1
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE, Fesik SW. The BCL-2 protein family: from discovery to drug development. Cell Death Differ 2025:10.1038/s41418-025-01481-z. [PMID: 40204952 DOI: 10.1038/s41418-025-01481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
The landmark discovery of the BCL-2 gene and then its function marked the identification of inhibition of apoptotic cell death as a crucial novel mechanism driving cancer development and launched the quest to discover the molecular control of apoptosis. This work culminated in the generation of specific inhibitors that are now in clinical use, saving and improving tens of thousands of lives annually. Here, some of the original players of this story, describe the sequence of critical discoveries. The t(14;18) chromosomal translocation, frequently observed in follicular lymphoma, allowed the identification and the cloning of a novel oncogene (BCL-2) juxtaposed to the immunoglobulin heavy chain gene locus (IgH). Of note, BCL-2 acted in a distinct manner as compared to then already known oncogenic proteins like ABL and c-MYC. BCL-2 did not promote cell proliferation but inhibited cell death, as originally shown in growth factor dependent haematopoietic progenitor cell lines (e.g., FDC-P1) and in Eμ-Myc/Eμ-Bcl-2 double transgenic mice. Following a rapid expansion of the BCL-2 protein family, the Abbott Laboratories solved the first structure of BCL-XL and subsequently the BCL-XL/BAK peptide complex, opening the way to understanding the structures of other BCL-2 family members and, finally, to the generation of inhibitors of the different pro-survival BCL-2 proteins, thanks to the efforts of Servier/Norvartis, Genentech/WEHI, AbbVie, Amgen, Prelude and Gilead. Although the BCL-2 inhibitor Venetoclax is in clinical use and inhibitors of BCL-XL and MCL-1 are undergoing clinical trials, several questions remain on whether therapeutic windows can be achieved and what other agents should be used in combination with BH3 mimetics to achieve optimal therapeutic impact for cancer therapy. Finally, the control of the expression of BH3-only proteins and pro-survival BCL-2 family members needs to be better understood as this may identify novel targets for cancer therapy. This story is still not concluded!
Collapse
Affiliation(s)
- Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| | - David Vaux
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Stephen W Fesik
- Department of Biochemistry, Pharmacology and Chemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Jalali P, Shahmoradi A, Samii A, Mazloomnejad R, Hatamnejad MR, Saeed A, Namdar A, Salehi Z. The role of autophagy in cancer: from molecular mechanism to therapeutic window. Front Immunol 2025; 16:1528230. [PMID: 40248706 PMCID: PMC12003146 DOI: 10.3389/fimmu.2025.1528230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 04/19/2025] Open
Abstract
Autophagy is a cellular degradation process that plays a crucial role in maintaining metabolic homeostasis under conditions of stress or nutrient deprivation. This process involves sequestering, breaking down, and recycling intracellular components such as proteins, organelles, and cytoplasmic materials. Autophagy also serves as a mechanism for eliminating pathogens and engulfing apoptotic cells. In the absence of stress, baseline autophagy activity is essential for degrading damaged cellular components and recycling nutrients to maintain cellular vitality. The relationship between autophagy and cancer is well-established; however, the biphasic nature of autophagy, acting as either a tumor growth inhibitor or promoter, has raised concerns regarding the regulation of tumorigenesis without inadvertently activating harmful aspects of autophagy. Consequently, elucidating the mechanisms by which autophagy contributes to cancer pathogenesis and the factors determining its pro- or anti-tumor effects is vital for devising effective therapeutic strategies. Furthermore, precision medicine approaches that tailor interventions to individual patients may enhance the efficacy of autophagy-related cancer treatments. To this end, interventions aimed at modulating the fate of tumor cells by controlling or inducing autophagy substrates necessitate meticulous monitoring of these mediators' functions within the tumor microenvironment to make informed decisions regarding their activation or inactivation. This review provides an updated perspective on the roles of autophagy in cancer, and discusses the potential challenges associated with autophagy-related cancer treatment. The article also highlights currently available strategies and identifies questions that require further investigation in the future.
Collapse
Affiliation(s)
- Pooya Jalali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arvin Shahmoradi
- Department of Laboratory Medicine, Faculty of Paramedical, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir Samii
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Centre, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Hatamnejad
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology and Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Afshin Namdar
- Program in Cell Biology, The Hospital for Sick Children Peter Gilgan Centre for Research and Learning, Toronto, ON, United States
| | - Zahra Salehi
- Department of Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Shen D, Qi C, Hu P, Li J, Shen Y. Mitochondrial Involvement in the Pathogenesis of Endometriosis and its Potential as Therapeutic Targets. Reprod Sci 2025; 32:935-949. [PMID: 40064837 DOI: 10.1007/s43032-025-01827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025]
Abstract
Endometriosis is an estrogen-dependent benign disease characterized by the development of endometrial tissue outside the uterus. This intricate ailment markedly affects a patient's well-being and lacks a definitive cure. Endometriotic cells enhance their viability by modulating genetic and epigenetic characteristics, with mitochondria being important organelles in determining cellular metabolic pathways. Mitochondrial malfunction is associated with various human disorders, and the disruption of mitochondrial adaptation mechanisms may help develop new therapies for endometriosis. This article examines the significance of mitochondrial balance in the etiology and advancement of endometriosis and introduces several potential drugs targeting mitochondria for its treatment.
Collapse
Affiliation(s)
- DongYi Shen
- Department of Gynaecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cong Qi
- Department of Gynaecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - PanWei Hu
- Department of Gynaecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Department of Gynaecology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Gynecology of Integrated Chinese and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - YingHong Shen
- Department of Reproductive Medicine, Hangzhou Red Cross Hospital, Hangzhou, China.
| |
Collapse
|
4
|
Vogler M, Braun Y, Smith VM, Westhoff MA, Pereira RS, Pieper NM, Anders M, Callens M, Vervliet T, Abbas M, Macip S, Schmid R, Bultynck G, Dyer MJ. The BCL2 family: from apoptosis mechanisms to new advances in targeted therapy. Signal Transduct Target Ther 2025; 10:91. [PMID: 40113751 PMCID: PMC11926181 DOI: 10.1038/s41392-025-02176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 02/10/2025] [Indexed: 03/22/2025] Open
Abstract
The B cell lymphoma 2 (BCL2) protein family critically controls apoptosis by regulating the release of cytochrome c from mitochondria. In this cutting-edge review, we summarize the basic biology regulating the BCL2 family including canonical and non-canonical functions, and highlight milestones from basic research to clinical applications in cancer and other pathophysiological conditions. We review laboratory and clinical development of BH3-mimetics as well as more recent approaches including proteolysis targeting chimeras (PROTACs), antibody-drug conjugates (ADCs) and tools targeting the BH4 domain of BCL2. The first BCL2-selective BH3-mimetic, venetoclax, showed remarkable efficacy with manageable toxicities and has transformed the treatment of several hematologic malignancies. Following its success, several chemically similar BCL2 inhibitors such as sonrotoclax and lisaftoclax are currently under clinical evaluation, alone and in combination. Genetic analysis highlights the importance of BCL-XL and MCL1 across different cancer types and the possible utility of BH3-mimetics targeting these proteins. However, the development of BH3-mimetics targeting BCL-XL or MCL1 has been more challenging, with on-target toxicities including thrombocytopenia for BCL-XL and cardiac toxicities for MCL1 inhibitors precluding clinical development. Tumor-specific BCL-XL or MCL1 inhibition may be achieved by novel targeting approaches using PROTACs or selective drug delivery strategies and would be transformational in many subtypes of malignancy. Taken together, we envision that the targeting of BCL2 proteins, while already a success story of translational research, may in the foreseeable future have broader clinical applicability and improve the treatment of multiple diseases.
Collapse
Affiliation(s)
- Meike Vogler
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- University Cancer Center Frankfurt (UCT), University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Yannick Braun
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
- Department of Pediatric Surgery, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Victoria M Smith
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Raquel S Pereira
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Nadja M Pieper
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Marius Anders
- Goethe University Frankfurt, Institute for Experimental Pediatric Hematology and Oncology, Frankfurt am Main, Germany
| | - Manon Callens
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Tim Vervliet
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Maha Abbas
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Salvador Macip
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Josep Carreras Leukaemia Research Institute, Badalona, Spain
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Ralf Schmid
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Geert Bultynck
- KU Leuven, Lab. Molecular & Cellular Signaling, Dep. Cellular & Molecular Medicine, and Leuven Kankerinstituut (LKI), Leuven, Belgium
| | - Martin Js Dyer
- The Ernest and Helen Scott Haematological Research Institute, Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
5
|
Verçosa BLA, Muniz-Junqueira MI, Mineiro ALBB, Melo MN, Vasconcelos AC. Enhanced apoptosis and inflammation allied with autophagic and apoptotic Leishmania amastigotes in the seemingly undamaged ear skin of clinically affected dogs with canine visceral Leishmaniasis. Cell Immunol 2025; 408:104909. [PMID: 39701006 DOI: 10.1016/j.cellimm.2024.104909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Programmed cell death plays a relevant role in the pathogenesis of visceral Leishmaniasis. Apoptosis selects suitable parasites, regulating parasite density, whereas autophagy eliminates pathogens. This study aimed to assess the inflammation and apoptosis in inflammatory cells and presents a unique description of the presence of autophagic and apoptotic Leishmania amastigotes in naturally Leishmania-infected dogs. Fragments from seemingly undamaged ear skin of sixteen Leishmania-infected dogs and seven uninfected dogs were evaluated through histomorphometry, ultrastructural, immunohistochemical and transmission electron microscopy (TEM) analyses. Leishmania amastigotes were present on seemingly undamaged ear skin only in clinically affected dogs. Parasite load, morphometrical parameters of inflammation and apoptotic index of inflammatory cells were higher in clinically affected animals and were related to clinical manifestations. Apoptotic index and morphometric parameters of the inflammatory infiltrate in undamaged ear skin were positively correlated with parasite load. Apoptotic and non-apoptotic Leishmania amastigotes were observed within neutrophils and macrophages. Leishmania amastigotes were positive for Bax, a marker for apoptosis, by immunohistochemistry. Morphological characteristics of apoptosis and autophagy in Leishmania amastigotes were observed only in phagocytes of clinically affected dogs. Positive correlations were found between histomorphometry and clinical manifestations. Our results showed that apoptosis and autophagy in Leishmania amastigotes may be related to both the increase in parasite load and apoptotic index in inflammatory cells, and with the intensity of the inflammatory response in clinically affected dogs. Thus, our study suggests that apoptotic and autophagy Leishmania within phagocytes may have facilitate the survival of the parasite and it appears to play an important role in the process of Leishmania infection.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil; Faculdade de Ciências da Saúde Pitágoras, Campus Codó, Codó, Maranhão, Brazil.
| | | | - Ana Lys Bezerra Barradas Mineiro
- Departamento de Clínica e Cirurgia Veterinária, Centro de Ciências Agrárias, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Ding Q, Chen H, Zhang Y, Yang J, Li M, He Q, Mei L. Innovative integration of nanomedicines and phototherapy to modulate autophagy for enhanced tumor eradication. J Control Release 2025; 377:855-879. [PMID: 39631701 DOI: 10.1016/j.jconrel.2024.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Nanomedicines, by significantly enhancing the solubility, stability, and targeted delivery of therapeutic agents, have emerged as transformative tools in light-induced therapies, particularly in the context of oncology. These advancements are attributed to their ability to mediate autophagy through light activation, thereby revolutionizing cancer treatment paradigms. This review provides a comprehensive analysis of the state-of-the-art integration of nanomedicines with phototherapy techniques, emphasizing their role in modulating autophagy within cancer cells. It delineates the potential of light-responsive nanomaterials to induce selective tumor cell death by precisely regulating over-activated autophagy pathways. Additionally, it discusses innovative strategies for combining nanomedicines with phototherapy and other clinical modalities for tumor treatment, as well as integrating autophagy with various forms of programmed cell death to address challenges related to drug resistance and therapeutic efficacy. By synthesizing recent advancements and delineating future research directions, this review offers a thorough perspective on the optimization of light-induced autophagy through nanomedicines, highlighting novel strategies for enhancing cancer treatment efficacy.
Collapse
Affiliation(s)
- Qihang Ding
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China; Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Haiyan Chen
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yifan Zhang
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Junbin Yang
- Hainan Academy of Inspection and Testing, Hainan 570203, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Centre for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
7
|
Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Invest 2025; 135:e184134. [PMID: 39744953 DOI: 10.1172/jci184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure. Despite considerable study, the precise mechanism by which ischemia and reperfusion (I/R) trigger cell death is still not fully understood. In this Review, we summarize the changes that occur during I/R injury, with emphasis on those that might initiate cell death, such as calcium overload and oxidative stress. We review cell-death pathways and pathway crosstalk and discuss cardioprotective approaches in order to provide insight into mechanisms that could be targeted with therapeutic interventions. Finally, we review cardioprotective clinical trials, with a focus on possible reasons why they were not successful. Cardioprotection has largely focused on inhibiting a single cell-death pathway or one death-trigger mechanism (calcium or ROS). In treatment of other diseases, such as cancer, the benefit of targeting multiple pathways with a "drug cocktail" approach has been demonstrated. Given the crosstalk between cell-death pathways, targeting multiple cardiac death mechanisms should be considered.
Collapse
|
8
|
Jahani M, Yarani R, Rezazadeh D, Tahmasebi H, Hoseinkhani Z, Kiani S, Mansouri K. L-lysine Increases the Anticancer Effect of Doxorubicin in Breast Cancer by Inducing ROS-dependent Autophagy. Curr Cancer Drug Targets 2025; 25:257-269. [PMID: 38584530 DOI: 10.2174/0115680096288665240315072646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a chemotherapy drug that is widely used in cancer therapy, especially in Triple-Negative Breast Cancer (TNBC) patients. Nevertheless, cytoprotective autophagy induction by DOX limits its cytotoxic effect and drug resistance induction in patients. Therefore, finding a new way is essential for increasing the effectiveness of this drug for cancer treatment. OBJECTIVE This study aimed to investigate the effect of L-lysine on DOX cytotoxicity, probably through autophagy modulation in TNBC cell lines. METHODS We used two TNBC cell lines, MDA-MB-231 and MDA-MB-468, with various levels of autophagy activity. Cell viability after treatment with L-lysine alone and in combination therapy was evaluated by MTT assay. Reactive Oxygen Species (ROS), nitric oxide (NO) concentration, and arginase activity were assessed using flow cytometric analysis, Griess reaction, and arginase activity assay kit, respectively. Real-time PCR and western blot analysis were used to evaluate the L-lysine effect on the autophagy-related genes and protein expression. Cell cycle profile and apoptotic assay were performed using flow cytometric analysis. RESULTS The obtained data indicated that L-lysine in both concentrations of 24 and 32 mM increased the autophagy flux and enhanced the DOX cytotoxicity, especially in MDA-MB-231, which demonstrated higher autophagy activity than MDA-MB-468, by inducing ROS and NO production. Furthermore, L-lysine induced G2/M arrest autophagy cell death, while significant apoptotic changes were not observed. CONCLUSION These findings suggest that L-lysine can increase DOX cytotoxicity through autophagy modulation. Thus, L-lysine, in combination with DOX, may facilitate the development of novel adjunct therapy for cancer.
Collapse
Affiliation(s)
- Mozhgan Jahani
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Yarani
- Steno Diabetes Center Copenhagen, The Capital Region of Denmark Pediatrics, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Davood Rezazadeh
- Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Tahmasebi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Kiani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Department of Molecular Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Chuang HY, Chan HW, Shih KC. Suppression of colorectal cancer growth: Interplay between curcumin and metformin through DMT1 downregulation and ROS-mediated pathways. Biofactors 2025; 51:e2137. [PMID: 39607347 DOI: 10.1002/biof.2137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
The rising incidence of colorectal cancer (CRC) poses significant healthcare challenges. This study explored the therapeutic potential of combined curcumin (CUR) and metformin (MET) treatment in CRC models. Our findings indicate that the combination treatment (COMB) effectively downregulates the expression of divalent metal transporter-1 (DMT-1), leading to a reduction in cell proliferation aligned with suppression of the pAKT/mTOR/Cyclin D1 signaling pathway. The COMB increased reactive oxygen species (ROS) production, triggering activation of the NRF2/KEAP1 pathway. This pathway elicits an antioxidant response to manage oxidative stress in CRC cell lines. Interestingly, the response of NRF2 varied between CT26 and HCT116 cells. Moreover, our study highlights the induction of apoptosis and autophagy, as evidenced by upregulations in Bax/Bcl-2 ratios and autophagy-related protein expressions. Notably, the COMB promoted lipid peroxidation and downregulated xCT levels, suggesting the induction of ferroptosis. Ferroptosis has been shown to activate autophagy, which helps eliminate cells potentially damaged by the increased oxidative stress. Furthermore, the COMB effectively diminished the migratory ability of CRC cells. In vivo experiments using CRC-bearing mouse models, the results confirmed the anti-tumor efficacy of the COMB, leading to substantial inhibition of tumor growth without inducing general toxicity. In conclusion, our study suggests that combining CUR with MET holds promise as a potential option for CRC treatment, with critical mechanisms likely involving ROS elevation, autophagy, and ferroptosis.
Collapse
Affiliation(s)
- Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuang-Chung Shih
- Division of Endocrinology and Metabolism, Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan
- Division of Endocrinology & Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
10
|
Liao H, Liu S, Ma Q, Huang H, Goel A, Torabian P, Mohan CD, Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119869. [PMID: 39490702 DOI: 10.1016/j.bbamcr.2024.119869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The endoplasmic reticulum (ER) is a dynamic organelle that is a site of the synthesis of proteins and lipids, contributing to the regulation of proteostasis, lipid metabolism, redox balance, and calcium storage/-dependent signaling events. The disruption of ER homeostasis due to the accumulation of misfolded proteins in the ER causes ER stress which activates the unfolded protein response (UPR) system through the activation of IRE1, PERK, and ATF6. Activation of UPR is observed in various cancers and therefore, its association with process of carcinogenesis has been of importance. Tumor cells effectively utilize the UPR system to overcome ER stress. Moreover, ER stress and autophagy are the stress response mechanisms operating together to maintain cellular homeostasis. In human cancers, ER stress-driven autophagy can function as either pro-survival or pro-death in a context-dependent manner. ER stress-mediated autophagy can have crosstalk with other types of cell death pathways including apoptosis and ferroptosis. In this connection, the present review has evaluated the role of ER stress in the regulation of autophagy-mediated tumorigenesis and its interactions with other cell death mechanisms such as apoptosis and ferroptosis. We have also comprehensively discussed the effect of ER stress-mediated autophagy on cancer progression and chemotherapeutic resistance.
Collapse
Affiliation(s)
- Haitang Liao
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of Intensive Care Unit, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Shuang Liu
- Department of Ultrasound, Chongqing Health Center for Women and Children/Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Qiang Ma
- Department of Oncology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Arul Goel
- University of California Santa Barbara, Santa Barbara, CA, USA
| | - Pedram Torabian
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada; Department of Medical Sciences, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Chakrabhavi Dhananjaya Mohan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
11
|
Huang KT, Tsai WH, Chen CW, Hwang YS, Cheng HC, Yeh CW, Lin YH, Cheng AJ, Chang HC, Lin SJ, Yen MC, Chang WT. Hyperoxia induces autophagy in pulmonary epithelial cells: insights from in vivo and in vitro experiments. Free Radic Res 2025; 59:9-22. [PMID: 39714274 DOI: 10.1080/10715762.2024.2446321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/14/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress. In this study, we evaluated the therapeutic potential of the antioxidant N-acetyl-L-cysteine (NAC) for preventing hyperoxia-induced cell death. In vitro experiments were performed using the human lung cancer cell line A549. In brief, NAC-treated and untreated cells were exposed to various concentrations of oxygen (hyperoxia) for different durations. The results indicated that hyperoxia inhibited proliferation and caused cell cycle arrest in A549 cells. It also induced necrosis and autophagy. Furthermore, hyperoxia increased intracellular reactive oxygen species levels and altered mitochondrial membrane potential. Co-treatment with NAC improved the survival of cells exposed to 95% oxygen for 24 h. Experiments performed using a neonatal rat model of acute lung injury confirmed that hyperoxia induced an autophagic response. This study provides evidence for hyperoxia-induced autophagy both in vitro and in vivo. NAC can protect A549 cells from death induced by short-term hyperoxia. Our findings may inform protective strategies against hyperoxia-induced injury in developing lungs-for example, bronchopulmonary dysplasia in premature infants.
Collapse
Affiliation(s)
- Kuo-Tsang Huang
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City, Taiwan
| | - Wen-Hui Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Graduate Institute of Medical Sciences, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - Chih-Wei Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan
- Department of Occupational Safety and Health/Institute of Industrial Safety and Disaster Prevention, College of Sustainable Environment, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Yea-Shwu Hwang
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chi Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Wei Yeh
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ho Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - An-Jie Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Chun Chang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shio-Jean Lin
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Tsan Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Gao L, Gao B, Ge W, Li S, Wang F. Stimulated Emission Depletion Imaging Reveals Mitochondrial Phenotypic Heterogeneity under Apoptosis Stimuli across Living Glioma Models. NANO LETTERS 2024; 24:15904-15911. [PMID: 39587402 DOI: 10.1021/acs.nanolett.4c04986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The mitochondrial phenotypes contribute to the understanding of disease mechanisms and treatments, which are typically characterized through the omics methods. However, the high dynamics and phenotypic heterogeneity of mitochondria require high-resolution characterization within individual living cells. Therefore, we introduce a fluorescence analysis method, based on two-color and fluorescence lifetime stimulated emission depletion (STED) super-resolution imaging, to explore mitochondrial phenotypic heterogeneity in human (U87) and mouse (GL261) glioma models. Furthermore, we used rotenone and etoposide to simulate the effects of antitumor drugs, inducing apoptosis through mitochondrial dysfunction, respectively. The two-color labeling introduces intracellular parameters to qualitatively visualize changes in mitochondrial morphology, while fluorescence lifetime reflects the status of mitochondria and their microenvironment from the perspective of probe characteristics. This method reveals mitochondria phenotypic heterogeneity induced by the apoptotic stimuli in human and mouse glioma models from a morphological perspective.
Collapse
Affiliation(s)
- Lu Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beibei Gao
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Ge
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxian Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| | - Fu Wang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D, Tao Y. Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer 2024; 23:267. [PMID: 39614268 PMCID: PMC11606237 DOI: 10.1186/s12943-024-02172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024] Open
Abstract
Cell death is a fundamental part of life for metazoans. To maintain the balance between cell proliferation and metabolism of human bodies, a certain number of cells need to be removed regularly. Hence, the mechanisms of cell death have been preserved during the evolution of multicellular organisms. Tumorigenesis is closely related with exceptional inhibition of cell death. Mutations or defects in cell death-related genes block the elimination of abnormal cells and enhance the resistance of malignant cells to chemotherapy. Therefore, the investigation of cell death mechanisms enables the development of drugs that directly induce tumor cell death. In the guidelines updated by the Cell Death Nomenclature Committee (NCCD) in 2018, cell death was classified into 12 types according to morphological, biochemical and functional classification, including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, PARP-1 parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence and mitotic catastrophe. The mechanistic relationships between epigenetic controls and cell death in cancer progression were previously unclear. In this review, we will summarize the mechanisms of cell death pathways and corresponding epigenetic regulations. Also, we will explore the extensive interactions between these pathways and discuss the mechanisms of cell death in epigenetics which bring benefits to tumor therapy.
Collapse
Affiliation(s)
- Ruimin He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Yifan Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Weijie Fu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Xuan He
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Furong Laboratory, Xiangya School of Medicine, Central South University, Hunan, 410078, China.
| |
Collapse
|
14
|
Wang M, Chen X, Li S, Wang L, Tang H, Pu Y, Zhang D, Fang B, Bai X. A crosstalk between autophagy and apoptosis in intracerebral hemorrhage. Front Cell Neurosci 2024; 18:1445919. [PMID: 39650799 PMCID: PMC11622039 DOI: 10.3389/fncel.2024.1445919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe condition that devastatingly harms human health and poses a financial burden on families and society. Bcl-2 Associated X-protein (Bax) and B-cell lymphoma 2 (Bcl-2) are two classic apoptotic markers post-ICH. Beclin 1 offers a competitive architecture with that of Bax, both playing a vital role in autophagy. However, the interaction between Beclin 1 and Bcl-2/Bax has not been conjunctively analyzed. This review aims to examine the crosstalk between autophagy and apoptosis in ICH by focusing on the interaction and balance of Beclin 1, Bax, and Bcl-2. We also explored the therapeutic potential of Western conventional medicine and traditional Chinese medicine (TCM) in ICH via controlling the crosstalk between autophagy and apoptosis.
Collapse
Affiliation(s)
- Moyan Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Shuangyang Li
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Lingxue Wang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongmei Tang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yuting Pu
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Dechou Zhang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| | - Bangjiang Fang
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Department of Emergency, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Bai
- Department of Neurology, National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Bonerba E, Manfredi A, Dimuccio MM, Lorusso P, Pandiscia A, Terio V, Di Pinto A, Panseri S, Ceci E, Bozzo G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins (Basel) 2024; 16:487. [PMID: 39591242 PMCID: PMC11598023 DOI: 10.3390/toxins16110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi species belonging to the genera Aspergillus spp. and Penicillium spp. The proliferation of OTA-producing fungal species may occur due to inadequate practices during both the pre-harvest and post-harvest stages of feed. Consequently, poultry species may be exposed to high concentrations of this mycotoxin that can be transferred to animal tissues due to its carry-over, reaching dangerous concentrations in meat and meat products. Therefore, this review aims to propose a comprehensive overview of the effects of OTA on human health, along with data from global studies on the prevalence and concentrations of this mycotoxin in avian feeds, as well as in poultry meat, edible offal, and eggs. Moreover, the review examines significant gross and histopathological lesions in the kidneys and livers of poultry linked to OTA exposure. Finally, the key methods for OTA prevention and decontamination of feed are described.
Collapse
Affiliation(s)
- Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Michela Maria Dimuccio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Annamaria Pandiscia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy;
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| |
Collapse
|
16
|
Rajan SS, Chandran R, Abrahamse H. Advancing Photodynamic Therapy with Nano-Conjugated Hypocrellin: Mechanisms and Clinical Applications. Int J Nanomedicine 2024; 19:11023-11038. [PMID: 39502636 PMCID: PMC11537162 DOI: 10.2147/ijn.s486014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Hypocrellin-based photodynamic therapy (PDT) is developing as a viable cancer therapeutic option, especially when enhanced by nanoconjugation. This review investigates the methods by which nano-conjugated hypocrellin enhances therapeutic efficacy and precision when targeting cancer cells. These nanoconjugates encapsulate or covalently bind hypocrellin photosensitizers (PSs), allowing them to accumulate preferentially in malignancies. When activated by light, the nanoconjugates produce singlet oxygen and other reactive oxygen species (ROS), resulting in oxidative stress that selectively destroys cancer cells while protecting healthy tissues. We look at how they can be used to treat a variety of cancers. Clinical and preclinical studies show that they have advantages such as increased water solubility, improved tumor penetration, longer circulation times, and tailored delivery, all of which contribute to fewer off-target effects and overall toxicity. Ongoing research focuses on improving these nanoconjugates for better tumor targeting, drug release kinetics, and overcoming biological obstacles. Furthermore, the incorporation of developing technologies such as stimuli-responsive nanocarriers and combination therapies opens exciting opportunities for enhancing hypocrellin-based PDT. In conclusion, the combination of hypocrellin and nanotechnology constitutes a significant approach to cancer treatment, increasing the efficacy and safety of PDT. Future research will seek to create conjugates including hypocrellin, herceptin, and gold nanoparticles to induce apoptosis in human breast cancer cells in vitro, opening possibilities for therapeutic applications.
Collapse
Affiliation(s)
- Sheeja S Rajan
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Merlin JPJ, Crous A, Abrahamse H. Combining Photodynamic Therapy and Targeted Drug Delivery Systems: Enhancing Mitochondrial Toxicity for Improved Cancer Outcomes. Int J Mol Sci 2024; 25:10796. [PMID: 39409125 PMCID: PMC11477455 DOI: 10.3390/ijms251910796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Cancer treatment continues to be a substantial problem due to tumor complexities and persistence, demanding novel therapeutic techniques. This review investigates the synergistic potential of combining photodynamic therapy (PDT) and tailored medication delivery technologies to increase mitochondrial toxicity and improve cancer outcomes. PDT induces selective cellular damage and death by activating photosensitizers (PS) with certain wavelengths of light. However, PDT's efficacy can be hampered by issues such as poor light penetration and a lack of selectivity. To overcome these challenges, targeted drug delivery systems have emerged as a promising technique for precisely delivering therapeutic medicines to tumor cells while avoiding off-target effects. We investigate how these technologies can improve mitochondrial targeting and damage, which is critical for causing cancer cell death. The combination method seeks to capitalize on the advantages of both modalities: selective PDT activation and specific targeted drug delivery. We review current preclinical and clinical evidence supporting the efficacy of this combination therapy, focusing on case studies and experimental models. This review also addresses issues such as safety, distribution efficiency, resistance mechanisms, and costs. The prospects of further research include advances in photodynamic agents and medication delivery technology, with a focus on personalized treatment. In conclusion, combining PDT with targeted drug delivery systems provides a promising frontier in cancer therapy, with the ability to overcome current treatment limits and open the way for more effective, personalized cancer treatments.
Collapse
Affiliation(s)
- J. P. Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (A.C.); (H.A.)
| | | | | |
Collapse
|
18
|
Zhan XZ, Luo P, Zhang C, Zhang LJ, Shen X, Jiang DL, Liu WJ. Age-related changes in the mitochondrial, synthesis of steroids, and cellular homeostasis of the chicken ovary. Anim Reprod Sci 2024; 267:107540. [PMID: 38908171 DOI: 10.1016/j.anireprosci.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
In poultry reproduction, the decline of ovarian function due to aging is related to dysfunction of mitochondria exacerbated by a reduction in antioxidant capacity, ultimately leading to follicle atresia and decreased egg production. However, the mechanisms of mitochondrial dysfunction in the chicken ovary in aging have remained to be understood. Hence, this study aims to investigate the effects of aging on mitochondrial function and cellular homeostasis. We collect ovarian tissue, small white follicles (SWF), large white follicles (LWF), and small yellow follicles (SYF) from three different laying periods of hens. The transmission electron microscopy (TEM) results showed that mitochondrial damage occurred in ovarian tissue during the late laying period (LP), characterized by structural swelling, scattered mitochondrial cristae, and an increase in the vacuoles. At the same time, with age, the synthesis of steroid hormones in the ovaries and follicular tissues is reduced. The levels of autophagy and cell apoptosis in ovarian tissues were both increased in the LP. In addition, aging adversely impacts mitochondrial function, leading to a decrease in mitochondrial unfolded protein response (UPRmt) functions. This study will expand the knowledge about regressing ovarian aging in hens and increasing egg production in older layers for poultry production.
Collapse
Affiliation(s)
- Xiao-Zhi Zhan
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Pei Luo
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Chen Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Liu-Jun Zhang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Dan-Li Jiang
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China
| | - Wen-Jun Liu
- College of Animal Science & Technology, Zhong Kai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Waterfowl Health Breeding Engineering Center, Guangzhou 510225, China.
| |
Collapse
|
19
|
Wu D, Huang C, Guan K. Mechanistic and therapeutic perspectives of miRNA-PTEN signaling axis in cancer therapy resistance. Biochem Pharmacol 2024; 226:116406. [PMID: 38969299 DOI: 10.1016/j.bcp.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer, being one of the most lethal illnesses, presents an escalating clinical dilemma on a global scale. Despite significant efforts and advancements in cancer treatment over recent decades, the persistent challenge of resistance to traditional chemotherapeutic agents and/or emerging targeted drugs remains a prominent issue in the field of cancer therapies. Among the frequently inactivated tumor suppressor genes in cancer, phosphatase and Tensin Homolog (PTEN) stands out, and its decreased expression may contribute to the emergence of therapeutic resistance. MicroRNAs (miRNAs), characterized by their short length of 22 nucleotides, exert regulatory control over target mRNA expression by binding to complementary sequences. Recent findings indicate that microRNAs play varied regulatory roles, encompassing promotion, suppression, and dual functions on PTEN, and their aberration is implicated in heightened resistance to anticancer therapies. Significantly, recent research has revealed that competitive endogenous RNAs (ceRNAs) play a pivotal role in influencing PTEN expression, and the regulatory network involving circRNA/lncRNA-miRNA-PTEN is intricately linked to resistance in various cancer types to anticancer therapies. Finally, our findings showcase that diverse approaches, such as herbal medicine, small molecule inhibitors, low-intensity ultrasound, and engineered exosomes, can effectively overcome drug resistance in cancer by modulating the miRNA-PTEN axis.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Cheng Z, Chu H, Seki E, Lin R, Yang L. Hepatocyte programmed cell death: the trigger for inflammation and fibrosis in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2024; 12:1431921. [PMID: 39071804 PMCID: PMC11272544 DOI: 10.3389/fcell.2024.1431921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
By replacing and removing defective or infected cells, programmed cell death (PCD) contributes to homeostasis maintenance and body development, which is ubiquitously present in mammals and can occur at any time. Besides apoptosis, more novel modalities of PCD have been described recently, such as necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. PCD not only regulates multiple physiological processes, but also participates in the pathogenesis of diverse disorders, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is mainly classified into metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), and the latter putatively progresses to cirrhosis and hepatocellular carcinoma. Owing to increased incidence and obscure etiology of MASH, its management still remains a tremendous challenge. Recently, hepatocyte PCD has been attracted much attention as a potent driver of the pathological progression from MASL to MASH, and some pharmacological agents have been proved to exert their salutary effects on MASH partly via the regulation of the activity of hepatocyte PCD. The current review recapitulates the pathogenesis of different modalities of PCD, clarifies the mechanisms underlying how metabolic disorders in MASLD induce hepatocyte PCD and how hepatocyte PCD contributes to inflammatory and fibrotic progression of MASH, discusses several signaling pathways in hepatocytes governing the execution of PCD, and summarizes some potential pharmacological agents for MASH treatment which exert their therapeutic effects partly via the regulation of hepatocyte PCD. These findings indicate that hepatocyte PCD putatively represents a new therapeutic point of intervention for MASH.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Lemos G, Fernandes CMADS, Silva FH, Calmasini FB. The role of autophagy in prostate cancer and prostatic diseases: a new therapeutic strategy. Prostate Cancer Prostatic Dis 2024; 27:230-238. [PMID: 38297152 DOI: 10.1038/s41391-024-00793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/20/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Autophagy is a well-conserved catabolic process that plays a key role in cell homeostasis. In the prostate, defective autophagy has been implicated in the genesis and progression of several pathological conditions. AIM The present review explored the autophagy pathway in prostate-related dysfunctions, focusing on prostate cancer (PCa), benign prostatic hyperplasia (BPH) and prostatitis. RESULTS Impaired autophagy activity has been shown in animal models of BPH and prostatitis. Moreover, autophagy activation by specific and non-specific drugs improved both conditions in pre-clinical studies. Conversely, the efficacy of autophagy inducers in PCa remains controversial, depending on intrinsic PCa characteristics and stage of progression. Intriguingly, autophagy inhibitors have shown beneficial effects in PCa suppression or even to overcome chemotherapy resistance. However, there are still open questions regarding the upstream mechanisms by which autophagy is deregulated in the prostate and the exact role of autophagy in PCa. The lack of specificity and increased toxicity associated with the currently autophagy inhibitors limits its use clinically, reflecting in reduced number of clinical data. CONCLUSION New therapeutic strategies to treat prostatic diseases involving new autophagy modulators, combination therapy and new drug formulations should be explored. Understanding the autophagy signaling in each prostatic disease is crucial to determine the best pharmacological approach.
Collapse
Affiliation(s)
- Guilherme Lemos
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Fábio Henrique Silva
- Laboratory of Multidisciplinary Research, Sao Francisco University (USF), Bragança Paulista, SP, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Hu M, Ladowski JM, Xu H. The Role of Autophagy in Vascular Endothelial Cell Health and Physiology. Cells 2024; 13:825. [PMID: 38786047 PMCID: PMC11120581 DOI: 10.3390/cells13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells (ECs) has been increasingly recognized, and numerous studies have linked the dysregulation of autophagy to the development of endothelial dysfunction and vascular disease. Here, we provide an overview of the molecular mechanisms underlying autophagy in ECs and our current understanding of the roles of autophagy in vascular biology and review the implications of dysregulated autophagy for vascular disease. Finally, we summarize the current state of the research on compounds to modulate autophagy in ECs and identify challenges for their translation into clinical use.
Collapse
Affiliation(s)
| | - Joseph M. Ladowski
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| | - He Xu
- Transplant and Immunobiology Research, Department of Surgery, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
23
|
Azad A, Gökmen ÜR, Uysal H, Köksoy S, Bilge U, Manguoğlu AE. Autophagy dysregulation plays a crucial role in regulatory T-cell loss and neuroinflammation in amyotrophic lateral sclerosis (ALS). Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:336-344. [PMID: 37908143 DOI: 10.1080/21678421.2023.2273365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVE Neuroinflammation is the hallmark of amyotrophic lateral sclerosis (ALS) disease. Regulatory T cells (Tregs) are essential in immune tolerance and neuroinflammation prevention. It has been shown that a significant decrease in Treg and FoxP3 protein expression is observed in ALS patients. The main reason for the FoxP3+ Treg loss in ALS is unknown. In this study, the role of autophagy dysregulation in FoxP3+ Tregs in ALS was investigated. METHODS Twenty-three ALS patients and 24 healthy controls were recruited for the study. Mononuclear cells (MNCs) were obtained from peripheral blood, and then Tregs were isolated. Isolated Tregs were stained with FoxP3 and LC3 antibodies and analyzed in flow cytometry to determine autophagy levels in FoxP3+ Tregs in patients and controls. RESULTS The mean of FoxP3+ LC3+ cells, were 0.47 and 0.45 in patients and controls, respectively. The mean of FoxP3+ LC3- cells was 0.15 in patients and 0.20 in controls, p = 0.030 (p < 0.05). There is no significant correlation between ALSFRS-R decay rate and autophagy level in patients. Also, there is no significant difference between autophagy levels in FoxP3+ Tregs in patients with rapidly progressing ALS and slow-progressing ALS. CONCLUSION Excessive autophagy levels in FoxP3+ Tregs in ALS patients can potentially be an explanation for an increased cell death and result in worsened neuroinflammation and disease onset. However, the disease progress is not attributable to autophagy levels in FoxP3+ Tregs.
Collapse
Affiliation(s)
- Asef Azad
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ümmü Rana Gökmen
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hilmi Uysal
- Department of Neurology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Sadi Köksoy
- Department of Medical Microbiology, Faculty of Medicine, Akdeniz University, Antalya, Turkey, and
| | - Uğur Bilge
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ayşe Esra Manguoğlu
- Department of Medical Biology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
24
|
Tucker SK, Ghosal R, Swartz ME, Zhang S, Eberhart JK. Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death. Development 2024; 151:dev202216. [PMID: 38512806 PMCID: PMC11006402 DOI: 10.1242/dev.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
Collapse
Affiliation(s)
- Scott K. Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Ritika Ghosal
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Mary E. Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Stephanie Zhang
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
25
|
Fiveash JB, Ye X, Peerboom DM, Mikkelsen T, Chowdhary S, Rosenfeld M, Lesser GJ, Fisher J, Desideri S, Grossman S, Leopold L, Nabors LB. Clinical trials of R-(-)-gossypol (AT-101) in newly diagnosed and recurrent glioblastoma: NABTT 0602 and NABTT 0702. PLoS One 2024; 19:e0291128. [PMID: 38285688 PMCID: PMC10824421 DOI: 10.1371/journal.pone.0291128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/21/2023] [Indexed: 01/31/2024] Open
Abstract
PURPOSE AT-101 is an oral bcl-2 family protein inhibitor (Bcl-2, Bcl-XL, Mcl-1, Bcl-W) and potent inducer of proapoptotic proteins. A prior study of the parent compound, racemic gossypol, demonstrated objective and durable responses in patients with malignant glioma. AT-101 has demonstrated synergy with radiation in animal models. The objectives of trial NABTT 0602 were to determine the MTD of AT-101 concurrent with temozolomide (TMZ) and radiation therapy (RT) (Arm I) and to determine the MTD of AT-101 when given with adjuvant TMZ after completion of standard chemoradiation (Arm 2). Separately in trial NABTT 0702, the survival and response rates of single agent AT-101 were evaluated in patients with recurrent glioblastoma. METHODS In NABTT 0602 Phase I, a 3+3 design was used to define MTDs after maximal safe resection, patients with newly diagnosed glioblastoma received standard concurrent RT (60 Gy) and TMZ 75 mg/m2/day followed by adjuvant TMZ 150-200 mg/m2 days 1-5 in 28-day cycles (Stupp regimen). In Arm I, AT-101 was administered M-F during the six weeks of RT beginning 20 mg qd. In Arm 2, concurrent with each adjuvant cycle of TMZ, AT-101 was administered at a starting dose of 20 mg, days 1-21 followed by 7-day break for a maximum of 6 cycles. The PK blood samples were collected in the first three patients in each cohort of arm 1. In NABTT 0702 patients with recurrent glioblastoma received 20 mg p.o. per day for 21 of 28 days in repeated cycles to assess overall survival (OS). RESULTS A total of sixteen patients were enrolled on the two study arms of NABTT 0602. In Arm 1 AT-101 was escalated from 20 to 30 mg where one of six patients experienced DLT (grade 3 GI ulcer). On Arm 2 one patient treated at 20 mg experienced DLT (grade 3 ileus, nausea and diarrhea). The cohort was expanded to include seven patients without observation of DLT. PK results were consistent with drug levels from non-CNS studies. At study closure six patients are still alive. The median survival times for Arm I and Arm II are 15.2 months and 18.2 months, respectively. In NABTT 0702 fifty-six patients were enrolled and forty-three were eligible for imaging response. Sixteen patients (29%) had stable disease as best response and one partial response was observed. The median OS with single agent AT-101 was 5.7 months (95%CI: 3.8-7.6 months) for patients with rGBM. CONCLUSIONS AT-101 can be safely administered with radiation therapy and TMZ in patients with newly diagnosed glioblastoma without toxicity unique to patients with CNS tumors. Because of toxicity observed in non-CNS AT-101 clinical trials, further dose-escalation was not attempted. The recommended dose for future studies that utilize continual AT-101 exposure is 20 mg days M-F concurrent with RT/TMZ and 20 mg days 1-21 for each 28-day cycle of TMZ. AT-101 has limited activity as a single agent in unselected patients with recurrent glioblastoma. Future trials should attempt to better understand resistance mechanisms and consider combination therapy.
Collapse
Affiliation(s)
- John B. Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiaobu Ye
- Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David M. Peerboom
- Cleveland Clinic Brain Tumor and Neuro-Oncology Center, Cleveland, Ohio, United States of America
| | - Tom Mikkelsen
- Henry Ford Hospital Hermelin Brain Center, Michigan, Indiana, United States of America
| | | | - Myrna Rosenfeld
- University of Pennsylvania Department of Neurology, Philadelphia, Pennsylvania, United States of America
| | - Glenn J. Lesser
- Department of Internal Medicine, Section on Hematology and Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Joy Fisher
- Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Serena Desideri
- Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Stuart Grossman
- Departments of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lance Leopold
- Incyte, Wilmington, Delaware, United States of America
| | - Louis B. Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
26
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wang Y, Shi C, Guo J, Zhang Y, Gong Z. Distinct Types of Cell Death and Implications in Liver Diseases: An Overview of Mechanisms and Application. J Clin Transl Hepatol 2023; 11:1413-1424. [PMID: 37719956 PMCID: PMC10500292 DOI: 10.14218/jcth.2023.00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Cell death is associated with a variety of liver diseases, and hepatocyte death is a core factor in the occurrence and progression of liver diseases. In recent years, new cell death modes have been identified, and certain biomarkers have been detected in the circulation during various cell death modes that mediate liver injury. In this review, cell death modes associated with liver diseases are summarized, including some cell death modes that have emerged in recent years. We described the mechanisms associated with liver diseases and summarized recent applications of targeting cell death in liver diseases. It provides new ideas for the diagnosis and treatment of liver diseases. In addition, multiple cell death modes can contribute to the same liver disease. Different cell death modes are not isolated, and they interact with each other in liver diseases. Future studies may focus on exploring the regulation between various cell death response pathways in liver diseases.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanqiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
28
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
29
|
Ismail HS, Khalil A, Taha RA, Lasheen DS, Abou El Ella DA. Design, molecular modelling and synthesis of novel benzothiazole derivatives as BCL-2 inhibitors. Sci Rep 2023; 13:15554. [PMID: 37730790 PMCID: PMC10511702 DOI: 10.1038/s41598-023-41783-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
Apoptosis plays a crucial role in cancer pathogenesis and drug resistance. BCL-2 family of enzymes is considered as one of the key enzymes which is involved in apoptosis. When there is disruption in the balance between anti-apoptotic and pro-apoptotic members of the BCL-2 family apoptosis is dysregulated in the affected cells. Herein, 33 novel benzothiazole-based molecules 7a-i, 8a-f, 9a-b, 12a-e, 13a-d, 14a,b, and 17a-j were designed, synthesized and tested for their BCL-2 inhibitory activity. Scaffold hopping strategy was applied in designing of the target compounds. Compounds 13c and 13d showed the highest activity with IC50 values equal to 0.471 and 0.363 µM, respectively. Molecular docking studies of the synthesized compounds showed comparable binding interactions with the lead compound. Structure activity relationship study was performed to show the effects of structural modifications on the inhibitory activities on BCL-2.
Collapse
Affiliation(s)
- Hoda S Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amira Khalil
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), El-Sherouk City, Cairo, 11837, Egypt.
| | - Rabah A Taha
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Deena S Lasheen
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalal A Abou El Ella
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
30
|
Sun W, Wang M, Zhao J, Zhao S, Zhu W, Wu X, Li F, Liu W, Wang Z, Gao M, Zhang Y, Xu J, Zhang M, Wang Q, Wen Z, Shen J, Zhang W, Huang Z. Sulindac selectively induces autophagic apoptosis of GABAergic neurons and alters motor behaviour in zebrafish. Nat Commun 2023; 14:5351. [PMID: 37660128 PMCID: PMC10475106 DOI: 10.1038/s41467-023-41114-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 08/22/2023] [Indexed: 09/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs compose one of the most widely used classes of medications, but the risks for early development remain controversial, especially in the nervous system. Here, we utilized zebrafish larvae to assess the potentially toxic effects of nonsteroidal anti-inflammatory drugs and found that sulindac can selectively induce apoptosis of GABAergic neurons in the brains of zebrafish larvae brains. Zebrafish larvae exhibit hyperactive behaviour after sulindac exposure. We also found that akt1 is selectively expressed in GABAergic neurons and that SC97 (an Akt1 activator) and exogenous akt1 mRNA can reverse the apoptosis caused by sulindac. Further studies showed that sulindac binds to retinoid X receptor alpha (RXRα) and induces autophagy in GABAergic neurons, leading to activation of the mitochondrial apoptotic pathway. Finally, we verified that sulindac can lead to hyperactivity and selectively induce GABAergic neuron apoptosis in mice. These findings suggest that excessive use of sulindac may lead to early neurodevelopmental toxicity and increase the risk of hyperactivity, which could be associated with damage to GABAergic neurons.
Collapse
Affiliation(s)
- Wenwei Sun
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meimei Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jun Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhao
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wenchao Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiaoting Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zhuo Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meng Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Meijia Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qiang Wang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People's Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, 518055, China
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
31
|
Wójcik-Mieszawska S, Lewtak K, Skwarek E, Dębowski D, Gitlin-Domagalska A, Nowak J, Wydrych J, Pawelec J, Fiołka MJ. Autophagy of Candida albicans cells after the action of earthworm Venetin-1 nanoparticle with protease inhibitor activity. Sci Rep 2023; 13:14228. [PMID: 37648723 PMCID: PMC10468520 DOI: 10.1038/s41598-023-41281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023] Open
Abstract
The present studies show the effect of the Venetin-1 protein-polysaccharide complex obtained from the coelomic fluid of the earthworm Dendrobaena veneta on Candida albicans cells. They are a continuation of research on the mechanisms of action, cellular targets, and modes of cell death. After the action of Venetin-1, a reduced survival rate of the yeast cells was noted. The cells were observed to be enlarged compared to the controls and deformed. In addition, an increase in the number of cells with clearly enlarged vacuoles was noted. The detected autophagy process was confirmed using differential interference contrast, fluorescence microscopy, and transmission electron microscopy. Autophagic vesicles were best visible after incubation of fungus cells with the Venetin-1 complex at a concentration of 50 and 100 µg mL-1. The changes in the vacuoles were accompanied by changes in the size of mitochondria, which is probably related to the previously documented oxidative stress. The aggregation properties of Venetin-1 were characterized. Based on the results of the zeta potential at the Venetin-1/KCl interface, the pHiep = 4 point was determined, i.e. the zeta potential becomes positive above pH = 4 and is negative below this value, which may affect the electrostatic interactions with other particles surrounding Venetin-1.
Collapse
Affiliation(s)
- Sylwia Wójcik-Mieszawska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kinga Lewtak
- Department of Cell Biology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Ewa Skwarek
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Jakub Nowak
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Jarosław Pawelec
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Marta J Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
32
|
Dixon A, Shim MS, Nettesheim A, Coyne A, Su CC, Gong H, Liton PB. Autophagy deficiency protects against ocular hypertension and neurodegeneration in experimental and spontanous glaucoma mouse models. Cell Death Dis 2023; 14:554. [PMID: 37620383 PMCID: PMC10449899 DOI: 10.1038/s41419-023-06086-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Glaucoma is a group of diseases that leads to chronic degeneration of retinal ganglion cell (RGC) axons and progressive loss of RGCs, resulting in vision loss. While aging and elevated intraocular pressure (IOP) have been identified as the main contributing factors to glaucoma, the molecular mechanisms and signaling pathways triggering RGC death and axonal degeneration are not fully understood. Previous studies in our laboratory found that overactivation of autophagy in DBA/2J::GFP-LC3 mice led to RGC death and optic nerve degeneration with glaucomatous IOP elevation. We found similar findings in aging GFP-LC3 mice subjected to chronic IOP elevation. Here, we further investigated the impact of autophagy deficiency on autophagy-deficient DBA/2J-Atg4bko and DBA/2J-Atg4b+/- mice, generated in our laboratory via CRISPR/Cas9 technology; as well as in Atg4bko mice subjected to the experimental TGFβ2 chronic ocular hypertensive model. Our data shows that, in contrast to DBA/2J and DBA/2J-Atg4b+/- littermates, DBA/2J-Atg4bko mice do not develop glaucomatous IOP elevation. Atg4b deficiency also protected against glaucomatous IOP elevation in the experimental TGFβ2 chronic ocular hypertensive model. Atg4 deletion did not compromise RGC or optic nerve survival in Atg4bko mice. Moreover, our results indicate a protective role of autophagy deficiency against RGC death and ON atrophy in the hypertensive DBA/2J-Atg4b+/- mice. Together, our data suggests a pathogenic role of autophagy activation in ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Angela Dixon
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Myoung Sup Shim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - April Nettesheim
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Aislyn Coyne
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Chien-Chia Su
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Paloma B Liton
- Department of Ophthalmology & Pathology, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
33
|
Miceli C, Leri M, Stefani M, Bucciantini M. Autophagy-related proteins: Potential diagnostic and prognostic biomarkers of aging-related diseases. Ageing Res Rev 2023; 89:101967. [PMID: 37270146 DOI: 10.1016/j.arr.2023.101967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Autophagy plays a key role in cellular, tissue and organismal homeostasis and in the production of the energy load needed at critical times during development and in response to nutrient shortage. Autophagy is generally considered as a pro-survival mechanism, although its deregulation has been linked to non-apoptotic cell death. Autophagy efficiency declines with age, thus contributing to many different pathophysiological conditions, such as cancer, cardiomyopathy, diabetes, liver disease, autoimmune diseases, infections, and neurodegeneration. Accordingly, it has been proposed that the maintenance of a proper autophagic activity contributes to the extension of the lifespan in different organisms. A better understanding of the interplay between autophagy and risk of age-related pathologies is important to propose nutritional and life-style habits favouring disease prevention as well as possible clinical applications aimed at promoting long-term health.
Collapse
Affiliation(s)
- Caterina Miceli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Manuela Leri
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
34
|
Sakurai HT, Iwashita H, Arakawa S, Yikelamu A, Kusaba M, Kofuji S, Nishina H, Ishiyama M, Ueno Y, Shimizu S. Development of small fluorescent probes for the analysis of autophagy kinetics. iScience 2023; 26:107218. [PMID: 37456828 PMCID: PMC10339198 DOI: 10.1016/j.isci.2023.107218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/12/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Autophagy is a dynamic process that degrades subcellular constituents, and its activity is measured by autophagic flux. The tandem proteins RFP-GFP-LC3 and GFP-LC3-RFP-LC3ΔG, which enable the visualization of autophagic vacuoles of different stages by differences in their fluorescent color, are useful tools to monitor autophagic flux, but they require plasmid transfection. In this study, we hence aimed to develop a new method to monitor autophagic flux using small cell-permeable fluorescent probes. We previously developed two green-fluorescent probes, DALGreen and DAPGreen, which detect autolysosomes and multistep autophagic vacuoles, respectively. We here developed a red-fluorescent autophagic probe, named DAPRed, which recognizes various autophagic vacuoles. By the combinatorial use of these green- and red-fluorescent probes, we were able to readily detect autophagic flux. Furthermore, these probes were useful not only for the visualization of canonical autophagy but also for alternative autophagy. DAPRed was also applicable for the detection of autophagy in living organisms.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1205, Japan
| | - Hidefumi Iwashita
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-Ku, Fukuoka 814-0180, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Alifu Yikelamu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mizuki Kusaba
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Kofuji
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuichiro Ueno
- Dojindo Laboratories, Tabaru 2025-5, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, TMDU, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
35
|
Wu L, Lin Y, Gao S, Wang Y, Pan H, Wang Z, Pozzolini M, Yang F, Zhang H, Yang Y, Xiao L, Xu Y. Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Front Pharmacol 2023; 14:1200843. [PMID: 37346292 PMCID: PMC10279868 DOI: 10.3389/fphar.2023.1200843] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is one of the most prominent neoplasm disorders and lacks efficacious treatments yet. Luteolin (3',4',5,7-tetrahydroxyflavone), a natural flavonoid commonly presented in plants, has been reported to delay the progression of TNBC. However, the precise mechanism is still elusive. We aimed to elucidate the inhibition and molecular regulation mechanism of luteolin on TNBC. Methods: The effects of luteolin on the biological functions of TNBC cells were first evaluated using the corresponding assays for cell counting kit-8 assay, flow cytometry, wound-healing assay, and transwell migration assay, respectively. The mechanism of luteolin on TNBC cells was then analyzed by RNA sequencing and verified by RT-qPCR, Western blot, transmission electron microscopy, etc. Finally, in vivo mouse tumor models were constructed to further confirm the effects of luteolin on TNBC. Results: Luteolin dramatically suppressed cell proliferation, invasion, and migration while favoring cell apoptosis in a dose- and time-dependent manner. In TNBC cells treated with luteolin, SGK1 and AKT3 were significantly downregulated while their downstream gene BNIP3 was upregulated. According to the results of 3D modeling, the direct binding of luteolin to SGK1 was superior to that of AKT3. The inhibition of SGK1 promoted FOXO3a translocation into the nucleus and led to the transcription of BNIP3 both in vitro and in vivo, eventually facilitating the interaction between BNIP3 and apoptosis and autophagy protein. Furthermore, the upregulation of SGK1, induced by luteolin, attenuated the apoptosis and autophagy of the TNBC. Conclusion: Luteolin inhibits TNBC by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.
Collapse
Affiliation(s)
- Ling Wu
- Medical College of Yangzhou University, Yangzhou, China
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yingda Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Songyu Gao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yongfang Wang
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Huiji Pan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Zhaozhi Wang
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy
| | - Fengling Yang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Haiyan Zhang
- Department of Healthcare, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yi Yang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liang Xiao
- Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Li YL, Zhang TZ, Han LK, He C, Pan YR, Fan B, Li GY. The AMPK-dependent inhibition of autophagy plays a crucial role in protecting photoreceptor from photooxidative injury. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 245:112735. [PMID: 37302156 DOI: 10.1016/j.jphotobiol.2023.112735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Excessive light exposure can potentially cause irreversible damage to the various photoreceptor cells, and this aspect has been considered as an important factor leading to the progression of the different retinal diseases. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) are crucial intracellular signaling hubs involved in the regulation of cellular metabolism, energy homeostasis, cellular growth and autophagy. A number of previous studies have indicated that either AMPK activation or mTOR inhibition can promote autophagy in most cases. In the current study, we have established an in vitro as well as in vivo photooxidation-damaged photoreceptor model and investigated the possible influence of visible light exposure in the AMPK/mTOR/autophagy signaling pathway. We have also explored the potential regulatory effects of AMPK/mTOR on light-induced autophagy and protection achieved by suppressing autophagy in photooxidation-damaged photoreceptors. We observed that light exposure led to a significant activation of mTOR and autophagy in the photoreceptor cells. However, intriguingly, AMPK activation or mTOR inhibition significantly inhibited rather than promoting autophagy, which was termed as AMPK-dependent inhibition of autophagy. In addition, either indirectly suppressing autophagy by AMPK activation/ mTOR inhibition or directly blocking autophagy with an inhibitor exerted a significant protective effect on the photoreceptor cells against the photooxidative damage. Neuroprotective effects caused by the AMPK-dependent inhibition of autophagy were also verified with a retinal light injured mouse model in vivo. Overall, our findings demonstrated that AMPK / mTOR pathway could inhibit autophagy through AMPK-dependent inhibition of autophagy to significantly protect the photoreceptors from photooxidative injury, which may aid to further develop novel targeted retinal neuroprotective drugs.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China
| | - Tian-Zi Zhang
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Li-Kun Han
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Chang He
- Affiliated Hospital of Inner Mongolia University for the Nationalities, Inner Mongolia, China
| | - Yi-Ran Pan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China.
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Norman Bethune Hospital of JiLin University, ChangChun, China.
| |
Collapse
|
37
|
Wu M, Chen Z, Jiang M, Bao B, Li D, Yin X, Wang X, Liu D, Zhu LQ. Friend or foe: role of pathological tau in neuronal death. Mol Psychiatry 2023; 28:2215-2227. [PMID: 36918705 DOI: 10.1038/s41380-023-02024-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Neuronal death is one of the most common pathological hallmarks of diverse neurological diseases, which manifest varying degrees of cognitive or motor dysfunction. Neuronal death can be classified into multiple forms with complicated and unique regulatory signaling pathways. Tau is a key microtubule-associated protein that is predominantly expressed in neurons to stabilize microtubules under physiological conditions. In contrast, pathological tau always detaches from microtubules and is implicated in a series of neurological disorders that are characterized by irreversible neuronal death, such as necrosis, apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy-dependent neuronal death and phagocytosis by microglia. However, recent studies have also revealed that pathological tau can facilitate neuron escape from acute apoptosis, delay necroptosis through its action on granulovacuolar degeneration bodies (GVBs), and facilitate iron export from neurons to block ferroptosis. In this review, we briefly describe the current understanding of how pathological tau exerts dual effects on neuronal death by acting as a double-edged sword in different neurological diseases. We propose that elucidating the mechanism by which pathological tau affects neuronal death is critical for exploring novel and precise therapeutic strategies for neurological disorders.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Bing Bao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Dongling Li
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China.
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Quarato G, Mari L, Barrows NJ, Yang M, Ruehl S, Chen MJ, Guy CS, Low J, Chen T, Green DR. Mitophagy restricts BAX/BAK-independent, Parkin-mediated apoptosis. SCIENCE ADVANCES 2023; 9:eadg8156. [PMID: 37224250 PMCID: PMC10208567 DOI: 10.1126/sciadv.adg8156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Degradation of defective mitochondria is an essential process to maintain cellular homeostasis and it is strictly regulated by the ubiquitin-proteasome system (UPS) and lysosomal activities. Here, using genome-wide CRISPR and small interference RNA screens, we identified a critical contribution of the lysosomal system in controlling aberrant induction of apoptosis following mitochondrial damage. After treatment with mitochondrial toxins, activation of the PINK1-Parkin axis triggered a BAX- and BAK-independent process of cytochrome c release from mitochondria followed by APAF1 and caspase 9-dependent apoptosis. This phenomenon was mediated by UPS-dependent outer mitochondrial membrane (OMM) degradation and was reversed using proteasome inhibitors. We found that the subsequent recruitment of the autophagy machinery to the OMM protected cells from apoptosis, mediating the lysosomal degradation of dysfunctional mitochondria. Our results underscore a major role of the autophagy machinery in counteracting aberrant noncanonical apoptosis and identified autophagy receptors as key elements in the regulation of this process.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Luigi Mari
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Nicholas J. Barrows
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mao Yang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Sebastian Ruehl
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mark J. Chen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Cliff S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
39
|
Li Y, Wu Y, Ning Z, Li X. Echinacoside ameliorates 5-fluorouracil-induced endothelial injury and senescence through SIRT1 activation. Int Immunopharmacol 2023; 120:110279. [PMID: 37187128 DOI: 10.1016/j.intimp.2023.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/13/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Echinacoside (ECH) is a natural bioactive component with antioxidant, anti-inflammatory, anti-apoptosis, and anti-tumor properties. In the current study, we explore the ECH-mediated protective effect and underlying mechanism of 5-fluorouracil (5-FU)-induced endothelial injury and senescence in the Human umbilical vein endothelial cells (HUVECs). In HUVECs, Cell viability, Apoptosis and Senescence assays evaluated 5-fluorouracil-induced endothelial injury and senescence. Protein expressions were assessed using RT-qPCR and Western blotting. Our results showed that 5-FU-induced endothelial injury and endothelial cell senescence could be improved when treated with ECH in HUVECs. ECH treatment potentially attenuated oxidative stress and ROS production in HUVECs. In addition, the effect of ECH on autophagy markedly reduced the percentage of HUVECs with LC3-II dots and suppressed the Beclin-1 and ATG7 mRNA expression but enhanced the p62 mRNA expression. Besides, ECH treatment significantly increased migrated cells and suppressed the adhesion of THP-1 monocytes in HUVECs. Furthermore, ECH treatment activated the SIRT1 pathway, and its related proteins (SIRT1, p-AMPK and eNOS) expression increased. Nicotinamide (NAM), an inhibitor of SIRT1, significantly attenuated the ECH-induced decrease in the apoptotic rate, increased SA-β-gal-positive cells and significantly reversed the ECH-induced reduction of endothelial senescence. Our results demonstrated that ECH employed endothelial injury and senescence in HUVECs via activation of the SIRT1 pathway.
Collapse
Affiliation(s)
- Yiming Li
- Department of Cardiology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China
| | - Yingbiao Wu
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated with Shanghai Medical College of Health), Shanghai 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated with Shanghai Medical College of Health), Shanghai 201318, China.
| | - Xinming Li
- Department of Cardiology, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai 201203, China; Department of Cardiology, Shanghai Pudong New Area Zhoupu Hospital (Zhoupu Hospital affiliated with Shanghai Medical College of Health), Shanghai 201318, China.
| |
Collapse
|
40
|
Clavero E, Sanchez-Maldonado JM, Macauda A, Ter Horst R, Sampaio-Marques B, Jurczyszyn A, Clay-Gilmour A, Stein A, Hildebrandt MAT, Weinhold N, Buda G, García-Sanz R, Tomczak W, Vogel U, Jerez A, Zawirska D, Wątek M, Hofmann JN, Landi S, Spinelli JJ, Butrym A, Kumar A, Martínez-López J, Galimberti S, Sarasquete ME, Subocz E, Iskierka-Jażdżewska E, Giles GG, Rybicka-Ramos M, Kruszewski M, Abildgaard N, Verdejo FG, Sánchez Rovira P, da Silva Filho MI, Kadar K, Razny M, Cozen W, Pelosini M, Jurado M, Bhatti P, Dudzinski M, Druzd-Sitek A, Orciuolo E, Li Y, Norman AD, Zaucha JM, Reis RM, Markiewicz M, Rodríguez Sevilla JJ, Andersen V, Jamroziak K, Hemminki K, Berndt SI, Rajkumar V, Mazur G, Kumar SK, Ludovico P, Nagler A, Chanock SJ, Dumontet C, Machiela MJ, Varkonyi J, Camp NJ, Ziv E, Vangsted AJ, Brown EE, Campa D, Vachon CM, Netea MG, Canzian F, Försti A, Sainz J. Polymorphisms within Autophagy-Related Genes as Susceptibility Biomarkers for Multiple Myeloma: A Meta-Analysis of Three Large Cohorts and Functional Characterization. Int J Mol Sci 2023; 24:8500. [PMID: 37239846 PMCID: PMC10218542 DOI: 10.3390/ijms24108500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10-9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10-4-5.79 × 10-14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10-4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10-4) and circulating serum concentrations of Monocyte Chemoattractant Protein (MCP)-2 (p = 3.6 × 10-4). We also found that the CD46rs1142469 SNP correlated with numbers of CD19+ B cells, CD19+CD3- B cells, CD5+IgD- cells, IgM- cells, IgD-IgM- cells, and CD4-CD8- PBMCs (p = 4.9 × 10-4-8.6 × 10-4) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27- cells (p = 9.3 × 10-4). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3-, MCP-2-, and IL20-dependent pathways.
Collapse
Affiliation(s)
- Esther Clavero
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
| | - José Manuel Sanchez-Maldonado
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
| | - Angelica Macauda
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of Hematology, Jagiellonian University Medical College, 31-066 Kraków, Poland;
| | - Alyssa Clay-Gilmour
- Department of Biostatistics and Epidemiology, Arnold School of Public Health, University of South Carolina, Greenville, SC 29208, USA;
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Michelle A. T. Hildebrandt
- Department of Lymphoma–Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Niels Weinhold
- Myeloma Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Internal Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Buda
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Ramón García-Sanz
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark;
| | - Andrés Jerez
- Department of Hematology, Experimental Hematology Unit, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, 08035 Barcelona, Spain;
| | - Daria Zawirska
- Department of Hematology, University Hospital, 30-688 Kraków, Poland;
| | - Marzena Wątek
- Holycross Medical Oncology Center, 25-735 Kielce, Poland;
- Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Jonathan N. Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Stefano Landi
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - John J. Spinelli
- Division of Population Oncology, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Aleksandra Butrym
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Alfred Sokolowski Specialist Hospital in Walbrzych Oncology Support Centre for Clinical Trials, 58-309 Walbrzych, Poland
| | - Abhishek Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India;
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | | | - Sara Galimberti
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - María Eugenia Sarasquete
- Diagnostic Laboratory Unit in Hematology, University Hospital of Salamanca, IBSAL, CIBERONC, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), 37007 Salamanca, Spain; (R.G.-S.); (M.E.S.)
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | | | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Malwina Rybicka-Ramos
- Department of Hematology, Specialist Hospital No. 1 in Bytom, Academy of Silesia, Faculty of Medicine, 40-055 Katowice, Poland;
| | - Marcin Kruszewski
- Department of Hematology, University Hospital No. 2, 85-168 Bydgoszcz, Poland;
| | - Niels Abildgaard
- Department of Hematology, Odense University Hospital, DK-5000 Odense, Denmark;
| | - Francisco García Verdejo
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Pedro Sánchez Rovira
- Department of Medical Oncology, Complejo Hospitalario de Jaén, 23007 Jaén, Spain; (F.G.V.); (P.S.R.)
| | - Miguel Inacio da Silva Filho
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany;
| | | | - Małgorzata Razny
- Department of Hematology, Rydygier Hospital, 31-826 Cracow, Poland;
| | - Wendy Cozen
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, Department of Pathology, School of Medicine, Susan and Henry Samueli College of Health Sciences, Chao Family Comprehensive Cancer Center, University of California at Irvine, Irvine, CA 92697, USA;
| | - Matteo Pelosini
- U.O. Dipartimento di Ematologia, Azienda USL Toscana Nord Ovest, 57124 Livorno, Italy;
| | - Manuel Jurado
- Hematology Department, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (E.C.); (M.J.)
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Medicine, University of Granada, 18012 Granada, Spain
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer, Vancouver, BC V5Z 4E6, Canada;
- Program in Epidemiology, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Marek Dudzinski
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | - Agnieszka Druzd-Sitek
- Department of Lymphoproliferative Diseases, Maria Skłodowska Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Enrico Orciuolo
- Haematology Unit, Department of Clinical and Experimental Medicine, University of Pisa/AOUP, 56126 Pisa, Italy; (G.B.); (S.G.); (E.O.)
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Centre for Individualised Infection Medicine (CiiM) & TWINCORE, Joint Ventures between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Aaron D. Norman
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
- Genetic Epidemiology and Risk Assessment Program, Mayo Clinic Comprehensive Cancer Center, Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA
| | - Jan Maciej Zaucha
- Department of Hematology and Transplantology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal and ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal;
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil
| | - Miroslaw Markiewicz
- Department of Hematology, Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland; (M.D.); (M.M.)
| | | | - Vibeke Andersen
- Molecular Diagnostics and Clinical Research Unit, Institute of Regional Health Research, University Hospital of Southern Denmark, DK-6200 Aabenraa, Denmark;
| | - Krzysztof Jamroziak
- Department of Hematology, Transplantology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kari Hemminki
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Vicent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Grzegorz Mazur
- Department of Internal Diseases, Occupational Medicine, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Shaji K. Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55902, USA; (V.R.); (S.K.K.)
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (B.S.-M.); (P.L.)
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | - Charles Dumontet
- UMR INSERM 1052/CNRS 5286, University of Lyon, Hospices Civils de Lyon, 69008 Lyon, France;
| | - Mitchell J. Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.N.H.); (S.I.B.); (S.J.C.); (M.J.M.)
| | | | - Nicola J. Camp
- Division of Hematology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Elad Ziv
- Department of Medicine, University of California San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94143, USA;
| | - Annette Juul Vangsted
- Department of Hematology, Rigshospitalet, Copenhagen University, DK-2100 Copenhagen, Denmark;
| | - Elizabeth E. Brown
- Department of Pathology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126 Pisa, Italy; (S.L.); (D.C.)
| | - Celine M. Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55902, USA; (A.D.N.); (C.M.V.)
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (R.T.H.); (Y.L.); (M.G.N.)
- Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.M.); (A.S.); (F.C.)
| | - Asta Försti
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany;
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS, 18016 Granada, Spain;
- Instituto de Investigación Biosanataria IBs, Granada, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology I, University of Granada, 18071 Granada, Spain
| |
Collapse
|
41
|
Tsujioka M, Miyazawa K, Ohmuraya M, Nibe Y, Shirokawa T, Hayasaka H, Mizushima T, Fukuma T, Shimizu S. Identification of a novel type of focal adhesion remodelling via FAK/FRNK replacement, and its contribution to cancer progression. Cell Death Dis 2023; 14:256. [PMID: 37031228 PMCID: PMC10082854 DOI: 10.1038/s41419-023-05774-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023]
Abstract
Numerous studies have investigated the various cellular responses against genotoxic stress, including those mediated by focal adhesions. We here identified a novel type of focal adhesion remodelling that occurs under genotoxic stress conditions, which involves the replacement of active focal adhesion kinase (FAK) with FAK-related non-kinase (FRNK). FRNK stabilized focal adhesions, leading to strong cell-matrix adhesion, and FRNK-depleted cells were easily detached from extracellular matrix upon genotoxic stress. This remodelling occurred in a wide variety of cells. In vivo, the stomachs of Frnk-knockout mice were severely damaged by genotoxic stress, highlighting the protective role of FRNK against genotoxic stress. FRNK was also found to play a vital role in cancer progression, because FRNK depletion significantly inhibited cancer dissemination and progression in a mouse cancer model. Furthermore, in human cancers, FRNK was predominantly expressed in metastatic tissues and not in primary tissues. We hence conclude that this novel type of focal adhesion remodelling reinforces cell adhesion and acts against genotoxic stress, which results in the protection of normal tissues, but in turn facilitates cancer progression.
Collapse
Affiliation(s)
- Masatsune Tsujioka
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Yoichi Nibe
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Tetsuya Shirokawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Haruko Hayasaka
- Department of Life Science, Faculty of Science & Engineering, Kindai University, Higashi-osaka, Osaka, 577-8502, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
42
|
Cheng X, Zhang P, Zhao H, Zheng H, Zheng K, Zhang H, Zhang H. Proteotoxic stress disrupts epithelial integrity by inducing MTOR sequestration and autophagy overactivation. Autophagy 2023; 19:241-255. [PMID: 35521960 PMCID: PMC9809964 DOI: 10.1080/15548627.2022.2071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved degradation system, serves to clear intracellular components through the lysosomal pathway. Mounting evidence has revealed cytoprotective roles of autophagy; however, the intracellular causes of overactivated autophagy, which has cytotoxic effects, remain elusive. Here we show that sustained proteotoxic stress induced by loss of the RING and Kelch repeat-containing protein C53A5.6/RIKE-1 induces sequestration of LET-363/MTOR complex and overactivation of autophagy, and consequently impairs epithelial integrity in C. elegans. In C53A5.6/RIKE-1-deficient animals, blocking autophagosome formation effectively prevents excessive endosomal degradation, mitigates mislocalization of intestinal membrane components and restores intestinal lumen morphology. However, autophagy inhibition does not affect LET-363/MTOR aggregation in animals with compromised C53A5.6/RIKE-1 function. Improving proteostasis capacity by reducing DAF-2 insulin/IGF1 signaling markedly relieves the aggregation of LET-363/MTOR and alleviates autophagy overactivation, which in turn reverses derailed endosomal trafficking and rescues epithelial morphogenesis defects in C53A5.6/RIKE-1-deficient animals. Hence, our studies reveal that C53A5.6/RIKE-1-mediated proteostasis is critical for maintaining the basal level of autophagy and epithelial integrity.Abbreviations: ACT-5: actin 5; ACTB: actin beta; ALs: autolysosomes; APs: autophagosomes; AJM-1: apical junction molecule; ATG: autophagy related; C. elegans: Caenorhabditis elegans; CPL-1: cathepsin L family; DAF: abnormal dauer formation; DLG-1: Drosophila discs large homolog; ERM-1: ezrin/radixin/moesin; EPG: ectopic P granule; GFP: freen fluorescent protein; HLH-30: helix loop helix; HSP: heat shock protein; LAAT-1: lysosome associated amino acid transporter; LET: lethal; LGG-1: LC3, GABARAP and GATE-16 family; LMP-1: LAMP (lysosome-associated membrane protein) homolog; MTOR: mechanistic target of rapamycin kinase; NUC-1: abnormal nuclease; PEPT-1/OPT-2: Peptide transporter family; PGP-1: P-glycoprotein related; RAB: RAB family; RIKE-1: RING and Kelch repeat-containing protein; SLCF-1: solute carrier family; SQST-1: sequestosome related; SPTL-1: serine palmitoyl transferase family.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pei Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hui Zheng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kai Zheng
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hongjie Zhang
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, China,CONTACT Hongjie Zhang Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau999078, China
| |
Collapse
|
43
|
Sakurai HT, Arakawa S, Noguchi S, Shimizu S. FLIP-based autophagy-detecting technique reveals closed autophagic compartments. Sci Rep 2022; 12:22452. [PMID: 36575188 PMCID: PMC9794774 DOI: 10.1038/s41598-022-26430-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Autophagy results in the degradation of cytosolic components via two major membrane deformations. First, the isolation membrane sequesters components from the cytosol and forms autophagosomes, by which open structures become closed compartments. Second, the outer membrane of the autophagosomes fuses with lysosomes to degrade the inner membrane and its contents. The efficiency of the latter degradation process, namely autophagic flux, can be easily evaluated using lysosomal inhibitors, whereas the dynamics of the former process is difficult to analyze because of the challenges in identifying closed compartments of autophagy (autophagosomes and autolysosomes). To resolve this problem, we here developed a method to detect closed autophagic compartments by applying the FLIP technique, and named it FLIP-based Autophagy Detection (FLAD). This technique visualizes closed autophagic compartments and enables differentiation of open autophagic structures and closed autophagic compartments in live cells. In addition, FLAD analysis detects not only starvation-induced canonical autophagy but also genotoxic stress-induced alternative autophagy. By the combinational use of FLAD and LC3, we were able to distinguish the structures of canonical autophagy from those of alternative autophagy in a single cell.
Collapse
Affiliation(s)
- Hajime Tajima Sakurai
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Satoko Arakawa
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Saori Noguchi
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| | - Shigeomi Shimizu
- grid.265073.50000 0001 1014 9130Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510 Japan
| |
Collapse
|
44
|
Chaichompoo P, Nithipongvanitch R, Kheansaard W, Tubsuwan A, Srinoun K, Vadolas J, Fucharoen S, Smith DR, Winichagoon P, Svasti S. Increased autophagy leads to decreased apoptosis during β-thalassaemic mouse and patient erythropoiesis. Sci Rep 2022; 12:18628. [PMID: 36329049 PMCID: PMC9633749 DOI: 10.1038/s41598-022-21249-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
β-Thalassaemia results from defects in β-globin chain production, leading to ineffective erythropoiesis and subsequently to severe anaemia and other complications. Apoptosis and autophagy are the main pathways that regulate the balance between cell survival and cell death in response to diverse cellular stresses. Herein, the death of erythroid lineage cells in the bone marrow from both βIVS2-654-thalassaemic mice and β-thalassaemia/HbE patients was investigated. Phosphatidylserine (PS)-bearing basophilic erythroblasts and polychromatophilic erythroblasts were significantly increased in β-thalassaemia as compared to controls. However, the activation of caspase 8, caspase 9 and caspase 3 was minimal and not different from control in both murine and human thalassaemic erythroblasts. Interestingly, bone marrow erythroblasts from both β-thalassaemic mice and β-thalassaemia/HbE patients had significantly increased autophagy as shown by increased autophagosomes and increased co-localization between LC3 and LAMP-1. Inhibition of autophagy by chloroquine caused significantly increased erythroblast apoptosis. We have demonstrated increased autophagy which led to minimal apoptosis in β-thalassaemic erythroblasts. However, increased PS exposure occurring through other mechanisms in thalassaemic erythroblasts might cause rapid phagocytic removal by macrophages and consequently ineffective erythropoiesis in β-thalassaemia.
Collapse
Affiliation(s)
- Pornthip Chaichompoo
- grid.10223.320000 0004 1937 0490Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Ramaneeya Nithipongvanitch
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Wasinee Kheansaard
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Alisa Tubsuwan
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kanitta Srinoun
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.7130.50000 0004 0470 1162Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Jim Vadolas
- grid.452824.dCentre for Cancer Research, Hudson Institute of Medical Research, Melbourne, Australia ,grid.1002.30000 0004 1936 7857Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Suthat Fucharoen
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Duncan R. Smith
- grid.10223.320000 0004 1937 0490Molecular Pathology Laboratory, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Pranee Winichagoon
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Saovaros Svasti
- grid.10223.320000 0004 1937 0490Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170 Thailand ,grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Negi S, Chaudhuri A, Kumar DN, Dehari D, Singh S, Agrawal AK. Nanotherapeutics in autophagy: a paradigm shift in cancer treatment. Drug Deliv Transl Res 2022; 12:2589-2612. [PMID: 35149969 DOI: 10.1007/s13346-022-01125-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 12/15/2022]
Abstract
Autophagy is a catabolic process in which an organism responds to its nutrient or metabolic emergencies. It involves the degradation of cytoplasmic proteins and organelles by forming double-membrane vesicles called "autophagosomes." They sequester cargoes, leading them to degradation in the lysosomes. Although autophagy acts as a protective mechanism for maintaining homeostasis through cellular recycling, it is ostensibly a cause of certain cancers, but a cure for others. In other words, insufficient autophagy, due to genetic or cellular dysfunctions, can lead to tumorigenesis. However, many autophagy modulators are developed for cancer therapy. Diverse nanoparticles have been documented to induce autophagy. Also, the highly stable nanoparticles show blockage to autophagic flux. In this review, we revealed a general mechanism by which autophagy can be induced or blocked via nanoparticles as well as several studies recently performed to prove the stated fact. In addition, we have also elucidated the paradoxical roles of autophagy in cancer and how their differential role at different stages of various cancers can affect its treatment outcomes. And finally, we summarize the breakthroughs in cancer disease treatments by using metallic, polymeric, and liposomal nanoparticles as potent autophagy modulators.
Collapse
Affiliation(s)
- Shloka Negi
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Aiswarya Chaudhuri
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Deepa Dehari
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Sanjay Singh
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Eng. & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, UP, India.
| |
Collapse
|
46
|
Distinct roles for different autophagy-associated genes in the virulence of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol 2022; 163:103748. [PMID: 36309095 DOI: 10.1016/j.fgb.2022.103748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/16/2022] [Accepted: 10/13/2022] [Indexed: 01/06/2023]
Abstract
The fungal wheat pathogen Zymoseptoria tritici causes major crop losses as the causal agent of the disease Septoria tritici blotch. The infection cycle of Z. tritici displays two distinct phases, beginning with an extended symptomless phase of 1-2 weeks, before the fungus induces host cell death and tissue collapse in the leaf. Recent evidence suggests that the fungus uses little host-derived nutrition during asymptomatic colonisation, raising questions as to the sources of energy required for this initial growth phase. Autophagy is crucial for the pathogenicity of other fungal plant pathogens through its roles in supporting cellular differentiation and growth under starvation. Here we characterised the contributions of the autophagy genes ZtATG1 and ZtATG8 to the development and virulence of Z. tritici. Deletion of ZtATG1 led to inhibition of autophagy but had no impact on starvation-induced hyphal differentiation or virulence, suggesting that autophagy is not required for Z. tritici pathogenicity. Contrastingly, ZtATG8 deletion delayed the transition to necrotrophic growth, despite having no influence on filamentous growth under starvation, pointing to an autophagy-independent role of ZtATG8 during Z. tritici infection. To our knowledge, this study represents the first to find autophagy not to contribute to the virulence of a fungal plant pathogen, and reveals novel roles for different autophagy-associated proteins in Z. tritici.
Collapse
|
47
|
Qu J, Wang Q, Sun X, Li Y. The environment and female reproduction: Potential mechanism of cadmium poisoning to the growth and development of ovarian follicle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114029. [PMID: 36055045 DOI: 10.1016/j.ecoenv.2022.114029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is ubiquitous in our environment and can easily bioaccumulate into the organism after passage through the respiratory and digestive tracts. Long-term exposure to Cd can result in the significant bioaccumulation in organism because of its long biological high-life (10-30 years), which exerts irreversible damages on the health of animals and humans. Although there are increased evidence of impeding the normal function of female reproduction resulted from Cd exposure, the mechanism of the negative action of Cd on the growth and development of ovarian follicle remains enigmatic. Thus, the purpose of the presented study is to summarize available literature which describing Cd-related toxicity involved in the adverse effects on the growth and development of the ovarian follicle. In conclusion, it is suggested that Cd causes damage to the folliculogenesis of mammalians, which results in the decline in the number and quality of ovulated oocytes and the failure in the fertilization. The mechanism behinds that may be linked to the interference to the production of reproductive hormones and the augment of reactive oxygen species (ROS). Furthermore, the enhanced ROS, in turn, impairs various molecules including proteins, lipids and DNA, as well as the balance of the antioxidant defense system, mitochondrial homeostasis, endoplasmic reticulum, autophagy and epigenetic modification. This review is expected to elaborate the toxic mechanism of Cd exposure to the growth and development of ovarian follicles and provide essential remediation strategies to alleviate the damage of Cd to female reproductive health.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Department of Animal Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
48
|
Kondapuram SK, Coumar MS. Pan-cancer gene expression analysis: Identification of deregulated autophagy genes and drugs to target them. Gene X 2022; 844:146821. [PMID: 35985410 DOI: 10.1016/j.gene.2022.146821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022] Open
Abstract
Identifying suitable deregulated targets in autophagy pathway is essential for developing autophagy modulating cancer therapies. With this aim, we systematically analyzed the expression levels of genes that contribute to the execution of autophagy in 21 cancers. Deregulated genes for 21 cancers were analyzed using the level 3 mRNA data from TCGAbiolinks. A total of 574 autophagy genes were mapped to the deregulated genes across 21 cancers. PPI network, cluster analysis, gene enrichment, gene ontology, KEGG pathway, patient survival, protein expression and cMap analysis were performed. Among the autophagy genes, 260 were upregulated, and 43 were downregulated across pan-cancer. The upregulated autophagy genes - CDKN2A and BIRC5 - were the most frequent signatures in cancers and could be universal cancer biomarkers. Significant involvement of autophagy process was found in 8 cancers (CHOL, HNSC, GBM, KICH, KIRC, KIRP, LIHC and SARC). Fifteen autophagy hub genes (ATP6V0C, BIRC5, HDAC1, IL4, ITGB1, ITGB4, MAPK3, mTOR, cMYC, PTK2, SRC, TCIRG1, TP63, TP73 and ULK1) were found to be linked with patients survival and also expressed in cancer patients tissue samples, making them as potential drug targets for these cancers. The deregulated autophagy genes were further used to identify drugs Losartan, BMS-345541, Embelin, Abexinostat, Panobinostat, Vorinostat, PD-184352, PP-1, XMD-1150, Triplotide, Doxorubicin and Ouabain, which could target one or more autophagy hub genes. Overall, our findings shed light on the most frequent cancer-associated autophagy genes, potential autophagy targets and molecules for cancer treatment. These findings can accelerate autophagy modulation in cancer therapy.
Collapse
Affiliation(s)
- Sree Karani Kondapuram
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry- 605014, India.
| |
Collapse
|
49
|
Yu G, Klionsky DJ. Life and Death Decisions-The Many Faces of Autophagy in Cell Survival and Cell Death. Biomolecules 2022; 12:866. [PMID: 35883421 PMCID: PMC9313301 DOI: 10.3390/biom12070866] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Autophagy is a process conserved from yeast to humans. Since the discovery of autophagy, its physiological role in cell survival and cell death has been intensively investigated. The inherent ability of the autophagy machinery to sequester, deliver, and degrade cytoplasmic components enables autophagy to participate in cell survival and cell death in multiple ways. The primary role of autophagy is to send cytoplasmic components to the vacuole or lysosomes for degradation. By fine-tuning autophagy, the cell regulates the removal and recycling of cytoplasmic components in response to various stress or signals. Recent research has shown the implications of the autophagy machinery in other pathways independent of lysosomal degradation, expanding the pro-survival role of autophagy. Autophagy also facilitates certain forms of regulated cell death. In addition, there is complex crosstalk between autophagy and regulated cell death pathways, with a number of genes shared between them, further suggesting a deeper connection between autophagy and cell death. Finally, the mitochondrion presents an example where the cell utilizes autophagy to strike a balance between cell survival and cell death. In this review, we consider the current knowledge on the physiological role of autophagy as well as its regulation and discuss the multiple functions of autophagy in cell survival and cell death.
Collapse
Affiliation(s)
- Ge Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA;
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA;
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2216, USA
| |
Collapse
|
50
|
Agrawal Y, Sharma T, Islam S, Nadkarni KS, Santra MK. F-box protein FBXO41 suppresses breast cancer growth by inducing autophagic cell death through facilitating proteasomal degradation of oncogene SKP2. Int J Biochem Cell Biol 2022; 147:106228. [PMID: 35598880 DOI: 10.1016/j.biocel.2022.106228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 12/30/2022]
Abstract
F-box proteins form SCF (Cullin1, SKP1 and F-box-protein) ubiquitin ligase complexes to ubiquitinate cellular proteins. They play key role in several biological processes, including cell cycle progression, cellular signaling, stress response and cell death pathways. Therefore, deregulation of F-box proteins is closely associated with cancer progression. However, the role of most of the F-box proteins, including FBXO41, in cancer progression remains elusive. Here, we unravel the role of FBXO41 in cancer progression. We show that FBXO41 suppresses cancer cell proliferation and tumor growth by inducing autophagic cell death through an alternative pathway. Results revealed that FBXO41-mediated autophagic cell death induction is dependent on accumulation of cell cycle checkpoint protein p21. We found that FBXO41 increases the expression levels of p21 at the post-translational level by promoting the proteasomal degradation of SKP2, an oncogenic F-box protein. Mechanistically, FBXO41 along with p21 disrupts the inhibitory BCL2 (anti-apoptotic protein)-Beclin1 (autophagy initiating factor) complex of autophagy induction to release Beclin1, thereby inducing autophagy. Overall, the present study establishes a new FBXO41-SKP2-p21 axis for induction of autophagic cell death to prevent cancer growth, which could be explored to develop promising cancer therapeutics.
Collapse
Affiliation(s)
- Yashika Agrawal
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S. P. Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007 India
| | - Tanisha Sharma
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S. P. Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007 India
| | - Sehbanul Islam
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Kaustubh S Nadkarni
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India; Department of Biotechnology, S. P. Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007 India
| | - Manas Kumar Santra
- Molecular Oncology Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune, Maharashtra 411007, India.
| |
Collapse
|