1
|
Zhang X, Meng L, Zu T, Zhou Q. Identification of necroptosis & mitophagy-related key genes and their prognostic value in colorectal cancer. Discov Oncol 2025; 16:461. [PMID: 40183870 PMCID: PMC11971082 DOI: 10.1007/s12672-025-02221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Our study aimed to elucidate the potential necroptotic&mitophagy-related key genes in colorectal cancer (COAD) by bioinformatics analysis and identify their prognostic value in COAD. METHODS Firstly, we integrated the cancer genome atlas (TCGA) and gene expression omnibus (GEO) datasets to identify necroptosis & mitophagy-related differentially expressed genes (N&MRDEGs) in COAD using "TCGAbiolinks" and "GEOquery" packages. Secondly, the obtained data were used for differential expression analysis using the "limma" package, and further functional enrichment analysis using the "clusterProfiler" package. Then, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were utilized to explore pathway associations of the N&MRDEGs. Thirdly, the predictive model was developed utilizing LASSO (Least absolute shrinkage and selection regression) regression implemented through the "glmnet" package and validated via Kaplan-Meier analysis. Finally, we validated the function of the key genes by receiver operating characteristic (ROC) curve analysis, multivariate cox proportional hazards model and COAD cell lines. RESULTS There is a strong association between the 4 key genes (UCHL1, HSPA1A, MAPK8, and PLEC) of COAD and the necroptotic&mitophagy, which were found to be lowly mRNA level in COAD cell lines. Among them, PLEC exhibited a pronounced contribution to the utility of the model in the TCGA database and UCHL1 has excellent diagnostic potential with an area under the curve (AUC) greater than 0.9. CONCLUSIONS The perspective of bioinformatics analysis provides robust evidence suggested that UCHL1, HSPA1A, MAPK8, and PLEC genes are the prognostic biomarkers of COAD, the predictive model established herein provides a novel tool for risk stratification in clinical practice and serves as a foundation for further investigation into its underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xiuling Zhang
- Department of Internal Medicine, The Hospital of Shandong Normal University, Jinan, 250014, Shandong, China
| | - Li Meng
- Department of Pharmacy, Weifang People'S Hospital, Shandong Second Medical University, Weifang, 261041, Shandong, China
| | - Tingjian Zu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Qian Zhou
- Department of Pharmacy, Shandong Provincial Key Medical and Health Discipline of Clinical Pharmacy, Shandong Provincial Third Hospital, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
2
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Lu R, Cai H, Liu Y, Ma G, Wang J, Yan M, Zhang Z, Yu B, Li Z, Fang S. Long non-coding RNA AK023617 orchestrates atherosclerosis by regulating the circadian rhythm of immunity-related GTPase family M protein in macrophages. Noncoding RNA Res 2025; 11:262-272. [PMID: 39902258 PMCID: PMC11788686 DOI: 10.1016/j.ncrna.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Acute coronary events show a diurnal rhythm, and atherosclerotic plaque vulnerability, as a histomorphological characteristic of major adverse cardiovascular events, is a key target for intervention. Although oscillating microRNAs reduce plaque stability by facilitating macrophage apoptosis in lesions, whether rhythmic long non-coding RNA (lncRNA) can regulate diurnal oscillations in plaque stability and the potential underlying mechanism remain unclear. In this study, we examined whether rhythmic lncRNAs are involved in the pathogenesis and progression of atherosclerosis and detected a novel circadian lncRNA-AK023617, which is positively correlated with the peak occurrence of major adverse cardiovascular events. Transfection of short interfering RNA specific to lnc-AK023617 into THP-1 cells dampened the oscillation of immunity-related GTPase family M protein 1 (Irgm1), which is negatively related to plaque stability. In ApoE-/- mice fed a high-fat diet for 12 weeks, diurnal variations in lncAK023617 were consistent with the proportions of necroptotic cells in atherosclerotic plaques. In addition, reduced expression of lncAK023617 inhibited P-RIP3 and P-MLKL in THP-1 cells. Mechanistically, lncAK023617 interacted with the core molecular clock Bmal1 and promoted nuclear translocation of Bmal1, which could directly bind to the E-BOX elements in the Irgm1 promoter. Thus, oscillating lncAK023617 in macrophages can affect plaque stability by regulating necroptosis, which regulates circadian expression of the target gene Irgm1 by increasing the transcriptional activity of Bmal1, ultimately determining the diurnal oscillations in plaque stability. Therefore, lncAK023617 may serve as a specific target to ameliorate atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Rongzhe Lu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hengxuan Cai
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yige Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guanpeng Ma
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaxin Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Miao Yan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhenming Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Zhang J, Hu X, Geng Y, Xiang L, Wu Y, Li Y, Yang L, Zhou K. Exploring the role of parthanatos in CNS injury: Molecular insights and therapeutic approaches. J Adv Res 2025; 70:271-286. [PMID: 38704090 PMCID: PMC11976428 DOI: 10.1016/j.jare.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Central nervous system (CNS) injury causes severe organ damage due to both damage resulting from the injury and subsequent cell death. However, there are currently no effective treatments for countering the irreversible loss of cell function. Parthanatos is a poly (ADP-ribose) polymerase 1 (PARP-1)-dependent form of programmed cell death that is partly responsible for neural cell death. Consequently, the mechanism by which parthanatos promotes CNS injury has attracted significant scientific interest. AIM OF REVIEW Our review aims to summarize the potential role of parthanatos in CNS injury and its molecular and pathophysiological mechanisms. Understanding the role of parthanatos and related molecules in CNS injury is crucial for developing effective treatment strategies and identifying important directions for future in-depth research. KEY SCIENTIFIC CONCEPTS OF REVIEW Parthanatos (from Thanatos, the personification of death according to Greek mythology) is a type of programmed cell death that is initiated by the overactivation of PARP-1. This process triggers a cascade of reactions, including the accumulation of poly(ADP-ribose) (PAR), the nuclear translocation of apoptosis-inducing factor (AIF) after its release from mitochondria, and subsequent massive DNA fragmentation caused by migration inhibitory factor (MIF) forming a complex with AIF. Secondary molecular mechanisms, such as excitotoxicity and oxidative stress-induced overactivation of PARP-1, significantly exacerbate neuronal damage following initial mechanical injury to the CNS. Furthermore, parthanatos is not only associated with neuronal damage but also interacts with various other types of cell death. This review focuses on the latest research concerning the parthanatos cell death pathway, particularly considering its regulatory mechanisms and functions in CNS damage. We highlight the associations between parthanatos and different cell types involved in CNS damage and discuss potential therapeutic agents targeting the parthanatos pathway.
Collapse
Affiliation(s)
- Jiacheng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopedics, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yibo Geng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Linyi Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yuzhe Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| | - Liangliang Yang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325027, China.
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China.
| |
Collapse
|
5
|
Ojo OA, Grant S, Nwafor-Ezeh PI, Maduakolam-Aniobi TC, Akinborode TI, Ezenabor EH, Ojo AB. Ferroptosis as the new approach to cancer therapy. Cancer Treat Res Commun 2025; 43:100913. [PMID: 40187205 DOI: 10.1016/j.ctarc.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 04/07/2025]
Abstract
Cancer is characterized by unregulated cell proliferation, evasion of apoptosis, and a propensity for metastasis, making it a leading cause of morbidity and mortality globally. Major challenges in cancer treatment include drug resistance and tumor heterogeneity, which hinder the clinical efficacy of existing therapies. To enhance treatment outcomes, it is essential to integrate emerging biological insights and technological advancements with conventional therapeutic strategies. Recent research has identified various forms of cell death, which can be classified as either regulated or unregulated. Regulated cell death involves specific biochemical and signaling pathways, while unregulated cell death occurs passively and uncontrollably. Apoptosis, the most extensively studied form of regulated cell death, is primarily mediated by the activation of caspase proteases. Nevertheless, the resistance of many tumors to apoptotic pathways has shifted focus towards non-apoptotic forms of cell death, such as ferroptosis. Ferroptosis is an iron-dependent form of regulated necrosis characterized by extensive membrane damage resulting from lipid peroxidation. Numerous preclinical studies have demonstrated that inducing ferroptosis can significantly reduce tumor growth across a variety of cancer types. For instance, in a study involving breast cancer models, the use of ferroptosis inducers such as erastin and RSL3 led to a marked decrease in tumor volume and weight. This review aims to explore the potential of ferroptosis as a novel therapeutic strategy in cancer treatment.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria; Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Susan Grant
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Pearl Ifunanya Nwafor-Ezeh
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Emmanuel Henry Ezenabor
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Adebola Busola Ojo
- Department of Environmental Management and Toxicology, University of Ilesa, Ilesa, Nigeria
| |
Collapse
|
6
|
Toczylowska B, Skowronska M, Kurkowska-Jastrzebska I, Ruszczynska A, Zieminska E. Serum metabolomics indicates ferroptosis in patients with pantothenate kinase associated neurodegeneration. Sci Rep 2025; 15:9592. [PMID: 40113937 PMCID: PMC11926261 DOI: 10.1038/s41598-025-94838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/17/2025] [Indexed: 03/22/2025] Open
Abstract
The core syndrome among NBIA disorders is pantothenate kinase-associated neurodegeneration (PKAN), an autosomal recessive disorder caused by mutations in the PANK2 gene. There is no therapy for PKAN; only symptomatic treatment is available. Our work aimed to identify the mechanisms induced by biochemical disturbances in the cell cycle and identify potential pharmacological targets to improve patient quality of life. Mass spectrometry (MS) (metals) and NMR spectroscopy (hydrophilic and hydrophobic compounds) were used for profile analyses of the sera of 12 PKAN patients and 12 controls to study the compounds involved in PKAN pathomechanisms. We performed ANOVA and multivariate analysis using orthogonal partial least squares discriminant analysis. We have shown for the first time that patients have 100-500-fold greater serum citrate levels than controls do, which may contribute to Fe transport and ferroptosis. Ferroptosis may be indicated by disturbances in the levels of many metals, oxidative stress, disturbances in energy production and neurotransmission or dysfunction of biological membranes. Our findings suggest that ferroptosis could be a primary cause of cell death in PKAN patients. This could be indicated by serum metabolomics.
Collapse
Affiliation(s)
- Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, PAS, Ks. Trojdena 4 St., 02-109, Warsaw, Poland
| | - Marta Skowronska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 St., 02-957, Warsaw, Poland
| | - Iwona Kurkowska-Jastrzebska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9 St., 02-957, Warsaw, Poland
| | - Anna Ruszczynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki I Wigury 101 St., 02-089, Warsaw, Poland
| | - Elzbieta Zieminska
- Mossakowski Medical Research Institute, PAS, A. Pawinskiego 5 St., 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Hawas UW, Abou El-Kassem LT. New bioactive pyrrole alkaloid isolated from the Saudi Red Sea sponge Stylissa carteri with potential anticancer property against human lung adenocarcinoma cell line, and possible mechanisms. Nat Prod Res 2025:1-11. [PMID: 40088154 DOI: 10.1080/14786419.2025.2479252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 02/01/2025] [Accepted: 09/04/2024] [Indexed: 03/17/2025]
Abstract
Chemical investigation of a MeOH extract of the Red Sea sponge Stylissa carteri, offered a new bromopyrrole alkaloid named stylisinone (1) along with other eight pyrrole alkaloids. The structures were established by comprehensive spectroscopic analyses of NMR and MS, as well as by comparison with the literature. The in vitro anticancer activity of the isolated alkaloids was evaluated against human cancer cell lines, HepG2, MCF-7, LS513, A549, and THP1, and BM as normal mice cells. The results showed that stylisinone had the highest cytotoxicity against the A549 cell line, with IC50 values at 24.08 µM, respectively. The new metabolite stylisinone caused strong cell cycle arrest at sub G1 and G2/M (22.43-fold and 2.28-fold, respectively), indicating its potential as an antitumor agent. Furthermore, stylisinone showed a marked increase in Annexin V-FITC necrotic cells (from 1.23 to 21.38%), making this molecule an attractive candidate for further mechanism of action studies.
Collapse
Affiliation(s)
- Usama W Hawas
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lamia T Abou El-Kassem
- Chemistry Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
8
|
Tang K, Ye T, He Y, Ba X, Xia D, Peng E, Chen Z, Ye Z, Yang X. Ferroptosis, necroptosis, and pyroptosis in calcium oxalate crystal-induced kidney injury. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167791. [PMID: 40086520 DOI: 10.1016/j.bbadis.2025.167791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/24/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Kidney stones represent a highly prevalent urological disorder worldwide, with high incidence and recurrence rates. Calcium oxalate (CaOx) crystal-induced kidney injury serves as the foundational mechanism for the formation and progression of CaOx stones. Regulated cell death (RCD) such as ferroptosis, necroptosis, and pyroptosis are essential in the pathophysiological process of kidney injury. Ferroptosis, a newly discovered RCD, is characterized by its reliance on iron-mediated lipid peroxidation. Necroptosis, a widely studied programmed necrosis, initiates with a necrotic phenotype that resembles apoptosis in appearance. Pyroptosis, a type of RCD that involves the gasdermin protein, is accompanied by inflammation and immune response. In recent years, increasing amounts of evidence has demonstrated that ferroptosis, necroptosis, and pyroptosis are significant pathophysiological processes involved in CaOx crystal-induced kidney injury. Herein, we summed up the roles of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury. Furthermore, we delved into the curative potential of ferroptosis, necroptosis, and pyroptosis in CaOx crystal-induced kidney injury.
Collapse
Affiliation(s)
- Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ejun Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangqun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
9
|
Catapano A, Cimmino F, Petrella L, Pizzella A, D'Angelo M, Ambrosio K, Marino F, Sabbatini A, Petrelli M, Paolini B, Lucchin L, Cavaliere G, Cristino L, Crispino M, Trinchese G, Mollica MP. Iron metabolism and ferroptosis in health and diseases: The crucial role of mitochondria in metabolically active tissues. J Nutr Biochem 2025; 140:109888. [PMID: 40057002 DOI: 10.1016/j.jnutbio.2025.109888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/15/2024] [Accepted: 02/27/2025] [Indexed: 03/30/2025]
Abstract
Iron is essential in various physiological processes, but its accumulation leads to oxidative stress and cell damage, thus iron homeostasis has to be tightly regulated. Ferroptosis is an iron-dependent non-apoptotic regulated cell death characterized by iron overload and reactive oxygen species accumulation. Mitochondria are organelles playing a crucial role in iron metabolism and involved in ferroptosis. MitoNEET, a protein of mitochondrial outer membrane, is a key element in this process. Ferroptosis, altering iron levels in several metabolically active organs, is linked to several non-communicable diseases. For example, iron overload in the liver leads to hepatic fibrosis and cirrhosis, accelerating non-alcholic fatty liver diseases progression, in the muscle cells contributes to oxidative damage leading to sarcopenia, and in the brain is associated to neurodegeneration. The aim of this review is to investigate the intricate balance of iron regulation focusing on the role of mitochondria and oxidative stress, and analyzing the ferroptosis implications in health and disease.
Collapse
Affiliation(s)
- Angela Catapano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Fabiano Cimmino
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Katia Ambrosio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Francesca Marino
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Annarita Sabbatini
- Dietetic and Clinical Nutrition Unit, IEO European Institute of Oncology IRCSS, Milan, Italy
| | - Massimiliano Petrelli
- Department of Clinical and Molecular Sciences, Clinic of Endocrinology and Metabolic Diseases, Università Politecnica delle Marche, Ancona, Italy
| | - Barbara Paolini
- Department of Innovation, experimentation and clinical research, Unit of dietetics and clinical nutrition, S. Maria Alle Scotte Hospital, University of Siena, Siena, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, Bolzano, Italy
| | - Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Luigia Cristino
- Institute of Biomolecular Chemistry, National Research Council of Italy, Pozzuoli, Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | | | | |
Collapse
|
10
|
Ye T, Wu C, Na J, Liu X, Huang Y. Multi-Pathway Study for Oxaliplatin Resistance Reduction. Curr Issues Mol Biol 2025; 47:172. [PMID: 40136426 PMCID: PMC11941373 DOI: 10.3390/cimb47030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Chemotherapy for cancer frequently uses platinum-based medications, including oxaliplatin, carboplatin, and cisplatin; however, due to their high systemic toxicity, lack of selectivity, drug resistance, and other side effects, platinum-based medications have very limited clinical application. As a first-line medication in antitumor therapy, oxaliplatin must be administered to minimize side effects while achieving anticancer objectives. A new CDC7 inhibitor called XL413 has demonstrated promising antitumor therapeutic effects in a variety of malignant tumors and may have anticancer properties. This offers a fresh viewpoint on how to lessen oxaliplatin resistance and, specifically, increase the potency of already prescribed anticancer therapies. In this paper, the current developments in anticancer therapy are discussed, along with the many mechanisms of oxaliplatin's antitumor effects, clinical treatment challenges, and related approaches. We conducted more research on oxaliplatin resistance that arose during chemotherapy and searched for ways to lessen it in order to enhance its chemotherapeutic performance. Ultimately, we studied how distinct resistance routes relate to one another. Meanwhile, XL413, a novel CDC7 inhibitor, offers a perspective on the possibilities for developing treatment approaches for this innovation point. The search terms "Oxaliplatin, XL413, drug resistance, cancer treatment," etc., were applied in the X-MOL and PubMed databases for this review's literature search. Boolean logic was then employed to maximize the search approach. These databases can offer thorough research data and cover a broad range of biological publications. Excluded publications were works of low relevance, duplicates, or those with insufficient information. The mechanism of oxaliplatin's anticancer effect, oxaliplatin resistance and its amelioration, and the role of XL413 in oxaliplatin treatment were the main topics of the 140 publications that were ultimately included for analysis.
Collapse
Affiliation(s)
- Tong Ye
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Chen Wu
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China;
| | - Jintong Na
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China;
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China;
| | - Yong Huang
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China;
| |
Collapse
|
11
|
Chen K, Shen S, Lv Z, Guo M, Shao Y, Li C. Lytic coelomocyte death is tuned by cleavage but not phosphorylation of MLKL in echinoderms. PLoS Pathog 2025; 21:e1012991. [PMID: 40085533 PMCID: PMC11932488 DOI: 10.1371/journal.ppat.1012991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/24/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Lytic cell death including necroptosis and pyroptosis is induced by mixed lineage kinase domain-like protein (MLKL) phosphorylation and inflammatory caspase specific cleavage Gasdermins in higher mammals, respectively. In this study, we identified a novel MLKL homolog containing a tetrapeptide recognition motif (14-LVAD-17) of inflammatory caspase from Apostichopus japonicus,which was absent of Gasdermins member by genome screening. Functional analysis revealed that AjMLKL was involved in the regulation of Vibrio splendidus AJ01 infection induced lytic coelomocyte death in a cleavage-dependent manner, but not through RIPK3-dependent phosphorylation as mammals. Mechanistically, the activated form of cysteine-aspartic specific proteases-1 (AjCASP-1) bound to the tetrapeptide site of AjMLKL and cleaved it at Asp17. Cleaved AjMLKL18-491 displayed higher binding affinities towards phosphatidylinositol phosphate and cardiolipin compared to those of un-cleaved form. In addition, cleaved AjMLKL18-491 exerted stronger ability in disrupting the membrane integrity of liposome. More importantly, AjMLKL18-491 caused a large non-selective ionic coelomocyte pore and could directly kill the invasive AJ01. Moreover, activation of inflammatory AjCASP-1 was further found to be dependent on forming an inflammasome-like complex via CASc domain of AjCASP-1 and the N-terminal Ig domains of internalized AjNLRC4. All our results proved first evidence that lytic cell death was activated through MLKL cleavage, not MLKL phosphorylation in echinoderm, which offered insights into the functional, evolutionary mechanisms of lytic cell death in invertebrates.
Collapse
Affiliation(s)
- Kaiyu Chen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Sikou Shen
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Zhimeng Lv
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Ming Guo
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Yina Shao
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
| | - Chenghua Li
- State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, People's Republic of China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People's Republic of China
| |
Collapse
|
12
|
Liao H, Fang Y, Yin J, He M, Wei Y, Zhang J, Yong S, Cha J, Song L, Zhu X, Chen X, Kováč J, Hou Q, Ma Z, Zhou X, Chen L, Yumoto E, Yang T, He Q, Li W, Deng Y, Li H, Li M, Qing H, Zou L, Bi Y, Liu J, Yang Y, Ye D, Tao Q, Wang L, Xiong Q, Lu X, Tang Y, Li T, Ma B, Qin P, Li Y, Wang W, Qian Y, Ďurkovič J, Miyamoto K, Chern M, Li S, Li W, Wang J, Chen X. Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing H 2O 2. Cell Res 2025; 35:205-219. [PMID: 39806170 PMCID: PMC11909244 DOI: 10.1038/s41422-024-01058-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
Hydrogen peroxide (H2O2) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense H2O2 in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses H2O2 to confer resistance to multiple diseases caused by fungi or bacteria. Upon pathogen attack, rice plants increase the production of H2O2, which directly oxidizes bHLH25 at methionine 256 in the nucleus. Oxidized bHLH25 represses miR397b expression to activate lignin biosynthesis for plant cell wall reinforcement, preventing pathogens from penetrating plant cells. Lignin biosynthesis consumes H2O2 causing accumulation of non-oxidized bHLH25. Non-oxidized bHLH25 switches to promote the expression of Copalyl Diphosphate Synthase 2 (CPS2), which increases phytoalexin biosynthesis to inhibit expansion of pathogens that escape into plants. This oxidization/non-oxidation status change of bHLH25 allows plants to maintain H2O2, lignin and phytoalexin at optimized levels to effectively fight against pathogens and prevents these three molecules from over-accumulation that harms plants. Thus, our discovery reveals a novel mechanism by which a single protein promotes two independent defense pathways against pathogens. Importantly, the bHLH25 orthologues from available plant genomes all contain a conserved M256-like methionine suggesting the broad existence of this mechanism in the plant kingdom. Moreover, this Met-oxidation mechanism may also be employed by other eukaryotic transcription factors to sense H2O2 to change functions.
Collapse
Affiliation(s)
- Haicheng Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yingjie Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuang Yong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiankui Cha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xixi Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ján Kováč
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhaotang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Tian Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yixin Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Haoxuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingwu Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hai Qing
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijuan Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qi Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ting Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bingtian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yangwen Qian
- WIMI Biotechnology Company Limited, Sanya, Hainan, China
| | - Jaroslav Ďurkovič
- Department of Phytology, Technical University in Zvolen, Zvolen, Slovakia
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Shigui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Ma Y, Wang J, Tang C, Liu J, Wu X, Dong X, Du Q, Li W, Lv X, Zhu S. Evaluation of Prognostic Implication of Serum Mixed Lineage Kinase Domain-Like Protein in Acute Primary Supratentorial Intracerebral Hemorrhage: A Multicenter Prospective Cohort Study. Brain Behav 2025; 15:e70424. [PMID: 40079614 PMCID: PMC11905090 DOI: 10.1002/brb3.70424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE Mixed lineage kinase domain-like protein (MLKL) is a key component of necroptosis. Here, serum MLKL levels were measured with the intent to assess its prognostic significance in acute intracerebral hemorrhage (ICH). METHODS A collective of 161 patients with acute primary supratentorial ICH and 73 controls were enlisted in this multicenter prospective cohort study. Serum MLKL levels were measured at admission in all patients, at study entry in all controls, and on post-ICH days 1, 3, 5, 7, 10, and 15 in 73 of all patients. Multivariate analyses were adopted to assess relationships between serum MLKL levels, severity, early neurological deterioration (END), poststroke 6-month modified Rankin Scale (mRS) scores, and poor prognosis (mRS scores of 3-6). RESULTS Patients, relative to controls, had significantly promoted serum MLKL levels from admission until Day 15, with the peaking value at Day 3 (p < 0.001). Admission serum MLKL levels were independently correlated with National Institutes of Health Stroke Scale (NIHSS) scores (beta, 0.133; 95% confidence interval (CI), 0.088-0.178; p = 0.011), hematoma volume (beta, 0.051; 95%CI, 0.037-0.064; p = 0.001), and 6-month mRS scores (beta, 0.707; 95%CI, 0.487-0.927; p = 0.023), as well as independently predicted END (odds ratio, 1.902; 95%CI, 1.229-2.945; p = 0.014) and poor prognosis (odds ratio, 2.286; 95%CI, 1.324-3.946; p = 0.038). Admission serum MLKL levels were linearly connected to risks of poor prognosis (p > 0.05) and END (p > 0.05), had no interactions with age, gender, hypertension, and so forth (all p > 0.05), and possessed similar areas under the receiver operating characteristic curve to NIHSS scores and hematoma volume (all p > 0.05). The models integrating serum MLKL levels, NIHSS scores, and hematoma volume were graphically represented by nomogram and predicted END and poor prognosis with a good consistency under the calibration curve. CONCLUSIONS Serum MLKL levels are markedly increased shortly following ICH, and may accurately mirror disease severity, and efficaciously anticipate END and six-month bad prognosis of patients, strengthening serum MLKL as a prognostic biomarker of good prospect in ICH.
Collapse
Affiliation(s)
- Yijun Ma
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Wang
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Tang
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Liu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xiaoyu Wu
- Department of Neurosurgery, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Quan Du
- Department of Neurosurgery, The Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Wei Li
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuan Lv
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Suijun Zhu
- Department of Neurosurgery, First People's Hospital of Linping District, Hangzhou, China
- Department of Neurosurgery, Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Yu L, Liu S, Liu J, Li J, Zhang W, Lin L, Yang L, Zheng G. Smilaxchina L. polyphenols inhibit LPS-induced macrophage M1 polarization to alleviate inflammation through NF-κB signaling pathway in vitro and in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119355. [PMID: 39800244 DOI: 10.1016/j.jep.2025.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important component of the cell wall of Gram-negative bacteria, lipopolysaccharide (LPS) is an important inducer of inflammation in humans. Smilax china L. is known for its diverse bioactive functions, particularly its anti-inflammatory effects. AIM OF THE STUDY This study aimed to investigate the bioactive function of Smilax china L. polyphenols (SCLP) on LPS-induced inflammation. MATERIALS AND METHODS Inflammation in RAW264.7 macrophages and mice were induced using LPS. The cytotoxicity of SCLP was investigated by MTT assay. Inflammatory factors were detected by ELISA and RT-PCR. The expression of NF-κB pathway-related proteins was analyzed by Western Blotting. RESULTS The results demonstrated that SCLP significantly reduced the levels of pro-inflammatory factors (TNF-α, IL-1β, and IL-6) and inhibited M1 polarization of macrophages in both RAW264.7 macrophages and mice (p < 0.05). Western Blotting analysis revealed that the levels of NF-κB signaling pathway-associated proteins (p-p65, p-IKB, p-IKK) were significantly reduced (p < 0.05). Notably, SCLP significantly downregulated the expression of pro-apoptotic proteins, while upregulating the expression of anti-apoptotic proteins in RAW264.7 macrophages (p < 0.05). Additionally, the levels of antioxidant enzymes were enhanced in mice, suggesting a potential reduction in the inflammatory response. CONCLUSIONS These findings indicated that SCLP might inhibit LPS-induced M1 polarization through the NF-κB signaling pathway, thereby reducing inflammation. Consequently, SCLP might serve as a promising bioactive substance for preventing inflammation-related injury.
Collapse
Affiliation(s)
- Longhui Yu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shanshan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiluan Liu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingen Li
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenkai Zhang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lezhen Lin
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Licong Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Guodong Zheng
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
15
|
Xu W, Guan G, Yue R, Dong Z, Lei L, Kang H, Song G. Chemical Design of Magnetic Nanomaterials for Imaging and Ferroptosis-Based Cancer Therapy. Chem Rev 2025; 125:1897-1961. [PMID: 39951340 DOI: 10.1021/acs.chemrev.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Ferroptosis, an iron-dependent form of regulatory cell death, has garnered significant interest as a therapeutic target in cancer treatment due to its distinct characteristics, including lipid peroxide generation and redox imbalance. However, its clinical application in oncology is currently limited by issues such as suboptimal efficacy and potential off-target effects. The advent of nanotechnology has provided a new way for overcoming these challenges through the development of activatable magnetic nanoparticles (MNPs). These innovative MNPs are designed to improve the specificity and efficacy of ferroptosis induction. This Review delves into the chemical and biological principles guiding the design of MNPs for ferroptosis-based cancer therapies and imaging-guided therapies. It discusses the regulatory mechanisms and biological attributes of ferroptosis, the chemical composition of MNPs, their mechanism of action as ferroptosis inducers, and their integration with advanced imaging techniques for therapeutic monitoring. Additionally, we examine the convergence of ferroptosis with other therapeutic strategies, including chemodynamic therapy, photothermal therapy, photodynamic therapy, sonodynamic therapy, and immunotherapy, within the context of nanomedicine strategies utilizing MNPs. This Review highlights the potential of these multifunctional MNPs to surpass the limitations of conventional treatments, envisioning a future of drug-resistance-free, precision diagnostics and ferroptosis-based therapies for treating recalcitrant cancers.
Collapse
Affiliation(s)
- Wei Xu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Renye Yue
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, PR China
| | - Zhe Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Lingling Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, PR China
| | - Heemin Kang
- Department of Materials Science and Engineering and College of Medicine, Korea University, 12 Seoul 02841, Republic of Korea
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
Chen SY, Shyu IL, Chi JT. NINJ1 in Cell Death and Ferroptosis: Implications for Tumor Invasion and Metastasis. Cancers (Basel) 2025; 17:800. [PMID: 40075648 PMCID: PMC11898531 DOI: 10.3390/cancers17050800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
NINJ1 was initially recognized for its role in nerve regeneration and cellular adhesion. Subsequent studies have uncovered its participation in cancer progression, where NINJ1 regulates critical steps in tumor metastasis, such as cell migration and invasion. More recently, NINJ1 has emerged as a multifunctional protein mediating plasma membrane rupture (PMR) in several lytic cell death processes, including apoptosis, necroptosis, and pyroptosis. However, its role in ferroptosis-an iron-dependent form of lytic cell death characterized by lipid peroxidation-remained unclear until 2024. Ferroptosis is a tumor suppression mechanism that may be particularly relevant to detached and metastatic cancer cells. This review explores the role of NINJ1 in tumor invasion and metastasis, focusing on its regulation of ferroptosis via a non-canonical mechanism distinct from other cell deaths. We discuss the process of ferroptosis and its implications for cancer invasion and metastasis. Furthermore, we review recent studies highlighting the diverse roles of NINJ1 in ferroptosis regulation, including its canonical function in PMR and its non-canonical function of modulating intracellular levels of glutathione (GSH) and coenzyme A (CoA) via interaction with xCT anti-porter. Given that ferroptosis has been associated with tumor suppression, metastasis, the elimination of treatment-resistant cancer cells, and tumor dormancy, NINJ1's modulation of ferroptosis presents a promising therapeutic target for inhibiting metastasis. Understanding the dual role of NINJ1 in promoting or restraining ferroptosis depending on cellular context could open avenues for novel anti-cancer strategies to enhance ferroptotic vulnerability in metastatic tumors.
Collapse
Affiliation(s)
- Ssu-Yu Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ing-Luen Shyu
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Center for Advanced Genomic Technologies, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Ehlers L, Meyts I. Getting to know adenosine deaminase 2 deficiency inside and out. J Allergy Clin Immunol 2025:S0091-6749(25)00164-2. [PMID: 39956283 DOI: 10.1016/j.jaci.2025.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Ten years after the description of the first cohorts of patients with adenosine deaminase (ADA2) deficiency (DADA2), the pathomechanisms underlying the disease on a cellular level remain poorly understood. With the establishment of the lysosomal localization of the ADA2 protein and its involvement in nucleic acid sensing, the pathophysiologic focus has shifted to the inside of the cell. At the same time, extracellular (serum) ADA2 enzyme activity continues to be the diagnostic reference standard in patients with suspected DADA2. The diverse clinical phenotype and weak genotype-phenotype correlations further complicate the identification of shared cellular mechanisms that cause inflammation, immunodeficiency, and bone marrow failure in the absence of functional ADA2. This review inspects the characteristics of the ADA2 protein and its proposed function. The latter is discussed in the context of possible mechanisms driving the clinical phenotype in patients lacking functional ADA2. We discuss established processes and introduce unexplored pathways in the pathogenesis of DADA2.
Collapse
Affiliation(s)
- Lisa Ehlers
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, Berlin, Germany
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Wang X, Qu L, Wen Z, Wu Z, Xue Y, Yang X, Yuan Z, Guo Y, Lin X. PANoptosis-related genes in the prognosis and immune landscape of hepatocellular carcinoma. Immunol Res 2025; 73:51. [PMID: 39946053 PMCID: PMC11825605 DOI: 10.1007/s12026-025-09603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
In hepatocellular carcinoma (HCC) individuals, the influence of numerous variables on the HCC prognosis has gained widespread recognition. Nevertheless, there remains a need for further elucidation regarding the underlying mechanism of PANoptosis-related genes (PRGs) on HCC. A consensus clustering approach, based on the TCGA-LIHC data, was used to identify specific subtypes linked to PANoptosis in this study. Next, a signature consisting of predictive differentially expressed genes for these subtypes was established using a least absolute shrinkage and selection operator (LASSO) regression analysis. Additionally, the reliability of the signature was confirmed through verification investigations using the data from the ICGC database and TCGA-LIHC. In the end, we developed a nomogram to enhance the clinical effectiveness of our prediction tool. PRG signature in this study has been highly related to the prognosis of individuals diagnosed with HCC, which was established with six genes. Also, this signature and clinicopathological features were put together to create a nomogram. Interestingly, the forecasting efficiency of this combination approach is better than other prediction models in the reported literature. In addition, an examination of the immunological surroundings indicates that the group with low risk exhibited elevated ESTIMATE score, ImmuneScores, and StromalScores. More, significant differences in infiltrating immune cells and the expression levels of immune-related genes were found between the two groups. In HCC patients, the PRG signature exhibits potential as a biomarker, offering a significant point of reference for tailoring individual therapy.
Collapse
Affiliation(s)
- Xiaowu Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Liangchen Qu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China
| | - Zhikai Wen
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhixuan Wu
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yuxiang Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China
| | - Xuejia Yang
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Ziwei Yuan
- Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangyang Guo
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, Zhejiang Province, China.
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang Province, China.
| | - Xingcheng Lin
- The Third Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Rui'an, 325200, China.
| |
Collapse
|
19
|
Verduijn J, Degroote E, Skirtach AG. Machine learning with label-free Raman microscopy to investigate ferroptosis in comparison with apoptosis and necroptosis. Commun Biol 2025; 8:218. [PMID: 39934250 DOI: 10.1038/s42003-025-07624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Human and animal health rely on balancing cell division and cell death to maintain normal homeostasis. This process is accomplished by regulated cell death (RCD), whose imbalance can lead to disease. Currently, the most frequently used method for analyzing RCD is fluorescence microscopy. This method has limitations and potential side effects due to the presence of fluorescent labels. Furthermore, fluorescence often lacks specificity and may have side effects. In the quest to overcome such difficulties, label-free approaches have come into focus.Here, Raman microscopy in combination with machine learning is used to investigate RCDs, where biochemical molecular "fingerprints" are investigated with a focus on the vibrations of atoms in molecules. Three different and unique RCD types with different genetic and biochemical machinery, namely, ferroptosis is studied in comparison with apoptosis, and necroptosis in the murine fibroblast line L929sAhFas. Interestingly, during ferroptosis, a decrease in the wavenumber at 939 cm-1 was observed, which is associated with a potential reduction in the expression of collagen - a compound essential in multiple diseases. Data analysis was performed by machine learning (ML), here SVMs, where the model utilizing the spectra directly into a support vector machine (SVM) outperforms other SVM strategies correctly predicting 73% of all spectra. Other methods: PCA-SVM (principal component analysis-SVM), peak fitting-AUC-SVM (area under the curve) and peak fitting-spectral reconstruction-SVM rendered prediction accuracies of ~52%, ~43%, and 61%, respectively. Peak fitting has the additional benefit of enabling the biological interpretation of Raman scattering peaks by using the area under the curve, although at a loss of general accuracy. The potential of Raman microscopy in biology, in combination with machine learning pipelines, can be applied to a broader field of cell biology, not limited to regulated cell death.
Collapse
Affiliation(s)
- Joost Verduijn
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium.
- Cancer Research Institute Ghent, 9000, Ghent, Belgium.
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Eva Degroote
- Synthesis, Bioresources and Bioorganic Chemistry Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Epigenetics and Defence Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - André G Skirtach
- Nano-Biotechnology Laboratory, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Cancer Research Institute Ghent, 9000, Ghent, Belgium
| |
Collapse
|
20
|
Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov 2025; 11:56. [PMID: 39929794 PMCID: PMC11811070 DOI: 10.1038/s41420-025-02328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/23/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
The phenomenon of cell death has garnered significant scientific attention in recent years, emerging as a pivotal area of research. Recently, novel modalities of cellular death and the intricate interplay between them have been unveiled, offering insights into the pathogenesis of various diseases. This comprehensive review delves into the intricate molecular mechanisms, inducers, and inhibitors of the underlying prevalent forms of cell death, including apoptosis, autophagy, ferroptosis, necroptosis, mitophagy, and pyroptosis. Moreover, it elucidates the crosstalk and interconnection among the key pathways or molecular entities associated with these pathways, thereby paving the way for the identification of novel therapeutic targets, disease management strategies, and drug repurposing.
Collapse
Affiliation(s)
- Georgette Eskander
- Postgraduate program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Sara A Wahdan
- Pharmacology and toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
21
|
Liu S, Zhang G, Li N, Wang Z, Lu L. The Interplay of Aging and PANoptosis in Osteoarthritis Pathogenesis: Implications for Novel Therapeutic Strategies. J Inflamm Res 2025; 18:1951-1967. [PMID: 39959642 PMCID: PMC11829118 DOI: 10.2147/jir.s489613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by the progressive degradation of articular cartilage, synovial inflammation, and subchondral bone remodeling. This review explores the interplay between aging, PANoptosis, and inflammation in OA progression. Age-related cellular and immune dysfunctions, including cellular senescence, senescence-associated secretory phenotypes (SASPs), and immunosenescence, significantly contribute to joint degeneration. In OA, dysregulated apoptosis, necroptosis, and pyroptosis, particularly in chondrocytes, exacerbate cartilage damage. Apoptosis, mediated by the JNK pathway, reduces chondrocyte density, while necroptosis and pyroptosis, involving RIPK-1/RIPK-3 and the NLRP3 inflammasome, respectively, amplify inflammation and cartilage destruction. Inflammatory cytokines and damage-associated molecular patterns (DAMPs) further enhance these PANoptotic pathways. Current therapeutic strategies primarily focus on anti-inflammatory agents such as non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, with growing interest in anti-senescence drugs targeting cellular senescence and SASP. Additionally, exploring PANoptosis mechanisms offers potential for innovative OA treatments.
Collapse
Affiliation(s)
- Shaoshan Liu
- Department of Joint Surgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, People's Republic of China
| | - Nan Li
- Department of Trauma Orthopedics, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| | - Liaodong Lu
- Department of Joint Surgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People's Republic of China
| |
Collapse
|
22
|
You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev 2025; 54:1552-1582. [PMID: 39744985 DOI: 10.1039/d4cs00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD). Despite the importance of metal ions in initiating PCD, the molecular mechanisms of intracellular metal ions within these processes are infrequently discussed. An in-depth understanding and review of the role of metal ions in triggering PCD may better uncover novel tools for cancer diagnosis and therapy. Specifically, the essential roles of calcium (Ca2+), iron (Fe2+/3+), copper (Cu+/2+), and zinc (Zn2+) ions in triggering PCD are primarily explored in this review, and other ions like manganese (Mn2+/3+/4+), cobalt (Co2+/3+) and magnesium ions (Mg2+) are briefly discussed. Further, this review elaborates on the underlying chemical mechanisms and summarizes these metal ions triggering PCD in cancer therapy. This review bridges chemistry, immunology, and biology to foster the rational regulation of metal ions to induce PCD for cancer therapy.
Collapse
Affiliation(s)
- Yawen You
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaochen Guo
- Department of Biochemistry, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute for Clinical and Translational Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
23
|
You YP, Yan L, Ke HY, Li YP, Shi ZJ, Zhou ZY, Yang HY, Yuan T, Gan YQ, Lu N, Xu LH, Hu B, Ou-Yang DY, Zha QB, He XH. Baicalin inhibits PANoptosis by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly in macrophages. Acta Pharmacol Sin 2025; 46:430-447. [PMID: 39223367 PMCID: PMC11747177 DOI: 10.1038/s41401-024-01376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
PANoptosis is an emerging form of regulated cell death (RCD) characterized by simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling that not only participates in pathologies of inflammatory diseases but also has a critical role against pathogenic infections. Targeting PANoptosis represents a promising therapeutic strategy for related inflammatory diseases, but identification of inhibitors for PANoptosis remains an unmet demand. Baicalin () is an active flavonoid isolated from Scutellaria baicalensis Georgi (Huangqin), a traditional Chinese medicinal herb used for heat-clearing and detoxifying. Numerous studies suggest that baicalin possesses inhibitory activities on various forms of RCD including apoptosis/secondary necrosis, pyroptosis, and necroptosis, thereby mitigating inflammatory responses. In this study we investigated the effects of baicalin on PANoptosis in macrophage cellular models. Primary macrophages (BMDMs) or J774A.1 macrophage cells were treated with 5Z-7-oxozeaenol (OXO, an inhibitor for TAK1) in combination with TNF-α or LPS. We showed that OXO plus TNF-α or LPS induced robust lytic cell death, which was dose-dependently inhibited by baicalin (50-200 μM). We demonstrated that PANoptosis induction was accompanied by overt mitochondrial injury, mitochondrial DNA (mtDNA) release and Z-DNA formation. Z-DNA was formed from cytosolic oxidized mtDNA. Both oxidized mtDNA and mitochondrial Z-DNA puncta were co-localized with the PANoptosome (including ZBP1, RIPK3, ASC, and caspase-8), a platform for mediating PANoptosis. Intriguingly, baicalin not only prevented mitochondrial injury but also blocked mtDNA release, Z-DNA formation and PANoptosome assembly. Knockdown of ZBP1 markedly decreased PANoptotic cell death. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), administration of baicalin (200 mg/kg, i.g., for 4 times) significantly mitigated lung and liver injury and reduced levels of serum TNF-α and IFN-γ, concomitant with decreased levels of PANoptosis hallmarks in these organs. Baicalin also abrogated the hallmarks of PANoptosis in liver-resident macrophages (Kupffer cells) in HLH mice. Collectively, our results demonstrate that baicalin inhibits PANoptosis in macrophages by blocking mitochondrial Z-DNA formation and ZBP1-PANoptosome assembly, thus conferring protection against inflammatory diseases. PANoptosis is a form of regulated cell death displaying simultaneous activation of pyroptotic, apoptotic, and necroptotic signaling. This study shows that induction of PANoptosis is linked to mitochondrial dysfunction and mitochondrial Z-DNA formation. Baicalin inhibits PANoptosis in macrophages in vitro via blocking mitochondrial dysfunction and the mitochondrial Z-DNA formation and thereby impeding the assembly of ZBP1-associated PANoptosome. In a mouse model of hemophagocytic lymphohistiocytosis (HLH), baicalin inhibits the activation of PANoptotic signaling in liver-resident macrophages (Kupffer cells) in vivo, thus mitigating systemic inflammation and multiple organ injury in mice.
Collapse
Affiliation(s)
- Yi-Ping You
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Liang Yan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Hua-Yu Ke
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ya-Ping Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zi-Jian Shi
- Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Zhi-Ya Zhou
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Yan Yang
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Tao Yuan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Ying-Qing Gan
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Na Lu
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Li-Hui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Dong-Yun Ou-Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Qing-Bing Zha
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| | - Xian-Hui He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
- Center of Reproductive Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
- Department of Clinical Laboratory, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China.
| |
Collapse
|
24
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
25
|
Shi S, Ou X, Liu C, Li R, Zheng Q, Hu L. NF-κB signaling and the tumor microenvironment in osteosarcoma: implications for immune evasion and therapeutic resistance. Front Immunol 2025; 16:1518664. [PMID: 39949765 PMCID: PMC11821961 DOI: 10.3389/fimmu.2025.1518664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
Osteosarcoma, a highly aggressive malignancy with a generally poor prognosis, is characterized by tumor cells' ability to evade immune responses and resist treatment. The nuclear transcription factor NF-κB signaling pathway is crucial in regulating inflammatory and immune reactions. It occupies a central position in the development of the osteosarcoma tumor microenvironment. This research aimed to explore how NF-κB influences the recruitment and polarization of tumor-associated macrophages and myeloid-derived suppressor cells, both of which contribute to immunosuppression. Furthermore, NF-κB facilitates immune surveillance evasion in osteosarcoma cells by altering the expression of immune checkpoint molecules, such as PD-L1. It also enhances tumor cell resistance to chemotherapy and radiotherapy by activating anti-apoptotic signaling pathways and exacerbating treatment-induced inflammation. Potential therapeutic approaches include using NF-κB inhibitors, possibly in combination with immune checkpoint inhibitors, to overcome tumor cell resistance mechanisms and reshape antitumor immune responses. A thorough examination of NF-κB's role in osteosarcoma development is expected to yield novel clinical treatment strategies, and significantly improve patient prognosis by targeting this key signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Leiming Hu
- Department of Hand Surgery, Honghui Hospital, Xi’an Jiaotong University, XI’an, China
| |
Collapse
|
26
|
Zhang X, Lin Y, Shi L, Zhai A, Wu C, Zhu QY. Disulfidptosis-related gene SLC3A2: a novel prognostic biomarker in nasopharyngeal carcinoma and head and neck squamous cell carcinoma. Front Oncol 2025; 15:1451034. [PMID: 39926285 PMCID: PMC11802814 DOI: 10.3389/fonc.2025.1451034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction Nasopharyngeal carcinoma (NPC), one of the most common malignancies of the head and neck, is characterised by a complex pathogenesis and an unfavourable prognosis. Recently, disulfidoptosis, a novel form of cell death, has been proposed. Several studies in recent years have extensively investigated the function of the disulfidoptosis-related SLC7A11 gene in cancer, but the role of its partner protein, SLC3A2, remains unknown unclear in NPC. Methods GEO database analysis confirmed SLC3A2's prognostic impact on nasopharyngeal carcinoma. ROC, Kaplan-Meier analyses, and stage-specific expression studies showed a strong correlation with poor HNSC prognosis. GO and KEGG analyses pinpointed relevant signaling pathways. In vitro, SLC3A2's influence on cell proliferation, migration, and invasion was evaluated through CCK8, wound healing, colony formation, transwell assays, and cell cycle analysis. Results In this study, we identified the high expression of SLC3A2 in NPC and head and neck squamous cell carcinoma (HNSC) and analyzed its potential mechanism and correlation with patient prognosis. Furthermore, a negative relationship was found between the expression level of SLC3A2 and the extent of immune cell infiltration and immune checkpoint. Differentially expressed genes (DEGs) between the high and low SLC3A2 expression groups were primarily involved in cytokine-cytokine receptor interaction and immune response. Finally, in vitro experiments demonstrated that SLC3A2 stimulates tumor cell proliferation and migration. Discussion In conclusion, these results indicated a strong association between SLC3A2 and progression in both NPC and HNSC, suggesting it as a promising biomarker for predicting adverse prognosis in NPC and HNSC patients.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yiqi Lin
- Department of Endocrinology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Shi
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Aixia Zhai
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qian-Ying Zhu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
27
|
Liu Z, Lei M, Bai Y. Chronic Stress Mediates Inflammatory Cytokines Alterations and Its Role in Tumorigenesis. J Inflamm Res 2025; 18:1067-1090. [PMID: 39871957 PMCID: PMC11769853 DOI: 10.2147/jir.s485159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Introduction Prolonged psychological stress is closely associated with cancer due to its role in promoting the release of stress hormones through the sustained activation of the sympathetic-adrenal-medullary system. These hormones interact with receptors on inflammatory cells, leading to the activation of key signaling pathways, including the transcription factors signal transducer and activator of transcription 3 (STAT-3) and kappa-light-chain-enhancer of activated B cells (NF-κB). These factors drive the production of pro-inflammatory substances, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), which can influence the initiation and progression of cancer. Purpose This article aims to summarize how the chronic inflammatory environment induced by chronic stress promotes the initiation, progression, and invasion of cancer. By enhancing our understanding of the complex mechanisms through which stress contributes to cancer, we hope to identify new targets for cancer prevention and treatment. Conclusion Chronic stress establishes an inflammatory microenvironment by activating STAT-3 and NF-κB in inflammatory cells. This ongoing inflammation further enhances the activity of these transcription factors, which serve multiple roles: they act as pro-inflammatory agents in inflammatory cells, maintaining chronic inflammation; as oncogenic transcription factors in premalignant cells, promoting cancer initiation; and as pro-differentiation transcription factors in tumor-infiltrating immune cells, facilitating cancer progression. Additionally, the impact of chronic stress varies among different cancer types and individual responses to stress, highlighting the complexity of stress-related cancer mechanisms. Ultimately, this dynamic interplay creates a feedback loop involving IL-6, STAT-3, and TNF-α-NF-κB within the tumor microenvironment, mediating the intricate interactions between inflammation, immunity, and cancer.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Meng Lei
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head & Neck Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
28
|
Su C, Xue Y, Fan S, Sun X, Si Q, Gu Z, Wang J, Deng R. Ferroptosis and its relationship with cancer. Front Cell Dev Biol 2025; 12:1423869. [PMID: 39877159 PMCID: PMC11772186 DOI: 10.3389/fcell.2024.1423869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Marked by iron buildup and lipid peroxidation, ferroptosis is a relatively new regulatory cell death (RCD) pathway. Many diseases like cancer, myocardial ischemia-reperfusion injury (MIRI), neurological disorders and acute renal failure (AKI) are corelated with ferroptosis. The main molecular processes of ferroptosis discovered yet will be presented here, along with the approaches in which it interacts with tumour-associated signaling pathways and its uses in systemic therapy, radiation therapy, and immunotherapy managing tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Runzhi Deng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Wang X, Pan L, Niu D, Zhou J, Shen M, Zeng Z, Gong W, Yang E, Tang Y, Cheng G, Sun C. Jingfang Granules alleviates the lipid peroxidation induced ferroptosis in rheumatoid arthritis rats by regulating gut microbiota and metabolism of short chain fatty acids. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119160. [PMID: 39608616 DOI: 10.1016/j.jep.2024.119160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by synovial inflammation, bone and cartilage damage, musculoskeletal pain, swelling, and stiffness. Inflammation is one of the key factors that induce RA. Jingfang Granule (JFG) is a traditional Chinese medicine (TCM) with significant anti-inflammatory effects. Clinical studies have confirmed that JFG can be used to treat RA, but the mechanism is still vague. PURPOSE This study was designed to evaluate the protective function and the mechanism of JFG on rats with RA. STUDY DESIGN AND METHODS Complete Freud's Adjuvant (CFA) was used to establish a rat RA model, and JFG or Diclofenac Sodium (Dic) was orally administered. Foot swelling and hematoxylin eosin (H&E) staining were used to test the therapeutic effect of JFG on RA treatment, while ELISA kits were used to detect serum cytokines. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), and reactive oxygen species (ROS) were used to evaluate oxidative stress levels. The integration of label-free proteomics, fecal short chain fatty acid (SCFA) targeted metabolomics, peripheral blood SCFA, medium and long chain fatty acid targeted metabolomics, and 16S rDNA sequencing of gut microbiota were used to screen the mechanism. Western blot technology was used to validate the results of multiple omics studies. Serum D-Lactic acid, lipopolysaccharide specific IgA antibody (LPS IgA), diamine oxidase (DAO), and colon Claudin 5 and ZO-1 were used to evaluate the intestinal barrier. RESULTS The results confirmed that JFG effectively protected rats from RA injury, which was confirmed by improved foot swelling and synovial pathology. At the same time, JFG reduced the levels of TNF-α, IL-1β, and IL-6 in serum by inhibiting the NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway in synovial tissue. Multiple omics studies indicated that JFG increased the abundance of gut microbiota and regulated the number of gut bacteria, thereby increased the levels of Acetic acid, Propionic acid, and Butyric acid in the gut and serum of RA rats, which activated AMPK to regulate fatty acid metabolism and fatty acid biosynthesis, thereby inhibited lipid oxidative stress induced ferroptosis to improve tissue damage caused by RA. Meanwhile, JFG improved the intestinal barrier by upregulating the expresses of Claudin 5 and ZO-1, which was confirmed by low concentrations of D-Lactic acid, LPS-SIgA and DAO in serum. CONCLUSIONS This study confirmed that JFG improved the disturbance of fatty acid metabolism by modulating gut microbiota and the production of fecal SCFAs to activate AMPK, and then inhibited ferroptosis caused by lipid oxidative stress in synovium tissue and prevented AR injury. This study proposes for the first time to investigate the mechanism of JFG treatment for RA from the perspective of the "Gut-joint" axis, and provides a promising approach for the treatment of RA.
Collapse
Affiliation(s)
- Xiuwen Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Wenqiao Gong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Enhua Yang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Yunfeng Tang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guoliang Cheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Chenghong Sun
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| |
Collapse
|
30
|
Wnuk M, Del Sol-Fernández S, Błoniarz D, Słaby J, Szmatoła T, Żebrowski M, Martínez-Vicente P, Litwinienko G, Moros M, Lewińska A. Design of a Magnetic Nanoplatform Based on CD26 Targeting and HSP90 Inhibition for Apoptosis and Ferroptosis-Mediated Elimination of Senescent Cells. ACS Biomater Sci Eng 2025; 11:280-297. [PMID: 39631769 PMCID: PMC11733919 DOI: 10.1021/acsbiomaterials.4c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
The accumulation of senescent cells, a hallmark of aging and age-related diseases, is also considered as a side effect of anticancer therapies, promoting drug resistance and leading to treatment failure. The use of senolytics, selective inducers of cell death in senescent cells, is a promising pharmacological antiaging and anticancer approach. However, more studies are needed to overcome the limitations of first-generation senolytics by the design of targeted senolytics and nanosenolytics and the validation of their usefulness in biological systems. In the present study, we have designed a nanoplatform composed of iron oxide nanoparticles functionalized with an antibody against a cell surface marker of senescent cells (CD26), and loaded with the senolytic drug HSP90 inhibitor 17-DMAG (MNP@CD26@17D). We have documented its action against oxidative stress-induced senescent human fibroblasts, WI-38 and BJ cells, and anticancer drug-induced senescent cutaneous squamous cell carcinoma A431 cells, demonstrating for the first time that CD26 is a valid marker of senescence in cancer cells. A dual response to MNP@CD26@17D stimulation in senescent cells was revealed, namely, apoptosis-based early response (2 h treatment) and ferroptosis-based late response (24 h treatment). MNP@CD26@17D-mediated ferroptosis might be executed by ferritinophagy as judged by elevated levels of the ferritinophagy marker NCOA4 and a decreased pool of ferritin. As 24 h treatment with MNP@CD26@17D did not induce hemolysis in human erythrocytes in vitro, this newly designed nanoplatform could be considered as an optimal multifunctional tool to target and eliminate senescent cells of skin origin, overcoming their apoptosis resistance.
Collapse
Affiliation(s)
- Maciej Wnuk
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Susel Del Sol-Fernández
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | - Dominika Błoniarz
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| | - Julia Słaby
- Doctoral
School, University of Rzeszow, Rejtana 16C, Rzeszow 35-959, Poland
| | - Tomasz Szmatoła
- Center of
Experimental and Innovative Medicine, University
of Agriculture in Krakow, al. Mickiewicza 24/28, Cracow 30-059, Poland
| | - Michał Żebrowski
- Faculty of
Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Pablo Martínez-Vicente
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
| | | | - María Moros
- Instituto
de Nanociencia y Materiales de Aragón, INMA (CSIC-Universidad de Zaragoza), C/Pedro Cerbuna 12, Zaragoza 50009, Spain
- Centro de
Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Anna Lewińska
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland
| |
Collapse
|
31
|
Liu LL, Zhao S, Li Z, Li HZ, Ma DY, Liu X, Wang GY, Wang XL. Paclitaxel-induced cognitive decline was attenuated by necroptosis inhibition. Neuroreport 2025; 36:61-69. [PMID: 39651718 DOI: 10.1097/wnr.0000000000002121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Anti-cancer agent paclitaxel induces cognitive impairment. Paclitaxel can induce limited neuron apoptosis and wide scope of neuroinflammation, but its precise mechanisms remain unclear. In this study, we determined paclitaxel causes necroptosis, a programmed cell death, via activation of the RIPK1-RIPK3-MLKL signaling pathway in hippocampal neurons (HT22 cells). Flow cytometric analysis, propidium iodide staining, and western blotting techniques were used to evaluate paclitaxel-induced necroptosis. Cell viability was determined using the Cell Counting Kit-8 assay, and the Ca2+ levels were measured using a Fluo-4 AM fluorescent probe. The number of cells positive for both annexin V and propidium iodide staining was significantly higher in paclitaxel-treated than vehicle-treated HT22 cells. Additionally, the nuclei of paclitaxel-treated cells exhibited more diffused necrotic propidium iodide staining than the vehicle-treated cells. The expression of necroptosis-associated proteins, including receptor-interacting protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated (p)-MLKL, were increased following paclitaxel treatment. Treating HT22 cells with necrostatin-1, a specific inhibitor for RIPK1, effectively decreased paclitaxel-induced necroptosis through lowering intracellular Ca2+ overload. In addition, administration of necrostatin-1 to paclitaxel-treated mice rescued cognitive impairments, as assessed by novel object recognition and Morris water maze tests. Necrostatin-1 also reduced the increases in necroptosis-associated protein levels of RIPK1, RIPK3, MLKL, and p-MLKL in hippocampal tissue of paclitaxel-treated mice. Paclitaxel induces cognitive deficits through RIPK1-mediated necroptosis. The inhibition of necroptosis may be a potential therapeutic approach to reduce paclitaxel-induced cognitive deficits.
Collapse
Affiliation(s)
- Lan-Lan Liu
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Shuang Zhao
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Zhao Li
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Hui-Zhou Li
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Dong-Yang Ma
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Xin Liu
- Department of Anesthesiology, Hebei Medical University Third Hospital
| | - Gui-Ying Wang
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiu-Li Wang
- Department of Anesthesiology, Hebei Medical University Third Hospital
| |
Collapse
|
32
|
Baky NAA, Fouad LM, Ahmed KA, Alzokaky AA. Mechanistic insight into the hepatoprotective effect of Moringa oleifera Lam leaf extract and telmisartan against carbon tetrachloride-induced liver fibrosis: plausible roles of TGF-β1/SMAD3/SMAD7 and HDAC2/NF-κB/PPARγ pathways. Drug Chem Toxicol 2025; 48:84-97. [PMID: 38835191 DOI: 10.1080/01480545.2024.2358066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The increasing prevalence and limited therapeutic options for liver fibrosis necessitates more medical attention. Our study aims to investigate the potential molecular targets by which Moringa oleifera Lam leaf extract (Mor) and/or telmisartan (Telm) alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Liver fibrosis was induced in male Sprague-Dawley rats by intraperitoneal injection of 50% CCl4 (1 ml/kg) every 72 hours, for 8 weeks. Intoxicated rats with CCl4 were simultaneously orally administrated Mor (400 mg/kg/day for 8 weeks) and/or Telm (10 mg/kg/day for 8 weeks). Treatment of CCl4-intoxicated rats with Mor/Telm significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities compared to CCl4 intoxicated group (P < 0.001). Additionally, Mor/Telm treatment significantly reduced the level of hepatic inflammatory, profibrotic, and apoptotic markers including; nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), transforming growth factor-βeta1 (TGF-β1), and caspase-3. Interestingly, co-treatment of CCl4-intoxicated rats with Mor/Telm downregulated m-RNA expression of histone deacetylase 2 (HDAC2) (71.8%), and reduced protein expression of mothers against decapentaplegic homolog 3 (p-SMAD3) (70.6%) compared to untreated animals. Mor/Telm regimen also elevated p-SMAD7 protein expression as well as m-RNA expression of peroxisome proliferator-activated receptor γ (PPARγ) (3.6 and 3.1 fold, respectively p < 0.05) compared to CCl4 intoxicated group. Histopathological picture of the liver tissue intoxicated with CCl4 revealed marked improvement by Mor/Telm co-treatment. Conclusively, this study substantiated the hepatoprotective effect of Mor/Telm regimen against CCl4-induced liver fibrosis through suppression of TGF-β1/SMAD3, and HDAC2/NF-κB signaling pathways and up-regulation of SMAD7 and PPARγ expression.
Collapse
Affiliation(s)
- Nayira A Abdel Baky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Lamiaa M Fouad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Amany A Alzokaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| |
Collapse
|
33
|
Mghwary AES, Hassan RA, Halim PA, Abdelhameid MK. Advances in structural identification of some thieno[2,3-d]pyrimidine scaffolds as antitumor molecules: Synthetic approaches and control programmed cancer cell death potential. Bioorg Chem 2025; 154:107985. [PMID: 39637483 DOI: 10.1016/j.bioorg.2024.107985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/30/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Thieno[2,3-d]pyrimidine fragment is not only bioistostere to quinazoline ring but also to purines which exist in nucleic acids responsible for several key biological processes of the living cells, thus it is of a great interest for many researchers. Thieno[2,3-d]pyrimidine ring has become an important scaffold for different compounds with versatile pharmacological activities including anticancer. These compounds exert their anticancer activity through variant mechanisms of action; one of these is the induction of different programmed cell death types as apoptosis and necroptosis which is an effective approach for cancer treatment. This review highlights the different synthetic approaches of recent thieno[2,3-d]pyrimidine analogs along with their anticancer significance through induction of apoptotic or necroptotic cell death with illustration of the structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Aml E-S Mghwary
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Peter A Halim
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
34
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
35
|
Verkhratsky A, Sofroniew MV. Neuroglia in stroke. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:101-111. [PMID: 40148039 DOI: 10.1016/b978-0-443-19102-2.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Stroke, ischemic or hemorrhagic, triggers a complex and coordinated glial response, which, to a large extent, defines the progression and outcome of this focal damage of the nervous tissue. Massive cell death in the infarction core results in a release of damage-associated molecular patterns, which, together with blood-borne factors entering the brain through either ruptured vessels or through compromised blood-brain barrier, trigger reactive gliosis. Microglia are the first to migrate toward the lesion, proliferate, and phagocytose cellular debris in and around the infarct core. Reactive astrogliosis occurs around the margins of the infarct core and is characterized by astrocytic proliferation, morphologic remodeling with loss of territorial domain segregation, and transcriptional reprogramming into wound repair astrocytes that form a periinfarct border that protects the healthy tissue and assists postlesional regeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
36
|
Sun R, Chu J, Li P. Inflammasomes and idiopathic inflammatory myopathies. Front Immunol 2024; 15:1449969. [PMID: 39723212 PMCID: PMC11668653 DOI: 10.3389/fimmu.2024.1449969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIM) are a group of systemic autoimmune diseases characterized by muscle weakness and elevated serum creatine kinase levels. Recent research has highlighted the role of the innate immune system, particularly inflammasomes, in the pathogenesis of IIM. This review focuses on the role of inflammasomes, specifically NLRP3 and AIM2, and their associated proteins in the development of IIM. We discuss the molecular mechanisms of pyroptosis, a programmed cell death pathway that triggers inflammation, and its association with IIM. The NLRP3 inflammasome, in particular, has been implicated in muscle fiber necrosis and the subsequent release of damage-associated molecular patterns (DAMPs), leading to inflammation. We also explore the potential therapeutic implications of targeting the NLRP3 inflammasome with inhibitors such as glyburide and MCC950, which have shown promise in reducing inflammation and improving muscle function in preclinical models. Additionally, we discuss the role of caspases, particularly caspase-1, in the canonical pyroptotic pathway associated with IIM. The understanding of these mechanisms offers new avenues for therapeutic intervention and a better comprehension of IIM pathophysiology.
Collapse
Affiliation(s)
- Rui Sun
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Jiyan Chu
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Ping Li
- Department of Rheumatology, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
37
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
38
|
Alajroush DR, Anderson BF, Bruce JA, Lartey CI, Mathurin DA, Washington ST, Washington TS, Diawara S, Waheed SA, Thomas KL, Beebe SJ, Holder AA. Enhancement of antitumor effects of berberine chloride with a copper(II) complex against human triple negative breast cancer: In vitro studies. RESULTS IN CHEMISTRY 2024; 12:101882. [PMID: 39802841 PMCID: PMC11720871 DOI: 10.1016/j.rechem.2024.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
In this study, the copper(II) complex [Cu(chromoneTSC)Cl2]•0.5H2O•0.0625C2H5OH (where chromoneTSC = (E)-N-Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out in vitro studies in combination with berberine chloride (BBC). The ligand and complex were characterized by elemental analysis, FTIR and NMR (1H and 13C) spectroscopy, and conductivity measurements. The cytotoxic effect was analyzed by using the CCK-8 viability assay in cancer MDA-MB-231 VIM RFP and non-cancer MCF-10A cell lines. The IC50 values for the complex and BBC were 21.2 ±1.6 and 48.3 ± 2.4 μM, respectively at 24 h incubation, while the IC50 value of the combination treatment was 9.3 ± 1.5 in cancer cells. The co-treatment group significantly increased the number of cells in G2 phase, indicating the growth arrest of cancer cells. Moreover, the combination group showed induction of both intrinsic and extrinsic apoptotic pathways. There was also a study on the effect of the combination treatment on receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL) as biomarkers of necroptosis. The results showed activation of necroptosis after treatment with the combination of the copper complex and BBC via the activation of RIPK3-MLKL pathway.
Collapse
Affiliation(s)
- Duaa R. Alajroush
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Brittney F. Anderson
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Janae A. Bruce
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Christian I. Lartey
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Dazonte A. Mathurin
- Department of Biological Sciences, University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Sean T. Washington
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Tanaya S. Washington
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Sidy Diawara
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Sakariyau A. Waheed
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Kaylin L. Thomas
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| | - Stephen J. Beebe
- Frank Reidy Research center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Alvin A. Holder
- Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA
| |
Collapse
|
39
|
Ji J, Ma Y, Liu X, Zhou Q, Zheng X, Chen Y, Li Z, Yang L. Identification of Renal Ischemia-Reperfusion Injury Subtypes and Predictive Model for Graft Loss after Kidney Transplantation Based on Programmed Cell Death-Related Genes. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:450-467. [PMID: 39664334 PMCID: PMC11631021 DOI: 10.1159/000540158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/26/2024] [Indexed: 12/13/2024]
Abstract
Introduction Ischemia-reperfusion injury (IRI) is detrimental to kidney transplants and may contribute to poor long-term outcomes of transplantation. Programmed cell death (PCD), a regulated cell death form triggered by IRI, is often indicative of an unfavorable prognosis following transplantation. However, given the intricate pathophysiology of IRI and the considerable variability in clinical conditions during kidney transplantation, the specific patterns of cell death within renal tissues remain ambiguous. Consequently, accurately predicting the outcomes for transplanted kidneys continues to be a formidable challenge. Methods Eight Gene Expression Omnibus datasets of biopsied transplanted kidney samples post-IRI and 1,548 PCD-related genes derived from 18 PCD patterns were collected in our study. Consensus clustering was performed to identify distinct IRI subtypes based on PCD features (IRI PCD subtypes). Differential enrichment analysis of cell death, metabolic signatures, and immune infiltration across these subtypes was evaluated. Three machine learning algorithms were used to identify PCD patterns related to prognosis. Genes associated with graft loss were screened for each PCD type. A predictive model for graft loss was constructed using 101 combinations of 10 machine learning algorithms. Results Four IRI subtypes were identified: PCD-A, PCD-B, PCD-C, and PCD-D. PCD-A, characterized by high enrichment of multiple cell death patterns, significant metabolic paralysis, and immune infiltration, showed the poorest prognosis among the four subtypes. While PCD-D involved the least kind of cell death patterns with the features of extensive activation of metabolic pathways and the lowest immune infiltration, correlating with the best prognosis in the four subtypes. Using various machine learning algorithms, 10 cell death patterns and 42 PCD-related genes were identified as positively correlated with graft loss. The predictive model demonstrated high sensitivity and specificity, with area under the curve values for 0.5-, 1-, 2-, 3-, and 4-year graft survival at 0.888, 0.91, 0.926, 0.923, and 0.923, respectively. Conclusion Our study explored the comprehensive features of PCD patterns in transplanted kidney samples post-IRI. The prediction model shows great promise in forecasting graft loss and could aid in risk stratification in patients following kidney transplantation.
Collapse
Affiliation(s)
- Jing Ji
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuan Ma
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xintong Liu
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingqing Zhou
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xizi Zheng
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Chen
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Zehua Li
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Yang
- Renal Division, Peking University Institute of Nephrology, Key Laboratory of Renal Disease-Ministry of Health of China, Key Laboratory of CKD Prevention and Treatment (Peking University)-Ministry of Education of China, Peking University First Hospital, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Adil M, Jiba U, Khan A, Shahrukh M, Hasan N, Ahmad FJ. Advancements in ischemic stroke management: Transition from traditional to nanotechnological approaches. J Drug Deliv Sci Technol 2024; 102:106318. [DOI: 10.1016/j.jddst.2024.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
42
|
Arbatskiy M, Balandin D, Akberdin I, Churov A. A Systems Biology Approach Towards a Comprehensive Understanding of Ferroptosis. Int J Mol Sci 2024; 25:11782. [PMID: 39519341 PMCID: PMC11546516 DOI: 10.3390/ijms252111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Ferroptosis is a regulated cell death process characterized by iron ion catalysis and reactive oxygen species, leading to lipid peroxidation. This mechanism plays a crucial role in age-related diseases, including cancer and cardiovascular and neurological disorders. To better mimic iron-induced cell death, predict the effects of various elements, and identify drugs capable of regulating ferroptosis, it is essential to develop precise models of this process. Such drugs can be tested on cellular models. Systems biology offers a powerful approach to studying biological processes through modeling, which involves accumulating and analyzing comprehensive research data. Once a model is created, it allows for examining the system's response to various stimuli. Our goal is to develop a modular framework for ferroptosis, enabling the prediction and screening of compounds with geroprotective and antiferroptotic effects. For modeling and analysis, we utilized BioUML (Biological Universal Modeling Language), which supports key standards in systems biology, modular and visual modeling, rapid simulation, parameter estimation, and a variety of numerical methods. This combination fulfills the requirements for modeling complex biological systems. The integrated modular model was validated on diverse datasets, including original experimental data. This framework encompasses essential molecular genetic processes such as the Fenton reaction, iron metabolism, lipid synthesis, and the antioxidant system. We identified structural relationships between molecular agents within each module and compared them to our proposed system for regulating the initiation and progression of ferroptosis. Our research highlights that no current models comprehensively cover all regulatory mechanisms of ferroptosis. By integrating data on ferroptosis modules into an integrated modular model, we can enhance our understanding of its mechanisms and assist in the discovery of new treatment targets for age-related diseases. A computational model of ferroptosis was developed based on a modular modeling approach and included 73 differential equations and 93 species.
Collapse
Affiliation(s)
- Mikhail Arbatskiy
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Dmitriy Balandin
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| | - Ilya Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Alexey Churov
- Russian Clinical Research Center of Gerontology, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 129226 Moscow, Russia; (D.B.); (A.C.)
| |
Collapse
|
43
|
Zhou H, Gong H, Liu H, Jing G, Xia Y, Wang Y, Wu D, Yang C, Zuo J, Wang Y, Wu X, Song X. Erbin alleviates sepsis-induced cardiomyopathy by inhibiting RIPK1-dependent necroptosis through activating PKA/CREB pathway. Cell Signal 2024; 123:111374. [PMID: 39216682 DOI: 10.1016/j.cellsig.2024.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Sepsis is a systemic inflammatory disease that can cause multiple organ damage. Septic patients with cardiac dysfunction have a significantly higher mortality. Based on the results of bioinformatics analysis, weighted gene co-expression network analysis (WGCNA), we found that Erbin is vital in cardiomyocyte. However, the function of Erbin in sepsis-induced cardiomyopathy (SIC) has not been explicitly studied. We discussed the role of Erbin in SIC by employing the Erbin-/- mice and HL-1 cardiomyocyte. An in vitro model of inflammation in HL-1 was used to confirm stimulation with lipopolysaccharide (LPS) and a mouse model of cecal ligation and puncture (CLP) to study the molecular mechanisms under SIC. Transmission electron microscopy (TEM) was used to characterize the morphological characteristics at the ultrastructural level. The expressions of Erbin, p-RIPK1, RIPK1, p-RIPK3, RIPK3, p-MLKL, MLKL, p-PKA, PKA, p-CREB and CREB were detected by western blot. qPCR analysis was applied to detect TNF-α, IL-1β, IL-6, RIPK1 and MLKL mRNA expression. Cell survival was detected by CCK-8 assay and the levels of c TnI concentration were detected by ELISA kit. Our study revealed that necroptosis and inflammation were activated in cardiomyocytes during sepsis and deficiency of Erbin aggravated them. Furthermore, deficiency of Erbin exacerbated systolic dysfunction including the decline of LVEF and LVFS induced by CLP. Overexpression of Erbin alleviated necroptosis and inflammation by activating PKA/CREB pathway. Our research elucidates a noval mechanism whereby Erbin participates in SIC, providing a promising therapeutic target for myocardial dysfunction during sepsis.
Collapse
Affiliation(s)
- Huimin Zhou
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Hailong Gong
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Huifan Liu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Guoqing Jing
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yun Xia
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - YuXuan Wang
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Die Wu
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Cheng Yang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Jing Zuo
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Yanlin Wang
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xiaojing Wu
- Renmin Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China
| | - Xuemin Song
- Zhongnan Hospital of Wuhan University, Department of Anesthesiology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Tang S, Ding J, Zhu X, Wang Z, Zhao H, Wu J. Vina-GPU 2.1: Towards Further Optimizing Docking Speed and Precision of AutoDock Vina and Its Derivatives. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2382-2393. [PMID: 39320991 DOI: 10.1109/tcbb.2024.3467127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
AutoDock Vina and its derivatives have established themselves as a prevailing pipeline for virtual screening in contemporary drug discovery. Our Vina-GPU method leverages the parallel computing power of GPUs to accelerate AutoDock Vina, and Vina-GPU 2.0 further enhances the speed of AutoDock Vina and its derivatives. Given the prevalence of large virtual screens in modern drug discovery, the improvement of speed and accuracy in virtual screening has become a longstanding challenge. In this study, we propose Vina-GPU 2.1, aimed at enhancing the docking speed and precision of AutoDock Vina and its derivatives through the integration of novel algorithms to facilitate improved docking and virtual screening outcomes. Building upon the foundations laid by Vina-GPU 2.0, we introduce a novel algorithm, namely Reduced Iteration and Low Complexity BFGS (RILC-BFGS), designed to expedite the most time-consuming operation. Additionally, we implement grid cache optimization to further enhance the docking speed. Furthermore, we employ optimal strategies to individually optimize the structures of ligands, receptors, and binding pockets, thereby enhancing the docking precision. To assess the performance of Vina-GPU 2.1, we conduct extensive virtual screening experiments on three prominent targets, utilizing two fundamental compound libraries and seven docking tools. Our results demonstrate that Vina-GPU 2.1 achieves an average 4.97-fold acceleration in docking speed and an average 342% improvement in EF1% compared to Vina-GPU 2.0.
Collapse
|
45
|
Seibt T, Wahida A, Hoeft K, Kemmner S, Linkermann A, Mishima E, Conrad M. The biology of ferroptosis in kidney disease. Nephrol Dial Transplant 2024; 39:1754-1761. [PMID: 38684468 DOI: 10.1093/ndt/gfae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on one hand and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.
Collapse
Affiliation(s)
- Tobias Seibt
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Konrad Hoeft
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Stephan Kemmner
- Transplant Center, University Hospital Munich, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Linkermann
- Division of Nephrology, Clinic of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Nephrology, Rheumatology and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
46
|
Kunst C, Tümen D, Ernst M, Tews HC, Müller M, Gülow K. Paraptosis-A Distinct Pathway to Cell Death. Int J Mol Sci 2024; 25:11478. [PMID: 39519031 PMCID: PMC11546839 DOI: 10.3390/ijms252111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a critical biological process necessary for development, tissue maintenance, and defense against diseases. To date, more than 20 forms of cell death have been identified, each defined by unique molecular pathways. Understanding these different forms of cell death is essential for investigating the pathogenesis of diseases such as cancer, neurodegenerative disorders, and autoimmune conditions and developing appropriate therapies. Paraptosis is a distinct form of regulated cell death characterized by cytoplasmic vacuolation and dilatation of cellular organelles like the mitochondria and endoplasmic reticulum (ER). It is regulated by several signaling pathways, for instance, those associated with ER stress, calcium overload, oxidative stress, and specific cascades such as insulin-like growth factor I receptor (IGF-IR) and its downstream signaling pathways comprising mitogen-activated protein kinases (MAPKs) and Jun N-terminal kinase (JNK). Paraptosis has been observed in diverse biological contexts, including development and cellular stress responses in neuronal, retinal, endothelial, and muscle cells. The induction of paraptosis is increasingly important in anticancer therapy, as it targets non-apoptotic stress responses in tumor cells, which can be utilized to induce cell death. This approach enhances treatment efficacy and addresses drug resistance, particularly in cases where cancer cells are resistant to apoptosis. Combining paraptosis-inducing agents with traditional therapies holds promise for enhancing treatment efficacy and overcoming drug resistance, suggesting a valuable strategy in anticancer therapy.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (D.T.); (M.E.); (H.C.T.); (M.M.); (K.G.)
| | | | | | | | | | | |
Collapse
|
47
|
Li S, Wang Y, Li C, Zhou B, Zeng X, Zhu H. Supramolecular nanomedicine in the intelligent cancer therapy: recent advances and future. Front Pharmacol 2024; 15:1490139. [PMID: 39464634 PMCID: PMC11502448 DOI: 10.3389/fphar.2024.1490139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024] Open
Abstract
In recent years, the incidence of cancer has been increasing year by year, and the burden of the disease and the economic burden caused by it has been worsening. Although chemotherapy, immunotherapy, targeted therapy and other therapeutic means continue to progress, they still inevitably have problems such as high toxicity and side effects, susceptibility to drug resistance, and high price. Photothermal therapy and photodynamic therapy have demonstrated considerable advantages in cancer imaging and treatment due to their minimally invasive and selective nature. However, their development has been constrained by challenges related to drug delivery. In recent times, drug delivery systems constructed based on supramolecular chemistry have been the subject of considerable interest, particularly in view of their compatibility with the high permeability and long retention effect of tumors. Furthermore, the advantage of dissociating the active ingredient under pH, light and other stimuli makes them unique in cancer therapy. This paper reviews the current status of supramolecular nanomedicines in cancer therapy, elucidating the challenges faced and providing a theoretical basis for the efficient and precise treatment of malignant tumors.
Collapse
Affiliation(s)
- Shuo Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yujiao Wang
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Li
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Binghao Zhou
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoxi Zeng
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Zhang K, Jia R, Zhang Q, Xiang S, Wang N, Xu L. Metabolic dysregulation-triggered neutrophil extracellular traps exacerbate acute liver failure. FEBS Lett 2024; 598:2450-2462. [PMID: 39155145 DOI: 10.1002/1873-3468.14971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024]
Abstract
Acute liver failure (ALF) is an acute liver disease with a high mortality rate in clinical practice, characterized histologically by extensive hepatocellular necrosis and massive neutrophil infiltration. However, the role of these abnormally infiltrating neutrophils during ALF development is unclear. Here, in an ALF mouse model, metabolites were identified that promote the formation of neutrophil extracellular traps (NETs) in the liver, subsequently influencing macrophage differentiation and disease progression. ALF occurs with abnormalities in hepatic and intestinal metabolites. Abnormal metabolites (LTD4 and glutathione) can directly, or indirectly via reactive oxygen species, promote NET formation of infiltrating neutrophils, which subsequently regulate macrophages in a pro-inflammatory M1-like state, inducing an amplification of the destructive effects of inflammation. Together, this study provides new insights into the role of NETs in the pathogenesis of ALF.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Rongrong Jia
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Shihao Xiang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Na Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
49
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Overview of pyroptosis mechanism and in-depth analysis of cardiomyocyte pyroptosis mediated by NF-κB pathway in heart failure. Biomed Pharmacother 2024; 179:117367. [PMID: 39214011 DOI: 10.1016/j.biopha.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The pyroptosis of cardiomyocytes has become an essential topic in heart failure research. The abnormal accumulation of these biological factors, including angiotensin II, advanced glycation end products, and various growth factors (such as connective tissue growth factor, vascular endothelial growth factor, transforming growth factor beta, among others), activates the nuclear factor-κB (NF-κB) signaling pathway in cardiovascular diseases, ultimately leading to pyroptosis of cardiomyocytes. Therefore, exploring the underlying molecular biological mechanisms is essential for developing novel drugs and therapeutic strategies. However, our current understanding of the precise regulatory mechanism of this complex signaling pathway in cardiomyocyte pyroptosis is still limited. Given this, this study reviews the milestone discoveries in the field of pyroptosis research since 1986, analyzes in detail the similarities, differences, and interactions between pyroptosis and other cell death modes (such as apoptosis, necroptosis, autophagy, and ferroptosis), and explores the deep connection between pyroptosis and heart failure. At the same time, it depicts in detail the complete pathway of the activation, transmission, and eventual cardiomyocyte pyroptosis of the NF-κB signaling pathway in the process of heart failure. In addition, the study also systematically summarizes various therapeutic approaches that can inhibit NF-κB to reduce cardiomyocyte pyroptosis, including drugs, natural compounds, small molecule inhibitors, gene editing, and other cutting-edge technologies, aiming to provide solid scientific support and new research perspectives for the prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
50
|
Le S, Wu J, Liu H, Du Y, Wang D, Luo J, Yang P, Ran S, Hu P, Chen M, Ye P, Xia J. Single-cell RNA sequencing identifies interferon-inducible monocytes/macrophages as a cellular target for mitigating the progression of abdominal aortic aneurysm and rupture risk. Cardiovasc Res 2024; 120:1351-1364. [PMID: 38836630 DOI: 10.1093/cvr/cvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/01/2024] [Accepted: 04/06/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) represents a life-threatening condition characterized by medial layer degeneration of the abdominal aorta. Nevertheless, knowledge regarding changes in regulators associated with aortic status remains incomplete. A thorough understanding of cell types and signalling pathways involved in the development and progression of AAAs is essential for the development of medical therapy. METHODS AND RESULTS We harvested specimens of the abdominal aorta with different pathological features in Angiotensin II (AngII)-infused ApoE-/- mice, conducted scRNA-seq, and identified a unique population of interferon-inducible monocytes/macrophages (IFNICs), which were amply found in the AAAs. Gene set variation analysis revealed that activation of the cytosolic DNA sensing cGAS-STING and JAK-STAT pathways promoted the secretion of type I interferons in monocytes/macrophages and differentiated them into IFNICs. We generated myeloid cell-specific deletion of Sting1 (Lyz2-Cre+/-; Sting1flox/flox) mice and performed bone marrow transplantation and found that myeloid cell-specific deletion of Sting1 or Ifnar1 significantly reduced the incidence of AAA, aortic rupture rate, and diameter of the abdominal aorta. Mechanistically, the activated pyroptosis- and inflammation-related signalling pathways, regulated by IRF7 in IFNICs, play critical roles in the developing AAAs. CONCLUSION IFNICs are a unique monocyte/macrophage subset implicated in the development of AAAs and aortic rupture.
Collapse
Affiliation(s)
- Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Jia Wu
- Key Laboratory for Molecular Diagnosis of Hubei Province Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Dashuai Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1 East Jianshe Road, Zhengzhou 450052, China
| | - Jingjing Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Peiwen Yang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| | - Manhua Chen
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, ShengLi Street 26, Wuhan 430014, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, JieFang Road 1277, Wuhan 430022, China
| |
Collapse
|