu Z, Li H. Sanqi oral solution ameliorates renal fibrosis by suppressing fibroblast activation via HIF-1α/PKM2/glycolysis pathway in chronic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118679. [PMID: 39121930 DOI: 10.1016/j.jep.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanqi oral solution (SQ) is a traditional Chinese patent medicine, widely used to treat chronic kidney diseases (CKD) in the clinic in China. Previous studies have confirmed its anti-renal fibrosis effect, but the specific pharmacological mechanism is still unclear. AIM OF THE STUDY Focusing on energy metabolism in fibroblasts, the renoprotective mechanism of SQ was investigated in vitro and in vivo. METHODS Firstly, the fingerprint of SQ was constructed and its elementary chemical composition was analyzed. In the 5/6Nx rats experiment, the efficacy of SQ on the kidney was evaluated by detecting serum and urine biochemical indexes and pathological staining of renal tissues. Lactic acid and pyruvic acid levels in serum and renal tissues were detected. PCNA protein expression in kidney tissue was detected by immunofluorescence assay and Western blot. Expression levels of HIF-1α, PKM2 and HK2 were determined by immunohistochemistry, Western blot or RT-qPCR assay. In addition, the effect of SQ intervention on cell proliferation and glycolysis was evaluated in TGF-β1-induced NRK-49F cells, and the role of SQ exposure and HIF-1α/PKM2/glycolysis pathway were further investigated by silencing and overexpressing HIF-1α gene in NRK-49F cells. RESULTS In 5/6 Nx rats, SQ effectively improved renal function and treated renal injury. It reduced the levels of lactic acid and pyruvic acid in kidney homogenates from CKD rats and decreased the expression levels of HIF-1α, PKM2, HK2, α-SMA, vimentin, collagen I and PCNA in kidney tissues. Similar results were observed in vitro. SQ inhibited NRK-49F cell proliferation, glycolysis and the expression levels of HIF-1α, PKM2 induced by TGF-β1. Furthermore, we established NRK-49F cells transfected with siRNA or pDNA to silence or overexpress the HIF-1α gene. Overexpression of HIF-1α promoted cellular secretion of lactic acid and pyruvic acid in TGF-β1-induced NRK-49F cells, however, this change was reversed by intervention with SQ or silencing the HIF-1α gene. Overexpression of HIF-1α can further induce increased PKM2 expression, while SQ intervention can reduce PKM2 expression. Moreover, PKM2 expression was also inhibited after silencing HIF-1α gene, and SQ was not effective even when given. CONCLUSION The mechanism of action of SQ was explored from the perspective of energy metabolism, and it was found to regulate PKM2-activated glycolysis, inhibit fibroblast activation, and further ameliorate renal fibrosis in CKD by targeting HIF-1α.
Collapse
Affiliation(s)
- Dongmei Hu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Lixin Wang
- Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Xusheng Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhaoyu Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hucai Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Nephrology Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
46
|
Jiang Y, Cai R, Huang Y, Zhu L, Xiao L, Wang C, Wang L. Macrophages in organ fibrosis: from pathogenesis to therapeutic targets. Cell Death Discov 2024; 10:487. [PMID: 39632841 PMCID: PMC11618518 DOI: 10.1038/s41420-024-02247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Fibrosis, an excessive self-repair response, is an age-related pathological process that universally affects various major organs such as the heart, liver, kidney, and lungs. Continuous accumulation of pathological tissue fibrosis destroys structural integrity and causes loss of function, with consequent organ failure and increased mortality. Although some differences exist in the triggering mechanisms and pathophysiologic manifestations of organ-specific fibrosis, they usually share similar cascading responses and features, including chronic inflammatory stimulation, parenchymal cell injury, and macrophage recruitment. Macrophages, due to their high plasticity, can polarize into different phenotypes in response to varied microenvironments and play a crucial role in the development of organ fibrosis. This review examined the relationship between macrophages and the pathogenesis of organ fibrosis. Moreover, it analyzed how fibrosis can be modulated by targeting macrophages, which may become a novel and promising therapeutic strategy for fibrosis.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Rong Cai
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Yu Huang
- Department of Obstetrics and Gynecology, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, Jiangsu, China
| | - Like Zhu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China
| | - Caihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| | - Lihong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, Jiangsu, China.
| |
Collapse
|
47
|
Che Z, Suhail A, Hainc N, Sabry A, Yu E, Xu W, Goldstein D, Waldron J, Huang SH, Martino R. The Quantification of Radiation Fibrosis Using Clinically Indicated Magnetic Resonance Imaging for Head and Neck Cancer Patients. Dysphagia 2024; 39:1025-1034. [PMID: 38536488 DOI: 10.1007/s00455-024-10678-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/30/2024] [Indexed: 11/30/2024]
Abstract
Currently, no objective method exists to measure the extent of fibrosis in swallowing musculature in head and neck cancer (HNC) patients. We developed and psychometrically tested a method of quantifying fibrosis volume using magnetic resonance imaging (MRI). The overall aim of this study was to determine if clinical MRI is a reliable tool to measure fibrosis of the pharyngeal musculature in patients with HNC managed with RT and to assess its potential to capture changes in fibrosis over time. Eligible participants were adults with HNC treated with radiation therapy (RT) who received minimally two MRIs and videofluoroscopic swallow (VFS) studies from baseline (pre-RT) up to 1-year post-RT. Two neuroradiologists independently contoured fibrosis volume in batches from MRIs using Vitrea™. Sufficient inter-rater reliability was set at Intraclass Correlation Coefficient (ICC) > 0.75. Two speech-language pathologists independently rated VFSs for swallowing impairment using standardized scales, with discrepancies resolved by consensus. MRI and VFS scores were correlated using Spearman's rank coefficient. Participants included 42 adults (male = 33); mean age 59 (SD = 8.8). ICC (95% Confidence Interval) for fibrosis volume was 0.34 (0, 0.76) for batch one and 0.43 (0, 0.82) for batch two. Consensus meetings were held after each batch. Sufficient reliability was reached by batch three (ICC = 0.95 (0.79, 0.99)). Fibrosis volume increased significantly from 3 to 12 months (mean change = 1.28 mL (SD = 5.21), p = 0.006), as did pharyngeal impairment from baseline to 12 months (mean score change = 3.05 (SD = 3.02), p = 0.003). Fibrosis volume moderately correlated with pharyngeal impairment at 3 and 12 months (0.49, p = 0.004 and 0.59, p = 0.005, respectively). We demonstrated a reliable measure of fibrosis volume in swallowing musculature from existing clinical MRIs and identified that larger fibrosis volume was associated with worse swallowing function. The reliable capture of fibrosis volume offers a pragmatic method for early detection of fibrosis and concomitant dysphagia.
Collapse
Affiliation(s)
- Zhiyao Che
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Department of Speech-Language Pathology, University of Torontto, Toronto, ON, Canada
- The Swallowing Lab, University of Toronto, Swallowing Lab 160-500 University Avenue Toronto, Toronto, ON, M5G 1V7, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aamir Suhail
- Medical Imaging, University Health Network, Toronto, ON, Canada
- Diagnostic Imaging, Nova Scotia Health, Dartmouth, NS, Canada
- Radiology, Dalhousie University, Halifax, NS, Canada
| | - Nicolin Hainc
- Medical Imaging, University Health Network, Toronto, ON, Canada
- Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Aliaa Sabry
- The Swallowing Lab, University of Toronto, Swallowing Lab 160-500 University Avenue Toronto, Toronto, ON, M5G 1V7, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eugene Yu
- Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Wei Xu
- Biostatistics, University of Toronto, Toronto, ON, Canada
- Biostatistics, University Health Network, Toronto, ON, Canada
| | - David Goldstein
- Otolaryngology-Head & Neck Surgery, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - John Waldron
- Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Shao Hui Huang
- Radiation Oncology, Princess Margaret Cancer Centre, Toronto, ON, Canada
- Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Rosemary Martino
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada.
- Department of Speech-Language Pathology, University of Torontto, Toronto, ON, Canada.
- The Swallowing Lab, University of Toronto, Swallowing Lab 160-500 University Avenue Toronto, Toronto, ON, M5G 1V7, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Bøgh N, Bertelsen LB, Rasmussen CW, Bech SK, Keller AK, Madsen MG, Harving F, Thorsen TH, Mieritz IK, Hansen ES, Wanders A, Laustsen C. Metabolic MRI With Hyperpolarized 13 C-Pyruvate for Early Detection of Fibrogenic Kidney Metabolism. Invest Radiol 2024; 59:813-822. [PMID: 38913443 DOI: 10.1097/rli.0000000000001094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Fibrosis is the final common pathway for chronic kidney disease and the best predictor for disease progression. Besides invasive biopsies, biomarkers for its detection are lacking. To address this, we used hyperpolarized 13 C-pyruvate MRI to detect the metabolic changes associated with fibrogenic activity of myofibroblasts. MATERIALS AND METHODS Hyperpolarized 13 C-pyruvate MRI was performed in 2 pig models of kidney fibrosis (unilateral ureteral obstruction and ischemia-reperfusion injury). The imaging data were correlated with histology, biochemical, and genetic measures of metabolism and fibrosis. The porcine experiments were supplemented with cell-line experiments to inform the origins of metabolic changes in fibrogenesis. Lastly, healthy and fibrotic human kidneys were analyzed for the metabolic alterations accessible with hyperpolarized 13 C-pyruvate MRI. RESULTS In the 2 large animal models of kidney fibrosis, metabolic imaging revealed alterations in amino acid metabolism and glycolysis. Conversion from hyperpolarized 13 C-pyruvate to 13 C-alanine decreased, whereas conversion to 13 C-lactate increased. These changes were shown to reflect profibrotic activity in cultured epithelial cells, macrophages, and fibroblasts, which are important precursors of myofibroblasts. Importantly, metabolic MRI using hyperpolarized 13 C-pyruvate was able to detect these changes earlier than fibrosis-sensitive structural imaging. Lastly, we found that the same metabolic profile is present in fibrotic tissue from human kidneys. This affirms the translational potential of metabolic MRI as an early indicator of fibrogenesis associated metabolism. CONCLUSIONS Our findings demonstrate the promise of hyperpolarized 13 C-pyruvate MRI for noninvasive detection of fibrosis development, which could enable earlier diagnosis and intervention for patients at risk of kidney fibrosis.
Collapse
Affiliation(s)
- Nikolaj Bøgh
- From the MR Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark (N.B., L.B.B., C.W.R., S.K.B., T.H.T., I.K.M., E.S.S.H., C.L.); Department of Urology, Aarhus University Hospital, Aarhus, Denmark (A.K.K., M.G.M.); and Department of Pathology, Aalborg University Hospital, Aalborg, Denmark (F.H., A.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Xu Y, Ma X, Ni W, Zheng L, Lin Z, Lai Y, Yang N, Dai Z, Yao T, Chen Z, Shen L, Wang H, Wang L, Wu Y, Gao W. PKM2-Driven Lactate Overproduction Triggers Endothelial-To-Mesenchymal Transition in Ischemic Flap via Mediating TWIST1 Lactylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406184. [PMID: 39474980 DOI: 10.1002/advs.202406184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 12/19/2024]
Abstract
The accumulation of lactate is a rising risk factor for patients after flap transplantation. Endothelial-to-mesenchymal transition (EndoMT) plays a critical role in skin fibrosis. Nevertheless, whether lactate overproduction directly contributes to flap necrosis and its mechanism remain unknown. The current study reveals that skin flap mice exhibit enhanced PKM2 and fibrotic response. Endothelial-specific deletion of PKM2 attenuates flap necrosis and ameliorates flap fibrosis in mice. Administration of lactate or overexpressing PKM2 promotes dysfunction of endothelial cells and stimulates mesenchymal-like phenotype following hypoxia. Mechanistically, glycolytic-lactate induces a correlation between Twist1 and p300/CBP, leading to lactylation of Twist1 lysine 150 (K150la). The increase in K150la promotes Twist1 phosphorylation and nuclear translocation and further regulates the transcription of TGFB1, hence inducing fibrosis phenotype. Genetically deletion of endothelial-specific PKM2 in mice diminishes lactate accumulation and Twist1 lactylation, then attenuates EndoMT-associated fibrosis following flap ischemia. The serum lactate levels of flap transplantation patients are elevated and exhibit predictive value for prognosis. This findings suggested a novel role of PKM2-derived lactate in mediating Twist1 lactylation and exacerbates flap fibrosis and ischemia. Inhibition of glycolytic-lactate and Twist1 lactylation reduces flap necrosis and fibrotic response might become a potential therapeutic strategy for flap ischemia.
Collapse
Affiliation(s)
- Yining Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xianhui Ma
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Lin Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongnan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhanqiu Dai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Zeyang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lifeng Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Haitao Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Long Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310006, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
50
|
Henriques J, Berenbaum F, Mobasheri A. Obesity-induced fibrosis in osteoarthritis: Pathogenesis, consequences and novel therapeutic opportunities. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100511. [PMID: 39483440 PMCID: PMC11525450 DOI: 10.1016/j.ocarto.2024.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 11/03/2024] Open
Abstract
Osteoarthritis (OA) is a significant global burden, affecting more than half a billion people across the world. It is characterized by degeneration and loss of articular cartilage, synovial inflammation, and subchondral bone sclerosis, leading to pain and functional impairment. After age, obesity is a major modifiable risk factor for OA, and it has recently been identified as a chronic disease by the World Health Organization (WHO). Obesity is associated with high morbidity and mortality, imposing a significant cost on individuals and society. Obesity increases the risk of knee OA through increased joint loading, altered body composition, and elevated pro-inflammatory adipokines in the systemic circulation. Moreover, obesity triggers fibrotic processes in different organs and tissues, including those involved in OA. Fibrosis in OA refers to the abnormal accumulation of fibrous tissue within and around the joints. It can be driven by increased adiposity, low-grade inflammation, oxidative stress, and metabolic alterations. However, the clinical outcomes of fibrosis in OA are unclear. This review focuses on the link between obesity and OA, explores the mechanism of obesity-driven fibrosis, and examines potential therapeutic opportunities for targeting fibrotic processes in OA.
Collapse
Affiliation(s)
- João Henriques
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Francis Berenbaum
- Sorbonne University, Paris, France
- Department of Rheumatology, Saint-Antoine Hospital, Assistance Publique-Hopitaux de Paris, Paris, France
- INSERM CRSA, Paris, France
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|