1
|
Zhao N, Pessell AF, Chung TD, Searson PC. Brain vascular basement membrane: comparison of human and mouse brain at the transcriptomic and proteomic levels. Matrix Biol 2025:S0945-053X(25)00036-8. [PMID: 40294830 DOI: 10.1016/j.matbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The cerebrovascular basement membrane (BM) is a key component of the blood-brain barrier (BBB). The BM provides structural support for brain microvascular endothelial cells and the supporting cells of the neurovascular unit, and facilitates cell signaling through adhesion receptors, regulates the concentration of soluble factors, and serves as an additional barrier for transport. However, our understanding of the composition of BM remains incomplete. Here we analyze recent proteomic and genomic data to assess the composition of BM in human and mouse brain, and in tissue-engineered BBB models. All data sets confirm that the main components of brain BM are collagen IV a1/2, laminin, along with agrin, perlecan, and nidogen. Transcriptomic data from human BMECs suggests that the main laminin isoform is Laminin 321, while transcriptomic data from mice and proteomic data from mice and humans suggest that Laminin 521 is the predominant isoform. Transcriptomic data from iBMECs suggest that Laminin 511 is the predominant isoform. The supporting molecules agrin, perlecan, and nidogen were detected at significant levels in all studies, although only nidogen 1 was detected in the human transcriptomic data sets. No significant differences in human BM composition were observed in BMECs along the arterio-venous axis, or in comparison of healthy and AD brains.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
2
|
Prithiviraj S, Garcia Garcia A, Linderfalk K, Yiguang B, Ferveur S, Falck LN, Subramaniam A, Mohlin S, Hidalgo Gil D, Dupard SJ, Zacharaki D, Raina DB, Bourgine PE. Compositional editing of extracellular matrices by CRISPR/Cas9 engineering of human mesenchymal stem cell lines. eLife 2025; 13:RP96941. [PMID: 40152921 PMCID: PMC11952750 DOI: 10.7554/elife.96941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Tissue engineering strategies predominantly rely on the production of living substitutes, whereby implanted cells actively participate in the regenerative process. Beyond cost and delayed graft availability, the patient-specific performance of engineered tissues poses serious concerns on their clinical translation ability. A more exciting paradigm consists in exploiting cell-laid, engineered extracellular matrices (eECMs), which can be used as off-the-shelf materials. Here, the regenerative capacity solely relies on the preservation of the eECM structure and embedded signals to instruct an endogenous repair. We recently described the possibility to exploit custom human stem cell lines for eECM manufacturing. In addition to the conferred standardization, the availability of such cell lines opened avenues for the design of tailored eECMs by applying dedicated genetic tools. In this study, we demonstrated the exploitation of CRISPR/Cas9 as a high precision system for editing the composition and function of eECMs. Human mesenchymal stromal/stem cell (hMSC) lines were modified to knock out vascular endothelial growth factor (VEGF) and Runt-related transcription factor 2 (RUNX2) and assessed for their capacity to generate osteoinductive cartilage matrices. We report the successful editing of hMSCs, subsequently leading to targeted VEGF and RUNX2-knockout cartilage eECMs. Despite the absence of VEGF, eECMs retained full capacity to instruct ectopic endochondral ossification. Conversely, RUNX2-edited eECMs exhibited impaired hypertrophy, reduced ectopic ossification, and superior cartilage repair in a rat osteochondral defect. In summary, our approach can be harnessed to identify the necessary eECM factors driving endogenous repair. Our work paves the road toward the compositional eECMs editing and their exploitation in broad regenerative contexts.
Collapse
Affiliation(s)
- Sujeethkumar Prithiviraj
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Alejandro Garcia Garcia
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Karin Linderfalk
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Bai Yiguang
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
- Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College NanchongSichuanChina
| | - Sonia Ferveur
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Ludvig Nilsén Falck
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund UniversityLundSweden
| | | | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Translational Cancer Research, Lund University Cancer Center at Medicon VillageLundSweden
| | - David Hidalgo Gil
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Steven J Dupard
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Dimitra Zacharaki
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| | - Deepak Bushan Raina
- The Faculty of Medicine, Department of Clinical Sciences Lund, OrthopedicsLundSweden
| | - Paul E Bourgine
- Cell, Tissue & Organ Engineering Laboratory, BMC, Department of Clinical Sciences, Lund UniversityLundSweden
- Wallenberg Centre for Molecular Medicine, Lund Stem Cell Centre, Lund University Cancer Centre, Lund UniversityLundSweden
| |
Collapse
|
3
|
Shakouri-Motlagh A, O'Connor AJ, Brennecke SP, Heath DE, Kalionis B. Extracellular vesicles support increased expansion of mesenchymal stromal cells on fetal membrane-derived decellularized extracellular matrix. Cell Tissue Res 2025; 399:323-336. [PMID: 39715869 DOI: 10.1007/s00441-024-03946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Decidual mesenchymal stromal cells (DMSC) were the source of extracellular vesicles (DMSC_EV). The xCELLigence real-time cell growth assay revealed increasing concentrations of EVs decreased DMSC attachment in the early growth phase but stimulated DMSC proliferation at day 7 when grown on tissue culture plastic (TCP). DMSC attachment and proliferation varied depending on the growth surface and DMSC_EV supplementation. DMSC attachment increased on decellularized and solubilized amniotic (s-dAM) whether or not EVs were added. Only Matrigel substrate increased DMSC attachment with added EVs. The addition of EVs increased DMSC proliferation only on the s-dAM substrate. DMSCs were more motile on s-dAM and decellularized and solubilized chorionic (s-dCM) membranes following EV addition. The osteogenic potential of DMSCs was improved on s-dAM substrates when supplanted with EVs. Finally, the levels of reactive oxygen species in DMSCs varied depending on the substrate but not on added EVs. We show that the addition of in vitro EVs isolated from the source being expanded (i.e., DMSCs) and the presence of ECM improve DMSC behaviours during ex vivo expansion. The inclusion of two key components of the MSC niche, EVs and ECM, benefitted the ex vivo expansion of MSCs. Added in vitro EVs increased the proliferation of DMSCs when grown on s-dAM but not on s-dCM, whereas they improved DMSC mobility on both surfaces. Testing different ECMs could be used to promote specific desired characteristics of DMSCs, and different combinations of EVs and ECM may enhance desirable MSC characteristics for specific therapeutic settings.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shaun P Brennecke
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, School of Engineering, The University of Melbourne, Parkville, VIC, Australia.
| | - Bill Kalionis
- Department of Obstetrics, Gynaecology and Newborn Health, University of Melbourne, Royal Women's Hospital Campus, Parkville, VIC, Australia.
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Royal Women's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Fonseca VC, Van V, Ip BC. Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure. Cell Mol Bioeng 2024; 17:189-201. [PMID: 39050510 PMCID: PMC11263529 DOI: 10.1007/s12195-024-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Purpose Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from primary human fibroblasts that can be decellularized into acellular biomaterials. However, fibroblasts cultured on rigid culture plastic or biomaterial scaffolds can experience aberrant mechanical cues that perturb the biochemical, mechanical, and the efficiency of ECM production. Methods Here, we demonstrate a method for preparing decellularized ECM using primary human fibroblasts with tissue and disease-specific features with two case studies: (1) cardiac fibroblasts; (2) lung fibroblasts from healthy or diseased donors. Cells aggregate into engineered microtissues in low adhesion microwells that deposited ECM and can be decellularized. We systematically investigate microtissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis. Results Microtissues exhibited tissue-specific gene expression and proteomics profiling, with ECM complexity similar to native tissues. Healthy lung microtissues exhibited web-like fibrillar collagen compared to dense patches in healthy heart microtissues. Diseased lung exhibited more disrupted collagen architecture than healthy. Decellularized microtissues had tissue-specific mechanical stiffness that was physiologically relevant. Importantly, decellularized microtissues supported viability and proliferation of human cells. Conclusions We show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue and disease-specific ECM. This approach should be widely applicable for generating personalized matrix that recapitulate tissues and disease states, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00809-y.
Collapse
Affiliation(s)
- Vera C. Fonseca
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
| | - Vivian Van
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
| | - Blanche C. Ip
- Department of Pathology & Laboratory Medicine, Brown University, Box G-E5, Providence, RI 02912 USA
- Present Address: The Broad Institute of MIT and Harvard, 75 Ames Street Cambridge, Cambridge, MA 02142 USA
| |
Collapse
|
5
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
6
|
Kaewchuchuen J, Matthew SAL, Phuagkhaopong S, Bimbo LM, Seib FP. Functionalising silk hydrogels with hetero- and homotypic nanoparticles. RSC Adv 2024; 14:3525-3535. [PMID: 38259992 PMCID: PMC10801455 DOI: 10.1039/d3ra07634b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Despite many reports detailing silk hydrogels, the development of composite silk hydrogels with homotypic and heterotypic silk nanoparticles and their impact on material mechanics and biology have remained largely unexplored. We hypothesise that the inclusion of nanoparticles into silk-based hydrogels enables the formation of homotropic and heterotropic material assemblies. The aim was to explore how well these systems allow tuning of mechanics and cell adhesion to ultimately control the cell-material interface. We utilised nonporous silica nanoparticles as a standard reference and compared them to nanoparticles derived from Bombyx mori silk and Antheraea mylitta (tasar) silk (approximately 100-150 nm in size). Initially, physically cross-linked B. mori silk hydrogels were prepared containing silica, B. mori silk nanoparticles, or tasar silk nanoparticles at concentrations of either 0.05% or 0.5% (w/v). The initial modulus (stiffness) of these nanoparticle-functionalised silk hydrogels was similar. Stress relaxation was substantially faster for nanoparticle-modified silk hydrogels than for unmodified control hydrogels. Increasing the concentrations of B. mori silk and silica nanoparticles slowed stress relaxation, while the opposite trend was observed for hydrogels modified with tasar nanoparticles. Cell attachment was similar for all hydrogels, but proliferation during the initial 24 h was significantly improved with the nanoparticle-modified hydrogels. Overall, this study demonstrates the manufacture and utilisation of homotropic and heterotropic silk hydrogels.
Collapse
Affiliation(s)
- Jirada Kaewchuchuen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Saphia A L Matthew
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
| | - Suttinee Phuagkhaopong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University Bangkok Thailand
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra 3000-548 Coimbra Portugal
- CNC - Center for Neuroscience and Cell Biology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, Rua Larga, University of Coimbra 3004-504 Coimbra Portugal
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde 161 Cathedral Street Glasgow G4 0RE UK
- Fraunhofer Institute for Molecular Biology & Applied Ecology Branch Bioresources, Ohlebergsweg 12 35392 Giessen Germany
- Friedrich Schiller University Jena, Institute of Pharmacy Lessingstr. 8 07743 Jena Germany +49 3641 9 499 00
| |
Collapse
|
7
|
Guo X, Liu B, Zhang Y, Cheong S, Xu T, Lu F, He Y. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng 2024; 15:20417314241300386. [PMID: 39611117 PMCID: PMC11603474 DOI: 10.1177/20417314241300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
The repair and regeneration of tissues and organs using engineered biomaterials has attracted great interest in tissue engineering and regenerative medicine. Recent advances in organoids and engineered organs technologies have enabled scientists to generate 3D tissue that recapitulate the structural and functional characteristics of native organs, opening up new avenues in regenerative medicine. The matrix is one of the most important aspects for improving organoids and engineered organs construction. However, the clinical application of these techniques remained a big challenge because current commercial matrix does not represent the complexity of native microenvironment, thereby limiting the optimal regenerative capacity. Decellularized extracellular matrix (dECM) is expected to maintain key native matrix biomolecules and is believed to hold enormous potential for regenerative medicine applications. Thus, it is worth investigating whether the dECM can be used as matrix for improving organoid and engineered organs construction. In this review, the characteristics of dECM and its preparation method were summarized. In addition, the present review highlights the applications of dECM in the fabrication of organoids and engineered organs.
Collapse
Affiliation(s)
- Xiaoxu Guo
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boxun Liu
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Yi Zhang
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Matveeva D, Buravkov S, Andreeva E, Buravkova L. Hypoxic Extracellular Matrix Preserves Its Competence after Expansion of Human MSCs under Physiological Hypoxia In Vitro. Biomimetics (Basel) 2023; 8:476. [PMID: 37887607 PMCID: PMC10604705 DOI: 10.3390/biomimetics8060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Tissue-relevant O2 levels are considered as an important tool for the preconditioning of multipotent mesenchymal stromal cells (MSCs) for regenerative medicine needs. The present study investigated the quality and functions of the extracellular matrix (ECM) of MSCs under low O2 levels. Human adipose tissue-derived MSCs were continuously expanded under normoxia (20% O2, N) or "physiological" hypoxia (5% O2, Hyp). Decellularized ECM (dcECM) was prepared. The structure of the dcECM was analyzed using confocal laser and scanning electron microscopy. Collagen, dcECM-N, and dcECM-Hyp were recellularized with MSC-N and further cultured at normoxia. The efficacy of adhesion, spreading, growth, osteogenic potential, and paracrine activity of recellularized MSC-N were evaluated. At low O2, the dcECM showed an increased alignment of fibrillar structures and provided accelerated spreading of MSC-N, indicating increased dcECM-Hyp stiffness. We described O2-dependent "ECM-education" of MSC-N when cultured on dcECM-Hyp. This was manifested as attenuated spontaneous osteo-commitment, increased susceptibility to osteo-induction, and a shift in the paracrine profile. It has been suggested that the ECM after physiological hypoxia is able to ensure the maintenance of a low-commitment state of MSCs. DcECM, which preserves the competence of the natural microenvironment of cells and is capable of "educating" others, appears to be a prospective tool for guiding cell modifications for cell therapy and tissue engineering.
Collapse
Affiliation(s)
| | | | - Elena Andreeva
- Institute of Biomedical Problems of Russian Academy of Sciences, Moscow 123007, Russia; (D.M.); (S.B.); (L.B.)
| | | |
Collapse
|
9
|
Fonseca VC, Van V, Ip BC. Primary Human Cell-Derived Extracellular Matrix from Decellularized Fibroblast Microtissues with Tissue-Dependent Composition and Microstructure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553420. [PMID: 37645710 PMCID: PMC10462104 DOI: 10.1101/2023.08.15.553420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human extracellular matrix (ECM) exhibits complex protein composition and architecture depending on tissue and disease state, which remains challenging to reverse engineer. One promising approach is based on cell-secreted ECM from human fibroblasts, which can then be decellularized into an acellular biomaterial. However, fibroblasts initially seeded on rigid tissue culture plastic or biomaterial scaffolds experience aberrant mechanical cues that influence ECM deposition. Here, we show that engineered microtissues of primary human fibroblasts seeded in low-adhesion microwells can be decellularized to produce human, tissue-specific ECM. We investigate: 1) cardiac fibroblasts, as well as 2) lung fibroblasts from healthy, idiopathic fibrosis and chronic obstructive pulmonary disease donors. We demonstrate optimized culture and decellularization conditions, then characterize gene expression and protein composition. We further characterize ECM microstructure and mechanical properties. We envision that this method could be utilized for biomanufacturing of patient and tissue-specific ECM for organoid drug screening as well as implantable scaffolds. Impact In this study, we demonstrate a method for preparing decellularized matrix using primary human fibroblasts with tissue and disease-specific features. We aggregate single cell dispersions into engineered tissues using low adhesion microwells and show culture conditions that promote ECM deposition. We demonstrate this approach for cardiac fibroblasts as well as lung fibroblasts (both normal and diseased). We systematically investigate tissue morphology, matrix architecture, and mechanical properties, along with transcriptomic and proteomic analysis. This approach should be widely applicable for generating personalized ECM with features of patient tissues and disease state, relevant for culturing patient cells ex vivo as well as implantation for therapeutic treatments.
Collapse
|
10
|
Hanetseder D, Levstek T, Teuschl-Woller AH, Frank JK, Schaedl B, Redl H, Marolt Presen D. Engineering of extracellular matrix from human iPSC-mesenchymal progenitors to enhance osteogenic capacity of human bone marrow stromal cells independent of their age. Front Bioeng Biotechnol 2023; 11:1214019. [PMID: 37600321 PMCID: PMC10434254 DOI: 10.3389/fbioe.2023.1214019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Regeneration of bone defects is often limited due to compromised bone tissue physiology. Previous studies suggest that engineered extracellular matrices enhance the regenerative capacity of mesenchymal stromal cells. In this study, we used human-induced pluripotent stem cells, a scalable source of young mesenchymal progenitors (hiPSC-MPs), to generate extracellular matrix (iECM) and test its effects on the osteogenic capacity of human bone-marrow mesenchymal stromal cells (BMSCs). iECM was deposited as a layer on cell culture dishes and into three-dimensional (3D) silk-based spongy scaffolds. After decellularization, iECM maintained inherent structural proteins including collagens, fibronectin and laminin, and contained minimal residual DNA. Young adult and aged BMSCs cultured on the iECM layer in osteogenic medium exhibited a significant increase in proliferation, osteogenic marker expression, and mineralization as compared to tissue culture plastic. With BMSCs from aged donors, matrix mineralization was only detected when cultured on iECM, but not on tissue culture plastic. When cultured in 3D iECM/silk scaffolds, BMSCs exhibited significantly increased osteogenic gene expression levels and bone matrix deposition. iECM layer showed a similar enhancement of aged BMSC proliferation, osteogenic gene expression, and mineralization compared with extracellular matrix layers derived from young adult or aged BMSCs. However, iECM increased osteogenic differentiation and decreased adipocyte formation compared with single protein substrates including collagen and fibronectin. Together, our data suggest that the microenvironment comprised of iECM can enhance the osteogenic activity of BMSCs, providing a bioactive and scalable biomaterial strategy for enhancing bone regeneration in patients with delayed or failed bone healing.
Collapse
Affiliation(s)
- Dominik Hanetseder
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tina Levstek
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Herbert Teuschl-Woller
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Julia Katharina Frank
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
11
|
Choi SH, Lee K, Han H, Mo H, Jung H, Ryu Y, Nam Y, Rim YA, Ju JH. Prochondrogenic effect of decellularized extracellular matrix secreted from human induced pluripotent stem cell-derived chondrocytes. Acta Biomater 2023:S1742-7061(23)00317-3. [PMID: 37295627 DOI: 10.1016/j.actbio.2023.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Cartilage is mainly composed of chondrocytes and the extracellular matrix (ECM), which exchange important biochemical and biomechanical signals necessary for differentiation and homeostasis. Human articular cartilage has a low ability for regeneration because it lacks blood vessels, nerves, and lymphatic vessels. Currently, cell therapeutics, including stem cells, provide a promising strategy for cartilage regeneration and treatment; however, there are various hurdles to overcome, such as immune rejection and teratoma formation. In this study, we assessed the applicability of the stem cell-derived chondrocyte ECM for cartilage regeneration. Human induced pluripotent stem cell (hiPSC)-derived chondrocytes (iChondrocytes) were differentiated, and decellularized ECM (dECM) was successfully isolated from cultured chondrocytes. Isolated dECM enhanced in vitro chondrogenesis of iPSCs when recellularized. Implanted dECM also restored osteochondral defects in a rat osteoarthritis model. A possible association with the glycogen synthase kinase-3 beta (GSK3β) pathway demonstrated the fate-determining importance of dECM in regulating cell differentiation. Collectively, we suggested the prochondrogenic effect of hiPSC-derived cartilage-like dECM and offered a promising approach as a non-cellular therapeutic for articular cartilage reconstruction without cell transplantation. STATEMENT OF SIGNIFICANCE: Human articular cartilage has low ability for regeneration and cell culture-based therapeutics could aid cartilage regeneration. Yet, the applicability of human induced pluripotent stem cell-derived chondrocyte (iChondrocyte) extracellular matrix (ECM) has not been elucidated. Therefore, we first differentiated iChondrocytes and isolated the secreted ECM by decellularization. Recellularization was performed to confirm the pro-chondrogenic effect of the decellularized ECM (dECM). In addition, we confirmed the possibility of cartilage repair by transplanting the dECM into the cartilage defect in osteochondral defect rat knee joint. We believe that our proof-of-concept study will serve as a basis for investigating the potential of dECM obtained from iPSC-derived differentiated cells as a non-cellular resource for tissue regeneration and other future applications.
Collapse
Affiliation(s)
- Si Hwa Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Heeju Han
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | - Hyunkyung Mo
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - YoungWoo Ryu
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea
| | | | - Yeri Alice Rim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea.
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea; YiPSCELL, Inc., Seoul, South Korea; Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Zimmermann R, Nitschke M, Magno V, Freudenberg U, Sockel K, Stölzel F, Wobus M, Platzbecker U, Werner C. Discriminant Principal Component Analysis of ToF-SIMS Spectra for Deciphering Compositional Differences of MSC-Secreted Extracellular Matrices. SMALL METHODS 2023; 7:e2201157. [PMID: 36978251 DOI: 10.1002/smtd.202201157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/19/2023] [Indexed: 06/09/2023]
Abstract
Identifying characteristic extracellular matrix (ECM) variants is a key challenge in mechanistic biology, bioengineering, and medical diagnostics. The reported study demonstrates the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to detect subtle differences between human mesenchymal stromal cell (MSC)-secreted ECM types as induced by exogenous stimulation or emerging pathology. ToF-SIMS spectra of decellularized ECM samples are evaluated by discriminant principal component analysis (DPCA), an advanced multivariate analysis technique, to decipher characteristic compositional features. To establish the approach, signatures of major ECM proteins are determined from samples of pre-defined mixtures. Based on that, sets of ECM variants produced by MSCs in vitro are analyzed. Differences in the content of collagen, fibronectin, and laminin in the ECM resulting from the combined supplementation of MSC cultures with polymers that induce macromolecular crowding and with ascorbic acid are detected from the DPCA of ToF-SIMS spectra. The results are verified by immunostaining. Finally, the comparative ToF-SIMS analysis of ECM produced by MSCs of healthy donors and patients suffering from myelodysplastic syndrome display the potential of the novel methodology to reveal disease-associated alterations of the ECM composition.
Collapse
Affiliation(s)
- Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Mirko Nitschke
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Valentina Magno
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
| | - Katja Sockel
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Friedrich Stölzel
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
- Division of Stem Cell Transplantation and Cellular Immunotherapies, Department of Internal Medicine II, University Hospital Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| | - Manja Wobus
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Uwe Platzbecker
- Hematology and Cellular Therapy, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden and Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307, Dresden, Germany
| |
Collapse
|
13
|
Xu Q, Streuer A, Jann JC, Altrock E, Schmitt N, Flach J, Sens-Albert C, Rapp F, Wolf J, Nowak V, Weimer N, Obländer J, Palme I, Kuzina M, Jawhar A, Darwich A, Weis CA, Marx A, Wuchter P, Costina V, Jäger E, Sperk E, Neumaier M, Fabarius A, Metzgeroth G, Nolte F, Steiner L, Levkin PA, Jawhar M, Hofmann WK, Riabov V, Nowak D. Inhibition of lysyl oxidases synergizes with 5-azacytidine to restore erythropoiesis in myelodysplastic and myeloid malignancies. Nat Commun 2023; 14:1497. [PMID: 36932114 PMCID: PMC10023686 DOI: 10.1038/s41467-023-37175-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.
Collapse
Affiliation(s)
- Qingyu Xu
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alexander Streuer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Johann-Christoph Jann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Eva Altrock
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Nanni Schmitt
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Johanna Flach
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Carla Sens-Albert
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Felicitas Rapp
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Julia Wolf
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Verena Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Nadine Weimer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Julia Obländer
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Iris Palme
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Mariia Kuzina
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany
| | - Ahmed Jawhar
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Ali Darwich
- Department of Orthopedic Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alexander Marx
- Institute of Pathology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg-Hessen, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Evelyn Jäger
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Elena Sperk
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Michael Neumaier
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Alice Fabarius
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Georgia Metzgeroth
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Florian Nolte
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Laurenz Steiner
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems - Functional Molecular Systems, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany
| | - Mohamad Jawhar
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Wolf-Karsten Hofmann
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Vladimir Riabov
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.
| |
Collapse
|
14
|
Ryan CNM, Pugliese E, Shologu N, Gaspar D, Rooney P, Islam MN, O'Riordan A, Biggs MJ, Griffin MD, Zeugolis DI. The synergistic effect of physicochemical in vitro microenvironment modulators in human bone marrow stem cell cultures. BIOMATERIALS ADVANCES 2022; 144:213196. [PMID: 36455498 DOI: 10.1016/j.bioadv.2022.213196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/29/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Modern bioengineering utilises biomimetic cell culture approaches to control cell fate during in vitro expansion. In this spirit, herein we assessed the influence of bidirectional surface topography, substrate rigidity, collagen type I coating and macromolecular crowding (MMC) in human bone marrow stem cell cultures. In the absence of MMC, surface topography was a strong modulator of cell morphology. MMC significantly increased extracellular matrix deposition, albeit in a globular manner, independently of the surface topography, substrate rigidity and collagen type I coating. Collagen type I coating significantly increased cell metabolic activity and none of the assessed parameters affected cell viability. At day 14, in the absence of MMC, none of the assessed genes was affected by surface topography, substrate rigidity and collagen type I coating, whilst in the presence of MMC, in general, collagen type I α1 chain, tenascin C, osteonectin, bone sialoprotein, aggrecan, cartilage oligomeric protein and runt-related transcription factor were downregulated. Interestingly, in the presence of the MMC, the 1000 kPa grooved substrate without collagen type I coating upregulated aggrecan, cartilage oligomeric protein, scleraxis homolog A, tenomodulin and thrombospondin 4, indicative of tenogenic differentiation. This study further supports the notion for multifactorial bioengineering to control cell fate in culture.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Peadar Rooney
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Md Nahidul Islam
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Alan O'Riordan
- Tyndall National Institute, University College Cork (UCC), Cork, Ireland
| | - Manus J Biggs
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Matthew D Griffin
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative Medicine Institute (REMEDI), School of Medicine, Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
15
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Pérez Medina VA, Cade WT, Pacak CA, Simmons CS. Matrix produced by diseased cardiac fibroblasts affects early myotube formation and function. Acta Biomater 2022; 152:100-112. [PMID: 36055608 PMCID: PMC10625442 DOI: 10.1016/j.actbio.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
The extracellular matrix (ECM) provides both physical and chemical cues that dictate cell function and contribute to muscle maintenance. Muscle cells require efficient mitochondria to satisfy their high energy demand, however, the role the ECM plays in moderating mitochondrial function is not clear. We hypothesized that the ECM produced by stromal cells with mitochondrial dysfunction (Barth syndrome, BTHS) provides cues that contribute to metabolic dysfunction independent of muscle cell health. To test this, we harnessed the ECM production capabilities of human pluripotent stem-cell-derived cardiac fibroblasts (hPSC-CFs) from healthy and BTHS patients to fabricate cell-derived matrices (CDMs) with controlled topography, though we found that matrix composition from healthy versus diseased cells influenced myotube formation independent of alignment cues. To further investigate the effects of matrix composition, we then examined the influence of healthy- and BTHS-derived CDMs on myotube formation and metabolic function. We found that BTHS CDMs induced lower fusion index, lower ATP production, lower mitochondrial membrane potential, and higher ROS generation than the healthy CDMs. These findings imply that BTHS-derived ECM alone contributes to myocyte dysfunction in otherwise healthy cells. Finally, to investigate potential mechanisms, we defined the composition of CDMs produced by hPSC-CFs from healthy and BTHS patients using mass spectrometry and identified 15 ECM and related proteins that were differentially expressed in the BTHS-CDM compared to healthy CDM. Our results highlight that ECM composition affects skeletal muscle formation and metabolic efficiency in otherwise healthy cells, and our methods to generate patient-specific CDMs are a useful tool to investigate the influence of the ECM on disease progression and to investigate variability among diseased patients. STATEMENT OF SIGNIFICANCE: Muscle function requires both efficient metabolism to generate force and structured extracellular matrix (ECM) to transmit force, and we sought to examine the interactions between metabolism and ECM when metabolic disease is present. We fabricated patient-specific cell derived matrices (CDMs) with controlled topographic features to replicate the composition of healthy and mitochondrial-diseased (Barth syndrome) ECM. We found that disease-derived ECM negatively affects metabolic function of otherwise healthy myoblasts, and we identified several proteins in disease-derived ECM that may be mediating this dysfunction. We anticipate that our patient-specific CDM system could be fabricated with other topographies and cell types to study cell functions and diseases of interest beyond mitochondrial dysfunction and, eventually, be applied toward personalized medicine.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Valerie A Pérez Medina
- Department of Mechanical Engineering, University of Puerto Rico, Mayaguez 00682, Puerto Rico
| | - William Todd Cade
- Physical Therapy Division, Duke University, 311 Trent Drive, Durham, NC 27710, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Neurology Department, Medical School, University of Minnesota, WMBB 4-188 2101 6th Street SE, Minneapolis 55455, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Mechanical and Aerospace Engineering Herbert Wertheim College of Engineering, University of Florida.
| |
Collapse
|
16
|
Bains AK, Behrens Wu L, Rivière J, Rother S, Magno V, Friedrichs J, Werner C, Bornhäuser M, Götze KS, Cross M, Platzbecker U, Wobus M. Bone marrow mesenchymal stromal cell-derived extracellular matrix displays altered glycosaminoglycan structure and impaired functionality in Myelodysplastic Syndromes. Front Oncol 2022; 12:961473. [PMID: 36158640 PMCID: PMC9492883 DOI: 10.3389/fonc.2022.961473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematologic malignancies characterized by clonal hematopoiesis, one or more cytopenias such as anemia, neutropenia, or thrombocytopenia, abnormal cellular maturation, and a high risk of progression to acute myeloid leukemia. The bone marrow microenvironment (BMME) in general and mesenchymal stromal cells (MSCs) in particular contribute to both the initiation and progression of MDS. However, little is known about the role of MSC-derived extracellular matrix (ECM) in this context. Therefore, we performed a comparative analysis of in vitro deposited MSC-derived ECM of different MDS subtypes and healthy controls. Atomic force microscopy analyses demonstrated that MDS ECM was significantly thicker and more compliant than those from healthy MSCs. Scanning electron microscopy showed a dense meshwork of fibrillar bundles connected by numerous smaller structures that span the distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures were detectable at high abundance in MDS ECM as white, sponge-like arrays on top of the fibrillar network. Quantification by Blyscan assay confirmed these observations, with higher concentrations of sulfated GAGs in MDS ECM. Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan (HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of N-acetyl-galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the matrix of MSCs from LR-MDS patients were found to correlate with enhanced HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells from healthy donors with low molecular weight HA resulted in an increased expression of various pro-inflammatory cytokines suggesting a contribution of the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic stem and progenitor cells (HSPCs) displayed an impaired differentiation potential after cultivation on MDS ECM and modified morphology accompanied by decreased integrin expression which mediate cell-matrix interaction. In summary, we provide evidence for structural alterations of the MSC-derived ECM in both LR- and HR-MDS. GAGs may play an important role in this remodeling processes during the malignant transformation which leads to the observed disturbance in the support of normal hematopoiesis.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Lena Behrens Wu
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Jennifer Rivière
- Department of Medicine III, Hematology/Oncology, School of Medicine, Klinikum rechts der Isar, München, Technical University of Munich, Munich, Germany
| | - Sandra Rother
- Center for Molecular Signaling Präklinisches Zentrum für Molekulare Signalverarbeitung (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Valentina Magno
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Jens Friedrichs
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Katharina S. Götze
- Department of Medicine III, Hematology/Oncology, School of Medicine, Klinikum rechts der Isar, München, Technical University of Munich, Munich, Germany
| | - Michael Cross
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Manja Wobus
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
- *Correspondence: Manja Wobus,
| |
Collapse
|
17
|
Xu F, Zheng Z, Yao M, Zhu F, Shen T, Li J, Zhu C, Yang T, Shao M, Wan Z, Fang C. A regulatory mechanism of a stepwise osteogenesis-mimicking decellularized extracellular matrix on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells. J Mater Chem B 2022; 10:6171-6180. [PMID: 35766339 DOI: 10.1039/d2tb00721e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cell-derived decellularized extracellular matrix (dECM) plays a vital role in controlling cell functions because of its similarity to the in vivo microenvironment. In the process of stem cell differentiation, the composition of the dECM is not constant but is dynamically remolded. However, there is little information regarding the dynamic regulation by the dECM of the osteogenic differentiation of stem cells. Herein, four types of stepwise dECMs (0, 7, 14, and 21 d-ECM) were prepared from bone marrow-derived mesenchymal stem cells (BMSCs) undergoing osteogenic differentiation for 0, 7, 14, and 21 days after decellularization. In vitro experiments were designed to study the regulation of BMSC osteogenesis by dECMs. The results showed that all the dECMs could support the activity and proliferation of BMSCs but had different effects on their osteogenic differentiation. The 14d-ECM promoted the osteogenesis of BMSCs significantly compared with the other dECMs. Proteomic analysis demonstrated that the composition of dECMs changed over time. The 14d ECM had higher amounts of collagen type IV alpha 2 chain (COL4A2) than the other dECMs. Furthermore, COL4A2 was obviously enriched in the activated focal adhesion kinase (FAK)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Thus, the 14d-ECM could promote the osteogenic differentiation of BMSCs, which might be related to the high content of COL4A2 in the 14d-ECM by activating the FAK/PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Fei Xu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Ziran Zheng
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Mianfeng Yao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Feiya Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Ting Shen
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Jiang Li
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Chao Zhu
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| | - Tianru Yang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Mengying Shao
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China.
| | - Zicheng Wan
- Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Changyun Fang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China. .,Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Oral Precancerous Lesions, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Wu H, Yin G, Pu X, Wang J, Liao X, Huang Z. Preliminary Study on the Antigen-Removal from Extracellular Matrix via Different Decellularization. Tissue Eng Part C Methods 2022; 28:250-263. [PMID: 35596569 DOI: 10.1089/ten.tec.2022.0025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the abundance of bioactive components, surficial decoration with cell-derived extracellular matrix (ECM) is a promising strategy to improve the biological functionality of the tissue engineering scaffolds. However, decellularization is necessary to remove antigenic components in the ECM that may trigger adverse immune response. Freeze-thaw (FT) cycles and treatment with Triton X-100/ammonium hydroxide (TN) are two commonly used decellularization methods for ECM, but their effects on both growth factor retention and antigen removal are still controversial. The objectives of this study are to compare the preservation of ECM texture and beneficial ingredients and the removal of cellular antigens by these two methods. First, the constructs combined bone marrow mesenchymal stem cell-derived ECM and poly(lactic-co-glycolic acid) (PLGA) membrane are prepared and decellularized using FT and TN treatments. Moreover, the effects of decellularization on the ultrastructure and the composition of ECM-decorated PLGA membrane are compared by scanning electron microscope observation and protein quantification. Furthermore, the ECM deposited on PLGA is stripped off and then implanted subcutaneously in rats, and the host macrophage and local lymphocyte responses were investigated. Finally, ECM-decorated porous PLGA scaffolds are implanted into rat calvarial defects, and the new bone formation is evaluated. Our results showed that both methods effectively removed DNA. TN treatment partially retained collagen, glycosaminoglycan, bone morphogenetic protein-2, and vascular endothelial growth factor, and better preserved structural integrity than FT treatment. ECM implants decellularized by both methods induced a mild host response after subcutaneous implantation. Although the total content of residual DNA in the two ECMs digested by the DNA enzyme seemed to be similar and very low, the interfaces between implanted materials and natural tissues in the TN group recruited lower numbers of CD68+ macrophages, CD68+CD86+ (M1) macrophages, and CD4+ T lymphocytes than that in FT group, implying that there exist other ECM antigens to influence immune response besides DNA. Furthermore, ECM-decorated scaffolds decellularized by TN treatment induced greater bone formation than that of bare scaffolds in vivo, demonstrating the effective retention of ECM bioactive components after decellularization. This study showed that TN treatment was a more effective and safer decellularization method than FT cycles. Impact statement Decellularization is a prerequisite for extracellular matrix (ECM) application, but there is still no standard for its selection. This study demonstrated that detergent treatment was more effective than freeze-thaw (FT) cycles in removing ECM antigens besides DNA, and the prepared ECM elicited a milder allogenic immune response, which ensured the safety of ECM. Moreover, detergent better preserved the ECM integrity than FT cycles, and effectively retained growth factors, and the decellularized ECM-decorated scaffolds significantly promoted bone repair, which ensured the effectiveness of ECM. This study provides the theoretical and experimental bases for the decellularization strategy of ECM-modified tissue engineering scaffolds.
Collapse
Affiliation(s)
- Huan Wu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
19
|
Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials 2022; 286:121568. [DOI: 10.1016/j.biomaterials.2022.121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
|
20
|
Ning LJ, Cui J, He SK, Hu RN, Yao X, Zhang Y, Ding W, Zhang YJ, Luo JC, Qin TW. Constructing a highly bioactive tendon-regenerative scaffold by surface modification of tissue-specific stem cell derived extracellular matrix. Regen Biomater 2022; 9:rbac020. [PMID: 35480863 PMCID: PMC9036902 DOI: 10.1093/rb/rbac020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023] Open
Abstract
Developing highly bioactive scaffold materials to promote stem cell migration, proliferation and tissue-specific differentiation is a crucial requirement in current tissue engineering and regenerative medicine. Our previous work has demonstrated that the decellularized tendon slices (DTSs) are able to promote stem cell proliferation and tenogenic differentiation in vitro and show certain pro-regenerative capacity for rotator cuff tendon regeneration in vivo. In this study, we present a strategy to further improve the bioactivity of the DTSs for constructing a novel highly bioactive tendon-regenerative scaffold by surface modification of tendon-specific stem cell-derived extracellular matrix (tECM), which is expected to greatly enhance the capacity of scaffold material in regulating stem cell behavior, including migration, proliferation and tenogenic differentiation. We prove that the modification of tECM could change the highly aligned surface topographical cues of the DTSs, retain the surface stiffness of the DTSs and significantly increase the content of multiple ECM components in the tECM-DTSs. As a result, the tECM-DTSs dramatically enhance the migration, proliferation as well as tenogenic differentiation of rat bone marrow-derived stem cells compared with the DTSs. Collectively, this strategy would provide a new way for constructing ECM-based biomaterials with enhanced bioactivity for in situ tendon regeneration applications. ![]()
Collapse
Affiliation(s)
- Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Shu-Kun He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Ruo-Nan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Zhang
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
- Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
21
|
Pereira AR, Trivanović D, Stahlhut P, Rudert M, Groll J, Herrmann M. Preservation of the naïve features of mesenchymal stromal cells in vitro: Comparison of cell- and bone-derived decellularized extracellular matrix. J Tissue Eng 2022; 13:20417314221074453. [PMID: 35154631 PMCID: PMC8829705 DOI: 10.1177/20417314221074453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
The fate and behavior of bone marrow mesenchymal stem/stromal cells (BM-MSC) is bidirectionally influenced by their microenvironment, the stem cell niche, where a magnitude of biochemical and physical cues communicate in an extremely orchestrated way. It is known that simplified 2D in vitro systems for BM-MSC culture do not represent their naïve physiological environment. Here, we developed four different 2D cell-based decellularized matrices (dECM) and a 3D decellularized human trabecular-bone scaffold (dBone) to evaluate BM-MSC behavior. The obtained cell-derived matrices provided a reliable tool for cell shape-based analyses of typical features associated with osteogenic differentiation at high-throughput level. On the other hand, exploratory proteomics analysis identified native bone-specific proteins selectively expressed in dBone but not in dECM models. Together with its architectural complexity, the physico-chemical properties of dBone triggered the upregulation of stemness associated genes and niche-related protein expression, proving in vitro conservation of the naïve features of BM-MSC.
Collapse
Affiliation(s)
- Ana Rita Pereira
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Drenka Trivanović
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| | - Philipp Stahlhut
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Maximilian Rudert
- Department of Orthopedic Surgery, Koenig-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Jürgen Groll
- Chair for Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Germany
- Bernhard-Heine-Centrum for Locomotion Research, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
22
|
Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med 2022; 16:56-82. [PMID: 34962624 PMCID: PMC8976706 DOI: 10.1007/s11684-021-0900-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
Contributing to organ formation and tissue regeneration, extracellular matrix (ECM) constituents provide tissue with three-dimensional (3D) structural integrity and cellular-function regulation. Containing the crucial traits of the cellular microenvironment, ECM substitutes mediate cell-matrix interactions to prompt stem-cell proliferation and differentiation for 3D organoid construction in vitro or tissue regeneration in vivo. However, these ECMs are often applied generically and have yet to be extensively developed for specific cell types in 3D cultures. Cultured cells also produce rich ECM, particularly stromal cells. Cellular ECM improves 3D culture development in vitro and tissue remodeling during wound healing after implantation into the host as well. Gaining better insight into ECM derived from either tissue or cells that regulate 3D tissue reconstruction or organ regeneration helps us to select, produce, and implant the most suitable ECM and thus promote 3D organoid culture and tissue remodeling for in vivo regeneration. Overall, the decellularization methodologies and tissue/cell-derived ECM as scaffolds or cellular-growth supplements used in cell propagation and differentiation for 3D tissue culture in vitro are discussed. Moreover, current preclinical applications by which ECM components modulate the wound-healing process are reviewed.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, 26506, USA
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, 27109, USA.
| |
Collapse
|
23
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing. Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
24
|
Zhang Y, Guo A, Lyu C, Bi R, Wu Z, Li W, Zhao P, Niu Y, Na J, Xi JJ, Du Y. Synthetic liver fibrotic niche extracts achieve in vitro hepatoblasts phenotype enhancement and expansion. iScience 2021; 24:103303. [PMID: 34765922 PMCID: PMC8571728 DOI: 10.1016/j.isci.2021.103303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022] Open
Abstract
It is still a challenge for synthesizing ‘cellular niche-mimics’ in vitro with satisfactory reproducibility and fidelity to recreate the natural niche components (e.g., extracellular matrices and soluble factors) for stem cell cultivation. Inspired by the massive amplification of hepatic progenitor cells during liver fibrosis in vivo, here we optimized the in vitro liver fibrotic niches and subsequently harvested their bioactive ingredients as niche extracts (NEs). The fibrosis-relevant NE marginally outperformed Matrigel for phenotype maintenance of human embryonic stem cell (hESC)-derived hepatoblasts (HBs) and recapitulation of the pathological angiogenesis of hESC-derived endothelial cells both in 2D culture and 3D liver organoids. Finally, defined NE components (i.e., collagen III, IV, IL-17, IL-18 and M-CSF) were resolved by the quantitative proteomics which exhibited advantage over Matrigel for multi-passaged HB expansion. The pathology-relevant and tissue-specific NEs provide innovative and generalizable strategies for the discovery of optimal cellular niche and bioactive niche compositions.
Fibrotic niches were constructed by 3 hepatic cell lines plus 4 profibrotic factors NE was produced by enzymatic digestion using pepsin and DNase Collagen III, IV, IL-17, IL-18, and M-CSF resolved from NE promoted HBs expansion
Collapse
Affiliation(s)
- Yuying Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Anqi Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China.,School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ran Bi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Zhaozhao Wu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Peng Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Rubí-Sans G, Nyga A, Rebollo E, Pérez-Amodio S, Otero J, Navajas D, Mateos-Timoneda MA, Engel E. Development of Cell-Derived Matrices for Three-Dimensional In Vitro Cancer Cell Models. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44108-44123. [PMID: 34494824 DOI: 10.1021/acsami.1c13630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Most morphogenetic and pathological processes are driven by cells responding to the surrounding matrix, such as its composition, architecture, and mechanical properties. Despite increasing evidence for the role of extracellular matrix (ECM) in tissue and disease development, many in vitro substitutes still fail to effectively mimic the native microenvironment. We established a novel method to produce macroscale (>1 cm) mesenchymal cell-derived matrices (CDMs) aimed to mimic the fibrotic tumor microenvironment surrounding epithelial cancer cells. CDMs are produced by human adipose mesenchymal stem cells cultured in sacrificial 3D scaffold templates of fibronectin-coated poly-lactic acid microcarriers (MCs) in the presence of macromolecular crowders. We showed that decellularized CDMs closely mimic the fibrillar protein composition, architecture, and mechanical properties of human fibrotic ECM from cancer masses. CDMs had highly reproducible composition made of collagen types I and III and fibronectin ECM with tunable mechanical properties. Moreover, decellularized and MC-free CDMs were successfully repopulated with cancer cells throughout their 3D structure, and following chemotherapeutic treatment, cancer cells showed greater doxorubicin resistance compared to 3D culture in collagen hydrogels. Collectively, these results support the use of CDMs as a reproducible and tunable tool for developing 3D in vitro cancer models.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Elena Rebollo
- Molecular Imaging Platform, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona 08028, Spain
| | - Soledad Pérez-Amodio
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| | - Jorge Otero
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Daniel Navajas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Unitat Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona 08036, Spain
- CIBER de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès (Barcelona) 08195, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
| |
Collapse
|
26
|
Hirota A, AlMusawi S, Nateri AS, Ordóñez-Morán P, Imajo M. Biomaterials for intestinal organoid technology and personalized disease modeling. Acta Biomater 2021; 132:272-287. [PMID: 34023456 DOI: 10.1016/j.actbio.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
Recent advances in intestinal organoid technologies have paved the way for in vitro recapitulation of the homeostatic renewal of adult tissues, tissue or organ morphogenesis during development, and pathogenesis of many disorders. In vitro modelling of individual patient diseases using organoid systems have been considered key in establishing rational design of personalized treatment strategies and in improving therapeutic outcomes. In addition, the transplantation of organoids into diseased tissues represents a novel approach to treat currently incurable diseases. Emerging evidence from intensive studies suggests that organoid systems' development and functional maturation depends on the presence of an extracellular matrix with suitable biophysical properties, where advanced synthetic hydrogels open new avenues for theoretical control of organoid phenotypes and potential applications of organoids in therapeutic purposes. In this review, we discuss the status, applications, challenges and perspectives of intestinal organoid systems emphasising on hydrogels and their properties suitable for intestinal organoid culture. We provide an overview of hydrogels used for intestinal organoid culture and key factors regulating their biological activity. The comparison of different hydrogels would be a theoretical basis for establishing design principles of synthetic niches directing intestinal cell fates and functions. STATEMENT OF SIGNIFICANCE: Intestinal organoid is an in vitro recapitulation of the gut, which self-organizes from intestinal stem cells and maintains many features of the native tissue. Since the development of this technology, intestinal organoid systems have made significant contribution to rapid progress in intestinal biology. Prevailing methodology for organoid culture, however, depends on animal-derived matrices and suffers from variability and potential risk for contamination of pathogens, limiting their therapeutic application. Synthetic scaffold matrices, hydrogels, might provide solutions to these issues and deepen our understanding on how intestinal cells sense and respond to key biophysical properties of the surrounding matrices. This review provides an overview of developing intestinal models and biomaterials, thereby leading to better understanding of current intestinal organoid systems for both biologists and materials scientists.
Collapse
Affiliation(s)
- Akira Hirota
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan
| | - Shaikha AlMusawi
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom; Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Abdolrahman S Nateri
- Cancer Genetic and Stem Cell group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Paloma Ordóñez-Morán
- Stem Cell biology and Cancer group, Translational Medical Sciences, School of Medicine, Biodiscovery Institute, Centre for Cancer Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom.
| | - Masamichi Imajo
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
| |
Collapse
|
27
|
Parmaksiz M, Elçin AE, Elçin YM. Decellularized Cell Culture ECMs Act as Cell Differentiation Inducers. Stem Cell Rev Rep 2021; 16:569-584. [PMID: 32170583 DOI: 10.1007/s12015-020-09963-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Decellularized tissues and organs have aroused considerable interest for developing functional bio-scaffolds as natural templates in tissue engineering applications. More recently, the use of natural extracellular matrix (ECM) extracted from the in vitro cell cultures for cellular applications have come into question. It is well known that the microenvironment largely defines cellular properties. Thus, we have anticipated that the ECMs of the cells with different potency levels should likely possess different effects on cell cultures. To test this, we have comparatively evaluated the differentiative effects of ECMs derived from the cultures of human somatic dermal fibroblasts, human multipotent bone marrow mesenchymal stem cells, and human induced pluripotent stem cells on somatic dermal fibroblasts. Although challenges remain, the data suggest that the use of cell culture-based extracellular matrices perhaps may be considered as an alternative approach for the differentiation of even somatic cells into other cell types.
Collapse
Affiliation(s)
- Mahmut Parmaksiz
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey. .,Biovalda Health Technologies, Inc, Ankara, Turkey.
| |
Collapse
|
28
|
Ma Z, Bao G, Li J. Multifaceted Design and Emerging Applications of Tissue Adhesives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007663. [PMID: 33956371 DOI: 10.1002/adma.202007663] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 05/24/2023]
Abstract
Tissue adhesives can form appreciable adhesion with tissues and have found clinical use in a variety of medical settings such as wound closure, surgical sealants, regenerative medicine, and device attachment. The advantages of tissue adhesives include ease of implementation, rapid application, mitigation of tissue damage, and compatibility with minimally invasive procedures. The field of tissue adhesives is rapidly evolving, leading to tissue adhesives with superior mechanical properties and advanced functionality. Such adhesives enable new applications ranging from mobile health to cancer treatment. To provide guidelines for the rational design of tissue adhesives, here, existing strategies for tissue adhesives are synthesized into a multifaceted design, which comprises three design elements: the tissue, the adhesive surface, and the adhesive matrix. The mechanical, chemical, and biological considerations associated with each design element are reviewed. Throughout the report, the limitations of existing tissue adhesives and immediate opportunities for improvement are discussed. The recent progress of tissue adhesives in topical and implantable applications is highlighted, and then future directions toward next-generation tissue adhesives are outlined. The development of tissue adhesives will fuse disciplines and make broad impacts in engineering and medicine.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montréal, QC, H3A 0C3, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, H3A 2B4, Canada
| |
Collapse
|
29
|
Antich C, Jiménez G, de Vicente J, López‐Ruiz E, Chocarro‐Wrona C, Griñán‐Lisón C, Carrillo E, Montañez E, Marchal JA. Development of a Biomimetic Hydrogel Based on Predifferentiated Mesenchymal Stem-Cell-Derived ECM for Cartilage Tissue Engineering. Adv Healthc Mater 2021; 10:e2001847. [PMID: 33646595 PMCID: PMC11468687 DOI: 10.1002/adhm.202001847] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Indexed: 12/20/2022]
Abstract
The use of decellularized extracellular matrix (dECM) as a biomaterial has been an important step forward for the development of functional tissue constructs. In addition to tissues and organs, cell cultures are gaining a lot of attention as an alternative source of dECM. In this work, a novel biomimetic hydrogel is developed based on dECM obtained from mesenchymal stem cells (mdECM) for cartilage tissue engineering. To this end, cells are seeded under specific culture conditions to generate an early chondrogenic extracellular matrix (ECM) providing cues and elements necessary for cartilage development. The composition is determined by quantitative, histological, and mass spectrometry techniques. Moreover, the decellularization process is evaluated by measuring the DNA content and compositional analyses, and the hydrogel is formulated at different concentrations (3% and 6% w/v). Results show that mdECM derived hydrogels possess excellent biocompatibility and suitable physicochemical and mechanical properties for their injectability. Furthermore, it is evidenced that this hydrogel is able to induce chondrogenesis of mesenchymal stem cells (MSCs) without supplemental factors and, furthermore, to form hyaline cartilage-like tissue after in vivo implantation. These findings demonstrate for the first time the potential of this hydrogel based on mdECM for applications in cartilage repair and regeneration.
Collapse
Affiliation(s)
- Cristina Antich
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranada18016Spain
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
| | - Gema Jiménez
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
- Department of Health ScienceFaculty of Experimental ScienceUniversity of JaénJaén23071Spain
| | - Juan de Vicente
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
- Biocolloid and Fluid Physics GroupDepartment of Applied PhysicsFaculty of SciencesUniversity of GranadaGranada18071Spain
| | - Elena López‐Ruiz
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
- Department of Health ScienceFaculty of Experimental ScienceUniversity of JaénJaén23071Spain
| | - Carlos Chocarro‐Wrona
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranada18016Spain
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
| | - Carmen Griñán‐Lisón
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranada18016Spain
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
| | - Esmeralda Carrillo
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranada18016Spain
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
| | - Elvira Montañez
- Department of Orthopedic Surgery and TraumatologyVirgen de la Victoria University HospitalMálaga29010Spain
- Biomedical Research Institute of Malaga (IBIMA)Virgen de la Victoria University HospitalMálaga29010Spain
| | - Juan A. Marchal
- Department of Human Anatomy and EmbryologyFaculty of MedicineUniversity of GranadaGranada18016Spain
- Instituto de Investigación Biosanitaria ibs. GRANADAUniversity of GranadaGranada18014Spain
- Biopathology and Regenerative Medicine Institute (IBIMER)Centre for Biomedical ResearchUniversity of GranadaGranada18100Spain
- Excellence Research Unit “Modeling Nature” (MNat)University of GranadaGranada18016Spain
| |
Collapse
|
30
|
Asadi M, Khalili M, Lotfi H, Vaghefi Moghaddam S, Zarghami N, André H, Alizadeh E. Liver bioengineering: Recent trends/advances in decellularization and cell sheet technologies towards translation into the clinic. Life Sci 2021; 276:119373. [PMID: 33744324 DOI: 10.1016/j.lfs.2021.119373] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/07/2023]
Abstract
Development of novel technologies provides the best tissue constructs engineering and maximizes their therapeutic effects in regenerative therapy, especially for liver dysfunctions. Among the currently investigated approaches of tissue engineering, scaffold-based and scaffold-free tissues are widely suggested for liver regeneration. Analogs of liver acellular extracellular matrix (ECM) are utilized in native scaffolds to increase the self-repair and healing ability of organs. Native ECM analog could improve liver repairing through providing the supportive framework for cells and signaling molecules, exerting normal biomechanical, biochemical, and physiological signal complexes. Recently, innovative cell sheet technology is introduced as an alternative for conventional tissue engineering with the advantage of fewer scaffold restrictions and cell culture on a Thermo-Responsive Polymer Surface. These sheets release the layered cells through a temperature-controlled procedure without enzymatic digestion, while preserving the cell-ECM contacts and adhesive molecules on cell-cell junctions. In addition, several novelties have been introduced into the cell sheet and decellularization technologies to aid cell growth, instruct differentiation/angiogenesis, and promote cell migration. In this review, recent trends, advancements, and issues linked to translation into clinical practice are dissected and compared regarding the decellularization and cell sheet technologies for liver tissue engineering.
Collapse
Affiliation(s)
- Maryam Asadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institute, 11282 Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|
32
|
Zhang X, Liu Y, Clark KL, Padget AM, Alexander PG, Dai J, Zhu W, Lin H. Mesenchymal stem cell-derived extracellular matrix (mECM): a bioactive and versatile scaffold for musculoskeletal tissue engineering. ACTA ACUST UNITED AC 2020; 16:012002. [PMID: 32906098 DOI: 10.1088/1748-605x/abb6b3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cell-derived extracellular matrix (mECM) has received increased attention in the fields of tissue engineering and scaffold-assisted regeneration. mECM exhibits many unique characteristics, such as robust bioactivity, biocompatibility, ease of use, and the potential for autologous tissue engineering. As the use of mECM has increased in musculoskeletal tissue engineering, it should be noted that mECM generated from current methods has inherited insufficiencies, such as low mechanical properties and lack of internal architecture. In this review, we first summarize the development and use of mECM as a scaffold for musculoskeletal tissue regeneration and highlight our current progress on moving this technology toward clinical application. Then we review recent methods to improve the properties of mECM that will overcome current weaknesses. Lastly, we propose future studies that will pave the road for mECM application in regenerating tissues in humans.
Collapse
Affiliation(s)
- Xiurui Zhang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America. Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, People's Republic of China. These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Benito-Jardón M, Strohmeyer N, Ortega-Sanchís S, Bharadwaj M, Moser M, Müller DJ, Fässler R, Costell M. αv-Class integrin binding to fibronectin is solely mediated by RGD and unaffected by an RGE mutation. J Cell Biol 2020; 219:e202004198. [PMID: 33141174 PMCID: PMC7644020 DOI: 10.1083/jcb.202004198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Fibronectin (FN) is an essential glycoprotein of the extracellular matrix; binds integrins, syndecans, collagens, and growth factors; and is assembled by cells into complex fibrillar networks. The RGD motif in FN facilitates cell binding- and fibrillogenesis through binding to α5β1 and αv-class integrins. However, whether RGD is the sole binding site for αv-class integrins is unclear. Most notably, substituting aspartate with glutamate (RGE) was shown to eliminate integrin binding in vitro, while mouse genetics revealed that FNRGE preserves αv-class integrin binding and fibrillogenesis. To address this conflict, we employed single-cell force spectroscopy, engineered cells, and RGD motif-deficient mice (Fn1ΔRGD/ΔRGD) to search for additional αv-class integrin-binding sites. Our results demonstrate that α5β1 and αv-class integrins solely recognize the FN-RGD motif and that αv-class, but not α5β1, integrins retain FN-RGE binding. Furthermore, Fn1ΔRGD/ΔRGD tissues and cells assemble abnormal and dysfunctional FNΔRGD fibrils in a syndecan-dependent manner. Our data highlight the central role of FN-RGD and the functionality of FN-RGE for αv-class integrins.
Collapse
Affiliation(s)
- María Benito-Jardón
- Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
- Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Nico Strohmeyer
- Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Sheila Ortega-Sanchís
- Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
- Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | | | - Markus Moser
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Mercedes Costell
- Department of Biochemistry and Molecular Biology, Universitat de València, Burjassot, Spain
- Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| |
Collapse
|
34
|
Assunção M, Dehghan-Baniani D, Yiu CHK, Später T, Beyer S, Blocki A. Cell-Derived Extracellular Matrix for Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol 2020; 8:602009. [PMID: 33344434 PMCID: PMC7744374 DOI: 10.3389/fbioe.2020.602009] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Cell-derived extracellular matrices (CD-ECMs) captured increasing attention since the first studies in the 1980s. The biological resemblance of CD-ECMs to their in vivo counterparts and natural complexity provide them with a prevailing bioactivity. CD-ECMs offer the opportunity to produce microenvironments with costumizable biological and biophysical properties in a controlled setting. As a result, CD-ECMs can improve cellular functions such as stemness or be employed as a platform to study cellular niches in health and disease. Either on their own or integrated with other materials, CD-ECMs can also be utilized as biomaterials to engineer tissues de novo or facilitate endogenous healing and regeneration. This review provides a brief overview over the methodologies used to facilitate CD-ECM deposition and manufacturing. It explores the versatile uses of CD-ECM in fundamental research and therapeutic approaches, while highlighting innovative strategies. Furthermore, current challenges are identified and it is accentuated that advancements in methodologies, as well as innovative interdisciplinary approaches are needed to take CD-ECM-based research to the next level.
Collapse
Affiliation(s)
- Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Dorsa Dehghan-Baniani
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Thomas Später
- Institute for Clinical and Experimental Surgery, University of Saarland, Saarbrücken, Germany
| | - Sebastian Beyer
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
35
|
Li M, Zhang A, Li J, Zhou J, Zheng Y, Zhang C, Xia D, Mao H, Zhao J. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact Mater 2020; 5:938-948. [PMID: 32637756 PMCID: PMC7330453 DOI: 10.1016/j.bioactmat.2020.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Extracellular matrix (ECM) with mimetic tissue niches was attractive to facilitate tissue regeneration in situ via recruitment of endogenous cells and stimulation of self-healing process. However, how to engineer the complicate tissue specific ECM with unique matrisome in vitro was a challenge of ECM-based biomaterials in tissue engineering and regenerative medicine. Here, we introduced coculture system to engineer bone mimetic ECM niche guided by cell-cell communication. In the cocultures, fibroblasts promoted osteogenic differentiation of osteoblasts via extracellular vesicles. The generated ECM (MN-ECM) displayed a unique appearance of morphology and biological components. The advantages of MN-ECM were demonstrated with promotion of multiple cellular behaviors (proliferation, adhesion and osteogenic mineralization) in vitro and bone regeneration in vivo. Moreover, proteomic analysis was used to clarify the molecular mechanism of MN-ECM, which revealed a specific matrisome signature. The present study provides a novel strategy to generate ECM with tissue mimetic niches via cell-cell communication in a coculture system, which forwards the development of tissue-bioactive ECM engineering along with deepening the understanding of ECM niches regulated by cells for bone tissue engineering.
Collapse
Affiliation(s)
- Mei Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
- Ningbo Institute of Medical Sciences, Ningbo, Zhejiang, PR China
| | - Anqi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiajing Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jing Zhou
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Yanan Zheng
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Chi Zhang
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Dongdong Xia
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
36
|
Satyam A, Tsokos MG, Tresback JS, Zeugolis DI, Tsokos GC. Cell derived extracellular matrix-rich biomimetic substrate supports podocyte proliferation, differentiation and maintenance of native phenotype. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1908752. [PMID: 33692659 PMCID: PMC7939063 DOI: 10.1002/adfm.201908752] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Indexed: 06/12/2023]
Abstract
Current technologies and available scaffold materials do not support long-term cell viability, differentiation and maintenance of podocytes, the ultra-specialized kidney resident cells that are responsible for the filtration of the blood. We developed a new platform which imitates the native kidney microenvironment by decellularizing fibroblasts grown on surfaces with macromolecular crowding. Human immortalized podocytes cultured on this platform displayed superior viability and metabolic activity up to 28 days compared to podocytes cultured on tissue culture plastic surfaces. The new platform displayed a softer surface and an abundance of growth factors and associated molecules. More importantly it enabled podocytes to display molecules responsible for their structure and function and a superior development of intercellular connections/interdigitations, consistent with maturation. The new platform can be used to study podocyte biology, test drug toxicity and determine whether sera from patients with podocytopathies are involved in the expression of glomerular pathology.
Collapse
Affiliation(s)
- Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| | - Jason S Tresback
- Center for Nanoscale Systems, Laboratory for Integrated Science and Engineering, Harvard University, Cambridge, MA, 02138, United States
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CURAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, United States
| |
Collapse
|
37
|
Life inter vivos: modeling regeneration in the relation between bodies and biomaterials. BIOSOCIETIES 2020. [DOI: 10.1057/s41292-020-00206-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Goh SK, Halfter W, Richardson T, Bertera S, Vaidya V, Candiello J, Bradford M, Banerjee I. Organ-specific ECM arrays for investigating Cell-ECM interactions during stem cell differentiation. Biofabrication 2020; 13. [PMID: 33045682 DOI: 10.1088/1758-5090/abc05f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
Abstract
Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which are important physiological regulators of stem cell function and fate. Recapitulating this native ECM microenvironment niche is best facilitated by decellularized tissue/ organ derived ECM, which can faithfully reproduce the physiological environment with high fidelity to in vivo condition and promote tissue-specific cellular development and maturation. Recognizing the need for organ specific ECM in a 3D culture environment in driving phenotypic differentiation and maturation of hPSCs, we fabricated an ECM array platform using native-mimicry ECM from decellularized organs (namely pancreas, liver and heart), which allows cell-ECM interactions in both 2D and 3D configuration. The ECM array was integrated with rapid quantitative imaging for a systematic investigation of matrix protein profiles and sensitive measurement of cell-ECM interaction during hPSC differentiation. We tested our platform by elucidating the role of the three different organ-specific ECM in supporting induced pancreatic differentiation of hPSCs. While the focus of this report is on pancreatic differentiation, the developed platform is versatile to be applied to characterize any lineage specific differentiation.
Collapse
Affiliation(s)
- Saik Kia Goh
- University of Pittsburgh, Pittsburgh, 15261, UNITED STATES
| | - Willi Halfter
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Thomas Richardson
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Suzanne Bertera
- Allegheny Health Network, Pittsburgh, Pennsylvania, UNITED STATES
| | - Vimal Vaidya
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Joe Candiello
- University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Mahalia Bradford
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, UNITED STATES
| | - Ipsita Banerjee
- Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, UNITED STATES
| |
Collapse
|
39
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
40
|
Pigeot S, Bourgine PE, Claude J, Scotti C, Papadimitropoulos A, Todorov A, Epple C, Peretti GM, Martin I. Orthotopic Bone Formation by Streamlined Engineering and Devitalization of Human Hypertrophic Cartilage. Int J Mol Sci 2020; 21:ijms21197233. [PMID: 33008121 PMCID: PMC7582540 DOI: 10.3390/ijms21197233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/25/2022] Open
Abstract
Most bones of the human body form and heal through endochondral ossification, whereby hypertrophic cartilage (HyC) is formed and subsequently remodeled into bone. We previously demonstrated that HyC can be engineered from human mesenchymal stromal cells (hMSC), and subsequently devitalized by apoptosis induction. The resulting extracellular matrix (ECM) tissue retained osteoinductive properties, leading to ectopic bone formation. In this study, we aimed at engineering and devitalizing upscaled quantities of HyC ECM within a perfusion bioreactor, followed by in vivo assessment in an orthotopic bone repair model. We hypothesized that the devitalized HyC ECM would outperform a clinical product currently used for bone reconstructive surgery. Human MSC were genetically engineered with a gene cassette enabling apoptosis induction upon addition of an adjuvant. Engineered hMSC were seeded, differentiated, and devitalized within a perfusion bioreactor. The resulting HyC ECM was subsequently implanted in a 10-mm rabbit calvarial defect model, with processed human bone (Maxgraft®) as control. Human MSC cultured in the perfusion bioreactor generated a homogenous HyC ECM and were efficiently induced towards apoptosis. Following six weeks of in vivo implantation, microcomputed tomography and histological analyses of the defects revealed an increased bone formation in the defects filled with HyC ECM as compared to Maxgraft®. This work demonstrates the suitability of engineered devitalized HyC ECM as a bone substitute material, with a performance superior to a state-of-the-art commercial graft. Streamlined generation of the devitalized tissue transplant within a perfusion bioreactor is relevant towards standardized and automated manufacturing of a clinical product.
Collapse
Affiliation(s)
- Sébastien Pigeot
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (S.P.); (P.E.B.); (A.P.); (A.T.)
| | - Paul Emile Bourgine
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (S.P.); (P.E.B.); (A.P.); (A.T.)
| | - Jaquiery Claude
- Department of Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.C.); (C.E.)
| | - Celeste Scotti
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland;
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
| | - Adam Papadimitropoulos
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (S.P.); (P.E.B.); (A.P.); (A.T.)
| | - Atanas Todorov
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (S.P.); (P.E.B.); (A.P.); (A.T.)
| | - Christian Epple
- Department of Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.C.); (C.E.)
| | - Giuseppe M. Peretti
- IRCCS Istituto Ortopedico Galeazzi, 20161 Milan, Italy;
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (S.P.); (P.E.B.); (A.P.); (A.T.)
- Department of Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (J.C.); (C.E.)
- Correspondence:
| |
Collapse
|
41
|
Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N, Efimenko A. Mesenchymal Stromal Cell-Produced Components of Extracellular Matrix Potentiate Multipotent Stem Cell Response to Differentiation Stimuli. Front Cell Dev Biol 2020; 8:555378. [PMID: 33072743 PMCID: PMC7536557 DOI: 10.3389/fcell.2020.555378] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) provides both structural support and dynamic microenvironment for cells regulating their behavior and fate. As a critical component of stem cell niche ECM maintains stem cells and activates their proliferation and differentiation under specific stimuli. Mesenchymal stem/stromal cells (MSCs) regulate tissue-specific stem cell functions locating in their immediate microenvironment and producing various bioactive factors, including ECM components. We evaluated the ability of MSC-produced ECM to restore stem and progenitor cell microenvironment in vitro and analyzed the possible mechanisms of its effects. Human MSC cell sheets were decellularized by different agents (detergents, enzymes, and apoptosis inductors) to select the optimized combination (CHAPS and DNAse I) based on the conservation of decellularized ECM (dECM) structure and effectiveness of DNA removal. Prepared dECM was non-immunogenic, supported MSC proliferation and formation of larger colonies in colony-forming unit-assay. Decellularized ECM effectively promoted MSC trilineage differentiation (adipogenic, osteogenic, and chondrogenic) compared to plastic or plastic covered by selected ECM components (collagen, fibronectin, laminin). Interestingly, dECM produced by human fibroblasts could not enhance MSC differentiation like MSC-produced dECM, indicating cell-specific functionality of dECM. We demonstrated the significant integrin contribution in dECM-cell interaction by blocking the stimulatory effects of dECM with RGD peptide and suggested the involvement of key intracellular signaling pathways activation (pERK/ERK and pFAK/FAK axes, pYAP/YAP and beta-catenin) in the observed processes based on the results of inhibitory analysis. Taken together, we suppose that MSC-produced dECM may mimic stem cell niche components in vitro and maintain multipotent progenitor cells to insure their effective response to external differentiating stimuli upon activation. The obtained data provide more insights into the possible role of MSC-produced ECM in stem and progenitor cell regulation within their niches. Our results are also useful for the developing of dECM-based cell-free products for regenerative medicine.
Collapse
Affiliation(s)
- Ekaterina Novoseletskaya
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Peter Nimiritsky
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Roman Eremichev
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | - Irina Milovskaya
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei Rodionov
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Nikolai Omelyanenko
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Keller S, Liedek A, Shendi D, Bach M, Tovar GEM, Kluger PJ, Southan A. Eclectic characterisation of chemically modified cell-derived matrices obtained by metabolic glycoengineering and re-assessment of commonly used methods. RSC Adv 2020; 10:35273-35286. [PMID: 35515672 PMCID: PMC9056897 DOI: 10.1039/d0ra06819e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 01/28/2023] Open
Abstract
Azide-bearing cell-derived extracellular matrices ("clickECMs") have emerged as a highly exciting new class of biomaterials. They conserve substantial characteristics of the natural extracellular matrix (ECM) and offer simultaneously small abiotic functional groups that enable bioorthogonal bioconjugation reactions. Despite their attractiveness, investigation of their biomolecular composition is very challenging due to the insoluble and highly complex nature of cell-derived matrices (CDMs). Yet, thorough qualitative and quantitative analysis of the overall material composition, organisation, localisation, and distribution of typical ECM-specific biomolecules is essential for consistent advancement of CDMs and the understanding of the prospective functions of the developed biomaterial. In this study, we evaluated frequently used methods for the analysis of complex CDMs. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and (immune)histochemical staining methods in combination with several microscopic techniques were found to be highly eligible. Commercially available colorimetric protein assays turned out to deliver inaccurate information on CDMs. In contrast, we determined the nitrogen content of CDMs by elementary analysis and converted it into total protein content using conversion factors which were calculated from matching amino acid compositions. The amount of insoluble collagens was assessed based on the hydroxyproline content. The Sircol™ assay was identified as a suitable method to quantify soluble collagens while the Blyscan™ assay was found to be well-suited for the quantification of sulphated glycosaminoglycans (sGAGs). Eventually, we propose a series of suitable methods to reliably characterise the biomolecular composition of fibroblast-derived clickECM.
Collapse
Affiliation(s)
- Silke Keller
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Anke Liedek
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| | - Dalia Shendi
- Department of Biomedical Engineering, Worcester Polytechnic Institute Worcester MA USA
| | - Monika Bach
- University of Hohenheim, Core Facility, Module 3: Analytical Chemistry Unit Emil-Wolff-Str. 12 70599 Stuttgart Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany .,Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB Nobelstraße 12 70569 Stuttgart Germany
| | - Petra J Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstraße 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart Nobelstraße 12 70569 Stuttgart Germany
| |
Collapse
|
43
|
Zhang X, Du R, Luo N, Xiang R, Shen W. Aspirin mediates histone methylation that inhibits inflammation-related stemness gene expression to diminish cancer stemness via COX-independent manner. Stem Cell Res Ther 2020; 11:370. [PMID: 32854760 PMCID: PMC7450956 DOI: 10.1186/s13287-020-01884-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 07/01/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background The widely recognized anti-cancer potential of aspirin has created a broad interest to explore the clinical benefits of aspirin in cancer therapy. However, the current understanding of the molecular mechanisms involved in the anti-cancer potential of aspirin remains limited. Methods Cancer stemness assays which contained ALDH, side population, chemo-resistance, sphere formation, and tumorigenesis were performed to validate aspirin function in vitro and in vivo. Histone modification assay was performed to check the effect of aspirin on histone methylation as well as the activity of HDAC and KDM6A/B. Inhibitor in vivo assay was performed to evaluate therapeutic effects of various inhibitor combination manners. Results In regards to in vitro studies, aspirin diminishes cancer cell stemness properties which include reducing the ALDH+ subpopulation, side population, chemo-resistance, and sphere formation in three cancer types. In regards to in vivo studies, aspirin decreases tumor growth and metastasis and prolongs survival. In addition, our results showed that aspirin inhibits inflammation-related stemness gene expression (especially ICAM3) identified by a high-throughput siRNA platform. In regards to the underlying molecular mechanism of action, aspirin reduces histone demethylase (KDM6A/B) expression that mediates histone methylation and suppresses gene expression via a COX-independent manner. In regards to therapeutic strategies, aspirin combined HDM inhibitors, ICAM3 downstream signaling Src/PI3K inhibitors, or ICAM3 inhibitor Lifitigrast prevents cancer progression in vivo. Conclusions The aforementioned findings suggest a molecular model that explains how aspirin diminishes cancer cell stemness properties. These findings may provide novel targets for therapeutic strategies involving aspirin in the prevention of cancer progression.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China
| | - Renle Du
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Na Luo
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, 300071, China.,2011 Project Collaborative Innovation Center for Biotherapy of Ministry of Education, 94 Weijin Road, Tianjin, 300071, China
| | - Wenzhi Shen
- Department of Pathology and Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Jining, 272067, China.
| |
Collapse
|
44
|
Matsugaki A, Matsuzaka T, Murakami A, Wang P, Nakano T. 3D Printing of Anisotropic Bone-Mimetic Structure with Controlled Fluid Flow Stimuli for Osteocytes: Flow Orientation Determines the Elongation of Dendrites. Int J Bioprint 2020; 6:293. [PMID: 33088998 PMCID: PMC7557340 DOI: 10.18063/ijb.v6i4.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023] Open
Abstract
Although three-dimensional (3D) bioprinting techniques enable the construction of various living tissues and organs, the generation of bone-like oriented microstructures with anisotropic texture remains a challenge. Inside the mineralized bone matrix, osteocytes play mechanosensing roles in an ordered manner with a well-developed lacunar-canaliculi system. Therefore, control of cellular arrangement and dendritic processes is indispensable for construction of artificially controlled 3D bone-mimetic architecture. Herein, we propose an innovative methodology to induce controlled arrangement of osteocyte dendritic processes using the laminated layer method of oriented collagen sheets, combined with a custom-made fluid flow stimuli system. Osteocyte dendritic processes showed elongation depending on the competitive directional relationship between flow and substrate. To the best of our knowledge, this study is the first to report the successful construction of the anisotropic bone-mimetic microstructure and further demonstrate that the dendritic process formation in osteocytes can be controlled with selective fluid flow stimuli, specifically by regulating focal adhesion. Our results demonstrate how osteocytes adapt to mechanical stimuli by optimizing the anisotropic maturation of dendritic cell processes.
Collapse
Affiliation(s)
- Aira Matsugaki
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tadaaki Matsuzaka
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ami Murakami
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Pan Wang
- Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, 637662, Singapore
| | - Takayoshi Nakano
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
45
|
Nyambat B, Manga YB, Chen CH, Gankhuyag U, Pratomo WP A, Kumar Satapathy M, Chuang EY. New Insight into Natural Extracellular Matrix: Genipin Cross-Linked Adipose-Derived Stem Cell Extracellular Matrix Gel for Tissue Engineering. Int J Mol Sci 2020; 21:E4864. [PMID: 32660134 PMCID: PMC7402347 DOI: 10.3390/ijms21144864] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/04/2023] Open
Abstract
The cell-derived extracellular matrix (ECM) is associated with a lower risk of pathogen transfer, and it possesses an ideal niche with growth factors and complex fibrillar proteins for cell attachment and growth. However, the cell-derived ECM is found to have poor biomechanical properties, and processing of cell-derived ECM into gels is scarcely studied. The gel provides platforms for three-dimensional cell culture, as well as injectable biomaterials, which could be delivered via a minimally invasive procedure. Thus, in this study, an adipose-derived stem cell (ADSC)-derived ECM gel was developed and cross-linked by genipin to address the aforementioned issue. The genipin cross-linked ADSC ECM gel was fabricated via several steps, including rabbit ADSC culture, cell sheets, decellularization, freeze-thawing, enzymatic digestion, neutralization of pH, and cross-linking. The physicochemical characteristics and cytocompatibility of the gel were evaluated. The results demonstrated that the genipin cross-linking could significantly enhance the mechanical properties of the ADSC ECM gel. Furthermore, the ADSC ECM was found to contain collagen, fibronectin, biglycan, and transforming growth factor (TGF)-β1, which could substantially maintain ADSC, skin, and ligament fibroblast cell proliferation. This cell-derived natural material could be suitable for future regenerative medicine and tissue engineering application.
Collapse
Affiliation(s)
- Batzaya Nyambat
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Yankuba B. Manga
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Chih-Hwa Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Research Center of Biomedical Device, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University–Shuang Ho Hospital, 291 Zhongzheng Rd., Zhonghe District, New Taipei City 11031, Taiwan
| | - Uuganbayar Gankhuyag
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Andi Pratomo WP
- International Master/Ph.D. Program in Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Mantosh Kumar Satapathy
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; (B.N.); (Y.B.M.); (U.G.); (M.K.S.)
- Cell Physiology and Molecular Image Research Center, Taipei Medical University–Wan Fang Hospital, 111, Sec. 3, Xinglong 11 Road, Wenshan District, Taipei 116, Taiwan
| |
Collapse
|
46
|
Marinkovic M, Tran ON, Block TJ, Rakian R, Gonzalez AO, Dean DD, Yeh CK, Chen XD. Native extracellular matrix, synthesized ex vivo by bone marrow or adipose stromal cells, faithfully directs mesenchymal stem cell differentiation. Matrix Biol Plus 2020; 8:100044. [PMID: 33543037 PMCID: PMC7852316 DOI: 10.1016/j.mbplus.2020.100044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are highly responsive to cues in the microenvironment (niche) that must be recapitulated ex vivo to study their authentic behavior. In this study, we hypothesized that native bone marrow (BM)- and adipose (AD)-derived extracellular matrices (ECM) were unique in their ability to control MSC behavior. To test this, we compared proliferation and differentiation of bone marrow (BM)-derived MSCs when maintained on native decellularized ECM produced by BM versus AD stromal cells (i.e. BM- versus AD-ECM). We found that both ECMs contained similar types of collagens but differed in the relative abundance of each. Type VI collagen was the most abundant (≈60% of the total collagen present), while type I was the next most abundant at ≈30%. These two types of collagen were found in nearly equal proportions in both ECMs. In contrast, type XII collagen was almost exclusively found in AD-ECM, while types IV and V were only found in BM-ECM. Physically and mechanically, BM-ECM was rougher and stiffer, but less adhesive, than AD-ECM. During 14 days in culture, both ECMs supported BM-MSC proliferation better than tissue culture plastic (TCP), although MSC-related surface marker expression remained relatively high on all three culture surfaces. BM-MSCs cultured in osteogenic (OS) differentiation media on BM-ECM displayed a significant increase in calcium deposition in the matrix, indicative of osteogenesis, while BM-MSCs cultured on AD-ECM in the presence of adipogenic (AP) differentiation media showed a significant increase in Oil Red O staining, indicative of adipogenesis. Further, culture on BM-ECM significantly increased BM-MSC-responsiveness to rhBMP-2 (an osteogenic inducer), while culture on AD-ECM enhanced responsiveness to rosiglitazone (an adipogenic inducer). These findings support our hypothesis and indicate that BM- and AD-ECMs retain unique elements, characteristic of their tissue-specific microenvironment (niche), which promote retention of MSC differentiation state (i.e. "stemness") during expansion and direct cell response to lineage-specific inducers. This study provides a new paradigm for precisely controlling MSC fate to a desired cell lineage for tissue-specific cell-based therapies.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Travis J Block
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Rubie Rakian
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Aaron O Gonzalez
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Audie Murphy VA Medical Center, San Antonio, TX 78229, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA.,Audie Murphy VA Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
47
|
Ibuprofen mediates histone modification to diminish cancer cell stemness properties via a COX2-dependent manner. Br J Cancer 2020; 123:730-741. [PMID: 32528119 PMCID: PMC7463005 DOI: 10.1038/s41416-020-0906-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Background The anticancer potential of ibuprofen has created a broad interest to explore the clinical benefits of ibuprofen in cancer therapy. However, the current understanding of the molecular mechanisms involved in the anticancer potential of ibuprofen remains limited. Methods Cancer stemness assays to validate ibuprofen function in vitro and in vivo. Histone modification assays to check the effect of ibuprofen on histone acetylation/methylation, as well as the activity of HDAC and KDM6A/B. Inhibitors’ in vivo assays to evaluate therapeutic effects of various inhibitors’ combination manners. Results In our in vitro studies, we report that ibuprofen diminishes cancer cell stemness properties that include reducing the ALDH + subpopulation, side population and sphere formation in three cancer types. In our in vivo studies, we report that ibuprofen decreases tumour growth, metastasis and prolongs survival. In addition, our results showed that ibuprofen inhibits inflammation-related stemness gene expression (especially ICAM3) identified by a high-throughput siRNA platform. In regard to the underlying molecular mechanism of action, we report that ibuprofen reduces HDACs and histone demethylase (KDM6A/B) expression that mediates histone acetylation and methylation, and suppresses gene expression via a COX2-dependent way. In regard to therapeutic strategies, we report that ibuprofen combined HDAC/HDM inhibitors prevents cancer progression in vivo. Conclusions The aforementioned findings suggest a molecular model that explains how ibuprofen diminishes cancer cell stemness properties. These may provide novel targets for therapeutic strategies involving ibuprofen in the prevention of cancer progression.
Collapse
|
48
|
Papa S, Pizzetti F, Perale G, Veglianese P, Rossi F. Regenerative medicine for spinal cord injury: focus on stem cells and biomaterials. Expert Opin Biol Ther 2020; 20:1203-1213. [PMID: 32421405 DOI: 10.1080/14712598.2020.1770725] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a dramatic medical pathology consequence of a trauma (primary injury). However, most of the post-traumatic degeneration of the tissue is caused by the so-called secondary injury, which is known to be a multifactorial process. This, indeed, includes a wide spectrum of events: blood-brain barrier dysfunction, local inflammation, neuronal death, demyelination and disconnection of nerve pathways. AREAS COVERED Cell therapy represents a promising cure to target diseases and disorders at the cellular level, by restoring cell population or using cells as carriers of therapeutic cargo. In particular, regenerative medicine with stem cells represents the most appealing category to be used, thanks to their peculiar features. EXPERT OPINION Many preclinical research studies demonstrated that cell treatment can improve animal sensory/motor functions and so demonstrated to be very promising for clinical trials. In particular, recent advances have led to the development of biomaterials aiming to promote in situ cell delivery. This review digs into this topic discussing the possibility of cell treatment to improve medical chances in SCI repair.
Collapse
Affiliation(s)
- Simonetta Papa
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Fabio Pizzetti
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy.,Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI) , Lugano, Switzerland.,Ludwig Boltzmann Institute for Experimental and Clinical Traumatology , Vienna, Austria
| | - Pietro Veglianese
- Department of Neuroscience, IRCCS Istituto Di Ricerche Farmacologiche "Mario Negri" , Milan, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta" , Milan, Italy
| |
Collapse
|
49
|
Liu W, Sun Y, Dong X, Yin Q, Zhu H, Li S, Zhou J, Wang C. Cell-derived extracellular matrix-coated silk fibroin scaffold for cardiogenesis of brown adipose stem cells through modulation of TGF-β pathway. Regen Biomater 2020; 7:403-412. [PMID: 32793385 PMCID: PMC7415001 DOI: 10.1093/rb/rbaa011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
The cell-derived extracellular matrix (ECM)-modified scaffolds have advantages of mimic tissue specificity and been thought to better mimic the native cellular microenvironment in vitro. ECM derived from cardiac fibroblasts (CFs) are considered as key elements that provide a natural cell growth microenvironment and change the fate of cardiomyocytes (CMs). Here, a new hybrid scaffold is designed based on silk fibroin (SF) scaffold and CFs-derived ECM. CFs were seeded on the SF scaffold for 10 days culturing and decellularized to produce CFs-derived ECM-coated SF scaffold. The results showed that the cell-derived ECM-modified silk fibroin scaffold material contained collagen, laminin, fibronectin and other ECM components with myocardial-like properties. Further to explore its effects on brown adipose stem cells (BASCs) differentiation into CMs. We found that the CF-derived ECM-coated scaffold also increased the expression of CM-specific proteins (e.g. cardiac troponin T and α-actinin) of BASCs. Notably, the β1-integrin-dependent transforming growth factor-β1 signaling pathway was also involved in the regulation of CF-derived ECM by promoting the differentiation of BASCs into CMs. Overall, these findings provide insights into the bionic manufacturing of engineered cardiac tissues (ECTs) and establish a theoretical basis for the construction of ECTs.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150080, P.R. China.,Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Yanfeng Sun
- Pediatric, Clinical Cancer, The Armed Police General Hospital, 69 Yongding Road, Beijing 100080, P.R. China
| | - Xiaohui Dong
- Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Qi Yin
- Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Siwei Li
- Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Jin Zhou
- Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| | - Changyong Wang
- School of Life Science and Technology, Harbin Institute of Technology, 92 West Dazhi Street, Nan Gang District, Harbin 150080, P.R. China.,Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China.,Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China
| |
Collapse
|
50
|
Du P, Da Costa ADS, Savitri C, Ha SS, Wang PY, Park K. An injectable, self-assembled multicellular microsphere with the incorporation of fibroblast-derived extracellular matrix for therapeutic angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110961. [PMID: 32487382 DOI: 10.1016/j.msec.2020.110961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 04/03/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Decellularized human lung fibroblast-derived matrix (hFDM) has demonstrated its excellent proangiogenic capability. In this study, we propose a self-assembled, injectable multicellular microspheres containing human umbilical vein endothelial cells (HUVECs) and mesenchymal stem cell (MSCs), collagen hydrogel (Col), and hFDM toward therapeutic angiogenesis. Those multicellular microspheres are spontaneously formed by the mixtures of cell and hydrogel after being dropped on the parafilm for several hours. The size of microspheres can be manipulated via adjusting the initial volume of droplets and the culture period. The cells in the microspheres are highly viable. Multicellular microspheres show good capability of cell migration on 2D culture plate and also exhibit active cell sprouting in 3D environment (Col) forming capillary-like structures. We also find that multiple angiogenic-related factors are significantly upregulated with the multicellular microspheres prepared via Col and hFDM (Col/hFDM) than those prepared using Col alone or single cells (harvested from cocultured HUVECs/MSCs in monolayer). For therapeutic efficacy evaluation, three different groups of single cells, Col and Col/hFDM microspheres are injected to a hindlimb ischemic model, respectively, along with PBS injection as a control group. It is notable that Col/hFDM microspheres significantly improve the blood reperfusion and greatly attenuate the fibrosis level of the ischemic regions. In addition, Col/hFDM microspheres show higher cell engraftment level than that of the other groups. The incorporation of transplanted cells with host vasculature is detectable only with the treatment of Col/hFDM. Current results suggest that hFDM plays an important role in the multicellular microspheres for angiogenic cellular functions in vitro as well as in vivo. Taken together, our injectable multicellular microspheres (Col/hFDM) offer a very promising platform for cell delivery and tissue regenerative applications.
Collapse
Affiliation(s)
- Ping Du
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Cininta Savitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Peng-Yuan Wang
- Center for Human Tissues & Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|