1
|
Begh MZA, Zehravi M, Bhuiyan MAK, Molla MR, Raman K, Emran TB, Ullah MH, Ahmad I, Osman H, Khandaker MU. Recent advances in stem cell approaches to neurodegeneration: A comprehensive review with mechanistic insight. Pathol Res Pract 2025; 271:156013. [PMID: 40381433 DOI: 10.1016/j.prp.2025.156013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
The progressive nature of neurodegenerative diseases (NDs), such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis, presents substantial problems because current treatments are still obscure. Stem cell-based treatments are emerging as a viable solution to address the significant gaps in treating these severe diseases. This study provides a comprehensive analysis of the latest advancements in stem cell research, focusing on the treatment of NDs. Various types of stem cells, such as adult, induced pluripotent, and embryonic stem cells, and their potential applications in immunomodulation, neurotrophic factor release, and neuronal development are also discussed. Recent clinical studies reveal outcomes, challenges, and solutions, with advancements in disease-specific neural cell production, gene editing, and improved stem cell transplantation transport strategies. The review discussed future perspectives on developing more effective stem cell-based interventions. Biomaterials are being used for cell distribution and personalized medicine techniques to improve treatment outcomes, while exploring stem cell treatments for NDs and identifying areas for further research.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | | | - M Raju Molla
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh
| | - Kannan Raman
- Department of Pharmacology, St. John's College of Pharmaceutical Sciences & Research, Kattappana, Idukki, Kerala, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md Habib Ullah
- Department of Physics, American International University-Bangladesh (AIUB), 408/1, Kuratoli, Khilkhet, Dhaka 1229, Bangladesh
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Hamid Osman
- Department of Radiological Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mayeen Uddin Khandaker
- Applied Physics and Radiation Technologies Group, CCDCU, Faculty of Engineering and Technology, Sunway University, Bandar Sunway, 47500 Selangor, Malaysia; Department of Physics, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Guillaud L, Garanzini A, Zakhia S, De la Fuente S, Dimitrov D, Boerner S, Terenzio M. Loss of intracellular ATP affects axoplasmic viscosity and pathological protein aggregation in mammalian neurons. SCIENCE ADVANCES 2025; 11:eadq6077. [PMID: 40267187 PMCID: PMC12017319 DOI: 10.1126/sciadv.adq6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Neurodegenerative diseases display synaptic deficits, mitochondrial defects, and protein aggregation. We show that intracellular adenosine triphosphate (ATP) regulates axoplasmic viscosity and protein aggregation in mammalian neurons. Decreased intracellular ATP upon mitochondrial inhibition leads to axoterminal cytosol, synaptic vesicles, and active zone component condensation, modulating the functional organization of mouse glutamatergic synapses. Proteins involved in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) condensed and underwent ATP-dependent liquid phase separation in vitro. Human inducible pluripotent stem cell-derived neurons from patients with PD and ALS displayed reduced axoplasmic fluidity and decreased intracellular ATP. Last, nicotinamide mononucleotide treatment successfully rescued intracellular ATP levels and axoplasmic viscosity in neurons from patients with PD and ALS and reduced TAR DNA-binding protein 43 (TDP-43) aggregation in human motor neurons derived from a patient with ALS. Thus, our data suggest that the hydrotropic activity of ATP contributes to the regulation of neuronal homeostasis under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Anna Garanzini
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sarah Zakhia
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sandra De la Fuente
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Dimitar Dimitrov
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Susan Boerner
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| |
Collapse
|
3
|
Boschen SL, A Mukerjee A, H Faroqi A, E Rabichow B, Fryer J. Research models to study lewy body dementia. Mol Neurodegener 2025; 20:46. [PMID: 40269912 PMCID: PMC12020038 DOI: 10.1186/s13024-025-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer's disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson's disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD's mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD's etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD's unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Neurosurgery, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| | - Aarushi A Mukerjee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ayman H Faroqi
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ben E Rabichow
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - John Fryer
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 850054, USA
| |
Collapse
|
4
|
Vroman R, de Lichtervelde L, Singh Dolt K, Robertson G, Kriek M, Barbato M, Cholewa-Waclaw J, Kunath T, Downey P, Zagnoni M. A high-fidelity microfluidic platform reveals retrograde propagation as the main mechanism of α-Synuclein spread in human neurons. NPJ Parkinsons Dis 2025; 11:80. [PMID: 40254612 PMCID: PMC12009960 DOI: 10.1038/s41531-025-00936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 04/05/2025] [Indexed: 04/22/2025] Open
Abstract
α-Synuclein (αSyn) is a major component of Lewy bodies and Lewy neurites, which are a pathological hallmark of Parkinson's disease (PD). Pathologically aggregated forms of αSyn can spread along neurites and induce the misfolding of normal αSyn. To elucidate how αSyn pathology propagates between brain areas, we developed a novel in vitro microfluidic platform to study the intracellular transport of preformed fibrils and the induction and spread of αSyn aggregates. Patient-derived midbrain dopaminergic (mDA) neurons were cultured in microfluidic devices designed to maintain unidirectional axonal connections between fluidically isolated mDA neuronal cultures for over 3 months. Using αSyn preformed fibrils to induce Lewy-like pathology, we found that anterograde spread of αSyn fibrils was slow and occurred at low levels, while retrograde spread was significantly more efficient. This is in line with observations in animal models and shows that the platform provides an innovative new tool for studying PD in vitro.
Collapse
Affiliation(s)
- Rozan Vroman
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Karamjit Singh Dolt
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Graham Robertson
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Michela Barbato
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Patrick Downey
- UCB Biopharma, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Michele Zagnoni
- Center for Microsystems and Photonics, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
5
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
D'Sa K, Choi ML, Wagen AZ, Setó-Salvia N, Kopach O, Evans JR, Rodrigues M, Lopez-Garcia P, Lachica J, Clarke BE, Singh J, Ghareeb A, Bayne J, Grant-Peters M, Garcia-Ruiz S, Chen Z, Rodriques S, Athauda D, Gustavsson EK, Gagliano Taliun SA, Toomey C, Reynolds RH, Young G, Strohbuecker S, Warner T, Rusakov DA, Patani R, Bryant C, Klenerman DA, Gandhi S, Ryten M. Astrocytic RNA editing regulates the host immune response to alpha-synuclein. SCIENCE ADVANCES 2025; 11:eadp8504. [PMID: 40215316 PMCID: PMC11988446 DOI: 10.1126/sciadv.adp8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
RNA editing is a posttranscriptional mechanism that targets changes in RNA transcripts to modulate innate immune responses. We report the role of astrocyte-specific, ADAR1-mediated RNA editing in neuroinflammation in Parkinson's disease (PD). We generated human induced pluripotent stem cell-derived astrocytes, neurons and cocultures and exposed them to small soluble alpha-synuclein aggregates. Oligomeric alpha-synuclein triggered an inflammatory glial state associated with Toll-like receptor activation, viral responses, and cytokine secretion. This reactive state resulted in loss of neurosupportive functions and the induction of neuronal toxicity. Notably, interferon response pathways were activated leading to up-regulation and isoform switching of the RNA deaminase enzyme, ADAR1. ADAR1 mediates A-to-I RNA editing, and increases in RNA editing were observed in inflammatory pathways in cells, as well as in postmortem human PD brain. Aberrant, or dysregulated, ADAR1 responses and RNA editing may lead to sustained inflammatory reactive states in astrocytes triggered by alpha-synuclein aggregation, and this may drive the neuroinflammatory cascade in Parkinson's.
Collapse
Affiliation(s)
- Karishma D'Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Minee L. Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Brain & Cognitive Sciences, KAIST, 921 Dehak-ro, Daejeon, Republic of Korea
| | - Aaron Z. Wagen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Núria Setó-Salvia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Neuroscience and Cell Biology Research Institute, City St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Margarida Rodrigues
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Patricia Lopez-Garcia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Joanne Lachica
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Benjamin E. Clarke
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jaijeet Singh
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ali Ghareeb
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
| | - James Bayne
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Melissa Grant-Peters
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Sonia Garcia-Ruiz
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Zhongbo Chen
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Samuel Rodriques
- Applied Biotechnology Lab, The Francis Crick Institute, London NW1 1AT, UK
- FutureHouse, 1405 Minnesota Street, San Francisco, CA 94107, USA
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emil K. Gustavsson
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sarah A. Gagliano Taliun
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Christina Toomey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Regina H. Reynolds
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - George Young
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Stephanie Strohbuecker
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Thomas Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Clare Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- UK Dementia Research Institute at The University of Cambridge, Cambridge CB2 0AH, UK
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
8
|
Raza A, Raina J, Sahu SK, Wadhwa P. Genetic mutations in kinases: a comprehensive review on marketed inhibitors and unexplored targets in Parkinson's disease. Neurol Sci 2025; 46:1509-1524. [PMID: 39760821 DOI: 10.1007/s10072-024-07970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
This comprehensive review navigates the landscape of genetic mutations in kinases, offering a thorough examination of both marketed inhibitors and unexplored targets in the context of Parkinson's Disease (PD). Although existing treatments for PD primarily center on symptom management, progress in comprehending the molecular foundations of the disease has opened avenues for targeted therapeutic approaches. This review encompasses an in-depth analysis of four key kinases-PINK1, LRRK2, GAK, and PRKRA-revealing that LRRK2 has garnered the most attention with a plethora of marketed inhibitors. However, the study underscores notable gaps in the exploration of inhibitors for PINK1, GAK, and a complete absence for PRKRA. The observed scarcity of inhibitors for these kinases emphasizes a significant area of untapped potential in PD therapeutics. By drawing attention to these unexplored targets, the review highlights the urgent need for focused research and drug development efforts to diversify the therapeutic landscape, potentially providing novel interventions for halting or slowing the progression of PD.
Collapse
Affiliation(s)
- Amir Raza
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Jeevika Raina
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Grand Trunk Rd, Phagwara, Punjab, India.
| |
Collapse
|
9
|
Li Y, Sun T, Hu S, Xu H, Zhang T, Liu J, Lu S, Wang B, Dan G. SLC26A4 C.317C > A Variant: Functional Analysis and Patient-Derived Induced Pluripotent Stem Line Development. Mol Genet Genomic Med 2025; 13:e70098. [PMID: 40260864 PMCID: PMC12012755 DOI: 10.1002/mgg3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/06/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND SLC26A4 is the second most common cause of hereditary hearing loss worldwide. This gene predominantly harbors pathogenic variants, including splice, nonsense, and missense. Although missense variants are relatively common, their specific effects on protein function remain unclear. Consequently, there is an urgent need to establish an in vitro system to investigate how these variants impact SLC26A4 protein function. METHODS Genetic testing was conducted to determine the specific types of underlying genetic variants in patients. Following this, we employed plasmid transfection to evaluate the effects of the variants on both protein expression levels and the protein's subcellular localization. Thereafter, we transformed peripheral blood mononuclear cells (PBMCs) from the proband into induced pluripotent stem cells (iPSCs) through Sendai virus-mediated transduction. RESULTS Genetic testing revealed that the proband carried compound heterozygous variants: SLC26A4 c.919-2A > G and c.317C > A. The c.317C > A variant markedly decreased the expression levels of SLC26A4 mRNA and its encoded protein. Additionally, it led to the protein's accumulation in the cytoplasm as aggregates. We successfully reprogrammed peripheral blood mononuclear cells from the proband into induced pluripotent stem cells (iPSCs) and verified that these iPSCs retained their pluripotency, differentiation potential, and genetic integrity. CONCLUSION These results provide important insights into the mechanisms by which SLC26A4 gene variants lead to hearing loss.
Collapse
Affiliation(s)
- Yijing Li
- National Center for International Research in Cell and Gene Therapy, Sino‐British Research Centre for Molecular Oncology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Tao Sun
- Department of Clinical MedicineHenan Medical CollegeZhengzhouChina
- Laboratory of Hearing Loss MechanismHenan Provincial Medical Key LaboratoryZhengzhouChina
| | - Sang Hu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouChina
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouChina
| | - Teng Zhang
- Precision Medicine Center, Academy of Medical Science, Tianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhouChina
| | - Jinlong Liu
- National Center for International Research in Cell and Gene Therapy, Sino‐British Research Centre for Molecular Oncology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shuangshuang Lu
- National Center for International Research in Cell and Gene Therapy, Sino‐British Research Centre for Molecular Oncology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Bing Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guo Dan
- Laboratory of Hearing Loss MechanismHenan Provincial Medical Key LaboratoryZhengzhouChina
- Department of Basic Clinical MedicineHenan Medical CollegeZhengzhouChina
| |
Collapse
|
10
|
Teixeira AP, Franko N, Fussenegger M. Engineering Gene and Protein Switches for Regulation of Lineage-Specifying Transcription Factors. Biotechnol Bioeng 2025; 122:1051-1061. [PMID: 39801452 DOI: 10.1002/bit.28920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 03/12/2025]
Abstract
Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases. First, we leveraged hepatitis C virus and human rhinovirus proteases to control the activity of chimeric transcription factors, enabling gene expression activation exclusively in the presence of protease inhibitors and achieving high fold-inductions in hPSC lines. Second, we built single-chain protein switches regulating the activity of three differentiation-related pancreatic TFs, MafA, Pdx1, and Ngn3, each engineered with a protease cleavage site within its structure and having the corresponding protease fused at one terminus. While variants lacking the protease retained most of the unmodified TF activity, the attachment of the protease significantly decreased the activity, which could be rescued upon addition of the corresponding protease inhibitor. We confirmed the functionality of these protein switches for simultaneously controlling the activity of three TFs with a common input molecule, as well as the orthogonality of each protease-based system to independently regulate two TFs. Finally, we validated these very compact systems for precisely controlling TF activity in hPSCs. Our results suggest that they will be valuable tools for research in both developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Ana P Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem Cell-Based Approaches in Parkinson's Disease Research. Int J Stem Cells 2025; 18:21-36. [PMID: 38449089 PMCID: PMC11867902 DOI: 10.15283/ijsc23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of midbrain dopaminergic neurons, leading to motor symptoms. While current treatments provide limited relief, they don't alter disease progression. Stem cell technology, involving patient-specific stem cell-derived neurons, offers a promising avenue for research and personalized regenerative therapies. This article reviews the potential of stem cell-based research in PD, summarizing ongoing efforts, their limitations, and introducing innovative research models. The integration of stem cell technology and advanced models promises to enhance our understanding and treatment strategies for PD.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Wang Y, Wang Z, Wang L, Sun Y, Song H, Cheng X, He X, Gao Z, Sun Y. Human Induced Pluripotent Stem Cells: Directed Differentiation Methods and Applications in Brain Diseases. J Neurosci Res 2025; 103:e70027. [PMID: 39935271 DOI: 10.1002/jnr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Human induced pluripotent stem cells (hiPSCs), similar to embryonic stem cells, are a class of pluripotent stem cells with the potential to differentiate into various kinds of cells. Because the application of hiPSCs obtained by reprogramming patients' somatic cells in the treatment of brain diseases bypasses the ethical constraints on the use of embryonic stem cells and mitigates immune rejection, hiPSCs have profound clinical application prospects. In this review, we first summarized the differentiation methods of hiPSCs into different kinds of neurons, and secondly discussed the application of hiPSCs in several brain disease models, so as to provide a reference for the future application of hiPSCs in the studies and treatment of brain diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ziping Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, Hebei province, China
| | - Yanping Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, China
| | - Xiaoliang He
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
13
|
Wang B, Zhang Y, Li H, Dou H, Guo Y, Deng Y. Biologically inspired heterogeneous learning for accurate, efficient and low-latency neural network. Natl Sci Rev 2025; 12:nwae301. [PMID: 39758128 PMCID: PMC11697980 DOI: 10.1093/nsr/nwae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 01/07/2025] Open
Abstract
The pursuit of artificial neural networks that mirror the accuracy, efficiency and low latency of biological neural networks remains a cornerstone of artificial intelligence (AI) research. Here, we incorporated recent neuroscientific findings of self-inhibiting autapse and neuron heterogeneity for innovating a spiking neural network (SNN) with enhanced learning and memorizing capacities. A bi-level programming paradigm was formulated to respectively learn neuron-level biophysical variables and network-level synapse weights for nested heterogeneous learning. We successfully demonstrated that our biologically inspired neuron model could reproduce neural statistics at both individual and group levels, contributing to the effective decoding of brain-computer interface data. Furthermore, the heterogeneous SNN showed higher accuracy (1%-10% improvement), superior efficiency (maximal 17.83-fold reduction in energy) and lower latency (maximal 5-fold improvement) in performing several AI tasks. For the first time, we benchmarked SNN for conducting cell type identification from scRNA-seq data. The proposed model correctly identified very rare cell types associated with severe brain diseases where typical SNNs failed.
Collapse
Affiliation(s)
- Bo Wang
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Yuxuan Zhang
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Hongjue Li
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Hongkun Dou
- School of Astronautics, Beihang University, Beijing 100191, China
| | - Yuchen Guo
- Institute for Brain and Cognitive Sciences, BNRist, Tsinghua University, Beijing 100084, China
| | - Yue Deng
- School of Astronautics, Beihang University, Beijing 100191, China
- School of Artificial Intelligence, Beihang University, Beijing 100191, China
| |
Collapse
|
14
|
Borah R, O'Sullivan J, Suku M, Spurling D, Diez Clarke D, Nicolosi V, Caldwell MA, Monaghan MG. Electrically Conductive Injectable Silk/PEDOT: PSS Hydrogel for Enhanced Neural Network Formation. J Biomed Mater Res A 2025; 113:e37859. [PMID: 39719872 DOI: 10.1002/jbm.a.37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue. Given these considerations, we report a novel ECH prepared through self-assembly facilitated in situ gelation of natural silk fibroin (SF) derived from mulberry Bombyx mori silk and electrically conductive PEDOT:PSS. PEDOT:PSS was pre-stabilized to prevent the potential delamination of its hydrophilic PSS chain under aqueous environment using 3% (v/v) (3-glycidyloxypropyl)trimethoxysilane (GoPS) and 3% (w/v) poly(ethylene glycol)diglycidyl ether (PeGDE). The resultant ECH formulations are easily injectable with standard hand force with flow point below 100 Pa and good shear-thinning properties. The ECH formulations with unmodified and GoPS-modified PEDOT:PSS, that is, SF/PEDOT and SF/PEDOTGoP maintain comparable elastic modulus to spinal cord (~10-60 kPa) under physiological condition, indicating their flexibility. The GoPS-modified ECHs also display improved structural recoverability (~70%-90%) as compared to the unmodified versions of the ECHs (~30%-80%), as indicated by the three interval time thixotropy (3ITT) test. Additionally, these ECHs possess electrical conductivity in the range of ~0.2-1.2 S/m comparable to spinal cord (1-10 S/m), indicating their ability to mimic native bioelectrical environment. Approximately 80% or more cell survival was observed when hiPSC-derived cortical neurons and astrocytes were encapsulated within these ECHs. These ECHs support the maturation of cortical neurons when embedded for 7 days, fostering the development of a complex, interconnected network of long axonal processes and promoting synaptogenesis. These results underline the potential of silk ECHs in cell transplantation therapy for spinal cord regeneration.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Meenakshi Suku
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Dahnan Spurling
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Valeria Nicolosi
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michael G Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Robles-Garcia M, Thimonier C, Angoura K, Ozga E, MacPherson H, Blin G. In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitors. Development 2024; 151:dev202983. [PMID: 39611739 DOI: 10.1242/dev.202983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm. To gain insights into this process, we use micropatterning together with FGF and the WNT pathway activator CHIR9901 to guide the development of human embryonic stem cells into reproducible patterns of APS cell fates. We show that CHIR9901 dosage dictates the downstream dynamics of endogenous TGFβ signalling, which in turn controls cell fate decisions. While sustained NODAL signalling defines endoderm and NODAL inhibition is imperative for neuro-mesoderm emergence, timely inhibition of NODAL signalling with spatial confinement potentiates WNT activity and enables us to generate NotoPs efficiently. Our work elucidates the signalling regimes underpinning NotoP emergence and provides insights into the regulatory mechanisms controlling the balance of APS cell fates during gastrulation.
Collapse
Affiliation(s)
- Miguel Robles-Garcia
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Chloë Thimonier
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Konstantina Angoura
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Ewa Ozga
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Heather MacPherson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
16
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
18
|
Cui X, Li X, Zheng H, Su Y, Zhang S, Li M, Hao X, Zhang S, Hu Z, Xia Z, Shi C, Xu Y, Mao C. Human midbrain organoids: a powerful tool for advanced Parkinson's disease modeling and therapy exploration. NPJ Parkinsons Dis 2024; 10:189. [PMID: 39428415 PMCID: PMC11491477 DOI: 10.1038/s41531-024-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/02/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder marked by the loss of dopaminergic neurons in the substantia nigra. Despite progress, the pathogenesis remains unclear. Human midbrain organoids (hMLOs) have emerged as a promising model for studying PD, drug screening, and potential treatments. This review discusses the development of hMLOs, their application in PD research, and current challenges in organoid construction, highlighting possible optimization strategies.
Collapse
Affiliation(s)
- Xin Cui
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuyu Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Neuro-Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Liu J, Ji Z, He Q, Chen H, Xu X, Mei Q, Hu Y, Zhang H. Direct conversion of human umbilical cord mesenchymal stem cells into dopaminergic neurons for Parkinson's disease treatment. Neurobiol Dis 2024; 201:106683. [PMID: 39343249 DOI: 10.1016/j.nbd.2024.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits due to the depletion of nigrostriatal dopamine. Stem cell differentiation therapy emerges as a promising treatment option for sustained symptom relief. In this study, we successfully developed a one-step differentiation system using the YFBP cocktail (Y27632, Forskolin, SB431542, and SP600125) to effectively convert human umbilical cord mesenchymal stem cells (hUCMSCs) into dopaminergic neurons without genetic modification. This approach addresses the challenge of rapidly and safely generating functional neurons on a large scale. After a 7-day induction period, over 80 % of the cells were double-positive for TUBB3 and NEUN. Transcriptome analysis revealed the dual roles of the cocktail in inducing fate erasure in mesenchymal stem cells and activating the neuronal program. Notably, these chemically induced cells (CiNs) did not express HLA class II genes, preserving their immune-privileged status. Further study indicated that YFBP significantly downregulated p53 signaling and accelerated the differentiation process when Pifithrin-α, a p53 signaling inhibitor, was applied. Additionally, Wnt/β-catenin signaling was transiently activated within one day, but the prolonged activation hindered the neuronal differentiation of hUCMSCs. Upon transplantation into the striatum of mice, CiNs survived well and tested positive for dopaminergic neuron markers. They exhibited typical action potentials and sodium and potassium ion channel activity, demonstrating neuronal electrophysiological activity. Furthermore, CiNs treatment significantly increased the number of tyrosine hydroxylase-positive cells and the concentration of dopamine in the striatum, effectively ameliorating movement disorders in PD mice. Overall, our study provides a secure and reliable framework for cell replacement therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Zhongqing Ji
- Department of Orthopedics, Suzhou Yongding Hospital, Suzhou 215200, China
| | - Qisheng He
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Huanhuan Chen
- The Suqian Clinical College of Xuzhou Medical University, Suqian 223800, China
| | - Xiaojing Xu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Qiuhao Mei
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Ya'nan Hu
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Huanxiang Zhang
- Department of Cell Biology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
20
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
21
|
Evangelisti C, Ramadan S, Orlacchio A, Panza E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9747. [PMID: 39273694 PMCID: PMC11396244 DOI: 10.3390/ijms25179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Experimental models play a pivotal role in biomedical research, facilitating the understanding of disease mechanisms and the development of novel therapeutics. This is particularly true for neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and motor neuron disease, which present complex challenges for research and therapy development. In this work, we review the recent literature about experimental models and motor neuron disease. We identified three main categories of models that are highly studied by scientists. In fact, experimental models for investigating these diseases encompass a variety of approaches, including modeling the patient's cell culture, patient-derived induced pluripotent stem cells, and organoids. Each model offers unique advantages and limitations, providing researchers with a range of tools to address complex biological questions. Here, we discuss the characteristics, applications, and recent advancements in terms of each model system, highlighting their contributions to advancing biomedical knowledge and translational research.
Collapse
Affiliation(s)
- Cecilia Evangelisti
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sherin Ramadan
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Antonio Orlacchio
- Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Laboratory of Neurogenetics, European Center for Brain Research (CERC), IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Emanuele Panza
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
22
|
Tripathi A, Alnakhala H, Brontesi L, Selkoe D, Dettmer U. RXR nuclear receptor signaling modulates lipid metabolism and triggers lysosomal clearance of alpha-synuclein in neuronal models of synucleinopathy. Cell Mol Life Sci 2024; 81:362. [PMID: 39162859 PMCID: PMC11336128 DOI: 10.1007/s00018-024-05373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Disease-modifying strategies for Parkinson disease (PD), the most common synucleinopathy, represent a critical unmet medical need. Accumulation of the neuronal protein alpha-synuclein (αS) and abnormal lipid metabolism have each been implicated in PD pathogenesis. Here, we elucidate how retinoid-X-receptor (RXR) nuclear receptor signaling impacts these two aspects of PD pathogenesis. We find that activated RXR differentially regulates fatty acid desaturases, significantly reducing the transcript levels of the largely brain-specific desaturase SCD5 in human cultured neural cells and PD patient-derived neurons. This was associated with reduced perilipin-2 protein levels in patient neurons, reversal of αS-induced increases in lipid droplet (LD) size, and a reduction of triglyceride levels in human cultured cells. With regard to αS proteostasis, our study reveals that RXR agonism stimulates lysosomal clearance of αS. Our data support the involvement of Polo-like kinase 2 activity and αS S129 phosphorylation in mediating this benefit. The lowering of cellular αS levels was associated with reduced cytotoxicity. Compared to RXR activation, the RXR antagonist HX531 had the opposite effects on LD size, SCD, αS turnover, and cytotoxicity, all supporting pathway specificity. Together, our findings show that RXR-activating ligands can modulate fatty acid metabolism and αS turnover to confer benefit in cellular models of PD, including patient neurons. We offer a new paradigm to investigate nuclear receptor ligands as a promising strategy for PD and related synucleinopathies.
Collapse
Affiliation(s)
- Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Heba Alnakhala
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Lisa Brontesi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA
| | - Dennis Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Florido MHC, Ziats NP. Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. J Biomed Mater Res A 2024; 112:1286-1304. [PMID: 38230548 DOI: 10.1002/jbm.a.37669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024]
Abstract
Cardiovascular disease (CVD) remains to be the leading cause of death globally today and therefore the need for the development of novel therapies has become increasingly important in the cardiovascular field. The mechanism(s) behind the pathophysiology of CVD have been laboriously investigated in both stem cell and bioengineering laboratories. Scientific breakthroughs have paved the way to better mimic cell types of interest in recent years, with the ability to generate any cell type from reprogrammed human pluripotent stem cells. Mimicking the native extracellular matrix using both organic and inorganic biomaterials has allowed full organs to be recapitulated in vitro. In this paper, we will review techniques from both stem cell biology and bioengineering which have been fruitfully combined and have fueled advances in the cardiovascular disease field. We will provide a brief introduction to CVD, reviewing some of the recent studies as related to the role of endothelial cells and endothelial cell dysfunction. Recent advances and the techniques widely used in both bioengineering and stem cell biology will be discussed, providing a broad overview of the collaboration between these two fields and their overall impact on tissue engineering in the cardiovascular devices and implications for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mary H C Florido
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas P Ziats
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Biomedical Engineering and Anatomy, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Jothi D, Kulka LAM. Strategies for modeling aging and age-related diseases. NPJ AGING 2024; 10:32. [PMID: 38987252 PMCID: PMC11237002 DOI: 10.1038/s41514-024-00161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
The ability to reprogram patient-derived-somatic cells to IPSCs (Induced Pluripotent Stem Cells) has led to a better understanding of aging and age-related diseases like Parkinson's, and Alzheimer's. The established patient-derived disease models mimic disease pathology and can be used to design drugs for aging and age-related diseases. However, the age and genetic mutations of the donor cells, the employed reprogramming, and the differentiation protocol might often pose challenges in establishing an appropriate disease model. In this review, we will focus on the various strategies for the successful reprogramming and differentiation of patient-derived cells to disease models for aging and age-related diseases, emphasizing the accuracy in the recapitulation of disease pathology and ways to overcome the limitations of its potential application in cell replacement therapy and drug development.
Collapse
Affiliation(s)
- D Jothi
- Department of Biochemistry II, Friedrich Schiller University, Jena, Germany.
| | | |
Collapse
|
25
|
White AJ, Clark KA, Alexander KD, Ramalingam N, Young-Pearse TL, Dettmer U, Selkoe DJ, Ho GPH. A stem cell-based assay platform demonstrates alpha-synuclein dependent synaptic dysfunction in patient-derived cortical neurons. NPJ Parkinsons Dis 2024; 10:107. [PMID: 38773105 PMCID: PMC11109103 DOI: 10.1038/s41531-024-00725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
Alpha-synuclein (αS)-rich Lewy bodies and neurites in the cerebral cortex correlate with the presence of dementia in Parkinson disease (PD) and Dementia with Lewy bodies (DLB), but whether αS influences synaptic vesicle dynamics in human cortical neurons is unknown. Using a new iPSC-based assay platform for measuring synaptic vesicle cycling, we found that in human cortical glutamatergic neurons, increased αS from either transgenic expression or triplication of the endogenous locus in patient-derived neurons reduced synaptic vesicle cycling under both stimulated and spontaneous conditions. Thus, using a robust, easily adopted assay platform, we show for the first time αS-induced synaptic dysfunction in human cortical neurons, a key cellular substrate for PD dementia and DLB.
Collapse
Affiliation(s)
- Andrew J White
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Karis A Clark
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kellianne D Alexander
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Gary P H Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Samson JS, Ramesh A, Parvathi VD. Development of Midbrain Dopaminergic Neurons and the Advantage of Using hiPSCs as a Model System to Study Parkinson's Disease. Neuroscience 2024; 546:1-19. [PMID: 38522661 DOI: 10.1016/j.neuroscience.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Midbrain dopaminergic (mDA) neurons are significantly impaired in patients inflicted with Parkinson's disease (PD), subsequently affecting a variety of motor functions. There are four pathways through which dopamine elicits its function, namely, nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular dopamine pathways. SHH and Wnt signalling pathways in association with favourable expression of a variety of genes, promotes the development and differentiation of mDA neurons in the brain. However, there is a knowledge gap regarding the complex signalling pathways involved in development of mDA neurons. hiPSC models have been acclaimed to be effective in generating complex disease phenotypes. These models mimic the microenvironment found in vivo thus ensuring maximum reliability. Further, a variety of therapeutic compounds can be screened using hiPSCs since they can be used to generate neurons that could carry an array of mutations associated with both familial and sporadic PD. Thus, culturing hiPSCs to study gene expression and dysregulation of cellular processes associated with PD can be useful in developing targeted therapies that will be a step towards halting disease progression.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Anuradha Ramesh
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India.
| |
Collapse
|
27
|
Miano-Burkhardt A, Alvarez Jerez P, Daida K, Bandres Ciga S, Billingsley KJ. The Role of Structural Variants in the Genetic Architecture of Parkinson's Disease. Int J Mol Sci 2024; 25:4801. [PMID: 38732020 PMCID: PMC11084710 DOI: 10.3390/ijms25094801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD) significantly impacts millions of individuals worldwide. Although our understanding of the genetic foundations of PD has advanced, a substantial portion of the genetic variation contributing to disease risk remains unknown. Current PD genetic studies have primarily focused on one form of genetic variation, single nucleotide variants (SNVs), while other important forms of genetic variation, such as structural variants (SVs), are mostly ignored due to the complexity of detecting these variants with traditional sequencing methods. Yet, these forms of genetic variation play crucial roles in gene expression and regulation in the human brain and are causative of numerous neurological disorders, including forms of PD. This review aims to provide a comprehensive overview of our current understanding of the involvement of coding and noncoding SVs in the genetic architecture of PD.
Collapse
Affiliation(s)
- Abigail Miano-Burkhardt
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kensuke Daida
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Sara Bandres Ciga
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| | - Kimberley J. Billingsley
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA; (A.M.-B.); (K.D.)
- Center for Alzheimer’s and Related Dementias, National Institute on Aging, Bethesda, MD 20892, USA; (P.A.J.); (S.B.C.)
| |
Collapse
|
28
|
Kinnart I, Manders L, Heyninck T, Imberechts D, Praschberger R, Schoovaerts N, Verfaillie C, Verstreken P, Vandenberghe W. Elevated α-synuclein levels inhibit mitophagic flux. NPJ Parkinsons Dis 2024; 10:80. [PMID: 38594264 PMCID: PMC11004019 DOI: 10.1038/s41531-024-00696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
The pathogenic effect of SNCA gene multiplications indicates that elevation of wild-type α-synuclein levels is sufficient to cause Parkinson's disease (PD). Mitochondria have been proposed to be a major target of α-synuclein-induced damage. PINK1/parkin/DJ-1-mediated mitophagy is a defense strategy that allows cells to selectively eliminate severely damaged mitochondria. Here, we quantified mitophagic flux and non-mitochondrial autophagic flux in three models of increased α-synuclein expression: 1/Drosophila melanogaster that transgenically express human wild-type and mutant α-synuclein in flight muscle; 2/human skin fibroblasts transfected with α-synuclein or β-synuclein; and 3/human induced pluripotent stem cell (iPSC)-derived neurons carrying an extra copy of wild-type SNCA under control of a doxycycline-inducible promoter, allowing titratable α-synuclein upregulation. In each model, elevated α-synuclein levels potently suppressed mitophagic flux, while non-mitochondrial autophagy was preserved. In human neurons, a twofold increase in wild-type α-synuclein was already sufficient to induce this effect. PINK1 and parkin activation and mitochondrial translocation of DJ-1 after mitochondrial depolarization were not affected by α-synuclein upregulation. Overexpression of the actin-severing protein cofilin or treatment with CK666, an inhibitor of the actin-related protein 2/3 (Arp2/3) complex, rescued mitophagy in neurons with increased α-synuclein, suggesting that excessive actin network stabilization mediated the mitophagy defect. In conclusion, elevated α-synuclein levels inhibit mitophagic flux. Disruption of actin dynamics may play a key role in this effect.
Collapse
Affiliation(s)
- Inge Kinnart
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Liselot Manders
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Thibaut Heyninck
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Dorien Imberechts
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium
| | - Roman Praschberger
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Nils Schoovaerts
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | - Patrik Verstreken
- Department of Neurosciences, Laboratory for Neuronal Communication, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, Laboratory for Parkinson Research, KU Leuven, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Comini G, Kelly R, Jarrin S, Patton T, Narasimhan K, Pandit A, Drummond N, Kunath T, Dowd E. Survival and maturation of human induced pluripotent stem cell-derived dopaminergic progenitors in the parkinsonian rat brain is enhanced by transplantation in a neurotrophin-enriched hydrogel. J Neural Eng 2024; 21:024002. [PMID: 38479026 DOI: 10.1088/1741-2552/ad33b2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Objective.Although human induced pluripotent stem cell (iPSC)-derived cell replacement for Parkinson's disease has considerable reparative potential, its full therapeutic benefit is limited by poor graft survival and dopaminergic maturation. Injectable biomaterial scaffolds, such as collagen hydrogels, have the potential to address these issues via a plethora of supportive benefits including acting as a structural scaffold for cell adherence, shielding from the host immune response and providing a reservoir of neurotrophic factors to aid survival and differentiation. Thus, the aim of this study was to determine if a neurotrophin-enriched collagen hydrogel could improve the survival and maturation of iPSC-derived dopaminergic progenitors (iPSC-DAPs) after transplantation into the rat parkinsonian brain.Approach.Human iPSC-DAPs were transplanted into the 6-hydroxydopamine-lesioned striatum either alone, with the neurotrophins GDNF and BDNF, in an unloaded collagen hydrogel, or in a neurotrophin-loaded collagen hydrogel.Post-mortem, human nuclear immunostaining was used to identify surviving iPSC-DAPs while tyrosine hydroxylase immunostaining was used to identify iPSC-DAPs that had differentiated into mature dopaminergic neurons.Main results.We found that iPSC-DAPs transplanted in the neurotrophin-enriched collagen hydrogel survived and matured significantly better than cells implanted without the biomaterial (8 fold improvement in survival and 16 fold improvement in dopaminergic differentiation). This study shows that transplantation of human iPSC-DAPs in a neurotrophin-enriched collagen hydrogel improves graft survival and maturation in the parkinsonian rat brain.Significance.The data strongly supports further investigation of supportive hydrogels for improving the outcome of iPSC-derived brain repair in Parkinson's disease.
Collapse
Affiliation(s)
- Giulia Comini
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Rachel Kelly
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Jarrin
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | - Tommy Patton
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| | | | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| | - Nicola Drummond
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Eilís Dowd
- Pharmacology & Therapeutics, University of Galway, Galway, Ireland
| |
Collapse
|
30
|
Suzuki H, Egawa N, Imamura K, Kondo T, Enami T, Tsukita K, Suga M, Yada Y, Shibukawa R, Takahashi R, Inoue H. Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation. Mol Brain 2024; 17:14. [PMID: 38444039 PMCID: PMC10916047 DOI: 10.1186/s13041-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takayuki Kondo
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuichiro Yada
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ran Shibukawa
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Haruhisa Inoue
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
31
|
Beghini DG, Kasai-Brunswick TH, Henriques-Pons A. Induced Pluripotent Stem Cells in Drug Discovery and Neurodegenerative Disease Modelling. Int J Mol Sci 2024; 25:2392. [PMID: 38397069 PMCID: PMC10889263 DOI: 10.3390/ijms25042392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/25/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from reprogrammed adult somatic cells. These adult cells are manipulated in vitro to express genes and factors essential for acquiring and maintaining embryonic stem cell (ESC) properties. This technology is widely applied in many fields, and much attention has been given to developing iPSC-based disease models to validate drug discovery platforms and study the pathophysiological molecular processes underlying disease onset. Especially in neurological diseases, there is a great need for iPSC-based technological research, as these cells can be obtained from each patient and carry the individual's bulk of genetic mutations and unique properties. Moreover, iPSCs can differentiate into multiple cell types. These are essential characteristics, since the study of neurological diseases is affected by the limited access to injury sites, the need for in vitro models composed of various cell types, the complexity of reproducing the brain's anatomy, the challenges of postmortem cell culture, and ethical issues. Neurodegenerative diseases strongly impact global health due to their high incidence, symptom severity, and lack of effective therapies. Recently, analyses using disease specific, iPSC-based models confirmed the efficacy of these models for testing multiple drugs. This review summarizes the advances in iPSC technology used in disease modelling and drug testing, with a primary focus on neurodegenerative diseases, including Parkinson's and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Gois Beghini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem, CENABIO, Universidade Federal do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, Seropédica 23890-000, RJ, Brazil
| | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, RJ, Brazil;
| |
Collapse
|
32
|
Zilberter Y, Tabuena DR, Zilberter M. NOX-induced oxidative stress is a primary trigger of major neurodegenerative disorders. Prog Neurobiol 2023; 231:102539. [PMID: 37838279 PMCID: PMC11758986 DOI: 10.1016/j.pneurobio.2023.102539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Neurodegenerative diseases (NDDs) causing cognitive impairment and dementia are difficult to treat due to the lack of understanding of primary initiating factors. Meanwhile, major sporadic NDDs share many risk factors and exhibit similar pathologies in their early stages, indicating the existence of common initiation pathways. Glucose hypometabolism associated with oxidative stress is one such primary, early and shared pathology, and a likely major cause of detrimental disease-associated cascades; targeting this common pathology may therefore be an effective preventative strategy for most sporadic NDDs. However, its exact cause and trigger remain unclear. Recent research suggests that early oxidative stress caused by NADPH oxidase (NOX) activation is a shared initiating mechanism among major sporadic NDDs and could prove to be the long-sought ubiquitous NDD trigger. We focus on two major NDDs - Alzheimer's disease (AD) and Parkinson's disease (PD), as well as on acquired epilepsy which is an increasingly recognized comorbidity in NDDs. We also discuss available data suggesting the relevance of the proposed mechanisms to other NDDs. We delve into the commonalities among these NDDs in neuroinflammation and NOX involvement to identify potential therapeutic targets and gain a deeper understanding of the underlying causes of NDDs.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Dennis R Tabuena
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA.
| |
Collapse
|
33
|
Saleeb RS, Leighton C, Lee JE, O’Shaughnessy J, Jeacock K, Chappard A, Cumberland R, Zhao T, Ball SR, Sunde M, Clarke DJ, Piché K, McPhail JA, Louwrier A, Angers R, Gandhi S, Downey P, Kunath T, Horrocks MH. Two-color coincidence single-molecule pulldown for the specific detection of disease-associated protein aggregates. SCIENCE ADVANCES 2023; 9:eadi7359. [PMID: 37967183 PMCID: PMC10651132 DOI: 10.1126/sciadv.adi7359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Protein misfolding and aggregation is a characteristic of many neurodegenerative disorders, including Alzheimer's and Parkinson's disease. The oligomers generated during aggregation are likely involved in disease pathogenesis and present promising biomarker candidates. However, owing to their small size and low concentration, specific tools to quantify and characterize aggregates in complex biological samples are still lacking. Here, we present single-molecule two-color aggregate pulldown (STAPull), which overcomes this challenge by probing immobilized proteins using orthogonally labeled detection antibodies. By analyzing colocalized signals, we can eliminate monomeric protein and specifically quantify aggregated proteins. Using the aggregation-prone alpha-synuclein protein as a model, we demonstrate that this approach can specifically detect aggregates with a limit of detection of 5 picomolar. Furthermore, we show that STAPull can be used in a range of samples, including human biofluids. STAPull is applicable to protein aggregates from a variety of disorders and will aid in the identification of biomarkers that are crucial in the effort to diagnose these diseases.
Collapse
Affiliation(s)
- Rebecca S. Saleeb
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Craig Leighton
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Ji-Eun Lee
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Judi O’Shaughnessy
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Kiani Jeacock
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Alexandre Chappard
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Robyn Cumberland
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Tianxiao Zhao
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sarah R. Ball
- School of Medical Sciences, Faculty of Medicine and Health, and Sydney Nano, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - David J. Clarke
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
| | - Kristin Piché
- Stressmarq Biosciences Inc., Suite 117-1537 Hillside Ave, Victoria, V8T 2C1 BC, Canada
| | - Jacob A. McPhail
- Stressmarq Biosciences Inc., Suite 117-1537 Hillside Ave, Victoria, V8T 2C1 BC, Canada
| | - Ariel Louwrier
- Stressmarq Biosciences Inc., Suite 117-1537 Hillside Ave, Victoria, V8T 2C1 BC, Canada
| | | | - Sonia Gandhi
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | | | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
34
|
Vetchinova AS, Kapkaeva MR, Ivanov MV, Kutukova KA, Mudzhiri NM, Frumkina LE, Brydun AV, Sukhorukov VS, Illarioshkin SN. Mitochondrial Dysfunction in Dopaminergic Neurons Derived from Patients with LRRK2- and SNCA-Associated Genetic Forms of Parkinson's Disease. Curr Issues Mol Biol 2023; 45:8395-8411. [PMID: 37886972 PMCID: PMC10605424 DOI: 10.3390/cimb45100529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Some cases of PD may be caused by genetic factors, among which mutations in the LRRK2 and SNCA genes play an important role. To develop effective neuroprotective strategies for PD, it is important to diagnose the disease at the earliest stages of the neurodegenerative process. Therefore, the detection of diagnostic and prognostic markers of Parkinson's disease (PD) is an urgent medical need. Advances in induced pluripotent stem cell (iPSC) culture technology provide new opportunities for the search for new biomarkers of PD and its modeling in vitro. In our work, we used a new technology for multiplex profiling of gene expression using barcoding on the Nanostring platform to assess the activity of mitochondrial genes on iPSC-derived cultures of dopaminergic neurons obtained from patients with LRRK2- and SNCA-associated genetic forms PD and a healthy donor. Electron microscopy revealed ultrastructural changes in mitochondria in both LRRK2 and SNCA mutant cells, whereas mitochondria in cells from a healthy donor were normal. In a culture with the SNCA gene mutation, the ratio of the area occupied by mitochondria to the total area of the cytoplasm was significantly lower than in the control and in the line with the LRRK2 gene mutation. Transcriptome analysis of 105 mitochondria proteome genes using the Nanostring platform revealed differences between the diseased and normal cells in the activity of genes involved in respiratory complex function, the tricarboxylic acid cycle, ATP production, mitochondria-endoplasmic reticulum interaction, mitophagy, regulation of calcium concentration, and mitochondrial DNA replication.
Collapse
Affiliation(s)
- Anna S. Vetchinova
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Marina R. Kapkaeva
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Mikhail V. Ivanov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Kristina A. Kutukova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Natalia M. Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Lydia E. Frumkina
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Anatoly V. Brydun
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Vladimir S. Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia (N.M.M.)
| | - Sergey N. Illarioshkin
- Laboratory of Neurobiology and Tissue Engineering, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
35
|
Patikas N, Ansari R, Metzakopian E. Single-cell transcriptomics identifies perturbed molecular pathways in midbrain organoids using α-synuclein triplication Parkinson's disease patient-derived iPSCs. Neurosci Res 2023; 195:13-28. [PMID: 37271312 DOI: 10.1016/j.neures.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Three-dimensional (3D) brain organoids provide a platform to study brain development, cellular coordination, and disease using human tissue. Here, we generate midbrain dopaminergic (mDA) organoids from induced pluripotent stem cells (iPSC) from healthy and Parkinson's Disease (PD) donors and assess them as a human PD model using single-cell RNAseq. We characterize cell types in our organoid cultures and analyze our model's Dopamine (DA) neurons using cytotoxic and genetic stressors. Our study provides the first in-depth, single-cell analysis of SNCA triplication and shows evidence for molecular dysfunction in oxidative phosphorylation, translation, and ER protein-folding in DA neurons. We perform an in-silico identification of rotenone-sensitive DA neurons and characterization of corresponding transcriptomic profiles associated with synaptic signalling and cholesterol biosynthesis. Finally, we show a novel chimera organoid model from healthy and PD iPSCs allowing the study of DA neurons from different individuals within the same tissue.
Collapse
Affiliation(s)
- Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AH, UK.
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AH, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AH, UK.
| |
Collapse
|
36
|
Hou X, Chen TH, Koga S, Bredenberg JM, Faroqi AH, Delenclos M, Bu G, Wszolek ZK, Carr JA, Ross OA, McLean PJ, Murray ME, Dickson DW, Fiesel FC, Springer W. Alpha-synuclein-associated changes in PINK1-PRKN-mediated mitophagy are disease context dependent. Brain Pathol 2023; 33:e13175. [PMID: 37259617 PMCID: PMC10467041 DOI: 10.1111/bpa.13175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Ayman H. Faroqi
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Jonathan A. Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Pamela J. McLean
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Melissa E. Murray
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Fabienne C. Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|
37
|
D’Sa K, Evans JR, Virdi GS, Vecchi G, Adam A, Bertolli O, Fleming J, Chang H, Leighton C, Horrocks MH, Athauda D, Choi ML, Gandhi S. Prediction of mechanistic subtypes of Parkinson's using patient-derived stem cell models. NAT MACH INTELL 2023; 5:933-946. [PMID: 37615030 PMCID: PMC10442231 DOI: 10.1038/s42256-023-00702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Parkinson's disease is a common, incurable neurodegenerative disorder that is clinically heterogeneous: it is likely that different cellular mechanisms drive the pathology in different individuals. So far it has not been possible to define the cellular mechanism underlying the neurodegenerative disease in life. We generated a machine learning-based model that can simultaneously predict the presence of disease and its primary mechanistic subtype in human neurons. We used stem cell technology to derive control or patient-derived neurons, and generated different disease subtypes through chemical induction or the presence of mutation. Multidimensional fluorescent labelling of organelles was performed in healthy control neurons and in four different disease subtypes, and both the quantitative single-cell fluorescence features and the images were used to independently train a series of classifiers to build deep neural networks. Quantitative cellular profile-based classifiers achieve an accuracy of 82%, whereas image-based deep neural networks predict control and four distinct disease subtypes with an accuracy of 95%. The machine learning-trained classifiers achieve their accuracy across all subtypes, using the organellar features of the mitochondria with the additional contribution of the lysosomes, confirming the biological importance of these pathways in Parkinson's. Altogether, we show that machine learning approaches applied to patient-derived cells are highly accurate at predicting disease subtypes, providing proof of concept that this approach may enable mechanistic stratification and precision medicine approaches in the future.
Collapse
Affiliation(s)
- Karishma D’Sa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
| | - James R. Evans
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
| | - Gurvir S. Virdi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
| | | | | | | | - James Fleming
- The Francis Crick Institute, King’s Cross, London, UK
| | - Hojong Chang
- Institute for IT Convergence, KAIST, Daejeon, Republic of Korea
| | - Craig Leighton
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
| | - Minee L. Choi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
- Department of Brain & Cognitive Sciences, KAIST, Daejeon, Republic of Korea
| | - Sonia Gandhi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, King’s Cross, London, UK
| |
Collapse
|
38
|
Kim MS, Ra EA, Kweon SH, Seo BA, Ko HS, Oh Y, Lee G. Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation. Cell Stem Cell 2023; 30:973-986.e11. [PMID: 37339636 PMCID: PMC10829432 DOI: 10.1016/j.stem.2023.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/02/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer advantages for disease modeling and drug discovery. However, recreating innate cellular pathologies, particularly in late-onset neurodegenerative diseases with accumulated protein aggregates including Parkinson's disease (PD), has been challenging. To overcome this barrier, we developed an optogenetics-assisted α-synuclein (α-syn) aggregation induction system (OASIS) that rapidly induces α-syn aggregates and toxicity in PD hiPSC-midbrain dopaminergic neurons and midbrain organoids. Our OASIS-based primary compound screening with SH-SY5Y cells identified 5 candidates that were secondarily validated with OASIS PD hiPSC-midbrain dopaminergic neurons and midbrain organoids, leading us to finally select BAG956. Furthermore, BAG956 significantly reverses characteristic PD phenotypes in α-syn preformed fibril models in vitro and in vivo by promoting autophagic clearance of pathological α-syn aggregates. Following the FDA Modernization Act 2.0's emphasis on alternative non-animal testing methods, our OASIS can serve as an animal-free preclinical test model (newly termed "nonclinical test") for the synucleinopathy drug development.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eun A Ra
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sin Ho Kweon
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bo Am Seo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea; Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju-si, Gangwon-do, Korea
| | - Han Seok Ko
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yohan Oh
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Maor G, Dubreuil RR, Feany MB. α-synuclein promotes neuronal dysfunction and death by disrupting the binding of ankyrin to ß-spectrin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543481. [PMID: 37333277 PMCID: PMC10274672 DOI: 10.1101/2023.06.02.543481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
α-synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to ß-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders we demonstrate that ß-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of ß-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila. Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies leads to neuronal dysfunction and death.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ronald R. Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
40
|
Nim S, O'Hara DM, Corbi-Verge C, Perez-Riba A, Fujisawa K, Kapadia M, Chau H, Albanese F, Pawar G, De Snoo ML, Ngana SG, Kim J, El-Agnaf OMA, Rennella E, Kay LE, Kalia SK, Kalia LV, Kim PM. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson's disease. Nat Commun 2023; 14:2150. [PMID: 37076542 PMCID: PMC10115881 DOI: 10.1038/s41467-023-37464-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 03/14/2023] [Indexed: 04/21/2023] Open
Abstract
Accumulation of α-synuclein into toxic oligomers or fibrils is implicated in dopaminergic neurodegeneration in Parkinson's disease. Here we performed a high-throughput, proteome-wide peptide screen to identify protein-protein interaction inhibitors that reduce α-synuclein oligomer levels and their associated cytotoxicity. We find that the most potent peptide inhibitor disrupts the direct interaction between the C-terminal region of α-synuclein and CHarged Multivesicular body Protein 2B (CHMP2B), a component of the Endosomal Sorting Complex Required for Transport-III (ESCRT-III). We show that α-synuclein impedes endolysosomal activity via this interaction, thereby inhibiting its own degradation. Conversely, the peptide inhibitor restores endolysosomal function and thereby decreases α-synuclein levels in multiple models, including female and male human cells harboring disease-causing α-synuclein mutations. Furthermore, the peptide inhibitor protects dopaminergic neurons from α-synuclein-mediated degeneration in hermaphroditic C. elegans and preclinical Parkinson's disease models using female rats. Thus, the α-synuclein-CHMP2B interaction is a potential therapeutic target for neurodegenerative disorders.
Collapse
Affiliation(s)
- Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Albert Perez-Riba
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Hien Chau
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Federica Albanese
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mitchell L De Snoo
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Sophie G Ngana
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Jisun Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Lv Y, Qin Y, Wang J, Tian G, Wang W, Cao C, Zhang Y. Identifying altered developmental pathways in human globoid cell leukodystrophy iPSCs-derived NSCs using transcriptome profiling. BMC Genomics 2023; 24:210. [PMID: 37076788 PMCID: PMC10116706 DOI: 10.1186/s12864-023-09285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/30/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Globoid cell leukodystrophy (GLD) is a devastating neurodegenerative disease characterized by widespread demyelination caused by galactocerebrosidase defects. Changes in GLD pathogenesis occurring at the molecular level have been poorly studied in human-derived neural cells. Patient-derived induced pluripotent stem cells (iPSCs) are a novel disease model for studying disease mechanisms and allow the generation of patient-derived neuronal cells in a dish. RESULTS In this study, we identified gene-expression changes in iPSCs and iPSC-derived neural stem cells (NSCs) from a patient with GLD (K-iPSCs/NSCs) and normal control (AF-iPSCs/NSCs), in order to investigate the potential mechanism underlying GLD pathogenesis. We identified 194 (K-iPSCs vs. AF-iPSCs) and 702 (K-NSCs vs. AF-NSCs) significantly dysregulated mRNAs when comparing the indicated groups. We also identified dozens of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway terms that were enriched for the differentially expressed genes. Among them, 25 differentially expressed genes identified by RNA-sequencing analysis were validated using real-time quantitative polymerase chain reaction analysis. Dozens of pathways involved in neuroactive ligand-receptor interactions, synaptic vesicle cycle signaling, serotonergic synapse signaling, phosphatidylinositol-protein kinase B signaling, and cyclic AMP signaling were identified as potential contributors to GLD pathogenesis. CONCLUSIONS Our results correspond to the fact that mutations in the galactosylceramidase gene may disrupt the identified signaling pathways during neural development, suggesting that alterations in signaling pathways contribute to GLD pathogenesis. At the same time, our results demonstrates that the model based on K-iPSCs is a novel tool that can be used to study the underlying molecular basis of GLD.
Collapse
Affiliation(s)
- Yafeng Lv
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Yu Qin
- The People's Hospital of China Three Gorges University, The First People's Hospital of Yichang, Yichang, 443000, Hubei, China
| | - Jing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China
| | - Guoshuai Tian
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Wei Wang
- China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, 443000, Hubei, China.
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
42
|
Sugeno N, Hasegawa T. Unraveling the Complex Interplay between Alpha-Synuclein and Epigenetic Modification. Int J Mol Sci 2023; 24:ijms24076645. [PMID: 37047616 PMCID: PMC10094812 DOI: 10.3390/ijms24076645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Alpha-synuclein (αS) is a small, presynaptic neuronal protein encoded by the SNCA gene. Point mutations and gene multiplication of SNCA cause rare familial forms of Parkinson’s disease (PD). Misfolded αS is cytotoxic and is a component of Lewy bodies, which are a pathological hallmark of PD. Because SNCA multiplication is sufficient to cause full-blown PD, gene dosage likely has a strong impact on pathogenesis. In sporadic PD, increased SNCA expression resulting from a minor genetic background and various environmental factors may contribute to pathogenesis in a complementary manner. With respect to genetic background, several risk loci neighboring the SNCA gene have been identified, and epigenetic alterations, such as CpG methylation and regulatory histone marks, are considered important factors. These alterations synergistically upregulate αS expression and some post-translational modifications of αS facilitate its translocation to the nucleus. Nuclear αS interacts with DNA, histones, and their modifiers to alter epigenetic status; thereby, influencing the stability of neuronal function. Epigenetic changes do not affect the gene itself but can provide an appropriate transcriptional response for neuronal survival through DNA methylation or histone modifications. As a new approach, publicly available RNA sequencing datasets from human midbrain-like organoids may be used to compare transcriptional responses through epigenetic alterations. This informatic approach combined with the vast amount of transcriptomics data will lead to the discovery of novel pathways for the development of disease-modifying therapies for PD.
Collapse
Affiliation(s)
- Naoto Sugeno
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience & Sensory Organs, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
43
|
Maor G, Dubreuil RR, Feany MB. α-Synuclein Promotes Neuronal Dysfunction and Death by Disrupting the Binding of Ankyrin to β-Spectrin. J Neurosci 2023; 43:1614-1626. [PMID: 36653193 PMCID: PMC10008058 DOI: 10.1523/jneurosci.1922-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
α-Synuclein plays a key role in the pathogenesis of Parkinson's disease and related disorders, but critical interacting partners and molecular mechanisms mediating neurotoxicity are incompletely understood. We show that α-synuclein binds directly to β-spectrin. Using males and females in a Drosophila model of α-synuclein-related disorders, we demonstrate that β-spectrin is critical for α-synuclein neurotoxicity. Further, the ankyrin binding domain of β-spectrin is required for α-synuclein binding and neurotoxicity. A key plasma membrane target of ankyrin, Na+/K+ ATPase, is mislocalized when human α-synuclein is expressed in Drosophila Accordingly, membrane potential is depolarized in α-synuclein transgenic fly brains. We examine the same pathway in human neurons and find that Parkinson's disease patient-derived neurons with a triplication of the α-synuclein locus show disruption of the spectrin cytoskeleton, mislocalization of ankyrin and Na+/K+ ATPase, and membrane potential depolarization. Our findings define a specific molecular mechanism by which elevated levels of α-synuclein in Parkinson's disease and related α-synucleinopathies lead to neuronal dysfunction and death.SIGNIFICANCE STATEMENT The small synaptic vesicle associate protein α-synuclein plays a critical role in the pathogenesis of Parkinson's disease and related disorders, but the disease-relevant binding partners of α-synuclein and proximate pathways critical for neurotoxicity require further definition. We show that α-synuclein binds directly to β-spectrin, a key cytoskeletal protein required for localization of plasma membrane proteins and maintenance of neuronal viability. Binding of α-synuclein to β-spectrin alters the organization of the spectrin-ankyrin complex, which is critical for localization and function of integral membrane proteins, including Na+/K+ ATPase. These finding outline a previously undescribed mechanism of α-synuclein neurotoxicity and thus suggest potential new therapeutic approaches in Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- Gali Maor
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ronald R Dubreuil
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
44
|
Ho GPH, Wilkie EC, White AJ, Selkoe DJ. Palmitoylation of the Parkinson's disease-associated protein synaptotagmin-11 links its turnover to α-synuclein homeostasis. Sci Signal 2023; 16:eadd7220. [PMID: 36787382 PMCID: PMC10150695 DOI: 10.1126/scisignal.add7220] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
Synaptotagmin-11 (Syt11) is a vesicle-trafficking protein that is linked genetically to Parkinson's disease (PD). Likewise, the protein α-synuclein regulates vesicle trafficking, and its abnormal aggregation in neurons is the defining cytopathology of PD. Because of their functional similarities in the same disease context, we investigated whether the two proteins were connected. We found that Syt11 was palmitoylated in mouse and human brain tissue and in cultured cortical neurons and that this modification to Syt11 disrupted α-synuclein homeostasis in neurons. Palmitoylation of two cysteines adjacent to the transmembrane domain, Cys39 and Cys40, localized Syt11 to digitonin-insoluble portions of intracellular membranes and protected it from degradation by the endolysosomal system. In neurons, palmitoylation of Syt11 increased its abundance and enhanced the binding of α-synuclein to intracellular membranes. As a result, the abundance of the physiologic tetrameric form of α-synuclein was decreased, and that of its aggregation-prone monomeric form was increased. These effects were replicated by overexpression of wild-type Syt11 but not a palmitoylation-deficient mutant. These findings suggest that palmitoylation-mediated increases in Syt11 amounts may promote pathological α-synuclein aggregation in PD.
Collapse
Affiliation(s)
- Gary P. H. Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Erin C. Wilkie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Andrew J. White
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Dennis J. Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
45
|
Systems level analysis of sex-dependent gene expression changes in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:8. [PMID: 36681675 PMCID: PMC9867746 DOI: 10.1038/s41531-023-00446-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Parkinson's disease (PD) is a heterogeneous disorder, and among the factors which influence the symptom profile, biological sex has been reported to play a significant role. While males have a higher age-adjusted disease incidence and are more frequently affected by muscle rigidity, females present more often with disabling tremors. The molecular mechanisms involved in these differences are still largely unknown, and an improved understanding of the relevant factors may open new avenues for pharmacological disease modification. To help address this challenge, we conducted a meta-analysis of disease-associated molecular sex differences in brain transcriptomics data from case/control studies. Both sex-specific (alteration in only one sex) and sex-dimorphic changes (changes in both sexes, but with opposite direction) were identified. Using further systems level pathway and network analyses, coordinated sex-related alterations were studied. These analyses revealed significant disease-associated sex differences in mitochondrial pathways and highlight specific regulatory factors whose activity changes can explain downstream network alterations, propagated through gene regulatory cascades. Single-cell expression data analyses confirmed the main pathway-level changes observed in bulk transcriptomics data. Overall, our analyses revealed significant sex disparities in PD-associated transcriptomic changes, resulting in coordinated modulations of molecular processes. Among the regulatory factors involved, NR4A2 has already been reported to harbor rare mutations in familial PD and its pharmacological activation confers neuroprotective effects in toxin-induced models of Parkinsonism. Our observations suggest that NR4A2 may warrant further research as a potential adjuvant therapeutic target to address a subset of pathological molecular features of PD that display sex-associated profiles.
Collapse
|
46
|
Crompton LA, McComish SF, Steward TGJ, Whitcomb DJ, Lane JD, Caldwell MA. Human stem cell-derived ventral midbrain astrocytes exhibit a region-specific secretory profile. Brain Commun 2023; 5:fcad114. [PMID: 37124945 PMCID: PMC10146926 DOI: 10.1093/braincomms/fcad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/30/2022] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
This scientific commentary refers to 'Human stem cell-derived astrocytes exhibit region-specific heterogeneity in their secretory profiles', by Clarke et al. (https://doi.org/10.1093/brain/awaa258) in Brain.
Collapse
Affiliation(s)
- Lucy A Crompton
- Correspondence to: Lucy A. Crompton, Department of Applied Sciences, Centre for Research in Biosciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, UK, BS16 1QY, UK. E-mail:
| | - Sarah F McComish
- Department of Physiology and Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Tom G J Steward
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | - Daniel J Whitcomb
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
47
|
Maharjan N, Saxena S. Models of Neurodegenerative Diseases. Neurogenetics 2023. [DOI: 10.1007/978-3-031-07793-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022; 18:2757-2780. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/09/2022]
Abstract
Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Kim J, Daadi EW, Oh T, Daadi ES, Daadi MM. Human Induced Pluripotent Stem Cell Phenotyping and Preclinical Modeling of Familial Parkinson's Disease. Genes (Basel) 2022; 13:1937. [PMID: 36360174 PMCID: PMC9689743 DOI: 10.3390/genes13111937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Parkinson's disease (PD) is primarily idiopathic and a highly heterogenous neurodegenerative disease with patients experiencing a wide array of motor and non-motor symptoms. A major challenge for understanding susceptibility to PD is to determine the genetic and environmental factors that influence the mechanisms underlying the variations in disease-associated traits. The pathological hallmark of PD is the degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the brain and post-mortem Lewy pathology, which leads to the loss of projecting axons innervating the striatum and to impaired motor and cognitive functions. While the cause of PD is still largely unknown, genome-wide association studies provide evidence that numerous polymorphic variants in various genes contribute to sporadic PD, and 10 to 15% of all cases are linked to some form of hereditary mutations, either autosomal dominant or recessive. Among the most common mutations observed in PD patients are in the genes LRRK2, SNCA, GBA1, PINK1, PRKN, and PARK7/DJ-1. In this review, we cover these PD-related mutations, the use of induced pluripotent stem cells as a disease in a dish model, and genetic animal models to better understand the diversity in the pathogenesis and long-term outcomes seen in PD patients.
Collapse
Affiliation(s)
- Jeffrey Kim
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
| | - Etienne W. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Thomas Oh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elyas S. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Cell Systems and Anatomy, San Antonio, TX 78229, USA
- Department of Radiology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
50
|
Iannielli A, Luoni M, Giannelli SG, Ferese R, Ordazzo G, Fossati M, Raimondi A, Opazo F, Corti O, Prehn JHM, Gambardella S, Melki R, Broccoli V. Modeling native and seeded Synuclein aggregation and related cellular dysfunctions in dopaminergic neurons derived by a new set of isogenic iPSC lines with SNCA multiplications. Cell Death Dis 2022; 13:881. [PMID: 36261424 PMCID: PMC9581971 DOI: 10.1038/s41419-022-05330-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
Abstract
Triplication of the SNCA gene, encoding the protein alpha-Synuclein (αSyn), is a rare cause of aggressive and early-onset parkinsonism. Herein, we generated iPSCs from two siblings with a recently described compact SNCA gene triplication and suffering from severe motor impairments, psychiatric symptoms, and cognitive deterioration. Using CRISPR/Cas9 gene editing, each SNCA copy was inactivated by targeted indel mutations generating a panel of isogenic iPSCs with a decremental number from 4 down to none of functional SNCA gene alleles. We differentiated these iPSC lines in midbrain dopaminergic (DA) neuronal cultures to characterize αSyn aggregation in native and seeded conditions and evaluate its associated cellular dysfunctions. Utilizing a new nanobody-based biosensor combined with super-resolved imaging, we were able to visualize and measure αSyn aggregates in early DA neurons in unstimulated conditions. Calcium dysregulation and mitochondrial alterations were the first pathological signs detectable in early differentiated DA neuronal cultures. Accelerated αSyn aggregation was induced by exposing neurons to structurally well-characterized synthetic αSyn fibrils. 4xSNCA DA neurons showed the highest vulnerability, which was associated with high levels of oxidized DA and amplified by TAX1BP1 gene disruption. Seeded DA neurons developed large αSyn deposits whose morphology and internal constituents resembled Lewy bodies commonly observed in Parkinson's disease (PD) patient brain tissues. These findings provide strong evidence that this isogenic panel of iPSCs with SNCA multiplications offers a remarkable cellular platform to investigate mechanisms of PD and validate candidate inhibitors of native and seeded αSyn aggregation.
Collapse
Affiliation(s)
- Angelo Iannielli
- grid.5326.20000 0001 1940 4177National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mirko Luoni
- grid.18887.3e0000000417581884Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Serena Gea Giannelli
- grid.18887.3e0000000417581884Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Gabriele Ordazzo
- grid.18887.3e0000000417581884Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Fossati
- grid.5326.20000 0001 1940 4177National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy ,grid.417728.f0000 0004 1756 8807IRCCS Humanitas Research Hospital, via Manzoni 56, 20089 Rozzano Milan, Italy
| | - Andrea Raimondi
- grid.18887.3e0000000417581884Experimental Imaging Center, San Raffaele Scientific Institute, Milan, Italy
| | - Felipe Opazo
- grid.411984.10000 0001 0482 5331University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Olga Corti
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau (ICM), Inserm U1127, CNRS, UMR 7225 Paris, France
| | - Jochen H. M. Prehn
- grid.4912.e0000 0004 0488 7120Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Department of Physiology and Medical Physics and SFI FutureNeuro Research Centre, 123 St. Stephen’s Green, Dublin, Ireland
| | - Stefano Gambardella
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.12711.340000 0001 2369 7670Department of Biomolecular Sciences, University of Urbino “Carlo Bo,, Urbino, Italy
| | - Ronald Melki
- grid.460789.40000 0004 4910 6535Institut Francois Jacob, Molecular Imaging Center (MIRCen), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA) and Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Vania Broccoli
- grid.5326.20000 0001 1940 4177National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy ,grid.18887.3e0000000417581884Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|