1
|
Sundararaju U, Rachoori S, Mohammad A, Rajakumar HK. Cardiac transplantation: A review of current status and emerging innovations. World J Transplant 2025; 15:100460. [DOI: 10.5500/wjt.v15.i2.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 02/21/2025] Open
Abstract
Heart transplantation (HTx) is a life-saving procedure for patients with end-stage heart failure and has undergone remarkable advancements since the first successful transplant in 1967. The introduction of cyclosporine in the 1970s significantly improved patient outcomes, leading to a global increase in transplants, including in India, where the practice has grown despite initial challenges. This review provides an extensive overview of HTx, focusing on current practices, technological advancements, and the ongoing challenges the field faces today. It explores the evolution of surgical techniques, such as minimally invasive and robotic-assisted procedures, and the management of posttransplant rejection through tailored immunosuppressive strategies, including new monoclonal antibodies and personalized therapies. The review also highlights emerging innovations such as mechanical circulatory support devices and xenotransplantation as potential solutions to donor shortages while acknowledging the ethical and logistical challenges these approaches entail. Furthermore, the analysis delves into the implications of using extended-criteria donors and the role of multidisciplinary teams in evaluating absolute and relative contraindications. Despite the progress made, the persistent issues of organ scarcity and ethical concerns underscore the need for ongoing research and innovation to further enhance the efficacy, safety, and accessibility of HTx.
Collapse
Affiliation(s)
- Umashri Sundararaju
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nādu, India
| | - Srinivas Rachoori
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nādu, India
| | | | - Hamrish Kumar Rajakumar
- Department of General Surgery, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nādu, India
| |
Collapse
|
2
|
Noorabadi P, Shahabi Rabori V, Jamali S, Jafari N, Saberiyan M. An overview on cardiac regeneration revolution: exploring the promise of stem cell therapies. Mol Biol Rep 2025; 52:511. [PMID: 40434692 DOI: 10.1007/s11033-025-10580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of global mortality, with myocardial infarction (MI) and subsequent heart failure (HF) posing significant clinical challenges. Despite advancements in pharmacological and surgical interventions, the limited regenerative capacity of the adult human heart necessitates innovative therapeutic strategies. Stem cell-based therapies have emerged as a promising approach to cardiac regeneration, aiming to restore damaged myocardial tissue through cell replacement and paracrine-mediated repair mechanisms. This review provides a comprehensive overview of the current landscape of stem cell therapies for cardiac regeneration, focusing on the molecular mechanisms, cell types, delivery techniques, and recent clinical advancements. We highlight the roles of key signaling pathways, including NOTCH, PI3K/Akt, Wnt/β-catenin, Hippo/YAP, and MAPK, in regulating cardiomyocyte proliferation, angiogenesis, fibrosis, and inflammation. Additionally, we discuss the therapeutic potential of various stem cell types, such as mesenchymal stem cells (MSCs), cardiac progenitor cells (CPCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs), in promoting cardiac repair. Despite promising preclinical results, challenges such as low cell retention, immune rejection, and inconsistent clinical outcomes persist. Recent advancements in genetic engineering, and innovative delivery methods, including transendocardial and intracoronary injections, offer new avenues for enhancing therapeutic efficacy. This review underscores the need for further research to optimize stem cell-based therapies, improve clinical trial design, and translate these innovative approaches into effective treatments for heart disease. By addressing these challenges, stem cell therapy holds the potential to revolutionize cardiac regeneration and improve outcomes for patients with ischemic heart disease and heart failure.
Collapse
Affiliation(s)
- Parisa Noorabadi
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Venus Shahabi Rabori
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sara Jamali
- Department of Medical Genetics, School of Medical Sciences, Faculty of Medicine, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran
| | - Negar Jafari
- Department of Cardiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, School of Medical Sciences, Faculty of Medicine, Hormozgan University of Medical Sciences, P.O.Box: 7919693116, Bandar Abbas, Iran.
| |
Collapse
|
3
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
4
|
Pan M, Xu Y, Wang Y, Jiang Y, Xie Y, Tai C, Wang W, Wang B. The therapeutic efficacy comparison of MSCs derived different tissues unveilings anti-apoptosis more crucial than angiogenesis in treating acute myocardial infarction. Stem Cell Res Ther 2025; 16:236. [PMID: 40361236 PMCID: PMC12077008 DOI: 10.1186/s13287-025-04378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) is a severe disease that often associated with impaired angiogenesis and increased myocardial apoptosis. Mesenchymal stromal cells (MSCs) have been a promising candidate for treating myocardial infarction. However, functional heterogeneity of MSCs leads to inconsistent therapeutic efficiency and the current MSCs-based therapy lacks the concept and implementation of precision medicine. In this study, we compared the cardioprotective effect of UCMSCs and ADMSCs targeting the angiogenesis in a mouse MI model and screened out optimum MSCs candidate for precise clinical application. METHODS The gene expression profiles of UCMSCs and ADMSCs were investigated through RNA sequencing analysis. To compare their angiogenic potential, we performed tube formation assay, Matrigel plug assays, and aortic ring assay, and analyzed pro-angiogenic genes via qPCR. Subsequently, UCMSCs and ADMSCs were respectively injected into myocardium after MI surgery in mice. On day 28 post-MI, echocardiography was performed to assess cardiac function. Histological analysis was performed to assess MSCs retention, angiogenesis, and myocardial apoptosis. Additionally, the anti-apoptosis effects mediated by MSCs were further evaluated using flow cytometry in hypoxia H9C2 and HL-1 cells. RESULTS The RNA sequencing analysis revealed differences in gene expression related to angiogenesis and apoptosis pathways between UCMSCs and ADMSCs. UCMSCs presented greater pro-angiogenesis activity than ADMSCs in vitro and in vivo. Both of UCMSCs and ADMSCs improved cardiac function, decreased infarction area and inhibited cardiomyocyte apoptosis while promoting angiogenesis post-MI in mice. Notably, ADMSCs exerted a better cardioprotective function than UCMSCs and stronger anti-apoptotic effect on residual cardiomyocytes. CONCLUSIONS The protection of residual cells survival played a more prominent role than angiogenesis in MSCs-based therapy for acute MI. Our study provides new insights into therapeutic strategies and suggests that the optimal type of MSCs can be screened based on their tissue heterogeneity for precise clinical applications in acute MI.
Collapse
Affiliation(s)
- Mingjie Pan
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yueyue Xu
- The Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yaping Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yue Jiang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chenxu Tai
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Wenqing Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital, Clinical Medical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
Jeong T, Lee MS, Jeon J, Park JH, Chung Y, Yang HS. Advanced stem cell therapy using both cell spheroids transplant and paracrine factor release hydrogel patches for myocardial infarction. Colloids Surf B Biointerfaces 2025; 253:114772. [PMID: 40378458 DOI: 10.1016/j.colsurfb.2025.114772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Conventional micro-concave systems have been proposed as effective methods for facile cell spheroid formation, culture. However, these systems face challenges in terms of ease of cell transplantation and a low cell survival rate in ischemic disease. We present a novel open/close type hydrogel micro-concave patch (OC) designed for in situ 3D cell spheroid formation, culture, and a transplantable system utilizing a 3D printed mold. Open-type patches were fabricated with a rigid hydrogel, while closed-type patches were prepared with a combination of swellable soft hydrogel and rigid hydrogel. The open-type concave was intended for cell spheroid formation and subsequent transplantation into the ischemic region. Conversely, the close-type concave allowed released cytokines from cell spheroids, which were located inside the concave, to promote survival of transplanted cell spheroid. We hypothesized that transplant of open-type cell spheroids, combined with the release of paracrine factors from close-type cell spheroids, could enhance therapeutic outcomes in ischemic regions. The OC was prepared using different concentration ratios of swellable polyacrylamide (PAAM) hydrogel through 3D printed micropillar mold. Additionally, PAAM was characterized to enhance the compactness of close-type 3D cell spheroids. Transplantation of OC improved the therapeutic effect in a rat cardiac infarction model compared to open-type patches.
Collapse
Affiliation(s)
- Taekgwang Jeong
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Min Suk Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jin Hee Park
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Youngdoo Chung
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science & Engineering, Dankook University, Cheonan 31116, Republic of Korea; Center for Bio-Medical Engineering Core-Facility, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
6
|
Xu J, Brown J, Shaik R, Soto-Garcia L, Liao J, Nguyen K, Zhang G, Hong Y. Injectable myocardium-derived hydrogels with SDF-1α releasing for cardiac repair. BIOMATERIALS ADVANCES 2025; 170:214203. [PMID: 39908684 DOI: 10.1016/j.bioadv.2025.214203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Myocardial infarction (MI) is a predominant cause of morbidity and mortality globally. Therapeutic chemokines, such as stromal cell-derived factor 1α (SDF-1α), present a promising opportunity to treat the profibrotic remodeling post-MI if they can be delivered effectively to the injured tissue. However, direct injection of SDF-1α or physical entrapment in a hydrogel has shown limited efficacy. Here, we developed a sustained-release system consisting of SDF-1α loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) and an injectable porcine cardiac decellularized extracellular matrix (cdECM) hydrogel. This system demonstrated a sustained release of SDF-1α over four weeks while there is one week release for SDF-1α directly encapsulated in the cdECM hydrogel during in vitro testing. The incorporation of PLGA NPs into the cdECM hydrogel significantly enhanced its mechanical properties, increasing the Young's modulus from 561 ± 228 kPa to 1007 ± 2 kPa and the maximum compressive strength from 639 ± 42 kPa to 1014 ± 101 kPa. This nanocomposite hydrogel showed good cell compatibility after 7 days of culture with H9C2 cells, while the released SDF-1α retained its bioactivity, as evidenced by its chemotactic effects in vitro. Furthermore, in vivo studies further highlighted its significant ability to promote angiogenesis in the infarcted area and improve cardiac function after intramyocardial injection. These results demonstrated the therapeutic potential of combining local release of SDF-1α with the cdECM hydrogel for MI treatment.
Collapse
Affiliation(s)
- Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jacob Brown
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Kytai Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
7
|
Verma E, Gupta M, Sierhuis R, Dhingra S. Scientometric analysis of evolution in sex-specific MSC therapy for cardiovascular diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167878. [PMID: 40311883 DOI: 10.1016/j.bbadis.2025.167878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy for cardiovascular diseases has shown promise; however, sex-specific differences remain understudied. This scientometric analysis provides the first comprehensive overview of sex-specific differences in mesenchymal stem cell (MSC) therapy for cardiovascular diseases, spanning from 1947 to 2024. METHODS We analyzed 61,029 publications using advanced bibliometric tools to identify research hotspots, publication trends, and collaborative networks. RESULTS A significant shift in research focus has been observed in the field of mesenchymal stem cell (MSC) therapy for cardiovascular diseases, transitioning from broad cardiovascular concepts in the 20th century to specialized sex-specific considerations in the 21st century. Furthermore, in the 21st-century research landscape, the formation of two distinct clusters for "male" and "female" in VOSviewer-generated network visualizations is highly important, emphasizing the growing recognition of sex-specific differences in MSC therapy responses and outcomes. This shift was accompanied by a marked increase in terminology related to sex-specific differences, with keywords like "genetic association" and "body mass index" forming distinct clusters in recent years. CONCLUSIONS This analysis underscores the critical need for sex-specific considerations in MSC therapy for cardiovascular disease. The emergence of distinct male and female clusters in research networks emphasizes the importance of tailoring approaches based on sex differences. Key areas identified for future investigation include the role of epigenetics in mediating sex-specific effects and the potential of sex-matched MSC-derived exosomes. These findings pave the way for more effective and personalized approaches in cardiovascular regenerative medicine, potentially leading to improved outcomes through sex-specific therapeutic strategies.
Collapse
Affiliation(s)
- Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H2A6, Canada
| | - Mehak Gupta
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H2A6, Canada
| | - Riley Sierhuis
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre Regenerative Medicine Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H2A6, Canada.
| |
Collapse
|
8
|
Kim YJ, Kim H, Lee DH, Kim YH, Park JH, Sim WS, Kim JJ, Ban K, Um SH, Park HJ, Davis ME, Park HJ, Bhang SH. Reinforcing Stromal Cell Spheroid Through Red-Light Preconditioning for Advanced Vascularization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500788. [PMID: 40278796 DOI: 10.1002/advs.202500788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Despite the promising potential of stromal cell therapy in treating myocardial infarction (MI), its effectiveness is limited by poor cell retention and engraftment in ischemic environments. This study introduces a novel strategy that combines the preconditioning of human adipose-derived stromal cells (hADSCs) using OLED-based photobiomodulation (OPBM) and culturing these cells into 3D spheroids. The preconditioned 3D spheroids (APCS group) exhibit significantly enhanced angiogenic, arterialized, and tissue remodeling capabilities compared with those of traditional 2D cultures and non-preconditioned spheroids. In vivo transplantation of these spheroids into the border zone of infarcted area significantly improve cardiac function and reduce adverse remodeling by enhancing anti-fibrosis and angiogenesis including arterialization. The combined strategy with OPBM preconditioning and 3D spheroid culture system can enhance therapeutic potential of hADSCs with multiple paracrine effects for cardiac repair. This novel approach provides next generation of cell therapeutics to overcome the limitation of adult stromal cell therapy in patients with post-MI heart failure.
Collapse
Affiliation(s)
- Yu-Jin Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyeok Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dong-Hyun Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yeong Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Ji Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Children's Heart Research & Outcomes (HeRO) Center, Children's Healthcare of Atlanta & Emory University, Atlanta, GA, 30322, USA
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
9
|
Guo M, Watanabe T, Shinoka T. Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature. J Funct Biomater 2025; 16:152. [PMID: 40422817 DOI: 10.3390/jfb16050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
Stem cell-based therapies are an emerging treatment modality aimed at replenishing lost cardiomyocytes and improving myocardial function after cardiac injury. This review examines the current state of research on injectable stem cell therapies in the setting of cardiovascular disease given their relative simplicity and ability for deep myocardial tissue penetration. Various methods of cell delivery, ranging in level of invasiveness and procedural complexity, have been developed, and numerous cell types have been studied as potential sources of stem cells, each with distinct advantages and disadvantages. We discuss key challenges associated with this approach, including low stem cell retention after transplantation and the innovative biomolecular strategies that have been explored to address this issue. Overall, investigations into the application of stem cells toward cardiac regeneration remain predominantly in the preclinical stage with a number of small, early-phase clinical trials. However, continued scientific advancements in stem cell technology may provide transformative treatment options for patients with heart failure, offering improved survival and quality of life.
Collapse
Affiliation(s)
- Marissa Guo
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
10
|
Xiang YY, Won JH, Kim JS, Baek KW. Transplantation of Exercise-Enhanced Mesenchymal Stem Cells Improves Obesity and Glucose Tolerance via Immune Modulation in Adipose Tissue. Stem Cell Rev Rep 2025:10.1007/s12015-025-10881-0. [PMID: 40227488 DOI: 10.1007/s12015-025-10881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
Exercise-conditioned mesenchymal stem cells (MSCs) may modulate immune responses and improve white adipose tissue (WAT) function. While MSCs are known to reduce inflammation, it remains unclear if exercise-stimulated MSCs can improve obesity-related dysfunctions. This study is the first to explore how exercise-conditioned MSCs may influence adipose tissue inflammation and remodeling in the context of obesity. MSCs were isolated from exercised- and sedentary donor mice, then cultured in vitro. After culture, MSCs were assessed for differentiation capacity and cytokine gene expression, including Il10, as indicators of immune modulation. Exercise-conditioned MSCs were then transplanted into obese recipient mice. Following transplantation, immune cell profiles, inflammatory markers, and adipocyte morphology in recipient WAT were analyzed. Flow cytometry was used to quantify macrophage subtypes (pro-inflammatory and anti-inflammatory), and histological analysis was performed to measure changes in adipocyte size. Exercise-activated MSCs showed a ± 35% increase in Il10 expression and a ± 20% enhancement in differentiation capacity compared to controls, indicating improved immunomodulatory potential. In recipient mice, transplantation led to a ± 25% reduction in pro-inflammatory macrophages (CD86+ CD206-) and a 15% decrease in adipocyte size within WAT. Additionally, WAT in treated mice showed balanced inflammatory profiles and reduced adipose hypertrophy, suggesting restored immune balance and metabolic health. These findings suggest that exercise-modified MSCs exhibit enhanced immunomodulatory and metabolic regulatory properties. This study provides evidence that exercise enhances MSC characteristics, potentially improving their capacity to modulate adipose tissue immune balance and metabolic function in obesity. Exercise-conditioned MSCs may serve as a foundation for future strategies that integrate exercise-induced stem cell modifications to modulate obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Ying-Ying Xiang
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Jong-Hwa Won
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea
| | - Kyung-Wan Baek
- Department of Physical Education, Gyeongsang National University, Jinju, 52828, Korea.
- Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
11
|
An C, Zhao Y, Guo L, Zhang Z, Yan C, Zhang S, Zhang Y, Shao F, Qi Y, wang X, Wang H, Zhang L. Innovative approaches to boost mesenchymal stem cells efficacy in myocardial infarction therapy. Mater Today Bio 2025; 31:101476. [PMID: 39896290 PMCID: PMC11787032 DOI: 10.1016/j.mtbio.2025.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Stem cell-based therapy has emerged as a promising approach for heart repair, potentially regenerating damaged heart tissue and improving outcomes for patients with heart disease. However, the efficacy of stem cell-based therapies remains limited by several challenges, including poor cell survival, low retention rates, poor integration, and limited functional outcomes. This article reviews current enhancement strategies to optimize mesenchymal stem cell therapy for cardiac repair. Key approaches include optimizing cell delivery methods, enhancing cell engraftment, promoting cell functions through genetic and molecular modifications, enhancing the paracrine effects of stem cells, and leveraging biomaterials and tissue engineering techniques. By focusing on these enhancement techniques, the paper highlights innovative approaches that can potentially transform stem cell therapy into a more viable and effective treatment option for cardiac repair. The ongoing research and technological advancements continue to push the boundaries, hoping to make stem cell therapy a mainstream treatment for heart disease.
Collapse
Affiliation(s)
- Chuanfeng An
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Yuan Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lipeng Guo
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Zhijian Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Chunxiao Yan
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Yujie Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Yuanyuan Qi
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Xun wang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lijun Zhang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| |
Collapse
|
12
|
Safwan M, Bourgleh MS, Haider KH. Clinical experience with cryopreserved mesenchymal stem cells for cardiovascular applications: A systematic review. World J Stem Cells 2025; 17:102067. [PMID: 40160690 PMCID: PMC11947892 DOI: 10.4252/wjsc.v17.i3.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/17/2025] [Accepted: 02/24/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND As living biodrugs, mesenchymal stem cells (MSCs) have progressed to phase 3 clinical trials for cardiovascular applications. However, their limited immediate availability hampers their routine clinical use. AIM To validate our hypothesis that cryopreserved MSCs (CryoMSCs) are as safe and effective as freshly cultured MSC counterparts but carry logistical advantages. METHODS Four databases were systematically reviewed for relevant randomized controlled trials (RCTs) evaluating the safety and efficacy of CryoMSCs from various tissue sources in treating patients with heart disease. A subgroup analysis was performed based on MSC source and post-thaw cell viability to determine treatment effects across different CryoMSCs sources and viability status. Weighted mean differences (WMDs) and odds ratios were calculated to measure changes in the estimated treatment effects. All statistical analyses were performed using RevMan version 5.4.1 software. RESULTS Seven RCTs (285 patients) met the eligibility criteria for inclusion in the meta-analysis. During short-term follow-up, CryoMSCs demonstrated a significant 2.11% improvement in left ventricular ejection fraction (LVEF) [WMD (95%CI) = 2.11 (0.66-3.56), P = 0.004, I 2 = 1%], with umbilical cord-derived MSCs being the most effective cell type. However, the significant effect on LVEF was not sustained over the 12 months of follow-up. Subgroup analysis demonstrated a substantial 3.44% improvement in LVEF [WMD (95%CI) = 3.44 (1.46-5.43), P = 0.0007, I 2 = 0%] when using MSCs with post-thaw viability exceeding 80%. There was no statistically significant difference in the frequency of major cardiac adverse events observed in rehospitalization or mortality in patients treated with CryoMSCs vs the control group. CONCLUSION CryoMSCs are a promising option for heart failure patients, particularly considering the current treatment options for cardiovascular diseases. Our data suggest that CryoMSCs could be a viable alternative or complementary treatment to the current options, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Moaz Safwan
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia
| | - Mariam Safwan Bourgleh
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, AlQaseem, Saudi Arabia.
| |
Collapse
|
13
|
Liu D, Wang X, Liu Z, Ding L, Liu M, Li T, Zeng S, Zheng M, Wang L, Zhang J, Zhang F, Li M, Liu G, Tang Y. Platelet Membrane and miR-181a-5p Doubly Optimized Nanovesicles Enhance Cardiac Repair Post-Myocardial Infarction through Macrophage Polarization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16520-16532. [PMID: 40064701 PMCID: PMC11931480 DOI: 10.1021/acsami.4c19325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/21/2025]
Abstract
Macrophages play a crucial role in cardiac remodeling and prognosis after myocardial infarction (MI). Our previous studies have built a scalable method for preparing scaled stem cell nanovesicles (NVs) and demonstrated their remarkable reparative effects on ischemic heart disease. To further enhance the targeted reparative capabilities of the NVs toward injured myocardium, we employed a dual modification strategy involving platelet membrane coating and miR-181a-5p loading, creating a nanovesicle termed P-181-NV. This study aimed to investigate the efficacy of P-181-NV in targeted reparative interventions for damaged myocardium and to reveal the underlying mechanisms involved. After successful construction and characteristic analysis of P-181-NV, the in vivo tracking techniques demonstrated a significant enhancement in the targeting capacity of P-181-NV toward the injured myocardium. Moreover, P-181-NV showed marked improvements in cardiac function and remodeling as observed through ultrasound echocardiography and Masson's trichrome staining. Furthermore, P-181-NV significantly augmented myocardial cell viability, angiogenic potential, and the polarization ratio of the anti-inflammatory macrophages. The findings of this study underscore the pivotal role of platelet-membrane-coated and miR-181a-5p modified stem cell nanovesicles in facilitating postmyocardial infarction cardiac repair. By modulating macrophage polarization, P-181-NV offers a promising approach for enhancing the efficacy of targeted reparative interventions for damaged myocardium. These results contribute to our understanding of the potential of nanovesicles as therapeutic agents for cardiac repair and regeneration, presenting avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Dongyue Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Xianyun Wang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Zhao Liu
- Traditional
Chinese Medicine Processing Technology Innovation Center of Hebei
Province, School of Pharmacy, Hebei University
of Chinese Medicine, Shijiazhuang 050091, China
- International
Joint Research Center on Resource Utilization and Quality Evaluation
of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, China
| | - Lini Ding
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Mei Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Tianshuo Li
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Shasha Zeng
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Mingqi Zheng
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China
| | - Le Wang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Heart and Metabolism, Shijiazhuang 050031, Hebei Province, China
| | - Jun Zhang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Fan Zhang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
| | - Meng Li
- College
of
Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Gang Liu
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Hebei
Provincial Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang 050031, Hebei Province, China
- Hebei International
Joint Research Center for Structural Heart Disease, Shijiazhuang 050031, Hebei Province, China
| | - Yida Tang
- Department
of Cardiovascular Medicine, The First Hospital
of HeBei Medical University, Shijiazhuang 050031, Hebei Province, China
- Department
of Cardiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
14
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
15
|
Cao C, Yang L, Song J, Liu Z, Li H, Li L, Fu J, Liu J. Cardiomyocyte regeneration after infarction: changes, opportunities and challenges. Mol Cell Biochem 2025:10.1007/s11010-025-05251-w. [PMID: 40097887 DOI: 10.1007/s11010-025-05251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Myocardial infarction is a cardiovascular disease that poses a serious threat to human health. The traditional view is that adult mammalian cardiomyocytes have almost no regenerative ability, but recent studies have shown that they have regenerative potential under specific conditions. This article comprehensively describes the research progress of post-infarction cardiomyocyte regeneration, including the characteristics of cardiomyocytes and post-infarction changes, regeneration mechanisms, influencing factors, potential therapeutic strategies, challenges and future development directions, and deeply discusses the specific pathways and targets included in the regeneration mechanism, aiming to provide new ideas and methods for the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Ce Cao
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lili Yang
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianshu Song
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Zixin Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Haoran Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Lei Li
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianhua Fu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China
| | - Jianxun Liu
- Beijing Key Laboratory of Chinese Materia Pharmacology, Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, 100091, China.
| |
Collapse
|
16
|
Huang CC, Chang CK, Yang PC, Chiu H, Chen SH, Hsu LW. Injectable Glucose-Releasing Microgels Enhance the Survival and Therapeutic Potential of Transplanted MSCs Under Ischemic Conditions. Adv Healthc Mater 2025; 14:e2401724. [PMID: 39324547 DOI: 10.1002/adhm.202401724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Mesenchymal stem cell (MSC)-based therapies show potential to treat ischemic diseases owing to their versatile functions. However, sustaining MSC viability and therapeutic efficacy in ischemic tissues postengraftment remains a significant challenge. This is because, although MSCs are metabolically flexible, they fail to adapt to hypoxic conditions in the absence of glucose, leading to cell death. To overcome these issues, it is aimed to establish an injectable glucose delivery system using starch and amyloglucosidase embedded in alginate microgels. Here, starch/amyloglucosidase (S/A) microgels are engineered to continuously release glucose for seven days via enzymatic hydrolysis, thereby supporting MSC functions under ischemic conditions. In vitro tests under oxygen/glucose-deprived conditions revealed that the S/A microgels not only maintained the viability and intracellular energy but also enhanced the pro-angiogenic and immunomodulatory functions of MSCs. In vivo data further confirmed the pro-survival and pro-angiogenic effects of S/A microgels on MSCs following subcutaneous engraftment in mice. Overall, the developed S/A microgel significantly enhanced the survival and therapeutic potential of MSCs via sustained glucose delivery, highlighting its potential use in advancing MSC-based therapies for ischemic conditions.
Collapse
Affiliation(s)
- Chieh-Cheng Huang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Kai Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Pei-Ching Yang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Han Chiu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shih-Heng Chen
- Department of Plastic & Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan
| | - Li-Wen Hsu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 300193, Taiwan
| |
Collapse
|
17
|
Sepehri M, Rabbani S, Ai J, Bahrami N, Ghanbari H, Namini MS, Sharifi M, Kouchakzadeh F, Esfahlani MA, Ebrahimi-Barough S. Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction. Regen Ther 2025; 28:451-461. [PMID: 39974600 PMCID: PMC11836543 DOI: 10.1016/j.reth.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
Myocardial infarction (MI) is the most common cardiovascular disease (CVD) and the leading cause of mortality worldwide. Recent advancements have identified human endometrial mesenchymal stem cells (hEnMSCs) as a promising candidate for heart regeneration, however, challenges associated with cell-based therapies have shifted focus toward cell-free treatments (CFTs), such as exosome therapy, which show considerable promise for myocardial tissue regeneration. MI was induced in male Wistar rats by occluding the left anterior descending (LAD) coronary artery. The hEnMSCs-derived exosomes (hEnMSCs-EXOs) were encapsulated in injectable fibrin gel inside the cardiac tissue. The encapsulated hEnMSC-EXOs were administered, and their effects on myocardial regeneration, angiogenesis, and heart function were monitored for 30 days post-MI. The treatments were evaluated through histological analysis, echocardiographic parameters of left ventricular internal dimension at end-diastole (LVIDD) and end-systole (LVID), left ventricular end-diastole volume (LVEDV), left ventricular end-systole volume (LVESV), and left ventricular ejection fraction (LVEF) and molecular studies. Histological findings demonstrated significant fibrosis and left ventricular remodeling following MI. Treatment with fibrin gel-encapsulated hEnMSCs-EXOs substantially reduced fibrosis, enhanced angiogenesis, and prevented heart remodeling, leading to improved cardiac function. Notably, 30 days after encapsulated hEnMSCs-EXOs were delivered corresponded with a less inflammatory microenvironment, supporting cardiomyocyte retention in ischemic tissue. This study highlights the potential of encapsulated hEnMSCs-EXOs in fibrin gel as a novel therapeutic strategy for ischemic myocardium repair post-MI. The findings underscore the importance of biomaterials in advancing stem cell-based therapies and lay a foundation for clinical applications to mitigate heart injury following MI.
Collapse
Affiliation(s)
- Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahrood University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Kouchakzadeh
- Department of Histology, School of Paramedical, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Abedini Esfahlani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Cao Y, Chen X, Cheng B, Tao X, Zhang W, Shi Y, Gao J, Fu M. Therapeutic potential of miR-133a-transfected bone marrow mesenchymal stem cell transplantation in improving cardiac function post-myocardial infarction. J Cardiothorac Surg 2025; 20:139. [PMID: 39984986 PMCID: PMC11844181 DOI: 10.1186/s13019-025-03367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/08/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE The objective of this study is to examine the therapeutic efficacy of miR-133a-transfected bone marrow mesenchymal stem cells (BM-MSCs) in restoring damaged myocardium, reducing myocardial fibrosis, and improving cardiac function following myocardial infarction (MI). METHODS Bone marrow mesenchymal stem cells (BM-MSCs) were transfected with miR-133a using lentivirus vectors, and the in vitro transfection efficiency was assessed. A rat MI animal model was established to examine the survival rate of miR-133a-transfected BM-MSCs in ischemic myocardium. The effects of miR-133a transfection on rat primary cardiac fibroblasts were evaluated both in vitro and in vivo. RESULTS The experimental group had a significantly higher concentration of double-stranded DNA (dsDNA) compared to the control group. Fluorescent staining revealed an enhanced survival rate of MSCs in the miR-133a transfection group compared to controls. Additionally, the protein and gene expression of apoptosis-related indicators in the infarcted myocardium were lower in the experimental group compared to the control group. Following co-culture with rat primary cardiac fibroblasts, the miR-133a-transfected MSCs exhibited a significantly lower expression of myofibroblast-specific proteins and mRNA compared to controls. The levels of collagen I, connective tissue growth factor (CTGF) protein, and messenger RNA (mRNA) in the infarcted myocardium of rats transplanted with BM-MSCs transfected with miR-133a were significantly lower than those in the control group, and their left ventricular ejection fraction (LVEF) was significantly increased compared with the group that received unmodified BM-MSCs. CONCLUSION Our results demonstrate that miR-133a transfection following MI improves the survival rate of transplanted MSCs in ischemia-hypoxic myocardium, inhibits the transformation of cardiac fibroblasts into myofibroblasts, reduces myocardial fibrosis, and improves cardiac function following MI. This approach holds promise as a novel therapeutic strategy for myocardial repair.
Collapse
Affiliation(s)
- Yanglanduo Cao
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Xiaohan Chen
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Biao Cheng
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Xuefei Tao
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Wei Zhang
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Yong Shi
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China
| | - Jie Gao
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China.
| | - Minghuan Fu
- Department of Geriatric Cardiovascular Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No.32 West Section 2, 1st Ring Road, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
19
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
20
|
Abbasi R, Alamdari-Mahd G, Maleki-Kakelar H, Momen-Mesgin R, Ahmadi M, Sharafkhani M, Rezaie J. Recent advances in the application of engineered exosomes from mesenchymal stem cells for regenerative medicine. Eur J Pharmacol 2025; 989:177236. [PMID: 39753159 DOI: 10.1016/j.ejphar.2024.177236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in biomedical exploration due to their exceptional properties. There is intriguing evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine. Numerous studies suggest that exosomes have several advantages over conventional synthetic nanocarriers, opening novel frontiers for innovative drug delivery. Regenerative medicine has demonstrated the profound therapeutic outcomes of engineered or loaded exosomes from MSCs. Different methods are being used to modify or/load exosomes. These exosomes can improve cell signaling pathways for bone and cartilage diseases, liver diseases, nerve tissues, kidney diseases, skin tissue, and cardiovascular diseases. Despite extensive research, clinical translation of these exosomes remains a challenge. The optimization of cargo loading methods, efficiency, physiological stability, and the isolation and characterization of exosomes present some challenges. The upcoming examination should include the development of large-scale, quality-controllable production approaches, the modification of drug loading approaches, and numerous in vivo investigations and clinical trials. Here, we provided an informative overview of the extracellular vesicles and modification/loading methods of exosomes. We discuss the last exosome research on regeneration disorders, highlighting the therapeutic applications of MSCs-derived exosomes. We also highlight future directions and challenges, underscoring the significance of addressing the main questions in the field.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Ghazal Alamdari-Mahd
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohaddeseh Sharafkhani
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Park JJ, Rim YA, Sohn Y, Nam Y, Ju JH. Prospects of induced pluripotent stem cells in treating advancing Alzheimer's disease: A review. Histol Histopathol 2025; 40:157-170. [PMID: 38847077 DOI: 10.14670/hh-18-766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The World Health Organization has identified Alzheimer's disease (AD), the leading cause of dementia globally, as a public health priority. However, the complex multifactorial pathology of AD means that its etiology remains incompletely understood. Despite being recognized a century ago, incomplete knowledge has hindered the development of effective treatments for AD. Recent scientific advancements, particularly in induced pluripotent stem cell (iPSC) technology, show great promise in elucidating the fundamental mechanisms of AD. iPSCs play a dual role in regenerating damaged cells for therapeutic purposes and creating disease models to understand AD pathology and aid in drug screening. Nevertheless, as an emerging field, iPSC technology requires further technological advancement to develop effective AD treatments in the future. Thus, this review summarizes recent advances in stem cell therapies, specifically iPSCs, aimed at understanding AD pathology and developing treatments.
Collapse
Affiliation(s)
- Juyoun Janis Park
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Johns Hopkins University, Baltimore, Maryland, USA
| | - Yeri Alice Rim
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea
| | - Yoojun Nam
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, South Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc, Seocho-gu, Seoul, South Korea
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
22
|
Wang K, Zhu Q, Liu W, Wang L, Li X, Zhao C, Wu N, Ma C. Mitochondrial apoptosis in response to cardiac ischemia-reperfusion injury. J Transl Med 2025; 23:125. [PMID: 39875870 PMCID: PMC11773821 DOI: 10.1186/s12967-025-06136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI. The death of each cell (cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells) after myocardial ischemia/reperfusion is associated with apoptosis due to mitochondrial dysfunction. Abnormal opening of the mitochondrial permeability transition pore, aberrant mitochondrial membrane potential, Ca2+ overload, mitochondrial fission, and mitophagy can lead to mitochondrial dysfunction, thereby inducing mitochondrial apoptosis. The manifestation of mitochondrial apoptosis varies according to cell type. Here, we reviewed the characteristics of mitochondrial apoptosis in cardiomyocytes, endothelial cells, vascular smooth muscle cells, cardiac fibroblasts, and mesenchymal stem cells following myocardial ischemia/reperfusion.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Qing Zhu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Wen Liu
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Linyuan Wang
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Xinxin Li
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Cuiting Zhao
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China
| | - Nan Wu
- The Central Laboratory of The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang, China.
- Clinical Medical Research Center of Imaging in Liaoning Province, Shenyang, China.
| |
Collapse
|
23
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
24
|
Afkhami H, Yarahmadi A, Bostani S, Yarian N, Haddad MS, Lesani SS, Aghaei SS, Zolfaghari MR. Converging frontiers in cancer treatment: the role of nanomaterials, mesenchymal stem cells, and microbial agents-challenges and limitations. Discov Oncol 2024; 15:818. [PMID: 39707033 DOI: 10.1007/s12672-024-01590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024] Open
Abstract
Globally, people widely recognize cancer as one of the most lethal diseases due to its high mortality rates and lack of effective treatment options. Ongoing research into cancer therapies remains a critical area of inquiry, holding significant social relevance. Currently used treatment, such as chemotherapy, radiation, or surgery, often suffers from other problems like damaging side effects, inaccuracy, and the lack of ability to clear tumors. Conventional cancer therapies are usually imprecise and ineffective and usually develop resistance to treatments and cancer recurs. Cancer patients need fresh and innovative treatment that can reduce side effects while maximizing effectiveness. In recent decades several breakthroughs in these, and other areas of medical research, have paved the way for new avenues of fighting cancer including more focused and more effective alternatives. This study reviews exciting possibilities for mesenchymal stem cells (MSCs), nanomaterials, and microbial agents in the modern realm of cancer treatment. Nanoparticles (NPs) have demonstrated surprisingly high potential. They improve drug delivery systems (DDS) significantly, enhance imaging techniques remarkably, and target cancer cells selectively while protecting healthy tissues. MSCs play a double role in tissue repair and are a vehicle for novel cancer treatments such as gene treatments or NPs loaded with therapeutic agents. Additionally, therapies utilizing microbial agents, particularly those involving bacteria, offer an inventive approach to cancer treatment. This review investigates the potential of nanomaterials, MSCs, and microbial agents in addressing the shortcomings of conventional cancer therapies. We will also discuss the challenges and limitations of using these therapeutic approaches.
Collapse
Affiliation(s)
- Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Shoroq Bostani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Nahid Yarian
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | - Shima Sadat Lesani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | | | | |
Collapse
|
25
|
Razavi ZS, Farokhi S, Mahmoudvand G, Karimi-Rouzbahani A, Farasati-Far B, Tahmasebi-Ghorabi S, Pazoki-Toroudi H, Saadat-Fakhr M, Afkhami H. Stem cells and bio scaffolds for the treatment of cardiovascular diseases: new insights. Front Cell Dev Biol 2024; 12:1472103. [PMID: 39726717 PMCID: PMC11669526 DOI: 10.3389/fcell.2024.1472103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/01/2024] [Indexed: 12/28/2024] Open
Abstract
Mortality and morbidity from cardiovascular diseases are common worldwide. In order to improve survival and quality of life for this patient population, extensive efforts are being made to establish effective therapeutic modalities. New treatment options are needed, it seems. In addition to treating cardiovascular diseases, cell therapy is one of the most promising medical platforms. One of the most effective therapeutic approaches in this area is stem cell therapy. In stem cell biology, multipotent stem cells and pluripotent stem cells are divided into two types. There is evidence that stem cell therapy could be used as a therapeutic approach for cardiovascular diseases based on multiple lines of evidence. The effectiveness of stem cell therapies in humans has been studied in several clinical trials. In spite of the challenges associated with stem cell therapy, it appears that resolving them may lead to stem cells being used in cardiovascular disease patients. This may be an effective therapeutic approach. By mounting these stem cells on biological scaffolds, their effect can be enhanced.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Golnaz Mahmoudvand
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi-Rouzbahani
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahareh Farasati-Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Samaneh Tahmasebi-Ghorabi
- Master of Health Education, Research Expert, Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | | | - Masoud Saadat-Fakhr
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
26
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
27
|
Allen MF, Park SY. Applying adipose tissue-derived stem cell therapies as a novel treatment for atherosclerotic plaque development: Importance of appropriate dosing. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100086. [PMID: 39801802 PMCID: PMC11708246 DOI: 10.1016/j.jmccpl.2024.100086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Michael F. Allen
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health & Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
28
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
29
|
Ale Y, Nainwal N. Exosomes as nanocarrier for Neurotherapy: Journey from application to challenges. J Drug Deliv Sci Technol 2024; 101:106312. [DOI: 10.1016/j.jddst.2024.106312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
30
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
31
|
Jacques V, Benaouadi S, Descamps JG, Reina N, Espagnolle N, Marsal D, Sainte-Marie Y, Boudet A, Pinto C, Farge T, Savagner F. Metabolic conditioning enhances human bmMSC therapy of doxorubicin-induced heart failure. Stem Cells 2024; 42:874-888. [PMID: 39133028 DOI: 10.1093/stmcls/sxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic potential of bone marrow mesenchymal stromal cells (bmMSCs) to address heart failure needs improvement for better engraftment and survival. This study explores the role of metabolic sorting for human bmMSCs in coculture in vitro and on doxorubicin-induced heart failure mice models. Using functional, epigenetic, and gene expression approaches on cells sorted for mitochondrial membrane potential in terms of their metabolic status, we demonstrated that bmMSCs selected for their glycolytic metabolism presented proliferative advantage and resistance to oxidative stress thereby favoring cell engraftment. Therapeutic use of glycolytic bmMSCs rescued left ventricular ejection fraction and decreased fibrosis in mice models of acute heart failure. Metabolic changes were also related to epigenetic histone modifications such as lysine methylation. By targeting LSD1 (lysine-specific demethylase 1) as a conditioning agent to enhance the metabolic profile of bmMSCs, we deciphered the interplay between glycolysis and bmMSC functionality. Our study elucidates novel strategies for optimizing bmMSC-based treatments for heart failure, highlighting the metabolic properties of bmMSCs as a promising target for more effective cardiovascular regenerative therapies.
Collapse
Affiliation(s)
- Virginie Jacques
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Sabrina Benaouadi
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | | | - Nicolas Reina
- Department of Orthopedic Surgery, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, 31059 Toulouse, Cedex 9, France
- AMIS Laboratory-Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse, Université de Toulouse, UMR 5288 CNRS, UPS, 31000 Toulouse, France
| | - Nicolas Espagnolle
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1031, France
| | | | - Yannis Sainte-Marie
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Alexandre Boudet
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Carla Pinto
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Thomas Farge
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Frédérique Savagner
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| |
Collapse
|
32
|
Jeung S, An JH, Kim SS, Youn HY. Safety and efficacy of canine gonadal tissue-derived mesenchymal stem cells for early myxomatous mitral valve disease. Front Vet Sci 2024; 11:1404607. [PMID: 39415950 PMCID: PMC11480051 DOI: 10.3389/fvets.2024.1404607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction This study explored the potential efficacy and safety of therapy with mesenchymal stem cells (MSC) derived from gonadal tissue to address the early stage of myxomatous mitral valve disease (MMVD), the predominant cardiac condition in dogs. Methods Sixteen dogs diagnosed with MMVD B1 were enrolled in this trial and assigned to either a control group (control group, n = 10) or a group that received MSC derived from gonadal tissue (treatment group, n = 6). In the treatment group, allogeneic MSC derived from gonadal tissue (1 × 106 cells/kg) were intravenously administered at monthly intervals for five or more sessions. Data were compared at baseline and at the endpoint 1-year intervals. The efficacy was assessed using echocardiography, thoracic radiography, NT-proBNP, and the duration from B1 diagnosis to B2 transition to evaluate its effect on MMVD stage progression. Safety was evaluated through physical examinations, blood tests, imaging studies, and monitoring of adverse events. Results After 1 year of observation, the control group exhibited deteriorating echocardiographic parameters, whereas the treatment group displayed no substantial differences between baseline and endpoint measurements. Notably, a statistically significant disparity was noted in the left atrial diameter (p < 0.05) and E-wave velocity (p < 0.05) between the two groups, indicating a favorable impact of MSC derived from the gonadal tissue on left atrial pressure. Additionally, in contrast to the control group, the treatment group demonstrated delayed progression to MMVD stage B2, enabling them to prolong their disease duration without requiring cardiac medication (p = 0.038). In quality of life (QoL) metrics following MSC treatment, appetite showed a statistically significant improvement, increasing from 4 to 4.83 (p < 0.05). Discussion Treatment with gonadal tissue-derived MSCs significantly delayed MMVD stage progression, highlighting the broad potential of MSC derived from gonadal tissue for treating complex veterinary conditions.
Collapse
Affiliation(s)
- Soyoung Jeung
- VIP Animal Medical Center, Seoul, Republic of Korea
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Emergency and Critical Care, Department of Veterinary Clinical Science, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sung-Soo Kim
- VIP Animal Medical Center, Seoul, Republic of Korea
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
35
|
Beauregard MA, Bedford GC, Brenner DA, Sanchez Solis LD, Nishiguchi T, Abhimanyu, Longlax SC, Mahata B, Veiseh O, Wenzel PL, DiNardo AR, Hilton IB, Diehl MR. Persistent tailoring of MSC activation through genetic priming. Mol Ther Methods Clin Dev 2024; 32:101316. [PMID: 39282077 PMCID: PMC11396059 DOI: 10.1016/j.omtm.2024.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) are an attractive platform for cell therapy due to their safety profile and unique ability to secrete broad arrays of immunomodulatory and regenerative molecules. Yet, MSCs are well known to require preconditioning or priming to boost their therapeutic efficacy. Current priming methods offer limited control over MSC activation, yield transient effects, and often induce the expression of pro-inflammatory effectors that can potentiate immunogenicity. Here, we describe a genetic priming method that can both selectively and sustainably boost MSC potency via the controlled expression of the inflammatory-stimulus-responsive transcription factor interferon response factor 1 (IRF1). MSCs engineered to hyper-express IRF1 recapitulate many core responses that are accessed by biochemical priming using the proinflammatory cytokine interferon-γ (IFN-γ). This includes the upregulation of anti-inflammatory effector molecules and the potentiation of MSC capacities to suppress T cell activation. However, we show that IRF1-mediated genetic priming is much more persistent than biochemical priming and can circumvent IFN-γ-dependent expression of immunogenic MHC class II molecules. Together, the ability to sustainably activate and selectively tailor MSC priming responses creates the possibility of programming MSC activation more comprehensively for therapeutic applications.
Collapse
Affiliation(s)
| | - Guy C. Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Abhimanyu
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Santiago Carrero Longlax
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Immunology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Andrew R. DiNardo
- The Global Tuberculosis Program, Texas Children’s Hospital, Immigrant and Global Health, WTS Center for Human Immunobiology, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Isaac B. Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Michael R. Diehl
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| |
Collapse
|
36
|
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther 2024; 15:266. [PMID: 39183341 PMCID: PMC11346273 DOI: 10.1186/s13287-024-03885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in stem cell technology offer new possibilities for patients with untreated diseases and disorders. Stem cell-based therapy, which includes multipotent mesenchymal stem cells (MSCs), has recently become important in regenerative therapies. MSCs are multipotent progenitor cells that possess the ability to undergo in vitro self-renewal and differentiate into various mesenchymal lineages. MSCs have demonstrated promise in several areas, such as tissue regeneration, immunological modulation, anti-inflammatory qualities, and wound healing. Additionally, the development of specific guidelines and quality control methods that ultimately result in the therapeutic application of MSCs has been made easier by recent advancements in the study of MSC biology. This review discusses the latest clinical uses of MSCs obtained from the umbilical cord (UC), bone marrow (BM), or adipose tissue (AT) in treating various human diseases such as pulmonary dysfunctions, neurological disorders, endocrine/metabolic diseases, skin burns, cardiovascular conditions, and reproductive disorders. Additionally, this review offers comprehensive information regarding the clinical application of targeted therapies utilizing MSCs. It also presents and examines the concept of MSC tissue origin and its potential impact on the function of MSCs in downstream applications. The ultimate aim of this research is to facilitate translational research into clinical applications in regenerative therapies.
Collapse
Affiliation(s)
- Song Zhidu
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China
| | - Tao Ying
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiang Rui
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhang Chao
- Department of Ophthalmology, the Second Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
37
|
Seow KS, Ling APK. Mesenchymal stem cells as future treatment for cardiovascular regeneration and its challenges. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:73. [PMID: 39118948 PMCID: PMC11304428 DOI: 10.21037/atm-23-1936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/04/2023] [Indexed: 08/10/2024]
Abstract
Cardiovascular diseases (CVDs), particularly stroke and myocardial infarction (MI) contributed to the leading cause of death annually among the chronic diseases globally. Despite the advancement of technology, the current available treatments mainly served as palliative care but not treating the diseases. However, the discovery of mesenchymal stem cells (MSCs) had gained a consideration to serve as promising strategy in treating CVDs. Recent evidence also showed that MSCs are the strong candidate to be used as stem cell therapy involving cardiovascular regeneration due to its cardiomyogenesis, anti-inflammatory and immunomodulatory properties, antifibrotic effects and neovascularization capacity. Besides, MSCs could be used for cellular cardiomyoplasty with its transdifferentiation of MSCs into cardiomyocytes, paracrine effects, microvesicles and exosomes as well as mitochondrial transfer. The safety and efficacy of utilizing MSCs have been described in well-established preclinical and clinical studies in which the accomplishment of MSCs transplantation resulted in further improvement of the cardiac function. Tissue engineering could enhance the desired properties and therapeutic effects of MSCs in cardiovascular regeneration by genome-editing, facilitating the cell delivery and retention, biomaterials-based scaffold, and three-dimensional (3D)-bioprinting. However, there are still obstacles in the use of MSCs due to the complexity and versatility of MSCs, low retention rate, route of administration and the ethical and safety issues of the use of MSCs. The aim of this review is to highlight the details of therapeutic properties of MSCs in treating CVDs, strategies to facilitate the therapeutic effects of MSCs through tissue engineering and the challenges faced using MSCs. A comprehensive review has been done through PubMed and National Center for Biotechnology Information (NCBI) from the year of 2010 to 2021 based on some specific key terms such as 'mesenchymal stem cells in cardiovascular disease', 'mesenchymal stem cells in cardiac regeneration', 'mesenchymal stem cells facilitate cardiac repairs', 'tissue engineering of MSCs' to include relevant literature in this review.
Collapse
Affiliation(s)
- Ke Sin Seow
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Yang X, Xu Z, Shu F, Xiao J, Zeng Y, Lu X, Yu F, Xi L, Cheng F, Gao B, Chen H. Bioorthogonal targeted cell membrane vesicles/cell-sheet composites reduce postoperative tumor recurrence and scar formation of melanoma. J Control Release 2024; 372:372-385. [PMID: 38901733 DOI: 10.1016/j.jconrel.2024.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
While surgical resection is the predominant clinical strategy in the treatment of melanoma, postoperative recurrence and undetectable metastasis are both pernicious drawbacks to this otherwise highly successful approach. Furthermore, the deep cavities result from tumor excision can leave long lasting wounds which are slow to heal and often leave visible scars. These unmet needs are addressed in the present work through the use of a multidimensional strategy, and also promotes wound healing and scar reduction. In the first phase, cell membrane-derived nanovesicles (NVs) are engineered to show PD-1 and dibenzocyclooctyne (DBCO). These are capable of reactivating T cells by blocking the PD-1/PD-L1 pathway. In the second phase, azido (N3) labeled mesenchymal stem cells (MSCs) are cultured into cell sheets using tissue engineering, then apply directly to surgical wounds to enhance tissue repair. Owing to the complementary association between DBCO and N3 groups, PD-1 NVs were accumulated at the site of excision. This strategy can inhibit postoperative tumor recurrence and metastasis, whilst also promoting wound healing and reducing scar formation. The results of this study set a precedent for a new and innovative multidimensional therapeutic strategy in the postoperative treatment of melanoma.
Collapse
Affiliation(s)
- Xinrui Yang
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Zhanxue Xu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China; Department of Pharmacy, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Fan Shu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Jiangwei Xiao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Xingyu Lu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fei Yu
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Lifang Xi
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Materials Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510550, China.
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), shenzhen Campus of SunYat-sen University, Shenzhen 518107, China.
| |
Collapse
|
39
|
Alqasoumi A, Alsharidah M, Mahmood A, Elsafadi M, Al Rugaie O, Mohany KM, Al-Regaiey KA, Alyahya KI, Alanteet AA, Algarzae NK, AlGhibiwi HK, AlHomaidi A, Abumaree M. Mesenchymal Stem Cell-Conditioned Media Modulate HUVEC Response to H 2O 2: Impact on Gene Expression and Potential for Atherosclerosis Intervention. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7726493. [PMID: 39050921 PMCID: PMC11268959 DOI: 10.1155/2024/7726493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Background: We studied the potential of human bone marrow-derived mesenchymal stem cell conditioned media (hBMSC CM) in protecting endothelial cell properties (viability, proliferation, and migrations) from the deleterious effects produced by the inflammatory environment of H2O2. Additionally, we investigated their impact on the endothelial cells' gene expression of some inflammatory-related genes, namely, TGF-β1, FOS, ATF3, RAF-1, and SMAD3. Methods: Human umbilical vein endothelial cells (HUVECs) were cultured individually under three conditions: alone, with varying concentrations of H2O2, or with varying concentrations of H2O2 and hBMSC CM. HUVEC adhesion, proliferation, and migration were evaluated using the xCELLigence system. The HUVECs' gene expressions were evaluated by real-time polymerase chain reaction (RT-PCR). Results: Generally, we observed enhanced HUVEC viability, proliferation, and migration when cultured in media supplemented with H2O2 and hBMSC CM. Furthermore, the CM modulated the expressions of the studied inflammatory-related genes in HUVECs, promoting a more robust cellular response. Conclusion: This study has illuminated the protective role of hBMSC CM in mitigating the damaging effects of H2O2 on endothelial cell function. Our data demonstrate that hBMSC CM enhances the viability, proliferation, and migration of HUVECs even under oxidative stress conditions. Additionally, the conditioned medium was found to modulate the gene expression of pivotal markers related to inflammation, suggesting a favorable influence on cellular response mechanisms.
Collapse
Affiliation(s)
- Abdulmajeed Alqasoumi
- Department of Pharmacy PracticeCollege of PharmacyQassim University, Qassim, Saudi Arabia
| | - Mansour Alsharidah
- Department of PhysiologyCollege of MedicineQassim University, Qassim, Saudi Arabia
| | - Amer Mahmood
- Stem Cell Unit Department of AnatomyCollege of MedicineKing Saud University, Riyadh, Saudi Arabia
| | - Mona Elsafadi
- Stem Cell Unit Department of AnatomyCollege of MedicineKing Saud University, Riyadh, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Biology and ImmunologyCollege of MedicineQassim University, Qassim, Saudi Arabia
| | - Khalid M. Mohany
- Department of Medical BiochemistryFaculty of MedicineAssiut University, El Gamma Street, Assiut City 71515, Egypt
| | - Khalid A. Al-Regaiey
- Department of PhysiologyCollege of MedicineKing Saud University, Riyadh, Saudi Arabia
| | - Khaleel I. Alyahya
- Department of AnatomyCollege of MedicineKing Saud University, Riyadh, Saudi Arabia
| | - Alaa A. Alanteet
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud University, Riyadh, Saudi Arabia
| | - Norah K. Algarzae
- Department of PhysiologyCollege of MedicineKing Saud University, Riyadh, Saudi Arabia
| | - Hanan K. AlGhibiwi
- Department of Pharmacology and ToxicologyCollege of PharmacyKing Saud University, Riyadh, Saudi Arabia
| | - Adel AlHomaidi
- Department of PathologyCollege of MedicineQassim University, Qassim, Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative MedicineCell Therapy and Cancer Research (CTCR)King Abdullah International Medical Research Center (KAIMRC)King Saud Bin Abdulaziz University for Health Sciences (KSAU)King Abdulaziz Medical CityMinistry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
40
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
41
|
Van Delen M, Derdelinckx J, Wouters K, Nelissen I, Cools N. A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. J Extracell Vesicles 2024; 13:e12458. [PMID: 38958077 PMCID: PMC11220457 DOI: 10.1002/jev2.12458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Nowadays, it has become clear that extracellular vesicles (EVs) are not a cellular waste disposal vesicle but are an essential part of an intercellular communication system. Besides the use of EVs in biomarker studies and diagnostics, the potential of EV-therapeutics has been seen by many. They provide unique properties for disease therapy, including strong immune-modulatory actions, the possibility of engineering, low immunogenicity, and the capability of crossing biological barriers. Proof-of-concept of EV-therapeutics for various pathologies has been achieved in preclinical studies. However, clinical trials with EVs have only been emerging slowly. Here, we aim to provide a comprehensive overview of the current state-of-the-art concerning clinical studies using EVs in human therapy. By approaching the current knowledge in a systematic manner, we were able to include 21 reports for meta-analysis of safety and evaluation of efficacy outcomes. Overall, we have shown that EV-based therapy is safe with a low incidence of serious adverse events (SAE; 0.7% (95%-CI: 0.1-5.2%), and adverse events (AE; 4.4% (95%-CI: 0.7-22.2%). Subgroup analysis showed no significant difference in SAE when comparing autologous versus allogeneic administration, as well as engineered versus non-engineered EV products. A significantly higher number of AE was seen in autologous versus allogeneic administration. However, the clinical relevance remains questionable. Evaluation of the clinical outcomes of immunostimulatory, immunosuppressive or regenerative EV-therapies indicated improvement in the majority of treated patients. Despite these promising results, data need to be approached with caution due to a high heterogeneity in the EVs manufacturing methods, study design, and reporting of (S)AE. Overall, we conclude that EV-based therapy is safe and presents a promising opportunity in therapy. More efforts are needed in the standardization and harmonization of reporting of EV isolation and characterization data as well as in the reporting of (S)AE to allow inter-study comparison.
Collapse
Affiliation(s)
- Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Health DepartmentFlemish Institute for Technological Research (VITO)MolBelgium
| | - Judith Derdelinckx
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University HospitalUniversity of AntwerpEdegemBelgium
| | | | - Inge Nelissen
- Health DepartmentFlemish Institute for Technological Research (VITO)MolBelgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio)University of AntwerpAntwerpenBelgium
- Center for Cell Therapy and Regenerative Medicine (CCRG)Antwerp University HospitalEdegemBelgium
| |
Collapse
|
42
|
Wang Y, Li M, Yang T, Xie Y, Wang FS, Hu J, Shi M. Human umbilical cord mesenchymal stem cell transplantation for the treatment of acute-on-chronic liver failure: protocol for a multicentre random double-blind placebo-controlled trial. BMJ Open 2024; 14:e084237. [PMID: 38925694 PMCID: PMC11202670 DOI: 10.1136/bmjopen-2024-084237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Acute-on-chronic liver failure (ACLF) is a prevalent and life-threatening liver disease with high short-term mortality. Although recent clinical trials on the use of mesenchymal stem cells (MSCs) for ACLF treatment have shown promising results, multicentre randomised controlled phase II clinical trials remain uncommon. The primary aim of this trial is to assess the safety and efficacy of different MSCs treatment courses for ACLF. METHODS AND ANALYSIS This is a multicentre, double-blind, two-stage, randomised and placebo-controlled clinical trial. In the first stage, 150 patients with ACLF will be enrolled and randomly assigned to either a control group (50 cases) or an MSCs treatment group (100 cases). They will receive either a placebo or umbilical cord-derived MSCs (UC-MSCs) treatment three times (at weeks 0, 1 and 2). In the second stage, 28 days after the first UC-MSCs infusion, surviving patients in the MSCs treatment group will be further randomly divided into MSCs-short and MSCs-prolonged groups at a 1:1 ratio. They will receive two additional rounds of placebo or UC-MSCs treatment at weeks 4 and 5. The primary endpoints are the transplant-free survival rate and the incidence of treatment-related adverse events. Secondary endpoints include international normalised ratio, total bilirubin, serum albumin, blood urea nitrogen, model for end-stage liver disease score and Child-Turcotte-Pugh score. ETHICS AND DISSEMINATION Ethical approval of this study has been obtained from the Fifth Medical Center of the Chinese PLA General Hospital (KY-2023-3-19-1). All results of the study will be submitted to international journals and international conferences for publication on completion of the study. TRIAL REGISTRATION NUMBER NCT05985863.
Collapse
Affiliation(s)
- Yanhu Wang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Mengyao Li
- Peking University 302 Clinical Medical School, Beijing, China
| | - Tao Yang
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Yunbo Xie
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jinhua Hu
- Senior Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
43
|
Ahmed ZT, Zain Al-Abeden MS, Al Abdin MG, Muqresh MA, Al Jowf GI, Eijssen LMT, Haider KH. Dose-response relationship of MSCs as living Bio-drugs in HFrEF patients: a systematic review and meta-analysis of RCTs. Stem Cell Res Ther 2024; 15:165. [PMID: 38867306 PMCID: PMC11170815 DOI: 10.1186/s13287-024-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as living biodrugs for myocardial repair and regeneration. Recent randomized controlled trials (RCTs) have reported that MSC-based therapy is safe and effective in heart failure patients; however, its dose-response relationship has yet to be established. We aimed to determine the optimal MSC dose for treating HF patients with reduced ejection fraction (EF) (HFrEF). METHODS The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook guidelines were followed. Four databases and registries, i.e., PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other websites, were searched for RCTs. Eleven RCTs with 1098 participants (treatment group, n = 606; control group, n = 492) were selected based on our inclusion/exclusion criteria. Two independent assessors extracted the data and performed quality assessments. The data from all eligible studies were plotted for death, major adverse cardiac events (MACE), left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and 6-minute walk distance (6-MWD) as safety, efficacy, and performance parameters. For dose-escalation assessment, studies were categorized as low-dose (< 100 million cells) or high-dose (≥ 100 million cells). RESULTS MSC-based treatment is safe across low and high doses, with nonsignificant effects. However, low-dose treatment had a more significant protective effect than high-dose treatment. Subgroup analysis revealed the superiority of low-dose treatment in improving LVEF by 3.01% (95% CI; 0.65-5.38%) compared with high-dose treatment (-0.48%; 95% CI; -2.14-1.18). MSC treatment significantly improved the 6-MWD by 26.74 m (95% CI; 3.74-49.74 m) in the low-dose treatment group and by 36.73 m (95% CI; 6.74-66.72 m) in the high-dose treatment group. The exclusion of studies using ADRCs resulted in better safety and a significant improvement in LVEF from low- and high-dose MSC treatment. CONCLUSION Low-dose MSC treatment was safe and superior to high-dose treatment in restoring efficacy and functional outcomes in heart failure patients, and further analysis in a larger patient group is warranted.
Collapse
Affiliation(s)
- Ziyad T Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | | | | | - Mohamad Ayham Muqresh
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | - Ghazi I Al Jowf
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics- BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | | |
Collapse
|
44
|
Su H, Wang Z, Zhou L, Liu D, Zhang N. Regulation of the Nrf2/HO-1 axis by mesenchymal stem cells-derived extracellular vesicles: implications for disease treatment. Front Cell Dev Biol 2024; 12:1397954. [PMID: 38915448 PMCID: PMC11194436 DOI: 10.3389/fcell.2024.1397954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
This comprehensive review inspects the therapeutic potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) across multiple organ systems. Examining their impact on the integumentary, respiratory, cardiovascular, urinary, and skeletal systems, the study highlights the versatility of MSC-EVs in addressing diverse medical conditions. Key pathways, such as Nrf2/HO-1, consistently emerge as central mediators of their antioxidative and anti-inflammatory effects. From expediting diabetic wound healing to mitigating oxidative stress-induced skin injuries, alleviating acute lung injuries, and even offering solutions for conditions like myocardial infarction and renal ischemia-reperfusion injury, MSC-EVs demonstrate promising therapeutic efficacy. Their adaptability to different administration routes and identifying specific factors opens avenues for innovative regenerative strategies. This review positions MSC-EVs as promising candidates for future clinical applications, providing a comprehensive overview of their potential impact on regenerative medicine.
Collapse
Affiliation(s)
- Hua Su
- Xingyi People’s Hospital, Xingyi, China
| | | | - Lidan Zhou
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dezhi Liu
- Xingyi People’s Hospital, Xingyi, China
| | | |
Collapse
|
45
|
Guerricchio L, Barile L, Bollini S. Evolving Strategies for Extracellular Vesicles as Future Cardiac Therapeutics: From Macro- to Nano-Applications. Int J Mol Sci 2024; 25:6187. [PMID: 38892376 PMCID: PMC11173118 DOI: 10.3390/ijms25116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Cardiovascular disease represents the foremost cause of mortality and morbidity worldwide, with a steadily increasing incidence due to the growth of the ageing population. Cardiac dysfunction leading to heart failure may arise from acute myocardial infarction (MI) as well as inflammatory- and cancer-related chronic cardiomyopathy. Despite pharmacological progress, effective cardiac repair represents an unmet clinical need, with heart transplantation being the only option for end-stage heart failure. The functional profiling of the biological activity of extracellular vesicles (EVs) has recently attracted increasing interest in the field of translational research for cardiac regenerative medicine. The cardioprotective and cardioactive potential of human progenitor stem/cell-derived EVs has been reported in several preclinical studies, and EVs have been suggested as promising paracrine therapy candidates for future clinical translation. Nevertheless, some compelling aspects must be properly addressed, including optimizing delivery strategies to meet patient needs and enhancing targeting specificity to the cardiac tissue. Therefore, in this review, we will discuss the most relevant aspects of the therapeutic potential of EVs released by human progenitors for cardiovascular disease, with a specific focus on the strategies that have been recently implemented to improve myocardial targeting and administration routes.
Collapse
Affiliation(s)
- Laura Guerricchio
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Lucio Barile
- Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Laboratories for Translational Research, Ente Ospedaliero Cantonale, CH-6500 Bellinzona, Switzerland;
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sveva Bollini
- Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
46
|
Li F, Zhang F, Wang T, Xie Z, Luo H, Dong W, Zhang J, Ren C, Peng W. A self-amplifying loop of TP53INP1 and P53 drives oxidative stress-induced apoptosis of bone marrow mesenchymal stem cells. Apoptosis 2024; 29:882-897. [PMID: 38491252 PMCID: PMC11055765 DOI: 10.1007/s10495-023-01934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 03/18/2024]
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation is a promising regenerative therapy; however, the survival rate of BMSCs after transplantation is low. Oxidative stress is one of the main reasons for the high apoptosis rate of BMSCs after transplantation, so there is an urgent need to explore the mechanism of oxidative stress-induced apoptosis of BMSCs. Our previous transcriptome sequencing results suggested that the expression of P53-induced nuclear protein 1 (TP53INP1) and the tumor suppressor P53 (P53) was significantly upregulated during the process of oxidative stress-induced apoptosis of BMSCs. The present study further revealed the role and mechanism of TP53INP1 and P53 in oxidative stress-induced apoptosis in BMSCs. Overexpression of TP53INP1 induced apoptosis of BMSCs, knockdown of TP53INP1 alleviated oxidative stress apoptosis of BMSCs. Under oxidative stress conditions, P53 is regulated by TP53INP1, while P53 can positively regulate the expression of TP53INP1, so the two form a positive feedback loop. To clarify the mechanism of feedback loop formation. We found that TP53INP1 inhibited the ubiquitination and degradation of P53 by increasing the phosphorylation level of P53, leading to the accumulation of P53 protein. P53 can act on the promoter of the TP53INP1 gene and increase the expression of TP53INP1 through transcriptional activation. This is the first report on a positive feedback loop formed by TP53INP1 and P53 under oxidative stress. The present study clarified the formation mechanism of the positive feedback loop. The TP53INP1-P53 positive feedback loop may serve as a potential target for inhibiting oxidative stress-induced apoptosis in BMSCs.
Collapse
Affiliation(s)
- Fanchao Li
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Fei Zhang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Tao Wang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhihong Xie
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hong Luo
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wentao Dong
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jian Zhang
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Chao Ren
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Wuxun Peng
- Department of Orthopedics and Traumatology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
47
|
Farahzadi R, Fathi E, Valipour B, Ghaffary S. Stem cells-derived exosomes as cardiac regenerative agents. IJC HEART & VASCULATURE 2024; 52:101399. [PMID: 38584674 PMCID: PMC10990901 DOI: 10.1016/j.ijcha.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Heart failure is a root cause of morbidity and mortality worldwide. Due to the limited regenerative capacity of the heart following myocardial injury, stem cell-based therapies have been considered a hopeful approach for improving cardiac regeneration. In recent years, different kinds of cell products have been investigated regarding their potential to treat patients with heart failure. Despite special attention to cell therapy and its products, therapeutic efficacy has been disappointing, and clinical application is not affordable. In the past few years, a subset of small extracellular vehicles (EVs), commonly known as "exosomes," was reported to grant regenerative and cardioprotective signals at a value similar to their donor cells. The conceptual advantage is that they may be ideally used without evoking a relevant recipient immune response or other adverse effects associated with viable cells. The evidence related to their beneficial effects in animal models of heart failure is rapidly growing. However, there is remarkable heterogeneity regarding source cells, isolation process, effective dosage, and delivery mode. This brief review will focus on the latest research and debates on regenerative potential and cardiac repair of exosomes from different sources, such as cardiac/non-cardiac stem, somatic cells, and progenitor cells. Overall, the current state of research on exosomes as an experimental therapy for heart diseases will be discussed.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghaffary
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Mostosi D, Molinaro M, Saccone S, Torrente Y, Villa C, Farini A. Exploring the Gut Microbiota-Muscle Axis in Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:5589. [PMID: 38891777 PMCID: PMC11171690 DOI: 10.3390/ijms25115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The gut microbiota plays a pivotal role in maintaining the dynamic balance of intestinal epithelial and immune cells, crucial for overall organ homeostasis. Dysfunctions in these intricate relationships can lead to inflammation and contribute to the pathogenesis of various diseases. Recent findings uncovered the existence of a gut-muscle axis, revealing how alterations in the gut microbiota can disrupt regulatory mechanisms in muscular and adipose tissues, triggering immune-mediated inflammation. In the context of Duchenne muscular dystrophy (DMD), alterations in intestinal permeability stand as a potential origin of molecules that could trigger muscle degeneration via various pathways. Metabolites produced by gut bacteria, or fragments of bacteria themselves, may have the ability to migrate from the gut into the bloodstream and ultimately infiltrate distant muscle tissues, exacerbating localized pathologies. These insights highlight alternative pathological pathways in DMD beyond the musculoskeletal system, paving the way for nutraceutical supplementation as a potential adjuvant therapy. Understanding the complex interplay between the gut microbiota, immune system, and muscular health offers new perspectives for therapeutic interventions beyond conventional approaches to efficiently counteract the multifaceted nature of DMD.
Collapse
Affiliation(s)
- Debora Mostosi
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Monica Molinaro
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Sabrina Saccone
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Yvan Torrente
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| | - Chiara Villa
- Stem Cell Laboratory, Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.M.); (Y.T.); (C.V.)
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.M.); (S.S.)
| |
Collapse
|
50
|
Kumar R, Mishra N, Tran T, Kumar M, Vijayaraghavalu S, Gurusamy N. Emerging Strategies in Mesenchymal Stem Cell-Based Cardiovascular Therapeutics. Cells 2024; 13:855. [PMID: 38786076 PMCID: PMC11120430 DOI: 10.3390/cells13100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments. Recognizing the inherent challenges of MSC-based cardiovascular therapeutics, which range from understanding the pro-reparative activity of MSCs to tailoring patient-specific treatments, we emphasize the need to refine the pro-regenerative capacity of these cells. Crucially, our focus then shifts to the strategies of the fourth generation of cell-based therapies: leveraging the secretomic prowess of MSCs, particularly the role of extracellular vesicles; integrating biocompatible scaffolds and artificial sheets to amplify MSCs' potential; adopting three-dimensional ex vivo propagation tailored to specific tissue niches; harnessing the promise of genetic modifications for targeted tissue repair; and institutionalizing good manufacturing practice protocols to ensure therapeutic safety and efficacy. We conclude with reflections on these advancements, envisaging a future landscape redefined by MSCs in cardiovascular regeneration. This review offers both a consolidation of our current understanding and a view toward imminent therapeutic horizons.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Nitin Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Talan Tran
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | | | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|