1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Schützmann MP, Hoyer W. Off-pathway oligomers of α-synuclein and Aβ inhibit secondary nucleation of α-synuclein amyloid fibrils. J Mol Biol 2025; 437:169048. [PMID: 40015369 DOI: 10.1016/j.jmb.2025.169048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
α-Synuclein (αSyn) is a key culprit in the pathogenesis of synucleinopathies such as Parkinson's Disease (PD), in which it forms not only insoluble aggregates called amyloid fibrils but also smaller, likely more detrimental species termed oligomers. This property is shared with other amyloidogenic proteins such as the Alzheimer's Disease-associated amyloid-β (Aβ). We previously found an intriguing interplay between off-pathway Aβ oligomers and Aβ fibrils, in which the oligomers interfere with fibril formation via inhibition of secondary nucleation by blocking secondary nucleation sites on the fibril surface. Here, using ThT aggregation kinetics and atomic force microscopy (AFM), we tested if the same interplay applies to αSyn fibrils. Both homotypic (i.e. αSyn) and heterotypic (i.e. Aβ) off-pathway oligomers inhibited αSyn aggregation in kinetic assays of secondary nucleation. Initially soluble, kinetically trapped Aβ oligomers co-precipitated with αSyn(1-108) fibrils. The resulting co-assemblies were imaged as clusters of curvilinear oligomers by AFM. The results indicate that off-pathway oligomers have a general tendency to bind amyloid fibril surfaces, also in the absence of sequence homology between fibril and oligomer. The interplay between off-pathway oligomers and amyloid fibrils adds another level of complexity to the homo- and hetero-assembly processes of amyloidogenic proteins.
Collapse
Affiliation(s)
- Marie P Schützmann
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40204 Germany
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40204 Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, 52428 Germany.
| |
Collapse
|
3
|
Vendruscolo M. The thermodynamic hypothesis of protein aggregation. Mol Aspects Med 2025; 103:101364. [PMID: 40319523 DOI: 10.1016/j.mam.2025.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/30/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation drive some of the most prevalent and lethal disorders of our time, including Alzheimer's and Parkinson's diseases, now affecting tens of millions of people worldwide. The complexity of these diseases, which are often multifactorial and related to age and lifestyle, has made it challenging to identify the causes of the accumulation of aberrant protein deposits. An insight into the origins of these deposits comes from reports of a widespread presence of protein aggregates even under normal cellular conditions. This observation is best accounted for by the thermodynamic hypothesis of protein aggregation. According to this hypothesis, many proteins are expressed at levels close to their supersaturation limits, so that their native states are metastable against aggregation. Here we integrate the evidence behind this hypothesis and outline actionable therapeutic strategies that could halt protein aggregation at its source.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
4
|
Dasadhikari S, Ghosh S, Pal S, Knowles TPJ, Garai K. A single fibril study reveals that ApoE inhibits the elongation of Aβ42 fibrils in an isoform-dependent manner. Commun Chem 2025; 8:133. [PMID: 40307479 PMCID: PMC12044155 DOI: 10.1038/s42004-025-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
ApoE-ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), linked to increased amyloid-β (Aβ) deposition in the brain. In AD mouse models, microglial expression of apoE3 reduces amyloid plaque burden through enhanced phagocytosis, whereas apoE4 is associated with impaired Aβ clearance. However, the isoform-specific interactions of apoE with Aβ aggregates and the molecular mechanisms by which these isoforms influence Aβ aggregation and clearance remain poorly understood, which is critical for developing potential therapeutic interventions. Here, we employed TIRFM, superresolution microscopy, and single-molecule photobleaching techniques to investigate the isoform-specific effects of apoE on the rate constants of Aβ42 aggregation at the single-fibril level, as well as to quantify the binding affinity and specificity of apoE isoforms to individual Aβ fibril ends. Our results show that apoE4 is ca. 4-5 times less effective than apoE3 and apoE2 in inhibiting fibril elongation, while secondary nucleation is largely unaffected by any of the isoforms. Furthermore, apoE3 exhibits stronger and more specific binding to fibril ends compared to apoE4. These findings suggest that apoE4's reduced affinity for growing fibril ends may impair microglial clearance and increase amyloid deposition through a higher elongation rate in the brain of ApoE-ε4 carriers.
Collapse
Affiliation(s)
| | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Sudip Pal
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kanchan Garai
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
6
|
Jamal R, Shaikh MA, Taleuzzaman M, Haque Z, Albratty M, Alam MS, Makeen HA, Zoghebi K, Saleh SF. Key biomarkers in Alzheimer's disease: Insights for diagnosis and treatment strategies. J Alzheimers Dis 2025:13872877251330500. [PMID: 40255041 DOI: 10.1177/13872877251330500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Alzheimer's disease (AD) remains a significant global health challenge, characterized by its progressive neurodegeneration and cognitive decline. The urgent need for early diagnosis and effective treatment necessitates the identification of reliable biomarkers that can illuminate the underlying pathophysiology of AD. This review provides a comprehensive overview of the latest advancements in biomarker research, focusing on their applications in diagnosis, prognosis, and therapeutic development. We delve into the multifaceted landscape of AD biomarkers, encompassing molecular, imaging, and fluid-based markers. The integration of these biomarkers, including amyloid-β and tau proteins, neuroimaging modalities, cerebrospinal fluid analysis, and genetic risk factors, offers a more nuanced understanding of AD's complex etiology. By leveraging the power of precision medicine, biomarker-driven approaches can enable personalized treatment strategies and enhance diagnostic accuracy. Moreover, this review highlights the potential of biomarker research to accelerate drug discovery and development. By identifying novel therapeutic targets and monitoring disease progression, biomarkers can facilitate the evaluation of experimental treatments and ultimately improve patient outcomes. In conclusion, this review underscores the critical role of biomarkers in advancing our comprehension of AD and driving the development of effective interventions. By providing a comprehensive overview of the current state-of-the-art, this work aims to inspire future research and contribute to the goal of conquering AD.
Collapse
Affiliation(s)
- Ruqaiya Jamal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
| | | | - Mohamad Taleuzzaman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
| | - Ziyaul Haque
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Maulana Azad University, Jodhpur, Rajasthan, India
- Department of Pharmaceutical Chemistry, AIKTC School of Pharmacy, Mumbai, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Md Shamsher Alam
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Safaa Fathy Saleh
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
7
|
Zhu J, Kreutzer AG, Liu Z, Li X, Richter SM, Pophristic V, Nowick JS. A β-hairpin peptide derived from Aβ forms different oligomers in the crystal state and in aqueous solution. Org Biomol Chem 2025; 23:3881-3893. [PMID: 40130612 PMCID: PMC12003087 DOI: 10.1039/d5ob00296f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The supramolecular assembly of amyloid-β into soluble oligomers is critical Alzheimer's disease (AD) progression. Soluble Aβ oligomers have emerged as neurotoxic species involved in AD progression and some Aβ oligomers are thought to be composed of β-hairpins. In this work, we report the X-ray crystallographic and solution-phase assembly of a macrocyclic β-hairpin peptide that mimics a β-hairpin formed by Aβ16-36. In the crystal lattice, the peptide assembles into a symmetric hexamer composed of two identical triangular trimers. In aqueous solution, the peptide assembles to form an asymmetric hexamer. 1H NMR, TOCSY, and 1H,15N HSQC experiments establish that the asymmetric hexamer contains two different species, A and B. 15N-edited NOESY reveals that species A is a cylindrin-like trimer and species B is a triangular trimer that collectively constitute the asymmetric hexamer. Diffusion-ordered NMR spectroscopy (DOSY) suggests that two asymmetric hexamers further assemble to form a dodecamer. NMR-guided molecular mechanics and molecular dynamics studies provide a model for the asymmetric hexamer and suggest how two asymmetric hexamers can form a dodecamer. Solution-phase NMR studies of analogues show that intermolecular hydrogen bonding and the formation of a hydrophobic core help stabilize the asymmetric hexamer. These NMR and crystallographic studies illustrate how an Aβ β-hairpin peptide can assemble to form different well-defined oligomers in the crystal state and in aqueous solution, providing a deeper understanding of the heterogeneity of Aβ oligomers and new structural models of Aβ oligomers composed of Aβ β-hairpins.
Collapse
Affiliation(s)
- Jason Zhu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Adam G Kreutzer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701, USA
| | - Xingyue Li
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Sabrina M Richter
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
| | - Vojislava Pophristic
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028-1701, USA
| | - James S Nowick
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, USA.
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-2025, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697-2025, USA
| |
Collapse
|
8
|
Wolfe MS. Presenilin, γ-Secretase, and the Search for Pathogenic Triggers of Alzheimer's Disease. Biochemistry 2025; 64:1662-1672. [PMID: 39996369 DOI: 10.1021/acs.biochem.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cerebral plaques of the amyloid β-peptide (Aβ) are a defining pathology in Alzheimer's disease (AD). The amyloid hypothesis of AD pathogenesis has dominated the field for over 30 years, ostensibly validated by rare AD-causing mutations in the substrate and enzyme that produce Aβ. The γ-secretase complex carries out intramembrane proteolysis of the substrate derived from the amyloid precursor protein (APP). Mutations in APP and presenilin, the catalytic component of γ-secretase, typically increase the ratio of aggregation-prone 42-residue Aβ (Aβ42) over the more soluble 40-residue form (Aβ40). Nevertheless, the inability to clarify how Aβ aggregation leads to neurodegeneration, along with poor progress in developing effective AD therapeutics that target Aβ, raises concern about whether Aβ is the primary disease driver. γ-Secretase carries out processive proteolysis on the APP substrate, producing long Aβ peptides that are generally trimmed in tripeptide intervals to shorter secreted peptides. Recent studies on effects of AD-causing mutations on the complicated proteolytic processing of the APP substrate by γ-secretase has led to the discovery that these mutations reduce─but do not abolish─processive proteolysis. Reduced proteolysis is apparently due to stabilization of enzyme-substrate complexes, and these stalled substrate-bound γ-secretase complexes can trigger synaptic degeneration even in the absence of Aβ production. Thus, the stalled process rather than the proteolytic products may be a principal initiator of AD pathogenesis. This new amyloid-independent hypothesis suggests that pharmacological agents that rescue stalled γ-secretase enzyme-substrate complexes might be effective therapeutics for AD prevention and/or treatment.
Collapse
Affiliation(s)
- Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Maurya R, Sharma A, Naqvi S. Decoding NLRP3 Inflammasome Activation in Alzheimer's Disease: A Focus on Receptor Dynamics. Mol Neurobiol 2025:10.1007/s12035-025-04918-1. [PMID: 40232645 DOI: 10.1007/s12035-025-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder marked by progressive cognitive decline and significant neuropsychiatric disturbances. Neuroinflammation, mediated by the NLRP3 inflammasome, is increasingly recognized as a critical factor in AD pathogenesis. The NLRP3 inflammasome, a crucial component of the innate immune system, is activated in response to both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In AD, amyloid-beta (Aβ) plaques and tau aggregates act as DAMPs, triggering NLRP3 inflammasome activation in microglia and astrocytes. This activation leads to the production of pro-inflammatory cytokines IL-1β and IL-18, contributing to chronic neuroinflammation and neuronal death. This review explores the intricate mechanisms involved in NLRP3 activation, with a particular focus on TREM-2, Msn Kinase MINK, NF-κB, Toll-like receptors, and P2X7 receptors. Understanding these mechanisms offers insight into the multifaceted regulation of the NLRP3 inflammasome and its impact on AD pathology. By elucidating the roles of TREM-2, MINK1, NF-κB, TLRs, and P2X7 receptors, this review highlights potential therapeutic targets for modulating NLRP3 activity. Targeting these pathways could offer novel strategies for mitigating neuroinflammation and slowing the progression of AD. The interplay between these receptors and signaling pathways underscores the complexity of NLRP3 inflammasome regulation and its significance in AD, providing a foundation for future research aimed at developing effective therapeutic interventions.
Collapse
Affiliation(s)
- Ranika Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India
| | - Saba Naqvi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER-R), Lucknow, UP, 226002, India.
| |
Collapse
|
10
|
Jia J, Zhao S, Zhao J, Gao Y. Engineered nanoparticles for the treatment of Alzheimer's disease. Front Pharmacol 2025; 16:1510798. [PMID: 40248097 PMCID: PMC12003369 DOI: 10.3389/fphar.2025.1510798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common diseases characterized by neurodegeneration and is becoming a major public health problem worldwide. AD is manifested mainly by progressive impairments in cognition, emotion, language and memory in the elderly population. Many treatment strategies have been explored for decades; however, there is still no effective way to address the root cause of AD pathogenesis, only to target symptoms to improve patient cognitive outcomes. Intracerebral administration is difficult because of the challenges posed by the blood‒brain barrier (BBB). NPs are materials with sizes between 1 and 100 nm that can improve biocompatibility, extend the half-life, transport macromolecules, be delivered across the BBB to the central nervous system, and exhibit good targeting capabilities. NPs can provide new ideas for the treatment of AD in terms of their antiaging, antineuroinflammatory, antioxidative, and nerve repair-promoting effects. In this manuscript, we first describe the relationship between AD and the BBB. Second, we introduce the application of nanoparticles for AD treatment. Finally, we summarize the challenges faced by nanoparticles in the treatment of AD.
Collapse
Affiliation(s)
- Jia Jia
- Department of Neurological Function Examination, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinghan Zhao
- Fifth Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yun Gao
- Second Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Baysah CZ, Dohoney RA, Palanikumar L, Stillman NH, Penney AL, Sola AD, Paredes DA, Magzoub M, Kumar S. A Brain-Penetrating Foldamer Rescues Aβ Aggregation-Associated Alzheimer's Disease Phenotypes in In Vivo Models. ACS Chem Neurosci 2025; 16:1309-1322. [PMID: 40070152 DOI: 10.1021/acschemneuro.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the leading cause of dementia, affecting nearly 55 million people across the world. One of the central pathological factors associated with AD is the aggregation of Aβ42, a peptide product cleaved through pathological processes in AD. Under pathological conditions, Aβ42 aggregates into insoluble plaques in the brain and impairs the function of neurons, which contributes to the cognitive decline associated with AD. Therefore, the modulation of Aβ42 aggregation is considered a potential therapeutic intervention for AD. Using an Oligoquinoline-based foldamer library, we have identified a potent foldamer antagonist (SK-131) of Aβ42 aggregation. SK-131 inhibits the aggregation by inducing a α-helical structure in monomeric Aβ42. Here, we demonstrated that SK-131 rescues Aβ42 aggregation-associated phenotypes in AD cellular and multiple Caenorhabditis elegans AD models, including intracellular inhibition of Aβ42 aggregation, rescue of behavioral deficits, and attenuation of reactive oxygen species. It efficiently crosses the blood-brain barrier and demonstrates favorable pharmaceutical properties. It also potently inhibits Zn2+-mediated Aβ42 aggregation by potentially displacing Zn2+ from Aβ42. In summary, we have identified a potent brain-penetrating foldamer that efficiently rescues AD phenotypes in in vivo models. Unlike most of the therapeutic approaches that target Aβ aggregates, we have identified and validated a novel therapeutic pathway by inducing structural change in Aβ and rescuing AD phenotypes in in vivo models. This study will further aid in the quest to identify lead therapeutics to slow or stop the progression of AD.
Collapse
Affiliation(s)
- Charles Zuwu Baysah
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Ryan A Dohoney
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
| | - Nicholas H Stillman
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Alexandra L Penney
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
- Department of Biological Sciences, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
| | - Andres D Sola
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
| | - Daniel A Paredes
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- Ritchie School of Engineering and Computer Science, University of Denver, 2155 E Wesley Ave, Denver, Colorado 80210, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, UAE
| | - Sunil Kumar
- Department of Chemistry and Biochemistry, University of Denver, F.W. Olin Hall, 2190 E Iliff Ave, Denver, Colorado 80210, United States
- The Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Ave, Suite 579, Denver, Colorado 80208, United States
- Molecular and Cellular Biophysics Program, University of Denver, Boettcher West, Room 228, 2050 E. Iliff Ave, Denver, Colorado 80210, United States
| |
Collapse
|
12
|
Mondal R, Deb S, Shome G, Sarkar V, Lahiri D, Datta SS, Benito-León J. Molecular dynamics of amyloid-β transport in Alzheimer's disease: Exploring therapeutic plasma exchange with albumin replacement - Current insights and future perspectives. Neurologia 2025; 40:306-328. [PMID: 40280630 DOI: 10.1016/j.nrleng.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 04/29/2025] Open
Abstract
INTRODUCTION The complex process of amyloid-β (Aβ) transportation across the blood-brain and blood-cerebrospinal fluid barriers is crucial for preventing Aβ accumulation, which linked to dementia and neurodegeneration. This review explores therapeutic plasma exchange with albumin replacement in Alzheimer's disease, based on the dynamics of amyloid-β between the brain, plasma, and cerebrospinal fluid. METHODOLOGY A comprehensive literature review was conducted using PubMed/Medline, Cochrane Library, and open databases (bioRxiv, MedRixv, preprint.org) up to April 30, 2023. The first search utilized the following MeSH terms and keywords: 'Plasma Exchange', 'Plasmapheresis', 'Therapeutic plasma exchange', 'Apheresis', 'Aβ', 'p-tau', 'Total-tau', 'Alzheimer's disease', 'Cognitive dysfunction', 'neurodegenerative diseases', 'centrifugation', 'membranous', and 'filtration' in the Title/Abstract, yielding 146 results. A second search with the keywords: 'Albumin', 'Aβ', 'BBB', 'Alzheimer's dementia', and 'Nerve degeneration' resulted in 125 additional articles for analysis. Finally, a third search using keywords: 'Albumin structural domains', 'Albumin-Aβ interactions', 'Albumin-endothelial interactions', and 'Post-Translational Modification' produced 193 results for further review. RESULTS/DISCUSSION Therapeutic plasma exchange shows potential as a disease-modifying therapy for dementia, specifically for Alzheimer's disease. Additionally, the promising role of albumin supplementation in cognitive improvement has attracted attention. However, clinical evidence supporting therapeutic plasma exchange for dementia remains limited, necessitating further research and development to mitigate potential adverse effects. A deeper understanding of the molecular dynamics of Aβ transportation and the mechanisms of therapeutic plasma exchange is essential. A critical evaluation of existing evidence highlights the importance of balancing potential benefits with associated risks, which will guide the development and application of these treatments in neurodegenerative diseases.
Collapse
Affiliation(s)
- R Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India
| | - S Deb
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - G Shome
- Department of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - V Sarkar
- Department of Neuroscience, SN Pradhan Center for Neuroscience, University of Calcutta, Kolkata 700019, India
| | - D Lahiri
- Baycrest Academy of Research and Education, Toronto, Canada; Rotman Research Institute, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Canada; Department of Neurology, Institute of Neurosciences, Kolkata, India
| | - S S Datta
- Department of Transfusion Medicine, Tata Medical Center, Kolkata 700160, India
| | - J Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Medicine, Faculty of Medicine, Complutense University, Madrid, Spain.
| |
Collapse
|
13
|
Horne RI, Sandler SE, Vendruscolo M, Keyser UF. Detection of protein oligomers with nanopores. Nat Rev Chem 2025; 9:224-240. [PMID: 40045069 DOI: 10.1038/s41570-025-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 04/11/2025]
Abstract
Powerful single-molecule approaches have been developed for the accurate measurement of protein oligomers, but they are often low throughput and limited to the measurement of specific systems. To overcome this problem, nanopore-based detection holds the promise of providing the high throughput, broad applicability, and accuracy necessary to characterize protein oligomers in a variety of contexts. Nanopores provide accuracy comparable with that of state-of-the-art single-molecule detection methods, but with the added potential for fast and accurate measurements that may be amenable to industrial-scale manufacture. Key to enabling this expansion is combination with other emerging technologies such as DNA nanostructure tagging, machine learning-enabled signal analysis, and innovative detection device manufacture. Together, these technologies could enable widespread adoption of nanopore-based sensing in oligomer detection, revolutionizing diagnostics and biomarker detection in protein misfolding diseases.
Collapse
Affiliation(s)
- Robert I Horne
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Sarah E Sandler
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Hiraki C, Tsuruta F. The Meninges as CNS Interfaces and the Roles of Meningeal Macrophages. Biomolecules 2025; 15:497. [PMID: 40305192 PMCID: PMC12024811 DOI: 10.3390/biom15040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
The brain, the most important component of the central nervous system (CNS), is protected by multiple intricate barriers that strictly regulate the entry of proteins and cells. Thus, the brain is often described as an organ with immune privilege. Within the brain parenchyma, microglia are thought to be the primary resident immune cells, with no other immune-related cells present under normal conditions. On the other hand, recent studies in the meningeal border regions have revealed the presence of meningeal-specific lymphatic vessels and channels that connect to the skull bone marrow. Importantly, resident macrophage populations specific to these boundary regions, known as CNS-associated macrophages (CAMs) or border-associated macrophages (BAMs), have been identified. In contrast to the brain parenchyma, the meninges contain many immune-related structures and cells, making them an important immune interface at the CNS border. CAMs serve a dual function, triggering immune responses under pathological conditions and supporting the maintenance of brain homeostasis. This review focuses on the immune architecture of the meninges and the roles of CAMs in humans and mice, summarizing and discussing recent advances in this field.
Collapse
Affiliation(s)
- Chihiro Hiraki
- Master’s and Doctoral Program in Biology, Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan;
| | - Fuminori Tsuruta
- Master’s and Doctoral Program in Biology, Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Doctoral Program in Human Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Doctoral Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Master’s and Doctoral Program in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
- Center for Quantum and Information Life Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
15
|
Bansal VA, Tan JM, Soon HR, Zainolabidin N, Saido T, Ch'ng TH. Aβ-driven nuclear pore complex dysfunction alters activation of necroptosis proteins in a mouse model of Alzheimer's disease. eLife 2025; 13:RP92069. [PMID: 40132021 PMCID: PMC11936419 DOI: 10.7554/elife.92069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The emergence of Aβ pathology is one of the hallmarks of Alzheimer's disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis - a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.
Collapse
Affiliation(s)
| | - Jia Min Tan
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | - Hui Rong Soon
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| | | | - Takaomi Saido
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological UniversitySingaporeSingapore
- School of Biological Science, Nanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
16
|
Johnson EA, Nowar R, Viola KL, Huang W, Zhou S, Bicca MA, Zhu W, Kranz DL, Klein WL, Silverman RB. Inhibition of amyloid beta oligomer accumulation by NU-9: A unifying mechanism for the treatment of neurodegenerative diseases. Proc Natl Acad Sci U S A 2025; 122:e2402117122. [PMID: 40030015 PMCID: PMC11912461 DOI: 10.1073/pnas.2402117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/18/2024] [Indexed: 03/19/2025] Open
Abstract
Protein aggregation is a hallmark of neurodegenerative diseases, which connects these neuropathologies by a common phenotype. Various proteins and peptides form aggregates that are poorly degraded, and their ensuing pathological accumulation underlies these neurodegenerative diseases. Similarities may exist in the mechanisms responsible for the buildup of these aggregates. Therefore, therapeutics designed to treat one neurodegenerative disease may be beneficial to others. In ALS models, the compound NU-9 was previously shown to block neurodegeneration produced by aggregation-inducing mutations of SOD-1 and TDP-43 [B. Genç et al., Clin. Transl. Med. 11, e336 (2021)]. Here, we report that NU-9 also prevents the accumulation of amyloid beta oligomers (AβOs), small peptide aggregates that are instigators of Alzheimer's disease neurodegeneration [M. Tolar et al., Int. J. Mol. Sci. 22, 6355 (2021)]. AβO buildup was measured by immunofluorescence imaging of cultured hippocampal neurons exposed to exogenous monomeric Aβ. In this model, AβO buildup occurs via cathepsin L- and dynamin-dependent trafficking. This is prevented by NU-9 through a cellular mechanism that is cathepsin B- and lysosome-dependent, suggesting that NU-9 enhances the ability of endolysosomal trafficking to protect against AβO buildup. This possibility is strongly supported by a quantitative assay for autophagosomes that shows robust stimulation by NU-9. These results contribute additional understanding to the mechanisms of protein aggregation and suggest that multiple neurodegenerative diseases might be treatable by targeting common pathogenic mechanisms responsible for protein aggregation.
Collapse
Affiliation(s)
- Elizabeth A. Johnson
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Raghad Nowar
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Kirsten L. Viola
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Weijian Huang
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Sihang Zhou
- The Master of Biotechnology Program, McCormick School of Engineering, Northwestern University, Evanston, IL60208
| | - Maíra A. Bicca
- Department of Neurobiology, Northwestern University, Evanston, IL60208
| | - Wei Zhu
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - Daniel L. Kranz
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
| | - William L. Klein
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Neurobiology, Northwestern University, Evanston, IL60208
- Department of Neurology, Northwestern University, Chicago, IL60611
| | - Richard B. Silverman
- Department of Chemistry, Northwestern University, Evanston, IL60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL60208
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- Department of Pharmacology, Northwestern University, Chicago, IL60611
| |
Collapse
|
17
|
Urbanek A, Garland EF, Prescott EE, King MC, Olerinyova A, Wareing HE, Georgieva N, Bradshaw EL, Tzokov SB, Knight A, Tartakovskii AI, Malm T, Highley JR, De S. Molecular Determinants of Protein Pathogenicity at the Single-Aggregate Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410229. [PMID: 39804980 PMCID: PMC11884545 DOI: 10.1002/advs.202410229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Determining the structure-function relationships of protein aggregates is a fundamental challenge in biology. These aggregates, whether formed in vitro, within cells, or in living organisms, present significant heterogeneity in their molecular features such as size, structure, and composition, making it difficult to determine how their structure influences their functions. Interpreting how these molecular features translate into functional roles is crucial for understanding cellular homeostasis and the pathogenesis of various debilitating diseases like Alzheimer's and Parkinson's. In this study, a bottom-up approach is introduced to explore how variations in protein aggregates' size, composition, post-translational modifications and point mutations profoundly influence their biological functions. Applying this method to Alzheimer's and Parkinson's associated proteins, novel disease-relevant pathways are uncovered, demonstrating how subtle alterations in composition and morphology can shift the balance between healthy and pathological states. This findings provide deeper insights into the molecular basis of protein's functions at the single-aggregate level, enhancing the knowledge of their roles in health and disease.
Collapse
Affiliation(s)
- Agnieszka Urbanek
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Emma F. Garland
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Emily E. Prescott
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Marianne C. King
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Anna Olerinyova
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Hollie E. Wareing
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Nia Georgieva
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Ellie L. Bradshaw
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Svetomir B. Tzokov
- Cryo‐Electron Microscopy Facility, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Alexander Knight
- Department of Physics and AstronomyUniversity of SheffieldSheffieldS3 7RHUK
| | | | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopio70211Finland
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| | - Suman De
- Sheffield Institute for Translational Neuroscience, Division of NeuroscienceUniversity of SheffieldSheffieldS10 2HQUK
- Neuroscience InstituteUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
18
|
Wang M, Jin B, Jo J. Acute Restraint Stress Induces Long-Lasting Synaptic Enhancement by Inhibiting AMPK Activation in AD Model Mice. CNS Neurosci Ther 2025; 31:e70335. [PMID: 40102200 PMCID: PMC11919636 DOI: 10.1111/cns.70335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a gradual synaptic loss. The progression of AD severely affects late-phase long-term potentiation (L-LTP), which is essential for long-term memory consolidation. AIM We have previously demonstrated the beneficial effects of acute restraint stress (ARS) on hippocampal LTP in AD mouse models. This study aimed to verify the effects and potential mechanisms of ARS on the maintenance of hippocampal L-LTP in two AD mouse models. MATERIALS AND METHODS 5xFAD and Tg2576 mice underwent a 30-min body immobilization protocol to induce ARS, followed by electrophysiological recordings of L-LTP (> 3 h) in the CA1 region of thehippocampus. RESULTS The ARS-exposed group exhibited significantly enhanced L-LTP compared to the control group. Maintenance of L-LTP requires new protein synthesis and signaling via the mammalian target of rapamycin (mTOR) pathway. Our findings revealed that ARS increased hippocampal adenosine triphosphate (ATP) production and reduced AMPK activity. Inactivation of AMPK and subsequent activation of the mTOR pathway were strongly associated with the ARS-facilitated enhancement of L-LTP. Furthermore, our experiments using the mTOR inhibitor rapamycin demonstrated that it effectively prevented the enhancement of L-LTP following ARS, underscoring the pivotal role of mTOR in this process. CONCLUSION ARS may significantly modify AMPK activation and mTOR regulation in L-LTP, potentially triggering the mechanisms of long-term memory consolidation in AD mouse model mice. Identifying these underlying mechanisms could help promote the development of novel pharmaceutical agents for the treatment of AD.
Collapse
Affiliation(s)
- Ming Wang
- School of Public HealthHealth Science Center, Ningbo UniversityNingboChina
| | - Baoyuan Jin
- The First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Jihoon Jo
- Department of Biomedical SciencesChonnam National University Medical SchoolGwangjuSouth Korea
| |
Collapse
|
19
|
Battisti A, Ortore MG, Vilasi S, Sgarbossa A. FLIM-Phasor Analysis (FLIM-ϕ) of Aβ-Induced Membrane Order Alterations: Towards a Cell-Based Biosensor for Early Alzheimer's Disease Diagnosis. MICROMACHINES 2025; 16:234. [PMID: 40047700 PMCID: PMC11857758 DOI: 10.3390/mi16020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/05/2025] [Accepted: 02/16/2025] [Indexed: 03/09/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and its early detection can be critical for a prompt intervention that can potentially slow down the disease progression and improve the patient's quality of life. However, a diagnosis based solely on clinical symptoms can be challenging, especially in the early stages, while the detection of specific biomarkers such as amyloid-β peptide (Aβ) and tau proteins can provide objective evidence for diagnosis. In this work, we explored the effects of Aβ peptide on cell membrane properties thanks to fluorescence lifetime imaging (FLIM) combined with the phasor analysis (FLIM-ϕ). The results showed that the membrane viscosity is altered by the presence of Aβ peptide and that cells experience this effect even at nanomolar concentrations of peptide. This considerable sensitivity opens up the possibility of envisioning a cell-based biosensor able to detect very low concentrations of Aβ in a biological fluid, thus enabling timely diagnosis and intervention.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Nanoscience Institute-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy;
- Biophysics Institute-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Maria Grazia Ortore
- Dipartimento di Scienze Della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy;
| | - Silvia Vilasi
- Biophysics Institute-CNR, Via Ugo La Malfa 153, I-90146 Palermo, Italy;
| | - Antonella Sgarbossa
- NEST, Nanoscience Institute-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy;
| |
Collapse
|
20
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
21
|
Arafi P, Devkota S, Williams E, Maesako M, Wolfe MS. Alzheimer-mutant γ-secretase complexes stall amyloid β-peptide production. eLife 2025; 13:RP102274. [PMID: 39932776 PMCID: PMC11813224 DOI: 10.7554/elife.102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer's disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a Caenorhabditis elegans model of FAD independently of Aβ production. Here, we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.
Collapse
Affiliation(s)
- Parnian Arafi
- Department of Medicinal Chemistry, University of KansasLawrenceUnited States
| | - Sujan Devkota
- Department of Medicinal Chemistry, University of KansasLawrenceUnited States
| | - Emily Williams
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Masato Maesako
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of KansasLawrenceUnited States
| |
Collapse
|
22
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
23
|
Nakano H, Hikishima S, Mori M, Minamikawa J, Muramatsu D, Sakashita Y, Ikeda T, Noguchi-Shinohara M, Teplow DB, Ono K. Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation. Neurobiol Dis 2025; 205:106775. [PMID: 39719197 DOI: 10.1016/j.nbd.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/26/2024] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
The accumulation of amyloid β-proteins (Aβ) in the extracellular space, forming insoluble plaques, is a primary pathological process underlying Alzheimer's disease (AD). Among the various Aβ species that appear during Aβ aggregation, Aβ oligomers are considered the most neurotoxic form. However, the precise mechanisms of their molecular functions within the Aβ aggregation cascade have not been clarified so far. This research aimed to uncover the structural and functional characteristics of globular-shaped Aβ oligomers (gAβO) under in vitro conditions. We performed thioflavin T (ThT) assays on low-molecular-weight (LMW) Aβ42, testing different concentrations of Aβ42 mature fibril (MF) seeds and gAβO. Fibril formation was continuously observed using high-speed atomic force microscopy (HS-AFM) in LMW Aβ42 with different sample conditions. Conformational changes of Aβ42 aggregates in the presence of gAβO was also evaluated using circular dichroism spectroscopy. The results of the ThT analysis and HS-AFM observation indicated that gAβO promoted fibril formation of LMW Aβ42 while gAβO itself did not form fibrous aggregates, indicating that gAβO would have a catalytic effects on LMW Aβ42 aggregation. We also showed that the molecular interaction of gAβO was altered by the presence and amount of MF seeds in the reaction buffers, indicating that complex interactions would exist among different Aβ species. The results of our present research demonstrated that gAβO would have significant roles to accelerate Aβ aggregation in AD pathogenesis. 225 < 250 words.
Collapse
Affiliation(s)
- Hiroto Nakano
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Sadao Hikishima
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Makoto Mori
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Jota Minamikawa
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Daiki Muramatsu
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Yasuhiro Sakashita
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Tokuhei Ikeda
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan
| | - David B Teplow
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095-7334, United States
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, 13-1, Kanazawa 920-8640, Japan.
| |
Collapse
|
24
|
Porel P, Bala K, Aran KR. Exploring the role of HIF-1α on pathogenesis in Alzheimer's disease and potential therapeutic approaches. Inflammopharmacology 2025; 33:669-678. [PMID: 39465478 DOI: 10.1007/s10787-024-01585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Hypoxia-inducible factor 1α (HIF-1α) is a crucial transcription factor that regulates cellular responses to low oxygen levels (hypoxia). In Alzheimer's disease (AD), emerging evidence suggests a significant involvement of HIF-1α in disease pathogenesis. AD is characterized by the accumulation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs), leading to neuronal dysfunction and cognitive decline. HIF-1α is implicated in AD through its multifaceted roles in various cellular processes. Firstly, in response to hypoxia, HIF-1α promotes the expression of genes involved in angiogenesis, which is crucial for maintaining cerebral blood flow and oxygen delivery to the brain. However, in the context of AD, dysregulated HIF-1α activation may exacerbate cerebral hypoperfusion, contributing to neuronal damage. Moreover, HIF-1α is implicated in the regulation of Aβ metabolism. It can influence the production and clearance of Aβ peptides, potentially modulating their accumulation and toxicity in the brain. Additionally, HIF-1α activation has been linked to neuroinflammation, a key feature of AD pathology. It can promote the expression of pro-inflammatory cytokines and exacerbate neuronal damage. Furthermore, HIF-1α may play a role in synaptic plasticity and neuronal survival, which are impaired in AD. Dysregulated HIF-1α signaling could disrupt these processes, contributing to cognitive decline and neurodegeneration. Overall, the involvement of HIF-1α in various aspects of AD pathophysiology highlights its potential as a therapeutic target. Modulating HIF-1α activity could offer novel strategies for mitigating neurodegeneration and preserving cognitive function in AD patients. However, further research is needed to elucidate the precise mechanisms underlying HIF-1α dysregulation in AD and to develop targeted interventions.
Collapse
Affiliation(s)
- Pratyush Porel
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kanchan Bala
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
25
|
Mitra A, Chakraborty D, Naik L, Dhiman R, Sarkar N. Anti-amyloidogenic hexapeptide-coated gold nanoparticles for enhanced inhibition of amyloid formation: A promising therapeutic approach. Int J Biol Macromol 2025; 284:138002. [PMID: 39586437 DOI: 10.1016/j.ijbiomac.2024.138002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Under specific external stimulus, misfolded and natively disordered globular proteins undergo irreversible transformation into pathogenic β-sheet-rich insoluble fibrillar structure, and deposition of theses fibrils in cells and tissues leads to disorders like Alzheimer's, Dementia, Type II diabetes, and many more. Here, we have developed a positively-charged Arg-containing hexapeptide, SqP7, and elucidated its anti-amyloidogenic propensity on in vitro HEWL amyloid formation under acidic and neutral fibrillation conditions using computational tools and several biophysical techniques. SqP7, at a five-fold molar excess, displayed excellent amyloid inhibition capability at both pH conditions (~83 % and 72 % inhibition under acidic and neutral fibrillation conditions, respectively), and was further chosen as a coating agent on gold nanoparticles. This was done to investigate whether coating of this peptide on gold nanoparticles has any effect on its anti-amyloidogenic efficiency and effective inhibition concentration. The synthesized SqP7-coated gold nanoparticles were characterized to be spherical and highly-dispersed having a mean diameter of 9.12 ± 2.08 nm. The anti-amyloidogenic capability of the synthesized SqP7-coated gold nanoparticles was further evaluated, and a 10-fold reduction in the effective inhibition concentration of SqP7 was observed. This peptide‑gold nanoparticle based integrated approach can lead to the development of highly effective therapeutics for amyloid-related diseases, offering improved prevention and treatment options.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Debashmita Chakraborty
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India.
| |
Collapse
|
26
|
Velázquez-Delgado C, Hernández-Ortiz E, Landa-Navarro L, Tapia-Rodríguez M, Moreno-Castilla P, Bermúdez-Rattoni F. Repeated exposure to novelty promotes resilience against the amyloid-beta effect through dopaminergic stimulation. Psychopharmacology (Berl) 2025; 242:85-100. [PMID: 39145803 PMCID: PMC11742894 DOI: 10.1007/s00213-024-06650-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/07/2024] [Indexed: 08/16/2024]
Abstract
RATIONALE The accumulation of beta-amyloid peptide (Aβ) in the forebrain leads to cognitive dysfunction and neurodegeneration in Alzheimer's disease. Studies have shown that individuals with a consistently cognitively active lifestyle are less vulnerable to Aβ toxicity. Recent research has demonstrated that intrahippocampal Aβ can impact catecholaminergic release and spatial memory. Interestingly, exposure to novelty stimuli has been found to stimulate the release of catecholamines in the hippocampus. However, it remains uncertain whether repeated enhancing catecholamine activity can effectively alleviate cognitive impairment in individuals with Alzheimer's disease. OBJECTIVES Our primary aim was to investigate whether repeated exposure to novelty could enable cognitive resilience against Aβ. This protection could be achieved by modulating catecholaminergic activity within the hippocampus. METHODS To investigate this hypothesis, we subjected mice to three different conditions-standard housing (SH), repeated novelty (Nov), or daily social interaction (Soc) for one month. We then infused saline solution (SS) or Aβ (Aβ1-42) oligomers intrahippocampally and measured spatial memory retrieval in a Morris Water Maze (MWM). Stereological analysis and extracellular baseline dopamine levels using in vivo microdialysis were assessed in independent groups of mice. RESULTS The mice that received Aβ1-42 intrahippocampal infusions and remained in SH or Soc conditions showed impaired spatial memory retrieval. In contrast, animals subjected to the Nov protocol demonstrated remarkable resilience, showing strong spatial memory expression even after Aβ1-42 intrahippocampal infusion. The stereological analysis indicated that the Aβ1-42 infusion reduced the tyrosine hydroxylase axonal length in SH or Soc mice compared to the Nov group. Accordingly, the hippocampal extracellular dopamine levels increased significantly in the Nov groups. CONCLUSIONS These compelling results demonstrate the potential for repeated novelty exposure to strengthen the dopaminergic system and mitigate the toxic effects of Aβ1-42. They also highlight new and promising therapeutic avenues for treating and preventing AD, especially in its early stages.
Collapse
Affiliation(s)
- Cintia Velázquez-Delgado
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Eduardo Hernández-Ortiz
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Lucia Landa-Navarro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Miguel Tapia-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Cognitive Resilience, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute, CINVESTAV, Mexico City, Mexico.
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
27
|
Kuanaeva RM, Vaneev AN, Gorelkin PV, Erofeev AS. Nanopipettes as a Potential Diagnostic Tool for Selective Nanopore Detection of Biomolecules. BIOSENSORS 2024; 14:627. [PMID: 39727892 DOI: 10.3390/bios14120627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples. Moreover, the ease of manufacturing nanopipettes, coupled with their compatibility with fluorescence and electrochemical methods, makes them ideal for portable point-of-care diagnostic devices. This review summarized the latest progress in nanopipette-based nanopore technology for the detection of biomarkers, DNA, RNA, proteins, and peptides, in particular β-amyloid or α-synuclein, emphasizing the impact of technology on molecular diagnostics. By addressing key challenges in single-molecule detection and expanding applications in diverse biological areas, nanopipettes are poised to play a transformative role in the future of personalized medicine.
Collapse
Affiliation(s)
- Regina M Kuanaeva
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Alexander N Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Petr V Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
| | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology "MISIS", 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
28
|
Pandey S, Danielsen MB, Xiang Y, Zhang Z, Sharma G, Jeon BT, Song S, Hao Y, Zhang G, Christensen NJ, Sørensen KK, Harris P, Pokhrel P, Cunningham R, Kim MH, Leng Y, Lou C, Mao H. De novo design of a mechano-pharmaceutical screening platform against formation of individual beta-amyloid oligomers. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102336. [PMID: 40083584 PMCID: PMC11905928 DOI: 10.1016/j.xcrp.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Small molecules that can reduce the neurotoxic beta-amyloid (Aβ) aggregates in the brain provide a potential treatment for Alzheimer disease (AD). Most screening methods for small-molecule hits focus on the overall Aβ aggregations without a specific target, such as the very first association step (i.e., nucleation) en route to the Aβ oligomers. Located in the middle of a full-length Aβ peptide, Aβ19-20 (diphenylalanine or FF) nucleates the neurotoxic Aβ oligomer formation. Here, we innovate a single-molecule screen method in optical tweezers by targeting the nucleation process in Aβ aggregation, namely FF-dimerization. With a 121-compound National Institutes of Health (NIH) library, we identify 12 inhibitors and 8 stimulants that can inhibit/promote Aβ19-20 dimerization significantly. The representative hits are subjected to the thioflavin T and cell toxicity assays to confirm their inhibiting or stimulating activities. By replacing FF with longer Aβ sequences, our single-molecule platform may identify more specific and potent small molecules to fight AD.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- These authors contributed equally
| | - Mathias Bogetoft Danielsen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
- These authors contributed equally
| | - Yuan Xiang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
- Department of Mathematical & Physical Sciences, Chengdu University of Technology, Chengdu 610059, China
| | - Zhilei Zhang
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Grinsun Sharma
- School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA
| | - Byeong Tak Jeon
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Shixi Song
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Yitong Hao
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Gunan Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | | | - Pernille Harris
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Richard Cunningham
- ATDBio, Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford OX4 4GA, UK
| | - Min-Ho Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Yongsheng Leng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Chenguang Lou
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
- Lead contact
| |
Collapse
|
29
|
Zhao Y, Brener O, Andrzejewska E, Wei J, Reiß C, Tietz O, Knowles TPJ, Aigbirhio FI. Detecting and Tracking β-Amyloid Oligomeric Forms and Dynamics In Vitro by a High-Sensitivity Fluorescent-Based Assay. ACS Chem Neurosci 2024; 15:4383-4389. [PMID: 39611283 PMCID: PMC11660153 DOI: 10.1021/acschemneuro.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Aggregation of β-amyloid protein is a hallmark pathology of the neurodegenerative disorder Alzheimer's disease and proceeds from monomers to insoluble misfolded fibril forms via soluble and highly toxic oligomeric intermediates. Given the dual feature of being the most toxic form of the Aβ aggregate proteome and an early marker of pathogenesis, there is a need for sensitive methods that can be used to detect Aβ oligomers and investigate the dynamics of aggregation. Herein, we describe a method based on the application of an oligomer-sensitive fluorescent chemical probe pTP-TFE combined with the use of a QIAD (Quantitative determination of Interference with Aβ Aggregate Size Distribution) assay to correctly identify Aβ oligomers in high sensitivity. pTP-TFE was evaluated and compared to thioflavin T and pFTAA, the two most widely used amyloid fibril dyes, and shown to be the only probe capable of detecting significant differences across all oligomeric species of β-amyloid. Furthermore, by observing changes in pTP-TFE fluorescence emission over time, we could track the dynamics of oligomer populations and thereby obtain kinetic information on the Aβ42 dynamic aggregation model. Therefore, we have established a highly sensitive, readily available, and simple method for studying β-amyloid protein aggregation dynamics.
Collapse
Affiliation(s)
- Yanyan Zhao
- Molecular
Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, U.K.
| | - Oleksandr Brener
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Ewa Andrzejewska
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge,, Cambridge CB2 1EZ, U.K.
| | - Jiapeng Wei
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge,, Cambridge CB2 1EZ, U.K.
| | - CloudOuterMan Reiß
- Institut
für Physikalische Biologie, Heinrich-Heine-Universität
Düsseldorf, Düsseldorf 40225, Germany
| | - Ole Tietz
- Dementia
Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge,, Cambridge CB2 1EZ, U.K.
| | - Franklin I. Aigbirhio
- Molecular
Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, Department
of Clinical Neurosciences, University of
Cambridge, Cambridge CB2 0QQ, U.K.
| |
Collapse
|
30
|
Kadamangudi S, Marcatti M, Zhang WR, Fracassi A, Kayed R, Limon A, Taglialatela G. Amyloid-β oligomers increase the binding and internalization of tau oligomers in human synapses. Acta Neuropathol 2024; 149:2. [PMID: 39688618 DOI: 10.1007/s00401-024-02839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
In Alzheimer's disease (AD), the propagation and spreading of CNS tau pathology closely correlates with cognitive decline, positioning tau as an attractive therapeutic target. Amyloid beta (Aβ) has been strongly implicated in driving tau spread, whereas primary tauopathies such as primary age-related tauopathy (PART)-which lack Aβ pathology-exhibit limited tau spread and minimal-to-no cognitive decline. Emerging evidence converges on a trans-synaptic mechanism of tau spread, facilitated by the transfer of misfolded tau aggregates (e.g. soluble oligomers). However, it is unclear whether Aβ oligomers modulate the binding and internalization of tau oligomers in human synapses. Our translationally focused paradigms utilize post-mortem brain specimens from Control, PART, and AD patients. Synaptosomes isolated from the temporal cortex of all three groups were incubated with preformed recombinant tauO (rtauO), ± preformed recombinant AβO (rAβO), and oligomer binding/internalization was quantified via flow cytometry following proteinase K (PK) digestion of surface-bound oligomers. TauO-synapse interactions were visualized using EM immunogold. Brain-derived tau oligomers (BDTO) from AD and PART PBS-soluble hippocampal fractions were co-immunoprecipitated and analyzed via mass spectrometry to compare synaptic tauO interactomes in primary and secondary tauopathies, thereby inferring the role of Aβ. AD synaptosomes, enriched in endogenous Aβ pathology, exhibited increased rtauO internalization compared to PART synaptosomes. This observation was mirrored in Control synaptosomes, where recombinant rAβO significantly increased rtauO binding and internalization. PK pre-treatment abolished this effect, implicating synaptic membrane proteins in AβO-mediated tauO internalization. While both PART and AD BDTO were broadly enriched in synaptic proteins, AD BDTO exhibited differential enrichment of endocytic proteins across pre- and post-synaptic compartments, whereas PART BDTO showed no significant synaptic enrichment. This study demonstrates that Aβ oligomers enhance tau oligomer binding and drive its internalization through synaptic membrane proteins. These findings offer novel mechanistic insights underlying pathological tau spreading directly within human synapses and emphasize the therapeutic potential of targeting Aβ-tau interactions.
Collapse
Affiliation(s)
- Shrinath Kadamangudi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Michela Marcatti
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Wen-Ru Zhang
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Anna Fracassi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rakez Kayed
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Agenor Limon
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Giulio Taglialatela
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
31
|
Fertan E, Hung C, Danial JSH, Lam JYL, Preman P, Albertini G, English EA, Böken D, Livesey FJ, De Strooper B, Patani R, Klenerman D. Clearance of beta-amyloid and tau aggregates is size dependent and altered by an inflammatory challenge. Brain Commun 2024; 7:fcae454. [PMID: 39749010 PMCID: PMC11694676 DOI: 10.1093/braincomms/fcae454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/12/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Extracellular beta-amyloid aggregation and inflammation are in a complex and not fully understood interplay during hyperphosphorylated tau aggregation and pathogenesis of Alzheimer's disease. Our group has previously shown that an immune challenge with tumour necrosis factor alpha can alter extracellular beta-sheet containing aggregates in human-induced pluripotent stem cell-derived cortical neurons carrying familial Alzheimer's disease-related presenilin 1 mutations. Here, using single-molecule detection and super-resolution imaging techniques, we quantified and characterized the intra- and extracellular beta-amyloid and AT8-positive tau aggregates. Our results indicate a pre-existing Alzheimer's disease-like pathology caused by the presenilin 1 mutation, with increased beta-amyloid aggregates in both the cell lysate and conditioned media compared to isogenic controls and also increased intracellular tau aggregates. The main effect of tumour necrosis factor alpha treatment on presenilin 1 neurons was the formation of larger intracellular beta-amyloid aggregates. In contrast, isogenic controls showed more significant changes with tumour necrosis factor alpha treatment with an increase in beta-amyloid aggregates in the media but not intracellularly and an increase in tau aggregates in both the media and cell lysate, suggesting a chronic inflammation-driven mechanism for the development of sporadic Alzheimer's disease. Remarkably, we also found significant morphological differences between intra- and extracellular beta-amyloid and tau aggregates in human-induced pluripotent stem cell-derived cortical neurons, suggesting these neurons can only clear aggregates when small, and that larger aggregates stay inside the neurons. While majority of the beta-amyloid aggregates were cleared into the media, a greater portion of the tau aggregates remained intracellular. This size-dependent aggregate clearance was also shown to be conserved in vivo, using soaked and homogenized mouse and human post-mortem Alzheimer's disease brain samples. As such, our results are proposing a previously unknown, size-dependent aggregate clearance mechanism, which can possibly explain the intracellular aggregation of tau and extracellular aggregation of beta-amyloid.
Collapse
Affiliation(s)
- Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christy Hung
- The Francis Crick Institute, University College London, London NW1 1AT, UK
- Department of Neuroscience, City University of Hong Kong, Kowloon 999007, Hong Kong SAR
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Pranav Preman
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Giulia Albertini
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
| | - Elizabeth A English
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dorothea Böken
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Frederick J Livesey
- Zayed Centre for Research into Rare Disease in Children, University College London, Great Ormond Street Institute of Child Health, London WC1N 1DZ, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49, 0N5 box 602, 3000 Leuven, Belgium
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
| | - Rickie Patani
- The Francis Crick Institute, University College London, London NW1 1AT, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
32
|
Habeck T, Zurmühl SS, Figueira AJ, Maciel EVS, Gomes CM, Lermyte F. Cross-Interactions of Aβ Peptides Implicated in Alzheimer's Disease Shape Amyloid Oligomer Structures and Aggregation. ACS Chem Neurosci 2024; 15:4295-4304. [PMID: 39561091 DOI: 10.1021/acschemneuro.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
A defining hallmark of Alzheimer's disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. In vivo, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their in vivo proteotoxic interplay.
Collapse
Affiliation(s)
- Tanja Habeck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Silvana Smilla Zurmühl
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - António J Figueira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
33
|
Aljuhani M, Ashraf A, Edison P. Evaluating clinical meaningfulness of anti-β-amyloid therapies amidst amyloid-related imaging abnormalities concern in Alzheimer's disease. Brain Commun 2024; 6:fcae435. [PMID: 39703326 PMCID: PMC11656198 DOI: 10.1093/braincomms/fcae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/28/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Alzheimer's disease is the most prevalent form of dementia in the elderly, which is clinically characterized by a gradual and progressive deterioration of cognitive functions. The central and early role of β-amyloid in the pathogenesis of Alzheimer's disease is supported by a plethora of studies including genetic analyses, biomarker research and genome-wide association studies in both familial (early-onset) and sporadic (late-onset) forms of Alzheimer's. Monoclonal antibodies directed against β-amyloid demonstrate slowing of the clinical deterioration of patients with early Alzheimer's disease. Aducanumab, lecanemab and donanemab clinical trials showed slowing of Alzheimer's disease progression on composite scores by 25-40% based on the measure used. Anti-β-amyloid antibodies can cause side effects of bleeding and swelling in the brain, called amyloid-related imaging abnormalities. Amyloid-related imaging abnormalities typically occur early in treatment and are often asymptomatic, and though in rare cases, they can lead to serious or life-threatening events. The aim of this review is to evaluate the clinical meaningfulness of anti-β-amyloid therapies amidst amyloid-related imaging abnormalities concern in Alzheimer's disease.
Collapse
Affiliation(s)
- Manal Aljuhani
- Radiological Science and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azhaar Ashraf
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Wales CF24 4HQ, UK
| |
Collapse
|
34
|
Chung HS. Characterizing heterogeneity in amyloid formation processes. Curr Opin Struct Biol 2024; 89:102951. [PMID: 39566372 PMCID: PMC11602362 DOI: 10.1016/j.sbi.2024.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024]
Abstract
Protein aggregation is a complex process, consisting of a large number of pathways connecting monomers and mature amyloid fibrils. Recent advances in structure determination techniques, such as solid-state NMR and cryoEM, have allowed the determination of atomic resolution structures of fibril polymorphs, but most of the intermediate stages of the process including oligomer formation remain unknown. Proper characterization of the heterogeneity of the process is critical not only for physical and chemical understanding of the aggregation process but also for elucidation of the disease mechanisms and identification of therapeutic targets. This article reviews recent developments in the characterization of heterogeneity in amyloid formation processes.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
35
|
Jeanne X, Török Z, Vigh L, Prodromou C. The role of the FKBP51-Hsp90 complex in Alzheimer's disease: An emerging new drug target. Cell Stress Chaperones 2024; 29:792-804. [PMID: 39615785 DOI: 10.1016/j.cstres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
With increasing age comes the inevitable decline in proteostasis, where chaperone and co-chaperone activity becomes imbalanced. These changes lead to global disturbances and pathogenic rewiring of the chaperone system into epichaperones consisting of protein networks that are ultimately dysfunctional. Such imbalances in proteostasis may favor mechanisms that can lead to neurological diseases, such as Alzheimer's disease (AD). Consequently, there has been an increase in research activity toward finding small molecules that can re-balance the chaperone and co-chaperone machinery to counter the effects of disease resulting from old age. The Hsp90 co-chaperone FKBP51 has recently been identified as a protein whose induction not only increases with age but is elevated further in AD cells. Significantly, FKBP51 plays a role in the Hsp90-dependent isomerization of tau, which in turn influences its phosphorylation and susceptibility to aggregation. We hypothesize that FKBP51 is a major player that is able to elicit tauopathy in response to amyloid-beta senile plaques that damage the brain. We propose that elevated FKBP51 levels result in an abnormal FKBP51-Hsp90 activity that alters the normal processing of tau, which manifests as hyperphosphorylation and oligomerization of tau. Thus, the Hsp90-FKBP51 complex is emerging as a drug target against AD. In support of this idea, the structure of the FKBP51-Hsp90 complex was recently described, and significantly, the small-molecule dihydropyridine LA1011 was shown to be able to disrupt the Hsp90-FKBP51 complex. LA1011 was previously shown to effectively prevent neurodegeneration in the APPxPS1 AD transgenic mouse model. This review looks at the role of Hsp90 and its co-chaperones in AD with a focus on FKBP51.
Collapse
Affiliation(s)
- Xavier Jeanne
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK
| | - Zsolt Török
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - László Vigh
- LipidArt Research and Development Ltd, Szeged, Temesvári Street 62, H-6726, Hungary
| | - Chrisostomos Prodromou
- Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, Falmer BN1 9QG, UK.
| |
Collapse
|
36
|
Hatakawa Y, Takeuchi Y, Lee SH, Oe T. Tyrosine modifications of insulin-degrading enzyme enable favorable control of substrate specificity for both Alzheimer's disease and type-2 diabetes mellitus. Bioorg Chem 2024; 153:107916. [PMID: 39481143 DOI: 10.1016/j.bioorg.2024.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Insulin-degrading enzyme (IDE) cleaves amyloid beta (Aβ), insulin, and other bioactive peptides. Because Aβ and insulin are closely related to Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM), respectively, IDE is a candidate drug target for treating both AD and T2DM. However, the activity of IDE has opposing effects, including decreasing AD risk by degrading Aβ and increasing T2DM risk by degrading insulin. The opposed substrate specificity is associated with the exo- and active sites containing Tyr314 and Tyr831 residues, the plausible modification targets for controlling substrate specificity. In this study, we used a tyrosine-specific modification regent, Cookson reagent (4-phenyl-1,2,4-triazoline-3,5-dione, PTAD), for IDE and examined the degradation activities on Aβ40 and insulin. Fifteen tyrosine residues, including Tyr314 and Tyr831, were modified by PTAD. After incubation with PTAD-modified IDE for 3 days, insulin remained intact, whereas Aβ40 was completely degraded. This favorable change of substrate specificity was also observed in the mixture of Aβ40 and insulin, suggesting that tyrosine modification of IDE might be a therapeutic strategy for AD and T2DM.
Collapse
Affiliation(s)
- Yusuke Hatakawa
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yuki Takeuchi
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Seon Hwa Lee
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Tomoyuki Oe
- Department of Bio-Analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
37
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
38
|
Jia M, Li Y, Wang C, Gao X, Guan Y, Ai H. Fluorescence Detection and Inhibition Mechanisms of DNTPH on Aβ42 Oligomers Characterized as Products in the Four Stages of Aggregation. ACS Chem Neurosci 2024; 15:4220-4228. [PMID: 39494683 DOI: 10.1021/acschemneuro.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Aβ42 aggregation was implicated in the pathogenesis of Alzheimer's disease (AD) without effective treatment available currently. Future efforts in clinical trials should instead focus on applying those antiamyloid treatment strategies to the preclinical stage and "the earlier, the better". How to identify and inhibit Aβ42 oligomers in the different stages of aggregation is therefore becoming the key to controlling primary aggregation and consequent AD development. Aggregation-induced emission probe DNTPH was demonstrated recently, enabling detection of amyloid at wavelengths up to 710 nm and exhibiting strong inhibitory effects on Aβ fibrosis at low dose. However, the detection and inhibition mechanisms of Aβ oligomers at various early stages of aggregation remain unknown. To this end, we built four different morphologies of Aβ42 pentamers characterized by products in monomeric aggregate (PM), primary nucleation (PP), secondary nucleation (PS), and fibril stages (PF) to explore the distinguishable ability and inhibition mechanisms of DNTPH with different concentrations upon binding. The results showcased that DNTPH does detect the four different Aβ42 oligomers with conspicuous fluorescence (λPM = 657 nm, λPP = 639 nm, λPS = 630 nm, and λPF = 648 nm) but fails to distinguish them, indicating that additional improvements are required further for the probe to achieve it. The inhibition mechanisms of DNTPH on the four Aβ42 aggregation are however of amazing differences. For PM and PP, aggregation was inhibited by altering the secondary structural composition, i.e., by decreasing the β-sheet and toxic turn (residues 22-23) probabilities, respectively. For PS, inhibition was achieved by segregating and keeping the two disordered monomeric species (PSM) away from the ordered secondary seed species (PSF) and consequently blocking further growth of the PSF seed. The inhibition mechanism for PS is first probed and proposed so far, as far as we know, and the corresponding aggregation stage of PS is the most important one among the four stages. The inhibition of PF was triggered by distorting the fibril chains, disrupting the ordered fibril surface for the contact of monomers. In addition, the optimal inhibitory concentrations of DNTPH for PM, PP, and PF were determined to be 1:3, while for PS, it was 1:5. This outcome offers a novel perspective for designing drugs targeting Aβ42 oligomers at different aggregation stages.
Collapse
Affiliation(s)
- Mengke Jia
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Zibo City Engineering Research Center for New Pollution Monitoring and Governance, Shandong Vocational College of Light Industry, Zibo, Shandong 255300, China
| | - Ye Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Chuanbo Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xvzhi Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yvning Guan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
39
|
Arafi P, Devkota S, Williams E, Maesako M, Wolfe MS. Alzheimer-mutant γ-secretase complexes stall amyloid β-peptide production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.30.610520. [PMID: 39257787 PMCID: PMC11383658 DOI: 10.1101/2024.08.30.610520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Missense mutations in the amyloid precursor protein (APP) and presenilin-1 (PSEN1) cause early-onset familial Alzheimer's disease (FAD) and alter proteolytic production of secreted 38-to-43-residue amyloid β-peptides (Aβ) by the PSEN1-containing γ-secretase complex, ostensibly supporting the amyloid hypothesis of pathogenesis. However, proteolysis of APP substrate by γ-secretase is processive, involving initial endoproteolysis to produce long Aβ peptides of 48 or 49 residues followed by carboxypeptidase trimming in mostly tripeptide increments. We recently reported evidence that FAD mutations in APP and PSEN1 cause deficiencies in early steps in processive proteolysis of APP substrate C99 and that this results from stalled γ-secretase enzyme-substrate and/or enzyme-intermediate complexes. These stalled complexes triggered synaptic degeneration in a C. elegans model of FAD independently of Aβ production. Here we conducted full quantitative analysis of all proteolytic events on APP substrate by γ-secretase with six additional PSEN1 FAD mutations and found that all six are deficient in multiple processing steps. However, only one of these (F386S) was deficient in certain trimming steps but not in endoproteolysis. Fluorescence lifetime imaging microscopy in intact cells revealed that all six PSEN1 FAD mutations lead to stalled γ-secretase enzyme-substrate/intermediate complexes. The F386S mutation, however, does so only in Aβ-rich regions of the cells, not in C99-rich regions, consistent with the deficiencies of this mutant enzyme only in trimming of Aβ intermediates. These findings provide further evidence that FAD mutations lead to stalled and stabilized γ-secretase enzyme-substrate and/or enzyme-intermediate complexes and are consistent with the stalled process rather than the products of γ-secretase proteolysis as the pathogenic trigger.
Collapse
Affiliation(s)
- Parnian Arafi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Sujan Devkota
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| | - Emily Williams
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Masato Maesako
- Alzheimer Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael S Wolfe
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
40
|
Mackness BC, Morgan BR, Deveau LM, Kathuria SV, Zitzewitz JA, Massi F. A Hydrophobic Core Stabilizes the Residual Structure in the RRM2 Intermediate State of the ALS-linked Protein TDP-43. J Mol Biol 2024; 436:168823. [PMID: 39426615 DOI: 10.1016/j.jmb.2024.168823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Folding intermediates mediate both protein folding and the misfolding and aggregation observed in human diseases, including amyotrophic lateral sclerosis (ALS), and are prime targets for therapeutic interventions. In this study, we identified the core nucleus of structure for a folding intermediate in the second RNA recognition motif (RRM2) of the ALS-linked RNA-binding protein, TDP-43 (TAR DNA-binding protein-43), using a combination of experimental and computational approaches. Urea equilibrium unfolding studies revealed that the RRM2 intermediate state consists of collapsed residual secondary structure localized to the N-terminal half of RRM2, while the C-terminus is largely disordered. Steered molecular dynamics simulations and mutagenesis studies yielded key stabilizing hydrophobic contacts that, when mutated to alanine, severely disrupt the overall fold of RRM2. In combination, these findings suggest a role for this RRM intermediate in normal TDP-43 function as well as serving as a template for misfolding and aggregation through the low stability and non-native secondary structure.
Collapse
Affiliation(s)
- Brian C Mackness
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brittany R Morgan
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Laura M Deveau
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sagar V Kathuria
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jill A Zitzewitz
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
| | - Francesca Massi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Mitroshina EV, Kalinina EP, Kalyakulina AI, Teplyakova AV, Vedunova MV. The Effect of the Optogenetic Stimulation of Astrocytes on Neural Network Activity in an In Vitro Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:12237. [PMID: 39596305 PMCID: PMC11594756 DOI: 10.3390/ijms252212237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Optogenetics is a combination of optical and genetic technologies used to activate or, conversely, inhibit specific cells in living tissues. The possibilities of using optogenetics approaches for the treatment of epilepsy, Parkinson's and Alzheimer's disease (AD) are being actively researched. In recent years, it has become clear that one of the most important players in the development of AD is astrocytes. Astrocytes affect amyloid clearance, participate in the development of neuroinflammation, and regulate the functioning of neural networks. We used an adeno-associated virus carrying the glial fibrillary acidic protein (GFAP) promoter driving the optogenetic channelrhodopsin-2 (ChR2) gene to transduce astrocytes in primary mouse hippocampal cultures. We recorded the bioelectrical activity of neural networks from day 14 to day 21 of cultivation using multielectrode arrays. A single optogenetic stimulation of astrocytes at 14 day of cultivation (DIV14) did not cause significant changes in neural network bioelectrical activity. Chronic optogenetic stimulation from DIV14 to DIV21 exerts a stimulatory effect on the bioelectrical activity of primary hippocampal cultures (the proportion of spikes included in network bursts significantly increased since DIV19). Moreover, chronic optogenetic stimulation over seven days partially preserved the activity and functional architecture of neuronal network in amyloidosis modeling. These results suggest that the selective optogenetic activation of astrocytes may represent a promising novel therapeutic strategy for combating AD.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Elizaveta P. Kalinina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| | - Alena I. Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, 603022 Nizhny Novgorod, Russia
| | - Alexandra V. Teplyakova
- Federal Center of Brain Research and Neurotechnologies, Federal Medical-Biological Agency, 119330 Moscow, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
42
|
Castellani RJ, Jamshidi P, Plascencia-Villa G, Perry G. The Amyloid Cascade Hypothesis: A Conclusion in Search of Support. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00407-3. [PMID: 39532243 DOI: 10.1016/j.ajpath.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
The amyloid cascade hypothesis as the etiological underpinning of Alzheimer disease (AD) is supported by a large body of literature, the most influential of which are genetic studies of the 1980s and 1990s. Other evidence includes the neuropathology of Down syndrome, apparent toxicity of oligomeric amyloid-β (Aβ), interactions with apolipoprotein E, and the analogy of cardiac amyloidosis. On the other hand, there is considerable phenotypic heterogeneity among the rare familial AD kindreds, which tempers extrapolation to sporadic AD. Oligomer biology is still in the theoretical realm, with no clinical validation. Apolipoprotein E support for the amyloid cascade and other inferences from the literature are somewhat circular in their logic. Analogy with amyloidoses might also consider secondary amyloidosis, driven by systemic inflammation and treated by treating the underlying etiology. Much of the remaining literature supporting the amyloid cascade is dominated by hypothesis-generating studies. Importantly, we now have a developing evidence base from controlled clinical trials that can potentially inform the issue of Aβ as a cause or driver of disease in sporadic AD. Emerging data provide clear evidence of target engagement. Clinical outcome, however, has been either marginally positive or similar to placebo. Assuming these findings hold, it appears that Aβ neither drives nor mitigates the disease process.
Collapse
Affiliation(s)
- Rudy J Castellani
- Division of Neuropathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Pouya Jamshidi
- Division of Neuropathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
43
|
Zarrilli B, Bonanni R, Belfiore M, Severino M, Cariati I, Fioravanti R, Cappella G, Sennato S, Frank C, Giordani C, Tancredi V, Bombelli C, Diociaiuti M, D'Arcangelo G. Molecular mechanisms at the basis of the protective effect exerted by EPPS on neurodegeneration induced by prefibrillar amyloid oligomers. Sci Rep 2024; 14:26533. [PMID: 39489758 PMCID: PMC11532462 DOI: 10.1038/s41598-024-77859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
It has been shown recently, without an explanation of the possible molecular mechanisms involved, that 4-(2-hydroxyethyl)-1-piperazinepropanesulphonic (EPPS) acid effectively protects from the neurotoxicity induced by oligomers and plaques formed by the protein amyloid-β protein. Here we report the same protective effect, obtained in vitro (HT22-diff cell line) and ex vivo (hippocampal slices) models, against amyloid neurotoxicity induced by oligomers of salmon Calcitonin (sCT), which has been shown to be a good model for the study of neurodegenerative diseases. Based on biophysical studies focusing on the protein aggregation kinetic and the interaction of the aggregates with model membranes, we propose a possible molecular mechanism underlying the protective effects. Taken together, our results indicate that EPPS is able to counteract the direct association (primary aggregation) of harmless low-molecular weight aggregates (dimers and trimers) or their aggregation catalysed by surfaces present in the solution (secondary aggregation). Thus, EPPS stabilizes harmless aggregates and hinders the formation of toxic and metastable prefibrillar oligomers. Overall, our data demonstrate that EPPS is an excellent drug candidate for the treatment of neurodegeneration due to misfolded proteins, such as Alzheimer's or Parkinson's disease.
Collapse
Affiliation(s)
- Beatrice Zarrilli
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Laboratory of Experimental Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Marcello Belfiore
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Mariagrazia Severino
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Raoul Fioravanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giacomo Cappella
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Sennato
- CNR - Institute of Complex Systems (ISC) - Sede "Sapienza", c/o Physics Department, "Sapienza" University of Rome, 00185, Rome, Italy
| | - Claudio Frank
- UniCamillus - Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
| | - Cristiano Giordani
- Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, 050010, Medellín, Colombia
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Calle 70 No. 52-21, 050010, Medellín, Colombia
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Centre of Space Bio-Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Cecilia Bombelli
- CNR - Institute for Biological Systems, Secondary Office of Rome - Reaction Mechanisms c/o Chemistry Department, "Sapienza" University of Rome, Rome, Italy
| | - Marco Diociaiuti
- CNR - Institute for Biological Systems, Secondary Office of Rome - Reaction Mechanisms c/o Chemistry Department, "Sapienza" University of Rome, Rome, Italy.
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
- Centre of Space Bio-Medicine, "Tor vergata" University of Rome, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
44
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
45
|
Dhiman N, Deshwal S, Rishi V, Singhal N, Sandhir R. Zebrafish as a model organism to study sporadic Alzheimer's disease: Behavioural, biochemical and histological validation. Exp Neurol 2024; 383:115034. [PMID: 39490623 DOI: 10.1016/j.expneurol.2024.115034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a global burden to the healthcare system with no viable treatment options till date. Rodents and primates have been extensively used as models for understanding AD pathogenesis and identifying therapeutic targets. However, the focus is now shifting towards developing alternate models. Zebrafish is emerging as a preferred model for neurodegenerative conditions because of its simple nervous system, highly conserved genome and short duration required to model disease condition. The present study is aimed to develop streptozotocin (STZ)-induced model of sporadic AD (sAD) in zebrafish. STZ was administered to adult zebrafish (4-6 mo) at different doses (1 to 50 mg/kg body weight, intracerebroventricularly). Kaplan-Meier survival analysis revealed time and dose dependent mortality in the zebrafish administered with STZ. Based on survival analysis, 1 to 10 mg/kg body weight of STZ was selected for behavioural, molecular and histological studies. STZ administered fish had anxiety and stress-like behaviour in novel tank and light/dark preference tests. STZ-induced cognitive and memory deficits assessed using novel object recognition and spatial alternation tests. Further, expression of markers of amyloidogenic pathway (appa and bace1) were increased in terms of mRNA and protein levels in a time and dose dependent manner following STZ administration. However, expression of non-amyloidogenic pathway mediator (adam10) was reduced at both mRNA and protein level. Histological assessment using hematoxylin and eosin, and Nissl stain revealed loss of neurons in STZ administered fish. The ratio of phosphor-tauser396/total-tau was increased in STZ administered fish. Based on these findings, 5 mg/kg body weight of STZ was found to be most appropriate dose to exhibit sAD phenotype. Mass spectrometric analysis confirmed the presence of amyloid beta oligomers in brains of STZ administered fish. Transmission electron microscopy also showed the presence of higher order insoluble amyloid fibrils with twists. Immunohistochemical analysis revealed amyloid beta deposits in brain of STZ administered fish. Golgi-cox staining indicated decreased number of dendrites, whereas microglia had increased density, span ratio, soma area and lacunarity. The results of the present study demonstrate presence of AD hallmarks and phenotype in zebrafish 7 days post STZ administration (5 mg/kg). The study validates the potential of STZ-induced sAD in zebrafish as a reliable model for studying pathophysiology and rapid screening of therapeutic molecules against sAD.
Collapse
Affiliation(s)
- Neha Dhiman
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India
| | - Sonam Deshwal
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, Punjab 140306, India
| | - Nitin Singhal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, Punjab 140306, India
| | - Rajat Sandhir
- Department of Biochemistry, Hargobind Khorana Block, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
46
|
Menendez-Gonzalez M. Intrathecal Immunoselective Nanopheresis for Alzheimer's Disease: What and How? Why and When? Int J Mol Sci 2024; 25:10632. [PMID: 39408961 PMCID: PMC11476806 DOI: 10.3390/ijms251910632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Nanotechnology is transforming therapeutics for brain disorders, especially in developing drug delivery systems. Intrathecal immunoselective nanopheresis with soluble monoclonal antibodies represents an innovative approach in the realm of drug delivery systems for Central Nervous System conditions, especially for targeting soluble beta-amyloid in Alzheimer's disease. This review delves into the concept of intrathecal immunoselective nanopheresis. It provides an overall description of devices to perform this technique while discussing the nanotechnology behind its mechanism of action, its potential advantages, and clinical implications. By exploring current research and advancements, we aim to provide a comprehensive understanding of this novel method, addressing the critical questions of what it is, how it works, why it is needed, and when it should be applied. Special attention is given to patient selection and the optimal timing for therapy initiation in Alzheimer's, coinciding with the peak accumulation of amyloid oligomers in the early stages. Potential limitations and alternative targets beyond beta-amyloid and future perspectives for immunoselective nanopheresis are also described.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Hospital Universitario Central de Asturias, Servicio de Neurología, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
47
|
Zahraee H, Mohammadi F, Parvaee E, Khoshbin Z, Arab SS. Reducing the assemblies of amyloid-beta multimers by sodium dodecyl sulfate surfactant at concentrations lower than critical micelle concentration: molecular dynamics simulation exploration. J Biomol Struct Dyn 2024; 42:8673-8687. [PMID: 37599504 DOI: 10.1080/07391102.2023.2247086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Amyloid-β peptide, the predominant proteinaceous component of senile plaques, is responsible for the incidence of Alzheimer's disease (AD), an age-associated neurodegenerative disorder. Specifically, the amyloid-β(1-42) (Aβ1-42) isoform, known for its high toxicity, is the predominant biomarker for the preliminary diagnosis of AD. The aggregation of the Aβ1-42 peptides can be affected by the components of the cellular medium through changing their structures and molecular interactions. In this study, we investigated the effect of sodium dodecyl sulfate (SDS) at much lower concentrations than the critical micelle concentration (CMC) on Aβ1-42 aggregation. For this purpose, we studied mono-, di-, tri- and tetramers of Aβ1-42 peptide in two different concentrations of SDS molecules (10 and 40 molecules) using a 300 ns molecular dynamics simulation for each system. The distance between the center of mass (COM) of Aβ1-42 peptides confirms that an increase in the number of SDS molecules decreases their aggregation probability due to greater interaction with SDS molecules. Besides, the less compactness parameter reveals the reduced aggregation probability of Aβ1-42 peptides. Based on the energetic FEL landscapes, SDS molecules with the concentration closer to the CMC are an effective inhibitory agent to prevent the formation of Aβ1-42 fibrils. Also, the aggregation direction of the peptide pairs can be predicted by determining the direction of the accumulation-deterrent forces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamed Zahraee
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mohammadi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Parvaee
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zahra Khoshbin
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
48
|
Huf F, Gutierres JM, da Silva GN, Zago AM, Koenig LFC, Fernandes MC. Neuroprotection elicited by taurine in sporadic Alzheimer-like disease: benefits on memory and control of neuroinflammation in the hippocampus of rats. Mol Cell Biochem 2024; 479:2663-2678. [PMID: 37874493 DOI: 10.1007/s11010-023-04872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
This study aimed to analyze whether taurine has a nootropic effect on short-term and long-term memory in a model of sporadic dementia of the Alzheimer's type (SDAT). Moreover, we evaluated the immunoreactivity and insulin receptor (IR) distribution and markers for neurons and glial cells in the hippocampus of rats with SDAT and treated with taurine. For this, Male Wistar rats received STZ (ICV, 3 mg/kg, bilateral, 5ul per site, aCFS vehicle) and were treated with taurine (100 mg/kg orally, 1 time per day, saline vehicle) for 25 days. The animals were divided into 4 groups: vehicle (VE), taurine (TAU), ICV-STZ (STZ) and ICV-STZ plus taurine (STZ + TAU). At the end of taurine treatment, short- and long-term memory were assessed by performance on object recognition and Y-maze tasks. Insulin receptor (IR) was evaluated by immunoperoxidase while mature neurons (NeuN), astrocytes (GFAP, S100B, SOX9), and microglia (Iba-1) were evaluated by immunofluorescence. STZ induced worse spatial and recognition memory (INDEX) in YM and ORT tasks. Taurine protected against STZ-induced memory impairment. SDAT reduced the population of mature neurons as well as increased astrocytic and microglial reactivity, and taurine protected against these STZ-induced effects, mainly in the CA1 region of the hippocampus. Taurine increases IR expression in the hippocampus, and protects against the reduction in the density of this receptor in CA1 induced by STZ. In conclusion, these findings demonstrate that taurine is able to enhance memory, up-regulates IR in the hippocampus, protects the neuron population, and reduces the astrogliosis found in SDAT.
Collapse
Affiliation(s)
- Fernanda Huf
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Jessié Martins Gutierres
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil.
| | - Gabrielle N da Silva
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Adriana M Zago
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Luiz Felipe C Koenig
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil
| | - Marilda C Fernandes
- Pathology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Sarmento Leite, 245, Room 514 - Building 3, Porto Alegre, CEP 90050-170, RS, Brazil.
| |
Collapse
|
49
|
Wu SH, Ma J, Peng HE, Zheng RH, Zhang Z, Yang R, Wang L, Liu J, Mu J, Liu M, Li ZQ, Gong ZL, Shao JY, Zhong YW. Ratiometric Imaging Detection of Amyloid-β Fibrils by a Dual-Emissive Tris-Heteroleptic Ruthenium Complex. Inorg Chem 2024; 63:17983-17992. [PMID: 39287976 DOI: 10.1021/acs.inorgchem.4c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Two dual fluorescent/phosphorescent tris-heteroleptic mononuclear Ru(ΙΙ) complexes (2 and 3) were designed and applied in amyloid-β (Aβ) sensing. These complexes have a general formula of [Ru(phen)(dppz)(L)](PF6)2, where L is (2-pyrazinyl)(2-pyridyl)(methyl)amine (H-L) with different substituents (-OMe for 2, -H for 3), phen is 1,10-phenanthroline, and dppz is dipyridophenazine, respectively. Compared with the previously reported ratiometric probe 1 with a di(pyrid-2-yl)(methyl)amine ligand, complex 2 can be employed for not only ratiometric emissive detection of Aβ aggregation but also ratiometric imaging detection of Aβ fibrils. In ratiometric emissive detection, as the incubation time of the Aβ sample (Aβ40 and Aβ42) was prolonged, a new phosphorescence emission band appeared with gradual enhancement of the emission intensity, while the fluorescence emission was basically unchanged, which could be treated as an intrinsic internal reference signal. In comparison, a larger ratiometric photoluminescence enhancement (I640/I440) was observed for Aβ40 aggregation with respect to Aβ42. In ratiometric imaging detection, the imaging signals obtained from the phosphorescence emission are much brighter than the fluorescence emission in both Aβ40 and Aβ42 fibrils. As indicated by molecular docking results, stronger interactions were found between complex 2 with Aβ40 fibrils, which included π/π, π/C-H, and π/H interactions between bidentate ligands dppz and phen with amino acid residues. Moreover, computational calculations were carried out to assist the interpretation of these experimental findings.
Collapse
Affiliation(s)
- Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Junjie Ma
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Hui-E Peng
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Ren-Hui Zheng
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Zhe Zhang
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Rong Yang
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jieqing Liu
- School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
| | - Jiao Mu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meirong Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiang-Yang Shao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|