1
|
Shih JH, Chern E. Decellularized Porcine Aorta as a Scaffold for Human Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells in Tissue Engineering. Stem Cell Rev Rep 2025:10.1007/s12015-025-10875-y. [PMID: 40227487 DOI: 10.1007/s12015-025-10875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Tissue engineering has been an integral part of regenerative medicine. Functional biomimetic structures were assembled by combining appropriate scaffolds with specific cells. The decellularization of animal tissue preserved the natural biochemical components and structural properties of the extracellular matrix (ECM) of specific organs, thereby providing a suitable niche for tissue-specific cell differentiation and growth. In this study, the extracellular matrix (ECM) of the porcine aorta was obtained through trypsin-based decellularization. The resulting porcine aortic ECM retained a favorable collagen composition, exhibited no cytotoxicity, and demonstrated chemophilic properties for mesenchymal stem cells. Human adipose-derived mesenchymal stem cells (hADSCs) and human induced pluripotent stem cell-derived mesenchymal stem cells (hiMSCs) were transplanted onto the decellularized porcine aortic ECM, where successful differentiation into a mature cartilage layer was observed. These findings suggested that the porcine aortic ECM could serve as a potential scaffold with tubular and linear structures for tissue engineering applications. Functional human iMSCs (induced-mesenchymal stem cells) were generated from human iPSCs (induced-pluripotent stem cells) and analyzed for differences compared to primary MSCs via RNA-seq. The hiMSCs were applied to decellularized porcine aortic ECM (extracellular matrix), demonstrating chondrogenic differentiation and confirming the usability of xenogeneic ECM.
Collapse
Affiliation(s)
- Jheng-Hong Shih
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan.
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
2
|
Villafranco J, Martínez-Ramírez G, Magaña-Maldonado R, González-Ruvalcaba AP, López-Ornelas A, Velasco I, Becerril-Villanueva E, Pavón L, Estudillo E, Pérez-Sánchez G. The use of induced pluripotent stem cells as a platform for the study of depression. Front Psychiatry 2024; 15:1470642. [PMID: 39444629 PMCID: PMC11496182 DOI: 10.3389/fpsyt.2024.1470642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
The neurobiological mechanisms underlying major depressive disorder (MDD) remain largely unexplored due to the limited availability of study models in humans. Induced pluripotent stem cells (iPSCs) have overcome multiple limitations of retrospective clinical studies, contributing to a more detailed understanding of the molecular pathways that presumably contribute to the manifestation of depression. Despite the significant progress made by these study models, there are still more formidable challenges that will eventually be addressed by these platforms, as further studies may eventually emerge. This review will examine the most recent advances in the comprehension of depression by using human neurons and non-neuronal cells derived from induced pluripotent stem cells of patients with depression. This study highlights the importance of using these platforms to increase our knowledge of depression and address this psychiatric disorder more efficiently.
Collapse
Affiliation(s)
- Javier Villafranco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Gabriela Martínez-Ramírez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | - Roxana Magaña-Maldonado
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Anna Paola González-Ruvalcaba
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City, Mexico
| | - Iván Velasco
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñíz, Ciudad de México, Mexico
| |
Collapse
|
3
|
Vallée A, Saridogan E, Petraglia F, Keckstein J, Polyzos N, Wyns C, Gianaroli L, Tarlatzis B, Ayoubi JM, Feki A. Horizons in Endometriosis: Proceedings of the Montreux Reproductive Summit, 14-15 July 2023. Facts Views Vis Obgyn 2024; 16:1-32. [PMID: 38603778 PMCID: PMC11317919 DOI: 10.52054/fvvo.16.s1.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Endometriosis is a complex and chronic gynaecological disorder that affects millions of women worldwide, leading to significant morbidity and impacting reproductive health. This condition affects up to 10% of women of reproductive age and is characterised by the presence of endometrial-like tissue outside the uterus, potentially leading to symptoms such as chronic pelvic pain, dysmenorrhoea, dyspareunia, and infertility. The Montreux summit brought a number of experts in this field together to provide a platform for discussion and exchange of ideas. These proceedings summarise the six main topics that were discussed at this summit to shed light on future directions of endometriosis classification, diagnosis, and therapeutical management. The first question addressed the possibility of preventing endometriosis in the future by identifying risk factors, genetic predispositions, and further understanding of the pathophysiology of the condition to develop targeted interventions. The clinical presentation of endometriosis is varied, and the correlation between symptoms severity and disease extent is unclear. While there is currently no universally accepted optimal classification system for endometriosis, several attempts striving towards its optimisation - each with its own advantages and limitations - were discussed. The ideal classification should be able to reconcile disease status based on the various diagnostic tools, and prognosis to guide proper patient tailored management. Regarding diagnosis, we focused on future tools and critically discussed emerging approaches aimed at reducing diagnostic delay. Preserving fertility in endometriosis patients was another debatable aspect of management that was reviewed. Moreover, besides current treatment modalities, potential novel medical therapies that can target underlying mechanisms, provide effective symptom relief, and minimise side effects in endometriotic patients were considered, including hormonal therapies, immunomodulation, and regenerative medicine. Finally, the question of hormonal substitution therapy after radical treatment for endometriosis was debated, weighing the benefits of hormone replacement.
Collapse
|
4
|
Weber J, Linti C, Lörch C, Weber M, Andt M, Schlensak C, Wendel HP, Doser M, Avci-Adali M. Combination of melt-electrospun poly-ε-caprolactone scaffolds and hepatocyte-like cells from footprint-free hiPSCs to create 3D biohybrid constructs for liver tissue engineering. Sci Rep 2023; 13:22174. [PMID: 38092880 PMCID: PMC10719291 DOI: 10.1038/s41598-023-49117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
The liver is a vital organ with numerous functions, including metabolic functions, detoxification, and the synthesis of secretory proteins. The increasing prevalence of liver diseases requires the development of effective treatments, models, and regenerative approaches. The field of liver tissue engineering represents a significant advance in overcoming these challenges. In this study, 3D biohybrid constructs were created by combining hepatocyte-like cells (HLCs) derived from patient-specific footprint-free human induced pluripotent stem cells (hiPSCs) and 3D melt-electrospun poly-ε-caprolactone (PCL) scaffolds. First, a differentiation procedure was established to obtain autologous HCLs from hiPSCs reprogrammed from renal epithelial cells using self-replicating mRNA. The obtained cells expressed hepatocyte-specific markers and exhibited important hepatocyte functions, such as albumin synthesis, cytochrome P450 activity, glycogen storage, and indocyanine green metabolism. Biocompatible PCL scaffolds were fabricated by melt-electrospinning and seeded with pre-differentiated hepatoblasts, which uniformly attached to the fibers of the scaffolds and successfully matured into HLCs. The use of patient-specific, footprint-free hiPSC-derived HLCs represents a promising cell source for personalized liver regeneration strategies. In combination with biocompatible 3D scaffolds, this innovative approach has a broader range of applications spanning liver tissue engineering, drug testing and discovery, and disease modeling.
Collapse
Affiliation(s)
- Josefin Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Carsten Linti
- Biomedical Engineering, German Institutes of Textile and Fiber Research Denkendorf DITF, Körschtalstraße 26, 73770, Denkendorf, Germany
| | - Christiane Lörch
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Marbod Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Madelene Andt
- Biomedical Engineering, German Institutes of Textile and Fiber Research Denkendorf DITF, Körschtalstraße 26, 73770, Denkendorf, Germany
| | - Christian Schlensak
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany
| | - Michael Doser
- Biomedical Engineering, German Institutes of Textile and Fiber Research Denkendorf DITF, Körschtalstraße 26, 73770, Denkendorf, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076, Tuebingen, Germany.
| |
Collapse
|
5
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
6
|
Jara TC, Park K, Vahmani P, Van Eenennaam AL, Smith LR, Denicol AC. Stem cell-based strategies and challenges for production of cultivated meat. NATURE FOOD 2023; 4:841-853. [PMID: 37845547 DOI: 10.1038/s43016-023-00857-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cultivated meat scale-up and industrial production will require multiple stable cell lines from different species to recreate the organoleptic and nutritional properties of meat from livestock. In this Review, we explore the potential of stem cells to create the major cellular components of cultivated meat. By using developments in the fields of tissue engineering and biomedicine, we explore the advantages and disadvantages of strategies involving primary adult and pluripotent stem cells for generating cell sources that can be grown at scale. These myogenic, adipogenic or extracellular matrix-producing adult stem cells as well as embryonic or inducible pluripotent stem cells are discussed for their proliferative and differentiation capacity, necessary for cultivated meat. We examine the challenges for industrial scale-up, including differentiation and culture protocols, as well as genetic modification options for stem cell immortalization and controlled differentiation. Finally, we discuss stem cell-related safety and regulatory challenges for bringing cultivated meat to the marketplace.
Collapse
Affiliation(s)
- T C Jara
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - K Park
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - P Vahmani
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - A L Van Eenennaam
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - L R Smith
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.
| | - A C Denicol
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
7
|
Kulus M, Jankowski M, Kranc W, Golkar Narenji A, Farzaneh M, Dzięgiel P, Zabel M, Antosik P, Bukowska D, Mozdziak P, Kempisty B. Bioreactors, scaffolds and microcarriers and in vitro meat production-current obstacles and potential solutions. Front Nutr 2023; 10:1225233. [PMID: 37743926 PMCID: PMC10513094 DOI: 10.3389/fnut.2023.1225233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, Poznań, Poland
| | - Afsaneh Golkar Narenji
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Dorota Bukowska
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC, United States
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czechia
| |
Collapse
|
8
|
Koo KM, Go YH, Kim SM, Kim CD, Do JT, Kim TH, Cha HJ. Label-free and non-destructive identification of naïve and primed embryonic stem cells based on differences in cellular metabolism. Biomaterials 2023; 293:121939. [PMID: 36521427 DOI: 10.1016/j.biomaterials.2022.121939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Pluripotent stem cells (PSCs) exist in naïve or primed states based on their origin. For in vitro culture, these PSCs require different supplements and growth factors. However, owing to their similar phenotypic features, identifying both cell types without harming cellular functions is challenging. This study reports an electrochemical method that enables simple, label-free, and non-destructive detection of naïve embryonic stem cells (ESCs) derived from mouse ESCs, based on the differences in cellular metabolism. Two major metabolic pathways to generate adenosine triphosphate (ATP)-glycolysis and oxidative phosphorylation (OXPHOS)-were blocked, and it was found that mitochondrial energy generation is the origin of the strong electrochemical signals of naïve ESCs. The number of ESCs is quantified when mixed with primed ESCs or converted from naïve-primed switchable metastable ESCs. The mouse PSCs derived from doxycycline-inducible mouse embryonic fibroblasts (MEFs) are also sensitively identified among other cell types such as unconverted MEFs and primed PSCs. The developed sensing platform operates in a non-invasive and label-free manner. Thus, it can be useful in the development of stem cell-derived therapeutics.
Collapse
Affiliation(s)
- Kyeong-Mo Koo
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Science, Seoul National University, Seoul, 08826, Republic of Korea; College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seong-Min Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Dae Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Joung J, Ma S, Tay T, Geiger-Schuller KR, Kirchgatterer PC, Verdine VK, Guo B, Arias-Garcia MA, Allen WE, Singh A, Kuksenko O, Abudayyeh OO, Gootenberg JS, Fu Z, Macrae RK, Buenrostro JD, Regev A, Zhang F. A transcription factor atlas of directed differentiation. Cell 2023; 186:209-229.e26. [PMID: 36608654 PMCID: PMC10344468 DOI: 10.1016/j.cell.2022.11.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 01/07/2023]
Abstract
Transcription factors (TFs) regulate gene programs, thereby controlling diverse cellular processes and cell states. To comprehensively understand TFs and the programs they control, we created a barcoded library of all annotated human TF splice isoforms (>3,500) and applied it to build a TF Atlas charting expression profiles of human embryonic stem cells (hESCs) overexpressing each TF at single-cell resolution. We mapped TF-induced expression profiles to reference cell types and validated candidate TFs for generation of diverse cell types, spanning all three germ layers and trophoblasts. Targeted screens with subsets of the library allowed us to create a tailored cellular disease model and integrate mRNA expression and chromatin accessibility data to identify downstream regulators. Finally, we characterized the effects of combinatorial TF overexpression by developing and validating a strategy for predicting combinations of TFs that produce target expression profiles matching reference cell types to accelerate cellular engineering efforts.
Collapse
Affiliation(s)
- Julia Joung
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sai Ma
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kathryn R Geiger-Schuller
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paul C Kirchgatterer
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Vanessa K Verdine
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Baolin Guo
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mario A Arias-Garcia
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William E Allen
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA; Society of Fellows, Harvard University, Cambridge, MA, USA
| | - Ankita Singh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Olena Kuksenko
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Omar O Abudayyeh
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jonathan S Gootenberg
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Zhanyan Fu
- McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rhiannon K Macrae
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Department of Biology, MIT, Cambridge, MA 02139, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Feng Zhang
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Science, MIT, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McGovern Institute for Brain Research at MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Bricker RL, Bhaskar U, Titone R, Carless MA, Barberi T. A Molecular Analysis of Neural Olfactory Placode Differentiation in Human Pluripotent Stem Cells. Stem Cells Dev 2022; 31:507-520. [PMID: 35592997 PMCID: PMC9641992 DOI: 10.1089/scd.2021.0257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/19/2022] [Indexed: 11/12/2022] Open
Abstract
During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.
Collapse
Affiliation(s)
- Rebecca L. Bricker
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Uchit Bhaskar
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Rossella Titone
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Melanie A. Carless
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Tiziano Barberi
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Lab Farm Foods, Inc., New York City, New York, USA
| |
Collapse
|
12
|
Wang Z, Tian X, Wang C, Qi X, Gracia‐Sancho J, Dong L. Transforming one organ into another to overcome challenges in tissue engineering. PORTAL HYPERTENSION & CIRRHOSIS 2022; 1:116-124. [DOI: 10.1002/poh2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 01/03/2025]
Abstract
AbstractTissue engineering (TE) is promising for the regeneration of failed organs. However, immune rejection, shortage of seed cells, and unintegrated blood vessels restrict the development and clinical application of TE. The last factor is the most challenging and intractable. Harnessing the mature blood vessel network in existing dispensable organs could be a powerful approach to effectively overcome the obstacles. After being remodeled to harbor an immunosuppressive and proregenerative niche, these potential target organs can be transformed into other organs with specific physiological functions, compensating the latter's failed native functions. Organ transformation, such as a hepatized spleen, represents an effective and encouraging TE strategy. In this review, we discuss the current development and obstacles of TE and its feasibility and superiority in organ transformation.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
| | - Xuejiao Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences University of Macau Taipa Macau SAR China
| | - Xiaolong Qi
- CHESS Center, Institute of Portal Hypertension The First Hospital of Lanzhou University Lanzhou Gansu China
| | - Jordi Gracia‐Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital University of Bern Bern Switzerland
- Liver Vascular Biology Research Group IDIBAPS Research Institute, CIBEREHD Barcelona Spain
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences Nanjing University Nanjing Jiangsu China
- Chemistry and Biomedicine Innovative Center Nanjing University Nanjing Jiangsu China
| |
Collapse
|
13
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
14
|
Xia S, Wu M, Zhou X, Zhang X, Ye L, Zhang K, Kang Y, Liu J, Zhang Y, Wu W, Dong D, Chen H, Li H. Treating intrauterine adhesion using conditionally reprogrammed physiological endometrial epithelial cells. Stem Cell Res Ther 2022; 13:178. [PMID: 35505443 PMCID: PMC9066886 DOI: 10.1186/s13287-022-02860-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background There is unmet need for effective therapies of intrauterine adhesions (IUAs) that are common cause of menstrual disturbance and infertility, since current clinical procedures do not improve prognosis for patients with moderate to severe IUA, with a recurrence rate of 23–50%. Stem cell-based therapy has emerged as a therapeutic option with unsolved issues for IUA patients in the past few years. Primary endometrial epithelial cells for cell therapy are largely hampered with the extremely limited proliferation capacity of uterine epithelial cells. This study was to evaluate whether IUA is curable with conditionally reprogrammed (CR) endometrial epithelial cells. Methods Mouse endometrial epithelial cells (MEECs) were isolated from C57BL female mice, and long-term cultures of MEECs were established and maintained with conditional reprogramming (CR) method. DNA damage response analysis, soft agar assay, and matrigel 3D culture were carried out to determine the normal biological characteristics of CR-MEECs. The tissue-specific differentiation potential of MEECs was analyzed with air–liquid interface (ALI) 3D culture, hematoxylin and eosin (H&E) staining, Masson’s trichrome and DAB staining, immunofluorescence assay. IUA mice were constructed and transplanted with CR-MEECs. Repair and mechanisms of MEECs transplantation in IUA mice were measured with qRT-PCR, Masson’s trichrome, and DAB staining. Results We first successfully established long-term cultures of MEECs using CR approach. CR-MEECs maintained a rapid and stable proliferation in this co-culture system. Our data confirmed that CR-MEECs retained normal biological characteristics and endometrium tissue-specific differentiation potential. CR-MEECs also expressed estrogen and progesterone receptors and maintained the exquisite sensitivity to sex hormones in vitro. Most importantly, allogeneic transplantation of CR-MEECs successfully repaired the injured endometrium and significantly improved the pregnancy rate of IUA mice. Conclusions Conditionally reprogrammed physiological endometrial epithelial cells provide a novel strategy in IUA clinics in a personalized or generalized manner and also serve as a physiological model to explore biology of endometrial epithelial cells and mechanisms of IUA.
Collapse
Affiliation(s)
- Siyu Xia
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ming Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xinhao Zhou
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiu Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lina Ye
- Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China
| | - Kang Zhang
- Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China
| | - Yiyi Kang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Jun Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Yunci Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Wang Wu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dirong Dong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Hong Chen
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| | - Hui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei, China. .,Wuhan University Shenzhen Institute, Shenzhen, 518057, Guangdong, China.
| |
Collapse
|
15
|
Vojnits K, Nakanishi M, Porras D, Kim Y, Feng Z, Golubeva D, Bhatia M. Developing CRISPR/Cas9-Mediated Fluorescent Reporter Human Pluripotent Stem-Cell Lines for High-Content Screening. Molecules 2022; 27:molecules27082434. [PMID: 35458632 PMCID: PMC9025795 DOI: 10.3390/molecules27082434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/22/2022] Open
Abstract
Application of the CRISPR/Cas9 system to knock in fluorescent proteins to endogenous genes of interest in human pluripotent stem cells (hPSCs) has the potential to facilitate hPSC-based disease modeling, drug screening, and optimization of transplantation therapy. To evaluate the capability of fluorescent reporter hPSC lines for high-content screening approaches, we targeted EGFP to the endogenous OCT4 locus. Resulting hPSC–OCT4–EGFP lines generated expressed EGFP coincident with pluripotency markers and could be adapted to multi-well formats for high-content screening (HCS) campaigns. However, after long-term culture, hPSCs transiently lost their EGFP expression. Alternatively, through EGFP knock-in to the AAVS1 locus, we established a stable and consistent EGFP-expressing hPSC–AAVS1–EGFP line that maintained EGFP expression during in vitro hematopoietic and neural differentiation. Thus, hPSC–AAVS1–EGFP-derived sensory neurons could be adapted to a high-content screening platform that can be applied to high-throughput small-molecule screening and drug discovery campaigns. Our observations are consistent with recent findings indicating that high-frequency on-target complexities appear following CRISPR/Cas9 genome editing at the OCT4 locus. In contrast, we demonstrate that the AAVS1 locus is a safe genomic location in hPSCs with high gene expression that does not impact hPSC quality and differentiation. Our findings suggest that the CRISPR/Cas9-integrated AAVS1 system should be applied for generating stable reporter hPSC lines for long-term HCS approaches, and they underscore the importance of careful evaluation and selection of the applied reporter cell lines for HCS purposes.
Collapse
|
16
|
Li S, Yoshioka M, Li J, Liu L, Ye S, Kamei KI, Chen Y. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomed Mater 2022; 17. [PMID: 35114658 DOI: 10.1088/1748-605x/ac51b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the utility of the method. The results are also compared with those obtained using electrospun nanofiber substrates. Inherently, the PDMS replicas is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Collapse
Affiliation(s)
- Sisi Li
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, Paris, Île-de-France, 75230, FRANCE
| | - Momoko Yoshioka
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Li Liu
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Sixin Ye
- University of Paris, 94276 Le Kremlin Bicêtre, Paris, 75006, FRANCE
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Yong Chen
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05, Paris, Île-de-France, 75230, FRANCE
| |
Collapse
|
17
|
Park N, Rim YA, Jung H, Nam Y, Ju JH. Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum. Int J Stem Cells 2021; 15:233-246. [PMID: 34966002 PMCID: PMC9396017 DOI: 10.15283/ijsc21158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Objectives Systemic lupus erythematosus (SLE) is a chronic autoimmune disease mainly affecting young women of childbearing age. SLE affects the skin, joints, muscles, kidneys, lungs, and heart. Cardiovascular complications are common causes of death in patients with SLE. However, the complexity of the cardiovascular system and the rarity of SLE make it difficult to investigate these morbidities. Patient-derived induced pluripotent stem cells (iPSCs) serve as a novel tool for drug screening and pathophysiological studies in the absence of patient samples. Methods and Results We differentiated CMs from HC- and SLE-iPSCs using 2D culture platforms. SLE-CMs showed decreased proliferation and increased levels of fibrosis and hypertrophy marker expression; however, HC-and SLE-monolayer CMs reacted differently to SLE serum treatment. HC-iPSCs were also differentiated into CMs using 3D spheroid culture and anti-Ro autoantibody was treated along with SLE serum. 3D-HC-CMs generated more mature CMs compared to the CMs generated using 2D culture. The treatment of anti-Ro autoantibody rapidly increased the gene expression of fibrosis, hypertrophy, and apoptosis markers, and altered the calcium signaling in the CMs. Conclusions iPSC derived cardiomyocytes with patient-derived serum, and anti-Ro antibody treatment could serve in effective autoimmune disease modeling including SLE. We believe that the present study might briefly provide possibilities on the application of a combination of patient-derived materials and iPSCs in disease modeling of autoimmune diseases.
Collapse
Affiliation(s)
- Narae Park
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyerin Jung
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoojun Nam
- YiPSCELL, 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Korea
| | - Ji Hyeon Ju
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.,YiPSCELL, 47-3, Banpo-dearo 39-gil, Seocho-gu, Seoul, Korea.,Division ofRheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
18
|
Meng L, Hu H, Liu Z, Zhang L, Zhuan Q, Li X, Fu X, Zhu S, Hou Y. The Role of Ca 2 + in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front Cell Dev Biol 2021; 9:746237. [PMID: 34765601 PMCID: PMC8577575 DOI: 10.3389/fcell.2021.746237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 12/22/2022] Open
Abstract
[Ca2+]i is essential for mammalian oocyte maturation and early embryonic development, as those processes are Ca2+ dependent. In the present study, we investigated the effect of [Ca2+]i on in vitro maturation and reprogramming of oocytes in a lower calcium model of oocyte at metaphase II (MII) stage, which was established by adding cell-permeant Ca2+ chelator BAPTA-AM to the maturation medium. Results showed that the extrusion of the first polar body (PB1) was delayed, and oocyte cytoplasmic maturation, including mitochondrial and endoplasmic reticulum distribution, was impaired in lower calcium model. The low-calcium-model oocytes presented a poor developmental phenotype of somatic cell nuclear transfer (SCNT) embryos at the beginning of activation of zygotic genome. At the same time, oxidative stress and apoptosis were observed in the low-calcium-model oocytes; subsequently, an RNA-seq analysis of the lower-calcium-model oocytes screened 24 genes responsible for the poor oocyte reprogramming, and six genes (ID1, SOX2, DPPA3, ASF1A, MSL3, and KDM6B) were identified by quantitative PCR. Analyzing the expression of these genes is helpful to elucidate the mechanisms of [Ca2+]i regulating oocyte reprogramming. The most significant difference gene in this enriched item was ID1. Our results showed that the low calcium might give rise to oxidative stress and apoptosis, resulting in impaired maturation of bovine oocytes and possibly affecting subsequent reprogramming ability through the reduction of ID1.
Collapse
Affiliation(s)
- Lin Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongmei Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Luyao Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shien Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yunpeng Hou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Hwang JJ, Choi J, Rim YA, Nam Y, Ju JH. Application of Induced Pluripotent Stem Cells for Disease Modeling and 3D Model Construction: Focus on Osteoarthritis. Cells 2021; 10:cells10113032. [PMID: 34831254 PMCID: PMC8622662 DOI: 10.3390/cells10113032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Since their discovery in 2006, induced pluripotent stem cells (iPSCs) have shown promising potential, specifically because of their accessibility and plasticity. Hence, the clinical applicability of iPSCs was investigated in various fields of research. However, only a few iPSC studies pertaining to osteoarthritis (OA) have been performed so far, despite the high prevalence rate of degenerative joint disease. In this review, we discuss some of the most recent applications of iPSCs in disease modeling and the construction of 3D models in various fields, specifically focusing on osteoarthritis and OA-related conditions. Notably, we comprehensively reviewed the successful results of iPSC-derived disease models in recapitulating OA phenotypes for both OA and early-onset OA to encompass their broad etiology. Moreover, the latest publications with protocols that have used iPSCs to construct 3D models in recapitulating various conditions, particularly the OA environment, were further discussed. With the overall optimistic results seen in both fields, iPSCs are expected to be more widely used for OA disease modeling and 3D model construction, which could further expand OA drug screening, risk assessment, and therapeutic capabilities.
Collapse
Affiliation(s)
- Joel Jihwan Hwang
- College of Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA;
| | - Jinhyeok Choi
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Yoojun Nam
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
| | - Ji Hyeon Ju
- YiPSCELL, Inc., 39 Banpo-daero, Seocho-gu, Seoul 06579, Korea; (J.C.); (Y.N.)
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary’s Hospital, Seoul 06591, Korea
- Correspondence:
| |
Collapse
|
20
|
Induced pluripotency in the context of stem cell expansion bioprocess development, optimization, and manufacturing: a roadmap to the clinic. NPJ Regen Med 2021; 6:72. [PMID: 34725374 PMCID: PMC8560749 DOI: 10.1038/s41536-021-00183-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
The translation of laboratory-scale bioprocess protocols and technologies to industrial scales and the application of human induced pluripotent stem cell (hiPSC) derivatives in clinical trials globally presents optimism for the future of stem-cell products to impact healthcare. However, while many promising therapeutic approaches are being tested in pre-clinical studies, hiPSC-derived products currently account for a small fraction of active clinical trials. The complexity and volatility of hiPSCs present several bioprocessing challenges, where the goal is to generate a sufficiently large, high-quality, homogeneous population for downstream differentiation-the derivatives of which must retain functional efficacy and meet regulatory safety criteria in application. It is argued herein that one of the major challenges currently faced in improving the robustness of routine stem-cell biomanufacturing is in utilizing continuous, meaningful assessments of molecular and cellular characteristics from process to application. This includes integrating process data with biological characteristic and functional assessment data to model the interplay between variables in the search for global optimization strategies. Coupling complete datasets with relevant computational methods will contribute significantly to model development and automation in achieving process robustness. This overarching approach is thus crucially important in realizing the potential of hiPSC biomanufacturing for transformation of regenerative medicine and the healthcare industry.
Collapse
|
21
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
22
|
Ohya T, Ohtomo H, Kikuchi T, Sasaki D, Kawamura Y, Matsuura K, Shimizu T, Fukuda K, Someya T, Umezu S. Simultaneous measurement of contractile force and field potential of dynamically beating human iPS cell-derived cardiac cell sheet-tissue with flexible electronics. LAB ON A CHIP 2021; 21:3899-3909. [PMID: 34636821 DOI: 10.1039/d1lc00411e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human induced pluripotent stem (iPS) cell-derived cardiomyocytes are used for in vitro pharmacological and pathological studies worldwide. In particular, the functional assessment of cardiac tissues created from iPS cell-derived cardiomyocytes is expected to provide precise prediction of drug effects and thus streamline the process of drug development. However, the current format of electrophysiological and contractile assessment of cardiomyocytes on a rigid substrate is not appropriate for cardiac tissues that beat dynamically. Here, we show a novel simultaneous measurement system for contractile force and extracellular field potential of iPS cell-derived cardiac cell sheet-tissues using 500 nm-thick flexible electronic sheets. It was confirmed that the developed system is applicable for pharmacological studies and assessments of excitation-contraction coupling-related parameters, such as the electro-mechanical window. Our results indicate that flexible electronics with cardiac tissue engineering provide an advanced platform for drug development. This system will contribute to gaining new insight in pharmacological study of human cardiac function.
Collapse
Affiliation(s)
- Takashi Ohya
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Haruki Ohtomo
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Tetsutaro Kikuchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Yohei Kawamura
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Department of Integrative Bioscience and Biomedical Engineering, TWIns, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo 162-8666, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan.
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shinjiro Umezu
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
23
|
Kim MH, Thanuthanakhun N, Fujimoto S, Kino-Oka M. Effect of initial seeding density on cell behavior-driven epigenetic memory and preferential lineage differentiation of human iPSCs. Stem Cell Res 2021; 56:102534. [PMID: 34530397 DOI: 10.1016/j.scr.2021.102534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022] Open
Abstract
Understanding the cellular behavioral mechanisms underlying memory formation and maintenance in human induced pluripotent stem cell (hiPSC) culture provides key strategies for achieving stability and robustness of cell differentiation. Here, we show that changes in cell behavior-driven epigenetic memory of hiPSC cultures alter their pluripotent state and subsequent differentiation. Interestingly, pluripotency-associated genes were activated during the entire cell growth phases along with increased active modifications and decreased repressive modifications. This memory effect can last several days in the long-term stationary phase and was sustained in the aspect of cell behavioral changes after subculture. Further, changes in growth-related cell behavior were found to induce nucleoskeletal reorganization and active versus repressive modifications, thereby enabling hiPSCs to change their differentiation potential. Overall, we discuss the cell behavior-driven epigenetic memory induced by the culture environment, and the effect of previous memory on cell lineage specification in the process of hiPSC differentiation.
Collapse
Affiliation(s)
- Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Naruchit Thanuthanakhun
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun Fujimoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Dasí A, Hernández-Romero I, Gomez JF, Climent AM, Ferrero JM, Trenor B. Analysis of the response of human iPSC-derived cardiomyocyte tissue to I CaL block. A combined in vitro and in silico approach. Comput Biol Med 2021; 137:104796. [PMID: 34461502 DOI: 10.1016/j.compbiomed.2021.104796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/02/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
The high incidence of cardiac arrythmias underlines the need for the assessment of pharmacological therapies. In this field of drug efficacy, as in the field of drug safety highlighted by the Comprehensive in Vitro Proarrhythmia Assay initiative, new pillars for research have become crucial: firstly, the integration of in-silico experiments, and secondly the evaluation of fully integrated biological systems, such as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). In this study, we therefore aimed to combine in-vitro experiments and in-silico simulations to evaluate the antiarrhythmic effect of L-type calcium current (ICaL) block in hiPSC-CMs. For this, hiPSC-CM preparations were cultured and an equivalent virtual tissue was modeled. Re-entry patterns of electrical activation were induced and several biomarkers were obtained before and after ICaL block. The virtual hiPSC-CM simulations were also reproduced using a tissue composed of adult ventricular cardiomyocytes (hAdultV-CMs). The analysis of phases, currents and safety factor for propagation showed an increased size of the re-entry core when ICaL was blocked as a result of depressed cellular excitability. The bigger wavefront curvature yielded reductions of 12.2%, 6.9%, and 4.2% in the frequency of the re-entry for hiPSC-CM cultures, virtual hiPSC-CM, and hAdultV-CM tissues, respectively. Furthermore, ICaL block led to a 47.8% shortening of the vulnerable window for re-entry in the virtual hiPSC-CM tissue and to re-entry vanishment in hAdultV-CM tissue. The consistent behavior between in-vitro and in-silico hiPSC-CMs and between in-silico hiPSC-CMs and hAdultV-CMs evidences that virtual hiPSC-CM tissues are suitable for assessing cardiac efficacy, as done in the present study through the analysis of ICaL block.
Collapse
Affiliation(s)
- Albert Dasí
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Ismael Hernández-Romero
- Department of Signal Theory and Communications and Telematics Systems and Computing, Rey Juan Carlos University, Fuenlabrada, Spain
| | - Juan F Gomez
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain; Valencian International University, Valencia, Spain
| | - Andreu M Climent
- Instituto ITACA, Universitat Politècnica de València, Valencia, Spain
| | - Jose M Ferrero
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Ci2B, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
25
|
Peredo AP, Gullbrand SE, Smith HE, Mauck RL. Putting the Pieces in Place: Mobilizing Cellular Players to Improve Annulus Fibrosus Repair. TISSUE ENGINEERING. PART B, REVIEWS 2021; 27:295-312. [PMID: 32907498 PMCID: PMC10799291 DOI: 10.1089/ten.teb.2020.0196] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intervertebral disc (IVD) is an integral load-bearing tissue that derives its function from its composite structure and extracellular matrix composition. IVD herniations involve the failure of the annulus fibrosus (AF) and the extrusion of the nucleus pulposus beyond the disc boundary. Disc herniations can impinge the neural elements and cause debilitating pain and loss of function, posing a significant burden on individual patients and society as a whole. Patients with persistent symptoms may require surgery; however, surgical intervention fails to repair the ruptured AF and is associated with the risk for reherniation and further disc degeneration. Given the limitations of AF endogenous repair, many attempts have been made toward the development of effective repair approaches that reestablish IVD function. These methods, however, fail to recapitulate the composition and organization of the native AF, ultimately resulting in inferior tissue mechanics and function over time and high rates of reherniation. Harnessing the cellular function of cells (endogenous or exogenous) at the repair site through the provision of cell-instructive cues could enhance AF tissue regeneration and, ultimately, improve healing outcomes. In this study, we review the diverse approaches that have been developed for AF repair and emphasize the potential for mobilizing the appropriate cellular players at the site of injury to improve AF healing. Impact statement Conventional treatments for intervertebral disc herniation fail to repair the annulus fibrosus (AF), increasing the risk for recurrent herniation. The lack of repair devices in the market has spurred the development of regenerative approaches, yet most of these rely on a scarce endogenous cell population to repair large injuries, resulting in inadequate regeneration. This review identifies current and developing strategies for AF repair and highlights the potential for harnessing cellular function to improve AF regeneration. Ideal cell sources, differentiation strategies, and delivery methods are discussed to guide the design of repair systems that leverage specialized cells to achieve superior outcomes.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Suppressing Pyroptosis Augments Post-Transplant Survival of Stem Cells and Cardiac Function Following Ischemic Injury. Int J Mol Sci 2021; 22:ijms22157946. [PMID: 34360711 PMCID: PMC8348609 DOI: 10.3390/ijms22157946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The acute demise of stem cells following transplantation significantly compromises the efficacy of stem cell-based cell therapeutics for infarcted hearts. As the stem cells transplanted into the damaged heart are readily exposed to the hostile environment, it can be assumed that the acute death of the transplanted stem cells is also inflicted by the same environmental cues that caused massive death of the host cardiac cells. Pyroptosis, a highly inflammatory form of programmed cell death, has been added to the list of important cell death mechanisms in the damaged heart. However, unlike the well-established cell death mechanisms such as necrosis or apoptosis, the exact role and significance of pyroptosis in the acute death of transplanted stem cells have not been explored in depth. In the present study, we found that M1 macrophages mediate the pyroptosis in the ischemia/reperfusion (I/R) injured hearts and identified miRNA-762 as an important regulator of interleukin 1β production and subsequent pyroptosis. Delivery of exogenous miRNA-762 prior to transplantation significantly increased the post-transplant survival of stem cells and also significantly ameliorated cardiac fibrosis and heart functions following I/R injury. Our data strongly suggest that suppressing pyroptosis can be an effective adjuvant strategy to enhance the efficacy of stem cell-based therapeutics for diseased hearts.
Collapse
|
27
|
Azar J, Bahmad HF, Daher D, Moubarak MM, Hadadeh O, Monzer A, Al Bitar S, Jamal M, Al-Sayegh M, Abou-Kheir W. The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. Int J Mol Sci 2021; 22:7667. [PMID: 34299287 PMCID: PMC8303386 DOI: 10.3390/ijms22147667] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Organoids represent one of the most important advancements in the field of stem cells during the past decade. They are three-dimensional in vitro culturing models that originate from self-organizing stem cells and can mimic the in vivo structural and functional specificities of body organs. Organoids have been established from multiple adult tissues as well as pluripotent stem cells and have recently become a powerful tool for studying development and diseases in vitro, drug screening, and host-microbe interaction. The use of stem cells-that have self-renewal capacity to proliferate and differentiate into specialized cell types-for organoids culturing represents a major advancement in biomedical research. Indeed, this new technology has a great potential to be used in a multitude of fields, including cancer research, hereditary and infectious diseases. Nevertheless, organoid culturing is still rife with many challenges, not limited to being costly and time consuming, having variable rates of efficiency in generation and maintenance, genetic stability, and clinical applications. In this review, we aim to provide a synopsis of pluripotent stem cell-derived organoids and their use for disease modeling and other clinical applications.
Collapse
Affiliation(s)
- Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Darine Daher
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Ola Hadadeh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Alissar Monzer
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 66566, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2260, Lebanon; (J.A.); (H.F.B.); (D.D.); (M.M.M.); (O.H.); (A.M.); (S.A.B.)
| |
Collapse
|
28
|
Xin Z, Zhang W, Gong S, Zhu J, Li Y, Zhang Z, Fang X. Mapping Human Pluripotent Stem Cell-derived Erythroid Differentiation by Single-cell Transcriptome Analysis. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:358-376. [PMID: 34284135 PMCID: PMC8864192 DOI: 10.1016/j.gpb.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 01/22/2021] [Accepted: 03/06/2021] [Indexed: 10/28/2022]
Abstract
There is an imbalance between the supply and demand of functional red blood cells (RBCs) in clinical applications. This imbalance can be addressed by regenerating RBCs using several in vitro methods. Induced pluripotent stem cells (iPSCs) can handle the low supply of cord blood and the ethical issues in embryonic stem cell research and provide a promising strategy to eliminate immune rejection. However, no complete single-cell level differentiation pathway exists for the iPSC-derived RBC differentiation system. In this study, we used iPSC line BC1 to establish a RBCs regeneration system. The 10× genomics single-cell transcriptome platform was used to map the cell lineage and differentiation trajectories on day 14 of the regeneration system. We observed that iPSCs differentiation was not synchronized during embryoid body (EB) culture. The cells (day 14) mainly consisted of mesodermal and various blood cells, similar to the yolk sac hematopoiesis. We identified six cell classifications and characterized the regulatory transcription factors (TFs) networks and cell-cell contacts underlying the system. iPSCs undergo two transformations during the differentiation trajectory, accompanied by the dynamic expression of cell adhesion molecules and estrogen-responsive genes. We identified different stages of erythroid cells, such as burst-forming unit erythroid (BFU-E) and orthochromatic erythroblasts (ortho-E), and found that the regulation of TFs (e.g., TFDP1 and FOXO3) is erythroid-stage specific. Immune erythroid cells were identified in our system. This study provides systematic theoretical guidance for optimizing the iPSCs-derived RBCs differentiation system, and this system is a useful model for simulating in vivo hematopoietic development and differentiation.
Collapse
Affiliation(s)
- Zijuan Xin
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangjin Gong
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China
| | - Yanming Li
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center of Bioinformation, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Genome and Precision Medicine Technologies, Beijing, 100101, China.
| |
Collapse
|
29
|
Meng X, Zhou A, Huang Y, Zhang Y, Xu Y, Shao K, Ning X. N-Cadherin Nanoantagonist Driven Mesenchymal-to-Epithelial Transition in Fibroblasts for Improving Reprogramming Efficiency. NANO LETTERS 2021; 21:5540-5546. [PMID: 34161107 DOI: 10.1021/acs.nanolett.1c00880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) hold promise in revolutionizing medicine; however, their application potential is limited because of low reprogramming efficiency. Mesenchymal-to-epithelial transition (MET) has been proved to involve reprogramming of somatic cells into iPSCs, making it a promising target for enhancing generation of iPSCs. Here, we nanoengineered N-cadherin-blocking peptide ADH-1 with gold nanoparticles, generating a multivalent N-cadherin antagonist (ADH-AuNPs), for improving reprogramming efficiency through driving cell MET. ADH-AuNPs exhibited good biocompatibility and showed higher N-cadherin inhibitory activity than ADH-1 due to multivalency, thereby enhancing cell-state reprogramming toward epithelial lineages. Particularly, ADH-AuNPs improved reprogramming efficiency by more than 7-fold after introduction of four Yamanaka factors. Importantly, ADH-AuNPs generated iPSCs displayed high stemness and pluripotency in vitro and in vivo. Therefore, we provide a cooperative strategy for promoting the iPSC generation efficacy.
Collapse
Affiliation(s)
- Xia Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Yu Huang
- West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Kaifeng Shao
- SARI Center for Stem Cell and Nanomedicine, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
30
|
Xu X, Liao L, Tian W. Strategies of Prevascularization in Tissue Engineering and Regeneration of Craniofacial Tissues. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:464-475. [PMID: 34191620 DOI: 10.1089/ten.teb.2021.0004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Craniofacial tissue defects caused by trauma, developmental malformation, or surgery are critical issues of high incidence, which are harmful to physical and psychological health. Transplantation of engineered tissues or biomaterials is a potential method to repair defects and regenerate the craniofacial tissues. Revascularization is essential to ensure the survival and regeneration of the grafts. Since microvessels play a critical role in blood circulation and substance exchange, the pre-establishment of the microvascular network in transplants provides a technical basis for the successful regeneration of the tissue defect. In this study, we reviewed the recent development of strategies and applications of prevascularization in tissue engineering and regeneration of craniofacial tissues. We focused on the cellular foundation of the in vitro prevascularized microvascular network, the cell source for prevascularization, and the strategies of prevascularization. Several key strategies, including coculture, microspheres, three-dimensional printing and microfluidics, and microscale technology, were summarized and the feasibility of these technologies in the clinical repair of craniofacial defects was discussed.
Collapse
Affiliation(s)
- Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Thompson MK, Sobol RW, Prakash A. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. BIOLOGY 2021; 10:530. [PMID: 34198612 PMCID: PMC8232306 DOI: 10.3390/biology10060530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
The earliest methods of genome editing, such as zinc-finger nucleases (ZFN) and transcription activator-like effector nucleases (TALENs), utilize customizable DNA-binding motifs to target the genome at specific loci. While these approaches provided sequence-specific gene-editing capacity, the laborious process of designing and synthesizing recombinant nucleases to recognize a specific target sequence, combined with limited target choices and poor editing efficiency, ultimately minimized the broad utility of these systems. The discovery of clustered regularly interspaced short palindromic repeat sequences (CRISPR) in Escherichia coli dates to 1987, yet it was another 20 years before CRISPR and the CRISPR-associated (Cas) proteins were identified as part of the microbial adaptive immune system, by targeting phage DNA, to fight bacteriophage reinfection. By 2013, CRISPR/Cas9 systems had been engineered to allow gene editing in mammalian cells. The ease of design, low cytotoxicity, and increased efficiency have made CRISPR/Cas9 and its related systems the designer nucleases of choice for many. In this review, we discuss the various CRISPR systems and their broad utility in genome manipulation. We will explore how CRISPR-controlled modifications have advanced our understanding of the mechanisms of genome stability, using the modulation of DNA repair genes as examples.
Collapse
Affiliation(s)
- Marlo K. Thompson
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Robert W. Sobol
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Aishwarya Prakash
- Mitchell Cancer Institute, University of South Alabama Health, Mobile, AL 36604, USA; (M.K.T.); (R.W.S.)
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
32
|
Advances in Regeneration of Retinal Ganglion Cells and Optic Nerves. Int J Mol Sci 2021; 22:ijms22094616. [PMID: 33924833 PMCID: PMC8125313 DOI: 10.3390/ijms22094616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Glaucoma, the second leading cause of blindness worldwide, is an incurable neurodegenerative disorder due to the dysfunction of retinal ganglion cells (RGCs). RGCs function as the only output neurons conveying the detected light information from the retina to the brain, which is a bottleneck of vision formation. RGCs in mammals cannot regenerate if injured, and RGC subtypes differ dramatically in their ability to survive and regenerate after injury. Recently, novel RGC subtypes and markers have been uncovered in succession. Meanwhile, apart from great advances in RGC axon regeneration, some degree of experimental RGC regeneration has been achieved by the in vitro differentiation of embryonic stem cells and induced pluripotent stem cells or in vivo somatic cell reprogramming, which provides insights into the future therapy of myriad neurodegenerative disorders. Further approaches to the combination of different factors will be necessary to develop efficacious future therapeutic strategies to promote ultimate axon and RGC regeneration and functional vision recovery following injury.
Collapse
|
33
|
Worku MG. Pluripotent and Multipotent Stem Cells and Current Therapeutic Applications: Review. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2021; 14:3-7. [PMID: 33880040 PMCID: PMC8052119 DOI: 10.2147/sccaa.s304887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
There is numerous evidence for the presence of stem cells, which is important for the treatment of a wide variety of disease conditions. Stem cells have a great therapeutic effect on different degenerative diseases through the development of specialized cells. Embryonic stem (ES) cells are derived from preimplantation embryos, which have a natural karyotype. This cell has the capacity of proliferation indefinitely and undifferentiated. Stem cells are very crucial for the treatment of different chronic and degenerative diseases. For instance, stem cell clinical trials have been done for ischemic heart disease. Also, the olfactory cells for spinal cord lesions and human fetal pancreatic cells for diabetes mellitus are the other clinical importance of stem cell therapy. Extracellular matrix (ECM) and other environmental factors influence the fate and activity of stem cells.
Collapse
Affiliation(s)
- Misganaw Gebrie Worku
- Department of Human Anatomy, University of Gondar, College of Medicine and Health Science, School of Medicine, Gondar, Ethiopia
| |
Collapse
|
34
|
Zhang B, Wu X, Zi G, He L, Wang S, Chen L, Fan Z, Nan X, Xi J, Yue W, Wang L, Wang L, Hao J, Pei X, Li Y. Large-scale generation of megakaryocytes from human embryonic stem cells using transgene-free and stepwise defined suspension culture conditions. Cell Prolif 2021; 54:e13002. [PMID: 33615584 PMCID: PMC8016648 DOI: 10.1111/cpr.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Ex vivo engineered production of megakaryocytes (MKs) and platelets (PLTs) from human pluripotent stem cells is an alternative approach to solve shortage of donor-donated PLTs in clinics and to provide induced PLTs for transfusion. However, low production yields are observed and the generation of clinically applicable MKs and PLTs from human pluripotent stem cells without genetic modifications still needs to be improved. MATERIALS AND METHODS We defined an optimal, stepwise and completely xeno-free culture protocol for the generation of MKs from human embryonic stem cells (hESCs). To generate MKs from hESCs on a large scale, we improved the monolayer induction manner to define three-dimensional (3D) and sphere-like differentiation systems for MKs by using a special polystyrene CellSTACK culture chamber. RESULTS The 3D manufacturing system could efficiently generate large numbers of MKs from hESCs within 16-18 days of continuous culturing. Each CellSTACK culture chamber could collect on an average 3.4 × 108 CD41+ MKs after a three-stage orderly induction process. MKs obtained from hESCs via 3D induction showed significant secretion of IL-8, thrombospondin-1 and MMP9. The induced cells derived from hESCs in our culture system were shown to have the characteristics of MKs as well as the function to form proPLTs and release PLTs. Furthermore, we generated clinically applicable MKs from clinical-grade hESC lines and confirmed the biosafety of these cells. CONCLUSIONS We developed a simple, stepwise, 3D and completely xeno-free/feeder-free/transgene-free induction system for the generation of MKs from hESCs. hESC-derived MKs were shown to have typical MK characteristics and PLT formation ability. This study further enhances the clinical applications of MKs or PLTs derived from pluripotent stem cells.
Collapse
Affiliation(s)
- Bowen Zhang
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Xumin Wu
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Guicheng Zi
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Sihan Wang
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Lin Chen
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Zeng Fan
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Xue Nan
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Jiafei Xi
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Wen Yue
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Lei Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijingChina
- National Stem Cell Resource CenterChinese Academy of SciencesBeijingChina
| | - Xuetao Pei
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
- Stem Cell and Regenerative Medicine LabInstitute of Health Service and Transfusion MedicineBeijingChina
| | - Yanhua Li
- Experimental Hematology and Biochemistry LabBeijing Institute of Radiation MedicineBeijingChina
- South China Research Center for Stem Cell & Regenerative MedicineSCIBGuangzhouChina
| |
Collapse
|
35
|
Joshi K, Cameron F, Tiwari S, Mannering SI, Elefanty AG, Stanley EG. Modeling Type 1 Diabetes Using Pluripotent Stem Cell Technology. Front Endocrinol (Lausanne) 2021; 12:635662. [PMID: 33868170 PMCID: PMC8047192 DOI: 10.3389/fendo.2021.635662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Induced pluripotent stem cell (iPSC) technology is increasingly being used to create in vitro models of monogenic human disorders. This is possible because, by and large, the phenotypic consequences of such genetic variants are often confined to a specific and known cell type, and the genetic variants themselves can be clearly identified and controlled for using a standardized genetic background. In contrast, complex conditions such as autoimmune Type 1 diabetes (T1D) have a polygenic inheritance and are subject to diverse environmental influences. Moreover, the potential cell types thought to contribute to disease progression are many and varied. Furthermore, as HLA matching is critical for cell-cell interactions in disease pathogenesis, any model that seeks to test the involvement of particular cell types must take this restriction into account. As such, creation of an in vitro model of T1D will require a system that is cognizant of genetic background and enables the interaction of cells representing multiple lineages to be examined in the context of the relevant environmental disease triggers. In addition, as many of the lineages critical to the development of T1D cannot be easily generated from iPSCs, such models will likely require combinations of cell types derived from in vitro and in vivo sources. In this review we imagine what an ideal in vitro model of T1D might look like and discuss how the required elements could be feasibly assembled using existing technologies. We also examine recent advances towards this goal and discuss potential uses of this technology in contributing to our understanding of the mechanisms underlying this autoimmune condition.
Collapse
Affiliation(s)
- Kriti Joshi
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences Rishikesh, Uttarakhand, India
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
| | - Fergus Cameron
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Endocrinology and Diabetes, The Royal Children’s Hospital, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
| | - Swasti Tiwari
- Department of Molecular Medicine & Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Stuart I. Mannering
- Immunology and Diabetes Unit, St. Vincent’s Institute of Medical Research, Fitzroy, Vic, Australia
| | - Andrew G. Elefanty
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| | - Edouard G. Stanley
- Department of Cell Biology, Murdoch Children’s Research Institute, Parkville, Vic, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Vic, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Vic, Australia
| |
Collapse
|
36
|
Haellman V, Saxena P, Jiang Y, Fussenegger M. Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metab Eng 2021; 65:99-110. [PMID: 33744461 DOI: 10.1016/j.ymben.2021.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 11/26/2022]
Abstract
Advances in synthetic biology have enabled robust control of cell behavior by using tunable genetic circuits to regulate gene expression in a ligand-dependent manner. Such circuits can be used to direct the differentiation of pluripotent stem cells (PSCs) towards desired cell types, but rational design of synthetic gene circuits in PSCs is challenging due to the variable intracellular environment. Here, we provide a framework for implementing synthetic gene switches in PSCs based on combinations of tunable transcriptional, structural, and posttranslational elements that can be engineered as required, using the vanillic acid-controlled transcriptional activator (VanA) as a model system. We further show that the VanA system can be multiplexed with the well-established reverse tetracycline-controlled transcriptional activator (rtTA) system to enable independent control of the expression of different transcription factors in human induced PSCs in order to enhance lineage specification towards early pancreatic progenitors. This work represents a first step towards standardizing the design and construction of synthetic gene switches for building robust gene-regulatory networks to guide stem cell differentiation towards a desired cell fate.
Collapse
Affiliation(s)
- Viktor Haellman
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Pratik Saxena
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Yanrui Jiang
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH, 4058, Basel, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, CH, 4058, Basel, Switzerland.
| |
Collapse
|
37
|
Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat Commun 2021; 12:1412. [PMID: 33658506 PMCID: PMC7930285 DOI: 10.1038/s41467-021-21682-7] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac patches are an effective way to deliver therapeutics to the heart. However, such procedures are normally invasive and difficult to perform. Here, we develop and test a method to utilize the pericardial cavity as a natural "mold" for in situ cardiac patch formation after intrapericardial injection of therapeutics in biocompatible hydrogels. In rodent models of myocardial infarction, we demonstrate that intrapericardial injection is an effective and safe method to deliver hydrogels containing induced pluripotent stem cells-derived cardiac progenitor cells or mesenchymal stem cells-derived exosomes. After injection, the hydrogels form a cardiac patch-like structure in the pericardial cavity, mitigating immune response and increasing the cardiac retention of the therapeutics. With robust cardiovascular repair and stimulation of epicardium-derived cells, the delivered therapeutics mitigate cardiac remodeling and improve cardiac functions post myocardial infarction. Furthermore, we demonstrate the feasibility of minimally-invasive intrapericardial injection in a clinically-relevant porcine model. Collectively, our study establishes intrapericardial injection as a safe and effective method to deliver therapeutic-bearing hydrogels to the heart for cardiac repair.
Collapse
|
38
|
Nayak P, Colas A, Mercola M, Varghese S, Subramaniam S. Temporal mechanisms of myogenic specification in human induced pluripotent stem cells. SCIENCE ADVANCES 2021; 7:eabf7412. [PMID: 33731358 PMCID: PMC7968833 DOI: 10.1126/sciadv.abf7412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/21/2021] [Indexed: 05/15/2023]
Abstract
Understanding the mechanisms of myogenesis in human induced pluripotent stem cells (hiPSCs) is a prerequisite to achieving patient-specific therapy for diseases of skeletal muscle. hiPSCs of different origin show distinctive kinetics and ability to differentiate into myocytes. To address the unique cellular and temporal context of hiPSC differentiation, we perform a longitudinal comparison of the transcriptomic profiles of three hiPSC lines that display differential myogenic specification, one robust and two blunted. We detail temporal differences in mechanisms that lead to robust myogenic specification. We show gene expression signatures of putative cell subpopulations and extracellular matrix components that may support myogenesis. Furthermore, we show that targeted knockdown of ZIC3 at the outset of differentiation leads to improved myogenic specification in blunted hiPSC lines. Our study suggests that β-catenin transcriptional cofactors mediate cross-talk between multiple cellular processes and exogenous cues to facilitate specification of hiPSCs to mesoderm lineage, leading to robust myogenesis.
Collapse
Affiliation(s)
- P Nayak
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - A Colas
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - M Mercola
- Stanford Cardiovascular Institute and Department of Medicine, Stanford University, Stanford, CA, USA
| | - S Varghese
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | - S Subramaniam
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
39
|
Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater 2021; 6:2557-2568. [PMID: 33665496 PMCID: PMC7887299 DOI: 10.1016/j.bioactmat.2020.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) have enormous potential for vascular replacement therapy. However, thrombosis and intimal hyperplasia are important problems associated with TEVGs especially small diameter TEVGs (<6 mm) after transplantation. Endothelialization of TEVGs is a key point to prevent thrombosis. Here, we discuss different types of endothelialization and different seed cells of tissue-engineered vascular grafts. Meanwhile, endothelial heterogeneity is also discussed. Based on it, we provide a new perspective for selecting suitable types of endothelialization and suitable seed cells to improve the long-term patency rate of tissue-engineered vascular grafts with different diameters and lengths.
The material, diameter and length of tissue-engineered vascular graft are all key factors affecting its long-term patency. Endothelialization strategies should consider the different diameters and lengths of tissue-engineered vascular grafts. Cell heterogeneity and tissue heterogeneity should be considered in the application of seed cells.
Collapse
Affiliation(s)
- Qingjin Cai
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Wanshan Liao
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Fangchao Xue
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaochen Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Weiming Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yanzhao Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, 400038, China.,State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, China.,Departments of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Langridge B, Griffin M, Butler PE. Regenerative medicine for skeletal muscle loss: a review of current tissue engineering approaches. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:15. [PMID: 33475855 PMCID: PMC7819922 DOI: 10.1007/s10856-020-06476-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/18/2020] [Indexed: 05/05/2023]
Abstract
Skeletal muscle is capable of regeneration following minor damage, more significant volumetric muscle loss (VML) however results in permanent functional impairment. Current multimodal treatment methodologies yield variable functional recovery, with reconstructive surgical approaches restricted by limited donor tissue and significant donor morbidity. Tissue-engineered skeletal muscle constructs promise the potential to revolutionise the treatment of VML through the regeneration of functional skeletal muscle. Herein, we review the current status of tissue engineering approaches to VML; firstly the design of biocompatible tissue scaffolds, including recent developments with electroconductive materials. Secondly, we review the progenitor cell populations used to seed scaffolds and their relative merits. Thirdly we review in vitro methods of scaffold functional maturation including the use of three-dimensional bioprinting and bioreactors. Finally, we discuss the technical, regulatory and ethical barriers to clinical translation of this technology. Despite significant advances in areas, such as electroactive scaffolds and three-dimensional bioprinting, along with several promising in vivo studies, there remain multiple technical hurdles before translation into clinically impactful therapies can be achieved. Novel strategies for graft vascularisation, and in vitro functional maturation will be of particular importance in order to develop tissue-engineered constructs capable of significant clinical impact.
Collapse
Affiliation(s)
- Benjamin Langridge
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK.
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
- Division of Surgery & Interventional Science, University College London, London, UK.
| | - Michelle Griffin
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter E Butler
- Department of Plastic & Reconstructive Surgery, Royal Free Hospital, London, UK
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
41
|
Posabella A, Alber AB, Undeutsch HJ, Droeser RA, Hollenberg AN, Ikonomou L, Kotton DN. Derivation of Thyroid Follicular Cells From Pluripotent Stem Cells: Insights From Development and Implications for Regenerative Medicine. Front Endocrinol (Lausanne) 2021; 12:666565. [PMID: 33959101 PMCID: PMC8095374 DOI: 10.3389/fendo.2021.666565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Stem cell-based therapies to reconstitute in vivo organ function hold great promise for future clinical applications to a variety of diseases. Hypothyroidism resulting from congenital lack of functional thyrocytes, surgical tissue removal, or gland ablation, represents a particularly attractive endocrine disease target that may be conceivably cured by transplantation of long-lived functional thyroid progenitors or mature follicular epithelial cells, provided a source of autologous cells can be generated and a variety of technical and biological challenges can be surmounted. Here we review the emerging literature indicating that thyroid follicular epithelial cells can now be engineered in vitro from the pluripotent stem cells (PSCs) of mice, normal humans, or patients with congenital hypothyroidism. We review the in vivo embryonic development of the thyroid gland and explain how emerging discoveries in developmental biology have been utilized as a roadmap for driving PSCs, which resemble cells of the early embryo, into mature functional thyroid follicles in vitro. Finally, we discuss the bioengineering, biological, and clinical hurdles that now need to be addressed if the goals of life-long cure of hypothyroidism through cell- and/or gene-based therapies are to be attained.
Collapse
Affiliation(s)
- Alberto Posabella
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- University Center of Gastrointestinal and Liver Diseases—Clarunis, University of Basel, Basel, Switzerland
| | - Andrea B. Alber
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
| | - Hendrik J. Undeutsch
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Raoul A. Droeser
- University Center of Gastrointestinal and Liver Diseases—Clarunis, University of Basel, Basel, Switzerland
| | - Anthony N. Hollenberg
- Division of Endocrinology, Diabetes and Metabolism, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Laertis Ikonomou
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA, United States
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Darrell N. Kotton,
| |
Collapse
|
42
|
Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells Int 2020; 2020:8897494. [PMID: 33381193 PMCID: PMC7762651 DOI: 10.1155/2020/8897494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
The establishment of human-induced pluripotent stem cell (iPSC) models from sporadic Alzheimer's disease (sAD) patients is necessary and could potentially benefit research into disease etiology and therapeutic strategies. However, the development of sAD iPSC models is still limited due to the multifactorial nature of the disease. Here, we extracted peripheral blood mononuclear cells (PBMCs) from a patient with sAD and induced them into iPSC by introducing the Sendai virus expressing Oct3/4, Sox2, c-Myc, and Klf4, which were subsequently induced into neural cells to build the cell model of AD. Using alkaline phosphatase staining, immunofluorescence staining, karyotype analysis, reverse transcription-polymerase chain reaction (RT-PCR), and teratoma formation in vitro, we demonstrated that the iPSC derived from PMBCs (PBMC-iPSC) had a normal karyotype and potential to differentiate into three embryonic layers. Immunofluorescence staining and quantitative real-time polymerase chain reaction (qPCR) suggested that PBMC-iPSCs were successfully differentiated into neural cells. Detection of beta-amyloid protein oligomer (AβO), beta-amyloid protein 1-40 (Aβ 1-40), and beta-amyloid protein 1-42 (Aβ 1-42) indicated that the AD cell model was satisfactorily constructed in vitro. In conclusion, this study has successfully generated an AD cell model with pathological features of beta-amyloid peptide deposition using PBMC from a patient with sAD.
Collapse
|
43
|
Guilhot F. [Human cells for therapeutics purpose: State of the art]. BULLETIN DE L'ACADEMIE NATIONALE DE MEDECINE 2020; 204:866-876. [PMID: 32836290 PMCID: PMC7373032 DOI: 10.1016/j.banm.2020.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 11/27/2022]
Abstract
Patient-derived induced pluripotent stem cells as well as human embryonic stem cells are pluripotent and their derivation has been used for the understanding of numerous diseases. Currently they are also used for the treatment of neurologic disorders such as Parkinson disease or cardiac disorders. Gene therapy has been successful for the treatment of hemophilia A and B, hemoglobinopathies and immunodeficiencies. Hemopoietic stem cell transplantation is a well-accepted therapeutic strategy for Leukemias, whereas CAR-T cells is a new promising approach even for lymphomas and myeloma.
Collapse
Affiliation(s)
- F Guilhot
- Inserm CIC 1402, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| |
Collapse
|
44
|
Sart S, Jeske R, Chen X, Ma T, Li Y. Engineering Stem Cell-Derived Extracellular Matrices: Decellularization, Characterization, and Biological Function. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:402-422. [DOI: 10.1089/ten.teb.2019.0349] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
- Laboratory of Physical Microfluidics and Bioengineering, Department of Genome and Genetics, Institut Pasteur, Paris, France
| | - Richard Jeske
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
45
|
In vivo dynamic cell tracking with long-wavelength excitable and near-infrared fluorescent polymer dots. Biomaterials 2020; 254:120139. [DOI: 10.1016/j.biomaterials.2020.120139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 01/05/2023]
|
46
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
47
|
Deng Y, Zhou Z, Ji W, Lin S, Wang M. METTL1-mediated m 7G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther 2020; 11:306. [PMID: 32698871 PMCID: PMC7374972 DOI: 10.1186/s13287-020-01814-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background 7-Methylguanosine (m7G) is one of the most conserved modifications in nucleosides within tRNAs and rRNAs. It plays essential roles in the regulation of mRNA export, splicing, and translation. Recent studies highlighted the importance of METTL1-mediated m7G tRNA methylome in the self-renewal of mouse embryonic stem cells (mESCs) through its ability to regulate mRNA translation. However, the exact mechanisms by which METTL1 regulates pluripotency and differentiation in human induced pluripotent stem cells (hiPSCs) remain unknown. In this study, we evaluated the functions and underlying molecular mechanisms of METTL1 in regulating hiPSC self-renewal and differentiation in vivo and in vitro. Methods By establishing METTL1 knockdown (KD) hiPSCs, gene expression profiling was performed by RNA sequencing followed by pathway analyses. Anti-m7G northwestern assay was used to identify m7G modifications in tRNAs and mRNAs. Polysome profiling was used to assess the translation efficiency of the major pluripotent transcription factors. Moreover, the in vitro and in vivo differentiation capacities of METTL1-KD hiPSCs were assessed in embryoid body (EB) formation and teratoma formation assays. Results METTL1 silencing resulted in alterations in the global m7G profile in hiPSCs and reduced the translational efficiency of stem cell marker genes. METTL1-KD hiPSCs exhibited reduced pluripotency with slower cell cycling. Moreover, METTL1 silencing accelerates hiPSC differentiation into EBs and promotes the expression of mesoderm-related genes. Similarly, METTL1 knockdown enhances teratoma formation and mesoderm differentiation in vivo by promoting cell proliferation and angiogenesis in nude mice. Conclusion Our findings provided novel insight into the critical role of METTL1-mediated m7G modification in the regulation of hiPSC pluripotency and differentiation, as well as its potential roles in vascular development and the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yujie Deng
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Min Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
48
|
Goßmann M, Linder P, Thomas U, Juhasz K, Lemme M, George M, Fertig N, Dragicevic E, Stoelzle-Feix S. Integration of mechanical conditioning into a high throughput contractility assay for cardiac safety assessment. J Pharmacol Toxicol Methods 2020; 105:106892. [PMID: 32629160 DOI: 10.1016/j.vascn.2020.106892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
INDUCTION Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects. METHODS hiPSC-CMs were cultured in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment. Cardiomyocyte contractility was measured contact-free by application of capacitive displacement sensing of the cell-membrane biohybrids. Acute effects of positive inotropic compounds with distinct mechanisms of action were examined. Additionally, cardiotoxic effects of tyrosine kinase inhibitors and anthracyclines were repetitively examined during repeated exposure to drug concentrations for up to 5 days. RESULTS hiPSC-CMs grown on biomimetic membranes displayed increased contractility responses to isoproterenol, S-Bay K8644 and omecamtiv mecarbil without the need for additional stimulation. Tyrosine kinase inhibitor erlotinib, vandetanib, nilotinib, gefitinib, A-674563 as well as anthracycline idarubicin showed the expected cardiotoxic effects, including negative inotropy and induction of proarrhythmic events. DISCUSSION We conclude that the FLEXcyte 96 system is a reliable high throughput tool for invitro cardiac contractility research, providing the user with data obtained under physiological conditions which resemble the native environment of human heart tissue. We showed that the results obtained for both acute and sub-chronic compound administration are consistent with the respective physiological responses in humans.
Collapse
Affiliation(s)
| | - Peter Linder
- innoVitro GmbH, Artilleriestr 2, 52428 Jülich, Germany
| | - Ulrich Thomas
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Krisztina Juhasz
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany; Institute for Nanoelectronics, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - Marta Lemme
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Michael George
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Niels Fertig
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | | |
Collapse
|
49
|
Barazzuol L, Coppes RP, van Luijk P. Prevention and treatment of radiotherapy-induced side effects. Mol Oncol 2020; 14:1538-1554. [PMID: 32521079 PMCID: PMC7332214 DOI: 10.1002/1878-0261.12750] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/10/2023] Open
Abstract
Radiotherapy remains a mainstay of cancer treatment, being used in roughly 50% of patients. The precision with which the radiation dose can be delivered is rapidly improving. This precision allows the more accurate targeting of radiation dose to the tumor and reduces the amount of surrounding normal tissue exposed. Although this often reduces the unwanted side effects of radiotherapy, we still need to further improve patients' quality of life and to escalate radiation doses to tumors when necessary. High-precision radiotherapy forces one to choose which organ or functional organ substructures should be spared. To be able to make such choices, we urgently need to better understand the molecular and physiological mechanisms of normal tissue responses to radiotherapy. Currently, oversimplified approaches using constraints on mean doses, and irradiated volumes of normal tissues are used to plan treatments with minimized risk of radiation side effects. In this review, we discuss the responses of three different normal tissues to radiotherapy: the salivary glands, cardiopulmonary system, and brain. We show that although they may share very similar local cellular processes, they respond very differently through organ-specific, nonlocal mechanisms. We also discuss how a better knowledge of these mechanisms can be used to treat or to prevent the effects of radiotherapy on normal tissue and to optimize radiotherapy delivery.
Collapse
Affiliation(s)
- Lara Barazzuol
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Rob P. Coppes
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- Department of Radiation OncologyUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
50
|
Carpenedo RL, Kwon SY, Tanner RM, Yockell-Lelièvre J, Choey C, Doré C, Ho M, Stewart DJ, Perkins TJ, Stanford WL. Transcriptomically Guided Mesendoderm Induction of Human Pluripotent Stem Cells Using a Systematically Defined Culture Scheme. Stem Cell Reports 2020; 13:1111-1125. [PMID: 31813826 PMCID: PMC6915803 DOI: 10.1016/j.stemcr.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 01/11/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are an essential cell source in tissue engineering, studies of development, and disease modeling. Efficient, broadly amenable protocols for rapid lineage induction of hPSCs are of great interest in the stem cell biology field. We describe a simple, robust method for differentiation of hPSCs into mesendoderm in defined conditions utilizing single-cell seeding (SCS) and BMP4 and Activin A (BA) treatment. BA treatment was readily incorporated into existing protocols for chondrogenic and endothelial progenitor cell differentiation, while fine-tuning of BA conditions facilitated definitive endoderm commitment. After prolonged differentiation in vitro or in vivo, BA pretreatment resulted in higher mesoderm and endoderm levels at the expense of ectoderm formation. These data demonstrate that SCS with BA treatment is a powerful method for induction of mesendoderm that can be adapted for use in mesoderm and endoderm differentiation.
Single-cell seeding with BMP4/Activin A treatment supports hPSC mesendoderm induction The mesendoderm protocol is amenable to mesoderm and endoderm lineage differentiation Mesoderm/endoderm formation was enhanced in basal conditions in vitro and in vivo
Collapse
Affiliation(s)
- Richard L Carpenedo
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| | - Sarah Y Kwon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - R Matthew Tanner
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Julien Yockell-Lelièvre
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Chandarong Choey
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Mirabelle Ho
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Duncan J Stewart
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Theodore J Perkins
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - William L Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Ottawa Institute of Systems Biology, Ottawa, ON, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|