1
|
Avelar RA, Palmer D, Kulaga AY, Fuellen G. Conserved biological processes in partial cellular reprogramming: Relevance to aging and rejuvenation. Ageing Res Rev 2025; 108:102737. [PMID: 40122394 DOI: 10.1016/j.arr.2025.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Partial or transient cellular reprogramming is defined by the limited induction of pluripotency factors without full dedifferentiation of cells to a pluripotent state. Comparing in vitro and in vivo mouse studies, and in vitro studies in humans, supported by visualizations of data interconnections, we show consistent patterns in how such reprogramming modulates key biological processes. Generally, partial reprogramming drives dynamic chromatin remodelling, involving histone modifications that regulate accessibility and facilitate pluripotency gene activation while silencing somatic identity. These changes are accompanied by modifications in stress response programs, such as inflammation, autophagy, and cellular senescence, as well as improved mitochondrial activity and dysregulation of extracellular matrix pathways. We also underscore the challenges in evaluating complex processes like aging and cellular senescence, given the variability in biomarkers used across studies. Overall, we highlight biological processes consistently influenced by reprogramming while noting that some effects are context-dependent, varying according to cell type, species, sex, recovery time, and the reprogramming method employed. These insights inform future research and potential therapeutic applications in aging and regenerative medicine.
Collapse
Affiliation(s)
- Roberto A Avelar
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Daniel Palmer
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany.
| | - Anton Y Kulaga
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; Systems Biology of Aging Group, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania.
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Germany; School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Ziętek MM, Bihorac A, Wenta-Muchalska E, Duszewska AM, Olech W, Sampino S, Bernat A. Wisent Somatic Cells Resist Reprogramming by the PiggyBac Transposon System: A Case Study Highlighting Methodological and Conservation Hurdles. Int J Mol Sci 2025; 26:4327. [PMID: 40362564 PMCID: PMC12072796 DOI: 10.3390/ijms26094327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The European wisent (Bison bonasus), an iconic yet genetically vulnerable species, faces ongoing conservation challenges due to a restricted gene pool. Advances in induced pluripotent stem cell (iPSC) technology offer promising prospects for preserving and restoring genetic diversity in endangered species. In this study, we sought to reprogram wisent somatic cells into iPSCs using the PiggyBac transposon system, a non-viral method known for being successfully applied in bovine species. We applied a six-factor reprogramming cocktail (OCT4, SOX2, KLF4, LIN28, c-MYC, NANOG) alongside small-molecule enhancers to fibroblasts isolated from adult wisent tissue. While initial colony formation was observed, the reprogrammed cells exhibited limited proliferation and failed to maintain stable pluripotency, suggesting intrinsic barriers to complete reprogramming. Despite optimizing culture conditions, including hypoxia and extracellular matrix modifications, the reprogramming efficiency remained low. Our findings indicate that wisent somatic cells may require alternative reprogramming strategies, such as new-generation delivery systems and epigenetic modulators, to achieve stable iPSC lines. This study underscores the need for species-specific optimization of reprogramming protocols and highlights the potential of emerging cellular technologies for conservation efforts. Future research integrating advanced reprogramming tools may pave the way for genetic rescue strategies in wisent and other endangered species.
Collapse
Affiliation(s)
- Marta Marlena Ziętek
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Ajna Bihorac
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Elżbieta Wenta-Muchalska
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Anna Maria Duszewska
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Wanda Olech
- Department of Animal Genetics and Conservation, Faculty of Animal Science, Warsaw University of Life Sciences, 02-787 Warszawa, Poland
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Agnieszka Bernat
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk & Medical University of Gdansk, 80-307 Gdansk, Poland
| |
Collapse
|
3
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Lykkesfeldt J, Carr AC, Tveden-Nyborg P. The pharmacology of vitamin C. Pharmacol Rev 2025; 77:100043. [PMID: 39986139 DOI: 10.1016/j.pharmr.2025.100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/14/2025] [Indexed: 02/24/2025] Open
Abstract
Ascorbic acid, the reduced form of vitamin C, is a ubiquitous small carbohydrate. Despite decades of focused research, new metabolic functions of this universal electron donor are still being discovered and add to the complexity of our view of vitamin C in human health. Although praised as an unsurpassed water-soluble antioxidant in plasma and cells, the most interesting functions of vitamin C seem to be its roles as specific electron donor in numerous biological reactions ranging from the well-known hydroxylation of proline to cofactor for the epigenetic master regulators ten-eleven translocation enzymes and Jumonji domain-containing histone-lysine demethylases. Some of these functions may have important implications for disease prevention and treatment and have spiked renewed interest in, eg, vitamin C's potential in cancer therapy. Moreover, some fundamental pharmacokinetic properties of vitamin C remain to be established including if other mechanisms than passive diffusion governs the efflux of ascorbate anions from the cell. Taken together, there still seems to be much to learn about the pharmacology of vitamin C and its role in health and disease. This review explores new avenues of vitamin C and integrates our present knowledge of its pharmacology. SIGNIFICANCE STATEMENT: Vitamin C is involved in multiple biological reactions of which most are essential to human health. Hundreds of millions of people are considered deficient in vitamin C according to accepted guidelines, but little is known about the long-term consequences. Although the complexity of vitamin C's physiology and pharmacology has been widely disregarded in clinical studies for decades, it seems clear that a deeper understanding of particularly its pharmacology holds the key to unravel and possibly exploit the potential of vitamin C in disease prevention and therapy.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Anitra C Carr
- Nutrition in Medicine Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Klagkou E, Valakos D, Foutadakis S, Polyzos A, Papadopoulou A, Vatsellas G, Thanos D. An Unbiased Approach to Identifying Cellular Reprogramming-Inducible Enhancers. Int J Mol Sci 2024; 25:13128. [PMID: 39684837 DOI: 10.3390/ijms252313128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Cellular reprogramming of somatic cells towards induced pluripotency is a multistep stochastic process mediated by the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM), which orchestrate global epigenetic and transcriptional changes. We performed a large-scale analysis of integrated ChIP-seq, ATAC-seq and RNA-seq data and revealed the spatiotemporal highly dynamic pattern of OSKM DNA binding during reprogramming. We found that OSKM show distinct temporal patterns of binding to different classes of pluripotency-related enhancers. Genes involved in reprogramming are regulated by the coordinated activity of multiple enhancers, which are sequentially bound by OSKM for strict transcriptional control. Based on these findings, we developed an unbiased approach to identify Reprogramming-Inducible Enhancers (RIEs), constructed enhancer-traps and isolated cells undergoing reprogramming in real time. We used a representative RIE taken from the Upp1 gene fused to Gfp and isolated cells at different time-points during reprogramming and found that they have unique developmental capacities as they are reprogrammed with high efficiency due to their distinct molecular signatures. In conclusion, our experiments have led to the development of an unbiased method to identify and isolate reprogrammable cells in real time by exploiting the functional dynamics of OSKM, which can be used as efficient reprogramming biomarkers.
Collapse
Affiliation(s)
- Eleftheria Klagkou
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 15772 Athens, Greece
| | - Dimitrios Valakos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
- Section of Biochemistry and Molecular Biology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis, Zografou, 15772 Athens, Greece
| | - Spyros Foutadakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
- Hellenic Institute for the Study of Sepsis (HISS), 11528 Athens, Greece
| | - Alexander Polyzos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill, Cornell Medicine, New York, NY 10065, USA
| | - Angeliki Papadopoulou
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Biology, School of Sciences and Engineering, University of Crete, 70013 Irakleio, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
| | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Efesiou St., 11527 Athens, Greece
| |
Collapse
|
6
|
Zhou J, Guo M, Yang G, Cui X, Hu J, Lin T, Wang H, Gao S, Jiang C, Wang L, Wang Y. Chromatin landscape dynamics during reprogramming towards human naïve and primed pluripotency reveals the divergent function of PRDM1 isoforms. Cell Death Discov 2024; 10:474. [PMID: 39562537 PMCID: PMC11576854 DOI: 10.1038/s41420-024-02230-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) technology holds great potential in both scientific research and clinical applications. It enables the generation of naïve and primed iPSCs from various cell types through different strategies. Despite extensive characterizations of transcriptional and epigenetic factors, the intricacies of chromatin landscape dynamics during naïve and primed reprogramming, particularly in humans, remain poorly understood. In this study, we employed ATAC-seq and RNA-seq analyses to delineate and compare the chromatin landscape of naïve and primed pluripotency through the human secondary reprogramming system. Our investigations revealed several key transcriptional and epigenetic factors pivotal for reprogramming-associated chromatin remodeling. Notably, we found two isoforms of PRDM1, PRDM1α, and PRDM1β, bind to distinct genomic loci and play different roles in the naïve reprogramming process. We proposed an auto-regulatory model explaining the distinct functions of PRDM1α and PRDM1β. Overall, our findings highlight the complexity and diversity of transcription factors in shaping chromatin landscape dynamics and directing the fates of pluripotent cells.
Collapse
Affiliation(s)
- Jianfeng Zhou
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Mingyue Guo
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, 510700, Guangzhou, China
| | - Guang Yang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China
| | - Xinyu Cui
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China
| | - Jindian Hu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Tan Lin
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| | - Cizhong Jiang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, 200065, Shanghai, China.
| | - Liping Wang
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
- Shanghai Tenth People's Hospital, School of Life Sciences and Technology, Tongji University, 200072, Shanghai, China.
| | - Yixuan Wang
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Frontier Science Center for Stem Cell Research, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Zou Z, Wang Q, Wu X, Schultz RM, Xie W. Kick-starting the zygotic genome: licensors, specifiers, and beyond. EMBO Rep 2024; 25:4113-4130. [PMID: 39160344 PMCID: PMC11467316 DOI: 10.1038/s44319-024-00223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/14/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Zygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA. Moreover, functional investigations are yielding insights into the key regulators of ZGA, among which two major classes of players are emerging: licensors and specifiers. Licensors would control the permission of transcription and its timing during ZGA. Accumulating evidence suggests that such licensors of ZGA include regulators of the transcription apparatus and nuclear gatekeepers. Specifiers would instruct the activation of specific genes during ZGA. These specifiers include key transcription factors present at this stage, often facilitated by epigenetic regulators. Based on data primarily from mammals but also results from other species, we discuss in this review how recent research sheds light on the molecular regulation of ZGA and its executors, including the licensors and specifiers.
Collapse
Affiliation(s)
- Zhuoning Zou
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Qiuyan Wang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xi Wu
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Richard M Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
9
|
Peng Y, Zhu J, Zhang Q, Zhang R, Wang Z, Ye Z, Ma N, Qin D, Pei D, Li D. Endogenous retroviral ERVH48-1 promotes human urine cell reprogramming. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:17. [PMID: 39269631 PMCID: PMC11399365 DOI: 10.1186/s13619-024-00200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Endogenous retroviruses (ERVs), once thought to be mere remnants of ancient viral integrations in the mammalian genome, are now recognized for their critical roles in various physiological processes, including embryonic development, innate immunity, and tumorigenesis. Their impact on host organisms is significant driver of evolutionary changes, offering insight into evolutionary mechanisms. In our study, we explored the functionality of ERVs by examining single-cell transcriptomic profiles from human embryonic stem cells and urine cells. This led to the discovery of a unique ERVH48-1 expression pattern between these cell types. Additionally, somatic cell reprogramming efficacy was enhanced when ERVH48-1 was overexpressed in a urine cell-reprogramming system. Induced pluripotent stem cells (iPSCs) generated with ERVH48-1 overexpression recapitulated the traits of those produced by traditional reprogramming approaches, and the resulting iPSCs demonstrated the capability to differentiate into all three germ layers in vitro. Our research elucidated the role of ERVs in somatic cell reprogramming.
Collapse
Affiliation(s)
- Yuling Peng
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou, Guangzhou, Guangdong, 510530, China
| | - Qi Zhang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhenhua Wang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
| | - Zesen Ye
- Guangzhou National Laboratory, Guangzhou, China
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, China
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institutes of Biomedicine and Health, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Hong Kong Institute of Science & Innovation, Guangzhou, Guangzhou, Guangdong, 510530, China
- GuangDong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510799, China.
| |
Collapse
|
10
|
Lin Z, Lin B, Hang C, Lu R, Xiong H, Liu J, Wang S, Gong Z, Zhang M, Li D, Fang G, Ding J, Su X, Guo H, Shi D, Xie D, Liu Y, Liang D, Yang J, Chen YH. A new paradigm for generating high-quality cardiac pacemaker cells from mouse pluripotent stem cells. Signal Transduct Target Ther 2024; 9:230. [PMID: 39237509 PMCID: PMC11377569 DOI: 10.1038/s41392-024-01942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiac biological pacing (BP) is one of the future directions for bradyarrhythmias intervention. Currently, cardiac pacemaker cells (PCs) used for cardiac BP are mainly derived from pluripotent stem cells (PSCs). However, the production of high-quality cardiac PCs from PSCs remains a challenge. Here, we developed a cardiac PC differentiation strategy by adopting dual PC markers and simulating the developmental route of PCs. First, two PC markers, Shox2 and Hcn4, were selected to establish Shox2:EGFP; Hcn4:mCherry mouse PSC reporter line. Then, by stepwise guiding naïve PSCs to cardiac PCs following naïve to formative pluripotency transition and manipulating signaling pathways during cardiac PCs differentiation, we designed the FSK method that increased the yield of SHOX2+; HCN4+ cells with typical PC characteristics, which was 12 and 42 folds higher than that of the embryoid body (EB) and the monolayer M10 methods respectively. In addition, the in vitro cardiac PCs differentiation trajectory was mapped by single-cell RNA sequencing (scRNA-seq), which resembled in vivo PCs development, and ZFP503 was verified as a key regulator of cardiac PCs differentiation. These PSC-derived cardiac PCs have the potential to drive advances in cardiac BP technology, help with the understanding of PCs (patho)physiology, and benefit drug discovery for PC-related diseases as well.
Collapse
Affiliation(s)
- Zheyi Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Bowen Lin
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Chengwen Hang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Hui Xiong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Siyu Wang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zheng Gong
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Desheng Li
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Guojian Fang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Jie Ding
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Xuling Su
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dan Shi
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Jian Yang
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Department of Cell Biology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Yi-Han Chen
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, 200092, China.
- Clinical Center for Heart Disease Research, Tongji University, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
11
|
Barrero M, Lazarenkov A, Blanco E, Palma LG, López-Rubio AV, Bauer M, Bigas A, Di Croce L, Sardina JL, Payer B. The interferon γ pathway enhances pluripotency and X-chromosome reactivation in iPSC reprogramming. SCIENCE ADVANCES 2024; 10:eadj8862. [PMID: 39110794 PMCID: PMC11305397 DOI: 10.1126/sciadv.adj8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) requires activation of the pluripotency network and resetting of the epigenome by erasing the epigenetic memory of the somatic state. In female mouse cells, a critical epigenetic reprogramming step is the reactivation of the inactive X chromosome. Despite its importance, a systematic understanding of the regulatory networks linking pluripotency and X-reactivation is missing. Here, we reveal important pathways for pluripotency acquisition and X-reactivation using a genome-wide CRISPR screen during neural precursor to iPSC reprogramming. In particular, we discover that activation of the interferon γ (IFNγ) pathway early during reprogramming accelerates pluripotency acquisition and X-reactivation. IFNγ stimulates STAT3 signaling and the pluripotency network and leads to enhanced TET-mediated DNA demethylation, which consequently boosts X-reactivation. We therefore gain a mechanistic understanding of the role of IFNγ in reprogramming and X-reactivation and provide a comprehensive resource of the molecular networks involved in these processes.
Collapse
Affiliation(s)
- Mercedes Barrero
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Enrique Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis G. Palma
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | | | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Anna Bigas
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques, CIBERONC, Barcelona 08003, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - José Luis Sardina
- Josep Carreras Leukemia Research Institute (IJC), Badalona 08916, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
12
|
Stoeber S, Godin H, Xu C, Bai L. Pioneer factors: nature or nurture? Crit Rev Biochem Mol Biol 2024; 59:139-153. [PMID: 38778580 PMCID: PMC11444900 DOI: 10.1080/10409238.2024.2355885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic "pioneering activity", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.
Collapse
Affiliation(s)
- Shane Stoeber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Godin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
13
|
Martinez-Sarmiento JA, Cosma MP, Lakadamyali M. Dissecting gene activation and chromatin remodeling dynamics in single human cells undergoing reprogramming. Cell Rep 2024; 43:114170. [PMID: 38700983 PMCID: PMC11195307 DOI: 10.1016/j.celrep.2024.114170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
During cell fate transitions, cells remodel their transcriptome, chromatin, and epigenome; however, it has been difficult to determine the temporal dynamics and cause-effect relationship between these changes at the single-cell level. Here, we employ the heterokaryon-mediated reprogramming system as a single-cell model to dissect key temporal events during early stages of pluripotency conversion using super-resolution imaging. We reveal that, following heterokaryon formation, the somatic nucleus undergoes global chromatin decompaction and removal of repressive histone modifications H3K9me3 and H3K27me3 without acquisition of active modifications H3K4me3 and H3K9ac. The pluripotency gene OCT4 (POU5F1) shows nascent and mature RNA transcription within the first 24 h after cell fusion without requiring an initial open chromatin configuration at its locus. NANOG, conversely, has significant nascent RNA transcription only at 48 h after cell fusion but, strikingly, exhibits genomic reopening early on. These findings suggest that the temporal relationship between chromatin compaction and gene activation during cellular reprogramming is gene context dependent.
Collapse
Affiliation(s)
- Jose A Martinez-Sarmiento
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain; ICREA, 08010 Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080 Guangzhou, China.
| | - Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Hassanie H, Penteado AB, de Almeida LC, Calil RL, da Silva Emery F, Costa-Lotufo LV, Trossini GHG. SETDB1 as a cancer target: challenges and perspectives in drug design. RSC Med Chem 2024; 15:1424-1451. [PMID: 38799223 PMCID: PMC11113007 DOI: 10.1039/d3md00366c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/16/2024] [Indexed: 05/29/2024] Open
Abstract
Genome stability is governed by chromatin structural dynamics, which modify DNA accessibility under the influence of intra- and inter-nucleosomal contacts, histone post-translational modifications (PTMs) and variations, besides the activity of ATP-dependent chromatin remodelers. These are the main ways by which chromatin dynamics are regulated and connected to nuclear processes, which when dysregulated can frequently be associated with most malignancies. Recently, functional crosstalk between histone modifications and chromatin remodeling has emerged as a critical regulatory method of transcriptional regulation during cell destiny choice. Therefore, improving therapeutic outcomes for patients by focusing on epigenetic targets dysregulated in malignancies should help prevent cancer cells from developing resistance to anticancer treatments. For this reason, SET domain bifurcated histone lysine methyltransferase 1 (SETDB1) has gained a lot of attention recently as a cancer target. SETDB1 is a histone lysine methyltransferase that plays an important role in marking euchromatic and heterochromatic regions. Hence, it promotes the silencing of tumor suppressor genes and contributes to carcinogenesis. Some studies revealed that SETDB1 was overexpressed in various human cancer types, which enhanced tumor growth and metastasis. Thus, SETDB1 appears to be an attractive epigenetic target for new cancer treatments. In this review, we have discussed the effects of its overexpression on the progression of tumors and the development of inhibitor drugs that specifically target this enzyme.
Collapse
Affiliation(s)
- Haifa Hassanie
- School of Pharmaceutical Sciences, University of São Paulo Brazil
| | | | | | | | - Flávio da Silva Emery
- School of Pharmaceutical Sciences of the Ribeirão Preto, University of São Paulo Brazil
| | | | | |
Collapse
|
15
|
Lim GM, Maharajan N, Cho GW. How calorie restriction slows aging: an epigenetic perspective. J Mol Med (Berl) 2024; 102:629-640. [PMID: 38456926 DOI: 10.1007/s00109-024-02430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/14/2024] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
Genomic instability and epigenetic alterations are some of the prominent factors affecting aging. Age-related heterochromatin loss and decreased whole-genome DNA methylation are associated with abnormal gene expression, leading to diseases and genomic instability. Modulation of these epigenetic changes is crucial for preserving genomic integrity and controlling cellular identity is important for slowing the aging process. Numerous studies have shown that caloric restriction is the gold standard for promoting longevity and healthy aging in various species ranging from rodents to primates. It can be inferred that delaying of aging through the main effector such as calorie restriction is involved in cellular identity and epigenetic modification. Thus, an understanding of aging through calorie restriction may seek a more in-depth understanding. In this review, we discuss how caloric restriction promotes longevity and healthy aging through genomic stability and epigenetic alterations. We have also highlighted how the effectors of caloric restriction are involved in modulating the chromatin-based barriers.
Collapse
Affiliation(s)
- Gyeong Min Lim
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Nagarajan Maharajan
- The Department of Obstetrics & Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 61452, Republic of Korea.
- BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju, 61452, Republic of Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
16
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
17
|
Larkin A, Kunze C, Seman M, Levashkevich A, Curran J, Morris-Evans D, Lemieux S, Khalil AS, Ragunathan K. Mapping the dynamics of epigenetic adaptation during heterochromatin misregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.10.548368. [PMID: 37503217 PMCID: PMC10369875 DOI: 10.1101/2023.07.10.548368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
A classical and well-established mechanism that enables cells to adapt to new and adverse conditions is the acquisition of beneficial genetic mutations. Much less is known about epigenetic mechanisms that allow cells to develop novel and adaptive phenotypes without altering their genetic blueprint. It has been recently proposed that histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), normally reserved to maintain genome integrity, can be redistributed across the genome to establish new and potentially adaptive phenotypes. To uncover the dynamics of this process, we developed a precision engineered genetic approach to trigger H3K9me redistribution on-demand in fission yeast. This enabled us to trace genome-scale RNA and chromatin changes over time prior to and during adaptation in long-term continuous cultures. Establishing adaptive H3K9me occurs over remarkably slow time-scales relative to the initiating stress. During this time, we captured dynamic H3K9me redistribution events ultimately leading to cells converging on an optimal adaptive solution. Upon removal of stress, cells relax to new transcriptional and chromatin states rather than revert to their initial (ground) state, establishing a tunable memory for a future adaptive epigenetic response. Collectively, our tools uncover the slow kinetics of epigenetic adaptation that allow cells to search for and heritably encode adaptive solutions, with implications for drug resistance and response to infection.
Collapse
|
18
|
Ji J, Cao J, Chen P, Huang R, Ye SD. Inhibition of protein kinase C increases Prdm14 level to promote self-renewal of embryonic stem cells through reducing Suv39h-induced H3K9 methylation. J Biol Chem 2024; 300:105714. [PMID: 38309502 PMCID: PMC10909794 DOI: 10.1016/j.jbc.2024.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/05/2024] Open
Abstract
Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Junxiang Ji
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Jianjian Cao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Ru Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui, PR China.
| |
Collapse
|
19
|
Ishii S, Kakizuka T, Park SJ, Tagawa A, Sanbo C, Tanabe H, Ohkawa Y, Nakanishi M, Nakai K, Miyanari Y. Genome-wide ATAC-see screening identifies TFDP1 as a modulator of global chromatin accessibility. Nat Genet 2024; 56:473-482. [PMID: 38361031 DOI: 10.1038/s41588-024-01658-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Chromatin accessibility is a hallmark of active regulatory regions and is functionally linked to transcriptional networks and cell identity. However, the molecular mechanisms and networks that govern chromatin accessibility have not been thoroughly studied. Here we conducted a genome-wide CRISPR screening combined with an optimized ATAC-see protocol to identify genes that modulate global chromatin accessibility. In addition to known chromatin regulators like CREBBP and EP400, we discovered a number of previously unrecognized proteins that modulate chromatin accessibility, including TFDP1, HNRNPU, EIF3D and THAP11 belonging to diverse biological pathways. ATAC-seq analysis upon their knockouts revealed their distinct and specific effects on chromatin accessibility. Remarkably, we found that TFDP1, a transcription factor, modulates global chromatin accessibility through transcriptional regulation of canonical histones. In addition, our findings highlight the manipulation of chromatin accessibility as an approach to enhance various cell engineering applications, including genome editing and induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Satoko Ishii
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taishi Kakizuka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Tagawa
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Sanbo
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Miyanari
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
20
|
Abstract
Embryogenesis is characterized by dynamic chromatin remodeling and broad changes in chromosome architecture. These changes in chromatin organization are accompanied by transcriptional changes, which are crucial for the proper development of the embryo. Several independent mechanisms regulate this process of chromatin reorganization, including segregation of chromatin into heterochromatin and euchromatin, deposition of active and repressive histone modifications, and the formation of 3D chromatin domains such as TADs and LADs. These changes in chromatin structure are directly linked to developmental milestones such as the loss of developmental plasticity and acquisition of terminally differentiated cell identities. In this review we summarize these processes that underlie this chromatin reorganization and their impact on embryogenesis in the nematode C. elegans.
Collapse
Affiliation(s)
- Eshna Jash
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Györgyi Csankovszki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Dillingham CM, Cormaty H, Morgan EC, Tak AI, Esgdaille DE, Boutz PL, Sridharan R. KDM3A and KDM3B Maintain Naïve Pluripotency Through the Regulation of Alternative Splicing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543088. [PMID: 37398291 PMCID: PMC10312572 DOI: 10.1101/2023.05.31.543088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Histone modifying enzymes play a central role in maintaining cell identity by establishing a conducive chromatin environment for lineage specific transcription factor activity. Pluripotent embryonic stem cell (ESC) identity is characterized by a lower abundance of gene repression associated histone modifications that enables rapid response to differentiation cues. The KDM3 family of histone demethylases removes the repressive histone H3 lysine 9 dimethylation (H3K9me2). Here we uncover a surprising role for the KDM3 proteins in the maintenance of the pluripotent state through post-transcriptional regulation. We find that KDM3A and KDM3B interact with RNA processing factors such as EFTUD2 and PRMT5. Acute selective degradation of the endogenous KDM3A and KDM3B proteins resulted in altered splicing independent of H3K9me2 status or catalytic activity. These splicing changes partially resemble the splicing pattern of the more blastocyst-like ground state of pluripotency and occurred in important chromatin and transcription factors such as Dnmt3b, Tbx3 and Tcf12. Our findings reveal non-canonical roles of histone demethylating enzymes in splicing to regulate cell identity.
Collapse
Affiliation(s)
- Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Harshini Cormaty
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ellen C Morgan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Andrew I Tak
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dakarai E Esgdaille
- Department of Biochemistry and Biophysics, Center for RNA Biology, Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry
| | - Paul L Boutz
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, 53792, USA
| |
Collapse
|
22
|
He W, Yin X, Xu C, Liu X, Huang Y, Yang C, Xu Y, Hu L. Ascorbic Acid Reprograms Epigenome and Epitranscriptome by Reducing Fe(III) in the Catalytic Cycle of Dioxygenases. ACS Chem Biol 2024; 19:129-140. [PMID: 38100359 DOI: 10.1021/acschembio.3c00567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Ascorbic acid (ASC) has been reported to stimulate DNA iterative oxidase ten-eleven translocation (TET) enzymes, Jumonji C-domain-containing histone demethylases, and potentially RNA m6A demethylases FTO and ALKBH5 as a cofactor. Although ascorbic acid has been widely investigated in reprogramming DNA and histone methylation status in vitro, in cultured cells and mouse models, its specific role in the catalytic cycle of dioxygenases remains enigmatic. Here, we systematically investigated the stimulation of ASC toward TET2, ALKBH3, histone demethylases, and FTO. We find that ASC reprograms epitranscriptome by erasing the hypermethylated m6A sites in mRNA. Biochemistry and electron spin resonance assays demonstrate that ASC enters the active pocket of dioxygenases and reduces Fe(III), either incorporated upon protein synthesis or generated upon rebounding the hydroxyl radical during oxidation, into Fe(II). Finally, we propose a remedied model for the catalytic cycle of dioxygenases by adding in the essential cofactor, ASC, which refreshes and regenerates inactive dioxygenase through recycling Fe(III) into Fe(II) in a dynamic "hit-and-run" manner.
Collapse
Affiliation(s)
- Weizhi He
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaotong Yin
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Chu Xu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiangyue Liu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yue Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caiguang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanhui Xu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Lulu Hu
- Cancer Institute, Fudan university Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Sinenko SA, Tomilin AN. Metabolic control of induced pluripotency. Front Cell Dev Biol 2024; 11:1328522. [PMID: 38274274 PMCID: PMC10808704 DOI: 10.3389/fcell.2023.1328522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Pluripotent stem cells of the mammalian epiblast and their cultured counterparts-embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs)-have the capacity to differentiate in all cell types of adult organisms. An artificial process of reactivation of the pluripotency program in terminally differentiated cells was established in 2006, which allowed for the generation of induced pluripotent stem cells (iPSCs). This iPSC technology has become an invaluable tool in investigating the molecular mechanisms of human diseases and therapeutic drug development, and it also holds tremendous promise for iPSC applications in regenerative medicine. Since the process of induced reprogramming of differentiated cells to a pluripotent state was discovered, many questions about the molecular mechanisms involved in this process have been clarified. Studies conducted over the past 2 decades have established that metabolic pathways and retrograde mitochondrial signals are involved in the regulation of various aspects of stem cell biology, including differentiation, pluripotency acquisition, and maintenance. During the reprogramming process, cells undergo major transformations, progressing through three distinct stages that are regulated by different signaling pathways, transcription factor networks, and inputs from metabolic pathways. Among the main metabolic features of this process, representing a switch from the dominance of oxidative phosphorylation to aerobic glycolysis and anabolic processes, are many critical stage-specific metabolic signals that control the path of differentiated cells toward a pluripotent state. In this review, we discuss the achievements in the current understanding of the molecular mechanisms of processes controlled by metabolic pathways, and vice versa, during the reprogramming process.
Collapse
Affiliation(s)
- Sergey A. Sinenko
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | | |
Collapse
|
24
|
Bruno S, Schlaeger TM, Del Vecchio D. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. NPJ Syst Biol Appl 2024; 10:3. [PMID: 38184707 PMCID: PMC10771499 DOI: 10.1038/s41540-023-00326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
25
|
Cipriano A, Moqri M, Maybury-Lewis SY, Rogers-Hammond R, de Jong TA, Parker A, Rasouli S, Schöler HR, Sinclair DA, Sebastiano V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. NATURE AGING 2024; 4:14-26. [PMID: 38102454 PMCID: PMC11058000 DOI: 10.1038/s43587-023-00539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Over the past decade, there has been a dramatic increase in efforts to ameliorate aging and the diseases it causes, with transient expression of nuclear reprogramming factors recently emerging as an intriguing approach. Expression of these factors, either systemically or in a tissue-specific manner, has been shown to combat age-related deterioration in mouse and human model systems at the cellular, tissue and organismal level. Here we discuss the current state of epigenetic rejuvenation strategies via partial reprogramming in both mouse and human models. For each classical reprogramming factor, we provide a brief description of its contribution to reprogramming and discuss additional factors or chemical strategies. We discuss what is known regarding chromatin remodeling and the molecular dynamics underlying rejuvenation, and, finally, we consider strategies to improve the practical uses of epigenetic reprogramming to treat aging and age-related diseases, focusing on the open questions and remaining challenges in this emerging field.
Collapse
Affiliation(s)
- Andrea Cipriano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Mahdi Moqri
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Tineke Anna de Jong
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Alexander Parker
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Sajede Rasouli
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - David A Sinclair
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics & Gynecology, Stanford School of Medicine, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Fatima N, Saif Ur Rahman M, Qasim M, Ali Ashfaq U, Ahmed U, Masoud MS. Transcriptional Factors Mediated Reprogramming to Pluripotency. Curr Stem Cell Res Ther 2024; 19:367-388. [PMID: 37073151 DOI: 10.2174/1574888x18666230417084518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 04/20/2023]
Abstract
A unique kind of pluripotent cell, i.e., Induced pluripotent stem cells (iPSCs), now being targeted for iPSC synthesis, are produced by reprogramming animal and human differentiated cells (with no change in genetic makeup for the sake of high efficacy iPSCs formation). The conversion of specific cells to iPSCs has revolutionized stem cell research by making pluripotent cells more controllable for regenerative therapy. For the past 15 years, somatic cell reprogramming to pluripotency with force expression of specified factors has been a fascinating field of biomedical study. For that technological primary viewpoint reprogramming method, a cocktail of four transcription factors (TF) has required: Kruppel-like factor 4 (KLF4), four-octamer binding protein 34 (OCT3/4), MYC and SOX2 (together referred to as OSKM) and host cells. IPS cells have great potential for future tissue replacement treatments because of their ability to self-renew and specialize in all adult cell types, although factor-mediated reprogramming mechanisms are still poorly understood medically. This technique has dramatically improved performance and efficiency, making it more useful in drug discovery, disease remodeling, and regenerative medicine. Moreover, in these four TF cocktails, more than 30 reprogramming combinations were proposed, but for reprogramming effectiveness, only a few numbers have been demonstrated for the somatic cells of humans and mice. Stoichiometry, a combination of reprogramming agents and chromatin remodeling compounds, impacts kinetics, quality, and efficiency in stem cell research.
Collapse
Affiliation(s)
- Nazira Fatima
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Muhammad Saif Ur Rahman
- Institute of Advanced Studies, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Uzair Ahmed
- EMBL Partnership Institute for Genome Editing Technologies, Vilnius University, Vilnius, 10257, Lithuania
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
27
|
Liang L, He M, Zhang Y, Wang C, Qin Z, Li Q, Yang T, Meng F, Zhou Y, Ge H, Song W, Chen S, Dong L, Ren Q, Li C, Guo L, Sun H, Zhang W, Pei D, Zheng H. Unraveling the 2,3-diketo-L-gulonic acid-dependent and -independent impacts of L-ascorbic acid on somatic cell reprogramming. Cell Biosci 2023; 13:218. [PMID: 38037169 PMCID: PMC10688016 DOI: 10.1186/s13578-023-01160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND L-ascorbic acid (Asc) plays a pivotal role in regulating various biological processes, including somatic cell reprogramming, through multiple pathways. However, it remains unclear whether Asc regulates reprogramming directly or functions through its metabolites. RESULTS Asc exhibited dual capabilities in promoting reprogramming through both 2,3-diketo-L-gulonic acid (DKG), a key metabolite during Asc degradation, dependent and independent routes. On the one hand, Asc facilitated reprogramming by promoting cell proliferation and inducing the conversion from pre-induced pluripotent stem cells (pre-iPSCs) to iPSCs through DKG-independent pathways. Additionally, Asc triggered mesenchymal-epithelial transition (MET) and activated glycolysis via DKG-dependent mechanisms. Notably, DKG alone activated a non-canonical tricarboxylic acid cycle characterized by increased succinate, fumarate, and malate. Consequently, this shift redirected oxidative phosphorylation toward glycolysis and induced MET. Moreover, owing to its antioxidant capabilities, Asc directly inhibited glycolysis, thereby preventing positive feedback between glycolysis and epithelial-mesenchymal transition, ultimately resulting in a higher level of MET. CONCLUSION These findings unveil the intricate functions of Asc in the context of reprogramming. This study sheds light on the DKG-dependent and -independent activities of Asc during reprogramming, offering novel insights that may extend the application of Asc to other biological processes.
Collapse
Affiliation(s)
- Lining Liang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Meiai He
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yixin Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenchen Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Zhaohui Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Li
- Guangzhou Laboratory, Guangzhou, China
| | - Tingting Yang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Fei Meng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Yusheng Zhou
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Haofei Ge
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Weining Song
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyu Chen
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linna Dong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiwen Ren
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changpeng Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Lin Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Hao Sun
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China
| | - Wei Zhang
- Guangzhou Laboratory, Guangzhou, China
| | - Duanqing Pei
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| | - Hui Zheng
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, #190 Kaiyuan Ave. Science City, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Park S, Lee J, Ahn KS, Shim HW, Yoon J, Hyun J, Lee JH, Jang S, Yoo KH, Jang Y, Kim T, Kim HK, Lee MR, Jang J, Shim H, Kim H. Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303395. [PMID: 37727069 PMCID: PMC10646259 DOI: 10.1002/advs.202303395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Indexed: 09/21/2023]
Abstract
Advancing the technologies for cellular reprogramming with high efficiency has significant impact on regenerative therapy, disease modeling, and drug discovery. Biophysical cues can tune the cell fate, yet the precise role of external physical forces during reprogramming remains elusive. Here the authors show that temporal cyclic-stretching of fibroblasts significantly enhances the efficiency of induced pluripotent stem cell (iPSC) production. Generated iPSCs are proven to express pluripotency markers and exhibit in vivo functionality. Bulk RNA-sequencing reveales that cyclic-stretching enhances biological characteristics required for pluripotency acquisition, including increased cell division and mesenchymal-epithelial transition. Of note, cyclic-stretching activates key mechanosensitive molecules (integrins, perinuclear actins, nesprin-2, and YAP), across the cytoskeletal-to-nuclear space. Furthermore, stretch-mediated cytoskeletal-nuclear mechano-coupling leads to altered epigenetic modifications, mainly downregulation in H3K9 methylation, and its global gene occupancy change, as revealed by genome-wide ChIP-sequencing and pharmacological inhibition tests. Single cell RNA-sequencing further identifies subcluster of mechano-responsive iPSCs and key epigenetic modifier in stretched cells. Collectively, cyclic-stretching activates iPSC reprogramming through mechanotransduction process and epigenetic changes accompanied by altered occupancy of mechanosensitive genes. This study highlights the strong link between external physical forces with subsequent mechanotransduction process and the epigenetic changes with expression of related genes in cellular reprogramming, holding substantial implications in the field of cell biology, tissue engineering, and regenerative medicine.
Collapse
|
29
|
Cheng KCL, Frost JM, Sánchez-Luque FJ, García-Canãdas M, Taylor D, Yang WR, Irayanar B, Sampath S, Patani H, Agger K, Helin K, Ficz G, Burns KH, Ewing A, García-Pérez JL, Branco MR. Vitamin C activates young LINE-1 elements in mouse embryonic stem cells via H3K9me3 demethylation. Epigenetics Chromatin 2023; 16:39. [PMID: 37845773 PMCID: PMC10578016 DOI: 10.1186/s13072-023-00514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Vitamin C (vitC) enhances the activity of 2-oxoglutarate-dependent dioxygenases, including TET enzymes, which catalyse DNA demethylation, and Jumonji-domain histone demethylases. The epigenetic remodelling promoted by vitC improves the efficiency of induced pluripotent stem cell derivation, and is required to attain a ground-state of pluripotency in embryonic stem cells (ESCs) that closely mimics the inner cell mass of the early blastocyst. However, genome-wide DNA and histone demethylation can lead to upregulation of transposable elements (TEs), and it is not known how vitC addition in culture media affects TE expression in pluripotent stem cells. RESULTS Here we show that vitC increases the expression of several TE families, including evolutionarily young LINE-1 (L1) elements, in mouse ESCs. We find that TET activity is dispensable for L1 upregulation, and that instead it occurs largely as a result of H3K9me3 loss mediated by KDM4A/C histone demethylases. Despite increased L1 levels, we did not detect increased somatic insertion rates in vitC-treated cells. Notably, treatment of human ESCs with vitC also increases L1 protein levels, albeit through a distinct, post-transcriptional mechanism. CONCLUSION VitC directly modulates the expression of mouse L1s and other TEs through epigenetic mechanisms, with potential for downstream effects related to the multiple emerging roles of L1s in cellular function.
Collapse
Affiliation(s)
- Kevin C L Cheng
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jennifer M Frost
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Francisco J Sánchez-Luque
- Institute of Parasitology and Biomedicine "Lopez-Neyra" (IPBLN), Spanish National Research Council (CSIC), PTS Granada, Granada, Spain
| | - Marta García-Canãdas
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Darren Taylor
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Wan R Yang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Branavy Irayanar
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Swetha Sampath
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK
| | - Hemalvi Patani
- Barts Cancer Institute, Faculty of Medicine and Dentistry, QMUL, London, EC1M 6BQ, UK
| | - Karl Agger
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
- The Institute of Cancer Research, London, UK
| | - Gabriella Ficz
- Barts Cancer Institute, Faculty of Medicine and Dentistry, QMUL, London, EC1M 6BQ, UK
| | - Kathleen H Burns
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Adam Ewing
- Mater Research Institute, University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - José L García-Pérez
- Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research (GENYO), PTS Granada, Granada, Spain
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, QMUL, London, E1 2AT, UK.
| |
Collapse
|
30
|
Bekas N, Samiotaki M, Papathanasiou M, Mokos P, Pseftogas A, Xanthopoulos K, Thanos D, Mosialos G, Dafou D. Inactivation of Tumor Suppressor CYLD Inhibits Fibroblast Reprogramming to Pluripotency. Cancers (Basel) 2023; 15:4997. [PMID: 37894364 PMCID: PMC10605754 DOI: 10.3390/cancers15204997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.
Collapse
Affiliation(s)
- Nikolaos Bekas
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece;
| | - Maria Papathanasiou
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - Panagiotis Mokos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Athanasios Pseftogas
- Division of Experimental Oncology, IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitris Thanos
- Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece; (M.P.); (D.T.)
| | - George Mosialos
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| | - Dimitra Dafou
- School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (N.B.); (P.M.); (G.M.)
| |
Collapse
|
31
|
Silva JCR. Reprogramming Cell Identity: Past Lessons, Challenges, and Future Directions. Cell Reprogram 2023; 25:183-186. [PMID: 37847897 DOI: 10.1089/cell.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Reprogramming is traditionally defined as the fate conversion of a cell to a stage of increased developmental potential. In its broader meaning, the reprogramming term is also applied to all forms of cell fate conversion that do not follow a developmental trajectory. Reprogramming is now a well-established field of research that gained rapid progress upon the advent of induced pluripotency. In this perspective, I reflect on the reprogramming lessons of the past, in the contributions to other fields of research and on the potential transformative future use of reprogrammed cells and of its cell derivatives.
Collapse
Affiliation(s)
- José C R Silva
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, China
| |
Collapse
|
32
|
Dong L, Liao H, Zhao L, Wang J, Wang C, Wang B, Sun Y, Xu L, Xia Y, Ling S, Lou X, Qin J. A functional crosstalk between the H3K9 methylation writers and their reader HP1 in safeguarding embryonic stem cell identity. Stem Cell Reports 2023; 18:1775-1792. [PMID: 37703822 PMCID: PMC10545489 DOI: 10.1016/j.stemcr.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023] Open
Abstract
Histone H3 lysine 9 (H3K9) methylation, as a hallmark of heterochromatin, has a central role in cell lineage and fate determination. Although evidence of a cooperation between H3K9 methylation writers and their readers has started to emerge, their actual interplay remains elusive. Here, we show that loss of H3K9 methylation readers, the Hp1 family, causes reduced expression of H3K9 methyltransferases, and that this subsequently leads to the exit of embryonic stem cells (ESCs) from pluripotency and a reciprocal gain of lineage-specific characteristics. Importantly, the phenotypes of Hp1-null ESCs can be rescued by ectopic expression of Setdb1, Nanog, and Oct4. Furthermore, Setdb1 ablation results in loss of ESC identity, which is accompanied by a reduction in the expression of Hp1 genes. Together, our data support a model in which the safeguarding of ESC identity involves the cooperation between the H3K9 methylation writers and their readers.
Collapse
Affiliation(s)
- Lixia Dong
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Huaqi Liao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Linchun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Jingnan Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Congcong Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Bowen Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yanqi Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Lijun Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
| | - Yin Xia
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shizhang Ling
- The Translational Research Institute for Neurological Disorders, Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wannan Medical College, Wuhu, China.
| | - Xin Lou
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou 311100, China.
| | - Jinzhong Qin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| |
Collapse
|
33
|
Hoetker MS, Yagi M, Di Stefano B, Langerman J, Cristea S, Wong LP, Huebner AJ, Charlton J, Deng W, Haggerty C, Sadreyev RI, Meissner A, Michor F, Plath K, Hochedlinger K. H3K36 methylation maintains cell identity by regulating opposing lineage programmes. Nat Cell Biol 2023; 25:1121-1134. [PMID: 37460697 PMCID: PMC10896483 DOI: 10.1038/s41556-023-01191-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
The epigenetic mechanisms that maintain differentiated cell states remain incompletely understood. Here we employed histone mutants to uncover a crucial role for H3K36 methylation in the maintenance of cell identities across diverse developmental contexts. Focusing on the experimental induction of pluripotency, we show that H3K36M-mediated depletion of H3K36 methylation endows fibroblasts with a plastic state poised to acquire pluripotency in nearly all cells. At a cellular level, H3K36M facilitates epithelial plasticity by rendering fibroblasts insensitive to TGFβ signals. At a molecular level, H3K36M enables the decommissioning of mesenchymal enhancers and the parallel activation of epithelial/stem cell enhancers. This enhancer rewiring is Tet dependent and redirects Sox2 from promiscuous somatic to pluripotency targets. Our findings reveal a previously unappreciated dual role for H3K36 methylation in the maintenance of cell identity by integrating a crucial developmental pathway into sustained expression of cell-type-specific programmes, and by opposing the expression of alternative lineage programmes through enhancer methylation.
Collapse
Affiliation(s)
- Michael S Hoetker
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Masaki Yagi
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Justin Langerman
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Lai Ping Wong
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Aaron J Huebner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Weixian Deng
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Chuck Haggerty
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Meissner
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genome Regulation, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Franziska Michor
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- The Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
34
|
McCarthy RL, Zhang J, Zaret KS. Diverse heterochromatin states restricting cell identity and reprogramming. Trends Biochem Sci 2023; 48:513-526. [PMID: 36990958 PMCID: PMC10182259 DOI: 10.1016/j.tibs.2023.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
Heterochromatin is defined as a chromosomal domain harboring repressive H3K9me2/3 or H3K27me3 histone modifications and relevant factors that physically compact the chromatin. Heterochromatin can restrict where transcription factors bind, providing a barrier to gene activation and changes in cell identity. While heterochromatin thus helps maintain cell differentiation, it presents a barrier to overcome during efforts to reprogram cells for biomedical purposes. Recent findings have revealed complexity in the composition and regulation of heterochromatin, and shown that transiently disrupting the machinery of heterochromatin can enhance reprogramming. Here, we discuss how heterochromatin is established and maintained during development, and how our growing understanding of the mechanisms regulating H3K9me3 heterochromatin can be leveraged to improve our ability to direct changes in cell identity.
Collapse
Affiliation(s)
- Ryan L McCarthy
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jingchao Zhang
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Penn Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Grewal SIS. The molecular basis of heterochromatin assembly and epigenetic inheritance. Mol Cell 2023; 83:1767-1785. [PMID: 37207657 PMCID: PMC10309086 DOI: 10.1016/j.molcel.2023.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/21/2023]
Abstract
Heterochromatin plays a fundamental role in gene regulation, genome integrity, and silencing of repetitive DNA elements. Histone modifications are essential for the establishment of heterochromatin domains, which is initiated by the recruitment of histone-modifying enzymes to nucleation sites. This leads to the deposition of histone H3 lysine-9 methylation (H3K9me), which provides the foundation for building high-concentration territories of heterochromatin proteins and the spread of heterochromatin across extended domains. Moreover, heterochromatin can be epigenetically inherited during cell division in a self-templating manner. This involves a "read-write" mechanism where pre-existing modified histones, such as tri-methylated H3K9 (H3K9me3), support chromatin association of the histone methyltransferase to promote further deposition of H3K9me. Recent studies suggest that a critical density of H3K9me3 and its associated factors is necessary for the propagation of heterochromatin domains across multiple generations. In this review, I discuss the key experiments that have highlighted the importance of modified histones for epigenetic inheritance.
Collapse
Affiliation(s)
- Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang Y, Lin L, Liu H, Kuang J, Zhao C, Huang X, Feng H, Guo J, Yang X, Guo L, Zhang X, Chen J, Liu J, Zhu P, Pei D. The NuRD complex cooperates with SALL4 to orchestrate reprogramming. Nat Commun 2023; 14:2846. [PMID: 37208322 DOI: 10.1038/s41467-023-38543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Liman Guo
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jing Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
37
|
Bruno S, Vecchio DD. The epigenetic Oct4 gene regulatory network: stochastic analysis of different cellular reprogramming approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530689. [PMID: 36909486 PMCID: PMC10002722 DOI: 10.1101/2023.03.01.530689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the last decade, several experimental studies have shown how chromatin modifications (histone modifications and DNA methylation) and their effect on DNA compaction have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to a pluripotent state. In this paper, we compare three reprogramming approaches that have been considered in the literature: (a) prefixed overexpression of transcription factors (TFs) alone (Oct4), (b) prefixed overexpression of Oct4 and DNA methylation "eraser" TET, and (c) prefixed overexpression of Oct4 and H3K9me3 eraser JMJD2. To this end, we develop a model of the pluritpotency gene regulatory network, that includes, for each gene, a circuit recently published encapsulating the main interactions among chromatin modifications and their effect on gene expression. We then conduct a computational study to evaluate, for each reprogramming approach, latency and variability. Our results show a faster and less stochastic reprogramming process when also eraser enzymes are overexpressed, consistent with previous experimental data. However, TET overexpression leads to a faster and more efficient reprogramming compared to JMJD2 overexpression when the recruitment of DNA methylation by H3K9me3 is weak and the MBD protein level is sufficiently low such that it does not hamper TET binding to methylated DNA. The model developed here provides a mechanistic understanding of the outcomes of former experimental studies and is also a tool for the development of optimized reprogramming approaches that combine TF overexpression with modifiers of chromatin state.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
38
|
Li Z, Li Y, Zhang Q, Ge W, Zhang Y, Zhao X, Hu J, Yuan L, Zhang W. Establishment of Bactrian Camel Induced Pluripotent Stem Cells and Prediction of Their Unique Pluripotency Genes. Int J Mol Sci 2023; 24:ijms24031917. [PMID: 36768240 PMCID: PMC9916525 DOI: 10.3390/ijms24031917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/05/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) can differentiate into all types of cells and can be used in livestock for research on biological development, genetic breeding, and in vitro genetic resource conservation. The Bactrian camel is a large domestic animal that inhabits extreme environments and holds value in the treatment of various diseases and the development of the local economy. Therefore, we transferred four mouse genes (Oct4, Sox2, Klf4, and c-Myc) into Bactrian camel fetal fibroblasts (BCFFs) using retroviruses with a large host range to obtain Bactrian camel induced pluripotent stem cells (bciPSCs). They were comprehensively identified based on cell morphology, pluripotency gene and marker expression, chromosome number, transcriptome sequencing, and differentiation potential. The results showed the pluripotency of bciPSCs. However, unlike stem cells of other species, late formation of stem cell clones was observed; moreover, the immunofluorescence of SSEA1, SSEA3, and SSEA4 were positive, and teratoma formation took four months. These findings may be related to the extremely long gestation period and species specificity of Bactrian camels. By mining RNA sequence data, 85 potential unique pluripotent genes of Bactrian camels were predicted, which could be used as candidate genes for the production of bciPSC in the future. Among them, ASF1B, DTL, CDCA5, PROM1, CYTL1, NUP210, Epha3, and SYT13 are more attractive. In conclusion, we generated bciPSCs for the first time and obtained their transcriptome information, expanding the iPSC genetic information database and exploring the applicability of iPSCs in livestock. Our results can provide an experimental basis for Bactrian camel ESC establishment, developmental research, and genetic resource conservation.
Collapse
Affiliation(s)
- Zongshuai Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Yina Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiran Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenbo Ge
- Chinese Academy of Agricultural Sciences Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence:
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Gansu Agricultural University, Lanzhou 730070, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
39
|
Peng J, Zhang WJ, Zhang Q, Su YH, Tang LP. The dynamics of chromatin states mediated by epigenetic modifications during somatic cell reprogramming. Front Cell Dev Biol 2023; 11:1097780. [PMID: 36727112 PMCID: PMC9884706 DOI: 10.3389/fcell.2023.1097780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023] Open
Abstract
Somatic cell reprogramming (SCR) is the conversion of differentiated somatic cells into totipotent or pluripotent cells through a variety of methods. Somatic cell reprogramming also provides a platform to investigate the role of chromatin-based factors in establishing and maintaining totipotency or pluripotency, since high expression of totipotency- or pluripotency-related genes usually require an active chromatin state. Several studies in plants or mammals have recently shed light on the molecular mechanisms by which epigenetic modifications regulate the expression of totipotency or pluripotency genes by altering their chromatin states. In this review, we present a comprehensive overview of the dynamic changes in epigenetic modifications and chromatin states during reprogramming from somatic cells to totipotent or pluripotent cells. In addition, we illustrate the potential role of DNA methylation, histone modifications, histone variants, and chromatin remodeling during somatic cell reprogramming, which will pave the way to developing reliable strategies for efficient cellular reprogramming.
Collapse
Affiliation(s)
| | | | | | - Ying Hua Su
- *Correspondence: Ying Hua Su, ; Li Ping Tang,
| | | |
Collapse
|
40
|
Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G, Pribitzer C, Isbel L, Mendjan S, Schübeler D, Elling U, Brennecke J, Bell O. ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol 2023; 25:42-55. [PMID: 36604593 PMCID: PMC10038669 DOI: 10.1038/s41556-022-01051-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2022] [Indexed: 01/07/2023]
Abstract
ZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing. Here we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence meso-endodermal genes. ZFP462 binds to transposable elements that are potential enhancers harbouring pluripotency and meso-endoderm transcription factor binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting transcription factor binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of meso-endodermal genes. Taken together, ZFP462 confers lineage and locus specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Karin Stecher
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luca Michetti
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
41
|
Tabibzadeh S. Resolving Geroplasticity to the Balance of Rejuvenins and Geriatrins. Aging Dis 2022; 13:1664-1714. [PMID: 36465174 PMCID: PMC9662275 DOI: 10.14336/ad.2022.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 09/29/2024] Open
Abstract
According to the cell centric hypotheses, the deficits that drive aging occur within cells by age dependent progressive damage to organelles, telomeres, biologic signaling pathways, bioinformational molecules, and by exhaustion of stem cells. Here, we amend these hypotheses and propose an eco-centric model for geroplasticity (aging plasticity including aging reversal). According to this model, youth and aging are plastic and require constant maintenance, and, respectively, engage a host of endogenous rejuvenating (rejuvenins) and gero-inducing [geriatrin] factors. Aging in this model is akin to atrophy that occurs as a result of damage or withdrawal of trophic factors. Rejuvenins maintain and geriatrins adversely impact cellular homeostasis, cell fitness, and proliferation, stem cell pools, damage response and repair. Rejuvenins reduce and geriatrins increase the age-related disorders, inflammatory signaling, and senescence and adjust the epigenetic clock. When viewed through this perspective, aging can be successfully reversed by supplementation with rejuvenins and by reducing the levels of geriatrins.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| |
Collapse
|
42
|
Wang X, Guo H, Yu F, Zhang H, Peng Y, Wang C, Wei G, Yan J. Keratin5-cytoskeleton-BMP4 network regulates cell phenotype conversions during cardiac regeneration. Exp Cell Res 2022; 418:113272. [DOI: 10.1016/j.yexcr.2022.113272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 01/09/2023]
|
43
|
Wang J, Zhou C, Gao S, Song X, Yang X, Fan J, Ren S, Ma L, Zhao J, Cui M, Song K, Wang M, Li C, Zheng Y, Luo F, Miao K, Bai X, Hutchins AP, Li L, Chang G, Zhao XY. Single-cell multiomics sequencing reveals the reprogramming defects in embryos generated by round spermatid injection. SCIENCE ADVANCES 2022; 8:eabm3976. [PMID: 35947654 PMCID: PMC9365279 DOI: 10.1126/sciadv.abm3976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Round spermatid injection (ROSI) technique holds great promise for clinical treatment of a proportion of infertile men. However, the compromised developmental potential of ROSI embryos largely limits the clinical application, and the mechanisms are not fully understood. Here, we describe the transcriptome, chromatin accessibility, and DNA methylation landscapes of mouse ROSI embryos derived from early-stage round spermatids using a single-cell multiomics sequencing approach. By interrogating these data, we identify the reprogramming defects in ROSI embryos at the pronuclear stages, which are mainly associated with the misexpression of a cohort of minor zygotic genome activation genes. We screen a small compound, A366, that can significantly increase the developmental potential of ROSI embryos, in which A366 can partially overcome the reprogramming defects by amending the epigenetic and transcriptomic states. Collectively, our study uncovers the reprogramming defects in ROSI embryos for understanding the mechanisms underlying compromised developmental potential and offers an avenue for ROSI technique optimization.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Cai Zhou
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P. R. China
| | - Xiuling Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xinyan Yang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiaqi Fan
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Linzi Ma
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiexiang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Manman Cui
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Ke Song
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Mei Wang
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Chaohui Li
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Yi Zheng
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fang Luo
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Kai Miao
- Center for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518060, P. R. China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, P. R. China
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangdong Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, Guangdong 510700, P. R. China
| |
Collapse
|
44
|
Liu Y, Cui DX, Pan Y, Yu SH, Zheng LW, Wan M. Metabolic-epigenetic nexus in regulation of stem cell fate. World J Stem Cells 2022; 14:490-502. [PMID: 36157525 PMCID: PMC9350619 DOI: 10.4252/wjsc.v14.i7.490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 02/06/2023] Open
Abstract
Stem cell fate determination is one of the central questions in stem cell biology, and although its regulation has been studied at genomic and proteomic levels, a variety of biological activities in cells occur at the metabolic level. Metabolomics studies have established the metabolome during stem cell differentiation and have revealed the role of metabolites in stem cell fate determination. While metabolism is considered to play a biological regulatory role as an energy source, recent studies have suggested the nexus between metabolism and epigenetics because several metabolites function as cofactors and substrates in epigenetic mechanisms, including histone modification, DNA methylation, and microRNAs. Additionally, the epigenetic modification is sensitive to the dynamic metabolites and consequently leads to changes in transcription. The nexus between metabolism and epigenetics proposes a novel stem cell-based therapeutic strategy through manipulating metabolites. In the present review, we summarize the possible nexus between metabolic and epigenetic regulation in stem cell fate determination, and discuss the potential preventive and therapeutic strategies via targeting metabolites.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
45
|
Chen C, Gao Y, Liu W, Gao S. Epigenetic regulation of cell fate transition: learning from early embryo development and somatic cell reprogramming†. Biol Reprod 2022; 107:183-195. [PMID: 35526125 PMCID: PMC9310515 DOI: 10.1093/biolre/ioac087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 11/12/2022] Open
Abstract
Epigenetic regulations play a central role in governing the embryo development and somatic cell reprogramming. Taking advantage of recent advances in low-input sequencing techniques, researchers have uncovered a comprehensive view of the epigenetic landscape during rapid transcriptome transitions involved in the cell fate commitment. The well-organized epigenetic reprogramming also highlights the essential roles of specific epigenetic regulators to support efficient regulation of transcription activity and chromatin remodeling. This review briefly introduces the recent progress in the molecular dynamics and regulation mechanisms implicated in mouse early embryo development and somatic cell reprograming, as well as the multi-omics regulatory mechanisms of totipotency mediated by several key factors, which provide valuable resources for further investigations on the complicated regulatory network in essential biological events.
Collapse
Affiliation(s)
- Chuan Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Clinical and Translation Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
47
|
Xing G, Liu Z, Huang L, Zhao D, Wang T, Yuan H, Wu Y, Li L, Long Q, Zhou Y, Hao Z, Liu Y, Lu J, Li S, Zhu J, Wang B, Wang J, Liu J, Chen J, Pei D, Liu X, Chen K. MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death Differ 2022; 29:1042-1054. [PMID: 34815549 PMCID: PMC9090911 DOI: 10.1038/s41418-021-00902-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/09/2022] Open
Abstract
Somatic cell reprogramming is an ideal model for studying epigenetic regulation as it undergoes dramatic chromatin remodeling. However, a role for phosphorylation signaling in chromatin protein modifications for reprogramming remains unclear. Here, we identified mitogen-activated protein kinase kinase 6 (Mkk6) as a chromatin relaxer and found that it could significantly enhance reprogramming. The function of Mkk6 in heterochromatin loosening and reprogramming requires its kinase activity but does not depend on its best-known target, P38. We identified Gatad2b as a novel target of Mkk6 phosphorylation that acts downstream to elevate histone acetylation levels and loosen heterochromatin. As a result, Mkk6 over-expression facilitates binding of Sox2 and Klf4 to their targets and promotes pluripotency gene expression during reprogramming. Our studies not only reveal an Mkk phosphorylation mediated modulation of chromatin status in reprogramming, but also provide new rationales to further investigate and improve the cell fate determination processes.
Collapse
Affiliation(s)
- Guangsuo Xing
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zichao Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Luyuan Huang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Danyun Zhao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Hao Yuan
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yi Wu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Linpeng Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Qi Long
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Yanshuang Zhou
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Zhihong Hao
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jianghuan Lu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Shiting Li
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jieying Zhu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Bo Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Junwei Wang
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jing Liu
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Jiekai Chen
- grid.410737.60000 0000 8653 1072CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530 Guangzhou, China ,grid.428926.30000 0004 1798 2725Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China. .,Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| | - Keshi Chen
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou Medical University, 510530, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530, Guangzhou, China.
| |
Collapse
|
48
|
Cui G, Xu Y, Cao S, Shi K. Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development. Mol Reprod Dev 2022; 89:70-85. [PMID: 35075695 DOI: 10.1002/mrd.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The early embryonic development starts with the totipotent zygote upon fertilization of differentiated sperm and egg, which undergoes a range of reprogramming and transformation to acquire pluripotency. Induced pluripotent stem cells (iPSCs), a nonclonal technique to produce stem cells, are originated from differentiated somatic cells via accomplishment of cell reprogramming, which shares common reprogramming process with early embryonic development. iPSCs are attractive in recent years due to the potentially significant applications in disease modeling, potential value in genetic improvement of husbandry animal, regenerative medicine, and drug screening. This review focuses on introducing the research advance of both somatic cell reprogramming and early embryonic development, indicating that the mechanisms of iPSCs also shares common features with that of early embryonic development in several aspects, such as germ cell factors, DNA methylation, histone modification, and/or X chromosome inactivation. As iPSCs can successfully avoid ethical concerns that are naturally present in the embryos and/or embryonic stem cells, the practicality of somatic cell reprogramming (iPSCs) could provide an insightful platform to elucidate the mechanisms underlying the early embryonic development.
Collapse
Affiliation(s)
- Guina Cui
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yanwen Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyuan Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
49
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes.
First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
50
|
Chen HY, Hsu M, Lio CWJ. Micro but mighty-Micronutrients in the epigenetic regulation of adaptive immune responses. Immunol Rev 2022; 305:152-164. [PMID: 34820863 PMCID: PMC8766944 DOI: 10.1111/imr.13045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
Micronutrients are essential small molecules required by organisms in minute quantity for survival. For instance, vitamins and minerals, the two major categories of micronutrients, are central for biological processes such as metabolism, cell replication, differentiation, and immune response. Studies estimated that around two billion humans worldwide suffer from micronutrient deficiencies, also known as "hidden hunger," linked to weakened immune responses. While micronutrients affect the immune system at multiple levels, recent studies showed that micronutrients potentially impact the differentiation and function of immune cells as cofactors for epigenetic enzymes, including the 2-oxoglutarate-dependent dioxygenase (2OGDD) family involved in histone and DNA demethylation. Here, we will first provide an overview of the role of DNA methylation in T cells and B cells, followed by the micronutrients ascorbate (vitamin C) and iron, two critical cofactors for 2OGDD. We will discuss the emerging evidence of these micronutrients could regulate adaptive immune response by influencing epigenetic remodeling.
Collapse
Affiliation(s)
| | | | - Chan-Wang Jerry Lio
- Corresponding author: Chan-Wang Jerry Lio (), Address: 460 W 12 Ave, Columbus, Ohio, USA 43064, Tel: (614)-247-5337
| |
Collapse
|