1
|
Abe T, Inoue KI, Kiyonari H. Efficient CRISPR/Cas9-mediated knockin of reporter genes in rats at ROSA26 by pronuclear microinjection. Dev Growth Differ 2025. [PMID: 40269535 DOI: 10.1111/dgd.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
The genetic modification of rats is a key technology for advancing biomedical research on human diseases. CRISPR/Cas9-mediated genome editing enables the generation of knockout rats in a single step, without the need for embryonic stem cells, by directly injecting genome editing components into zygotes. This simplifies the process, reduces costs, and accelerates gene function analysis in rats. However, the insertion of a gene cassette into a target site has remained inefficient, limiting the generation of knockin (KI) rats. To overcome this issue, we developed an optimized method that covers the entire process from zygote harvesting with superovulation to timed microinjection, ensuring the consistent generation of KI rats. We successfully generated four different fluorescent reporter lines at the ROSA26 locus in rats. Our study provides detailed, step-by-step protocols for donor vector design, zygote collection, microinjection, founder screening, and cryopreservation in rats.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuou-ku, Kobe, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuou-ku, Kobe, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Chuou-ku, Kobe, Japan
| |
Collapse
|
2
|
Marcó S, Muñoz S, Bosch F, Jimenez V. Rat models of musculoskeletal lysosomal storage disorders and their role in pre-clinical evaluation of gene therapy approaches. Mamm Genome 2025:10.1007/s00335-025-10121-3. [PMID: 40100425 DOI: 10.1007/s00335-025-10121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Mice have been a cornerstone of biomedical research for decades for studying a wide range of biological processes, disease mechanisms, and the assessment of therapies. Moreover, mice present several practical advantages such as small size, low cost and ease of genetic manipulation. While mice offer numerous benefits, for certain disease areas, rat models provide a closer representation of human disease progression, offering better insights for translational research and therapeutic development. This closer resemblance is particularly important for research focusing on diseases involving the cardiovascular and musculoskeletal system. In rats, the pathophysiology of these diseases mirrors the clinical alterations observed in humans. This review focuses on the key phenotypic differences between mouse and rat models of lysosomal storage disorders that specifically manifest with cardiac, skeletal muscle, and bone and joint involvement (Pompe and Danon diseases, and Maroteaux-Lamy and Morquio A syndromes). Furthermore, we discuss the therapeutic potential of various adeno-associated viral vector-mediated gene therapies that have been evaluated in these rat models, highlighting their contributions to advancing treatment options for these debilitating conditions.
Collapse
Affiliation(s)
- Sara Marcó
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Sergio Muñoz
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Veronica Jimenez
- Center of Animal Biotechnology and Gene Therapy, Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
3
|
Hamze JG, Cambra JM, Navarro-Serna S, Martinez-Serrano CA. Navigating gene editing in porcine embryos: Methods, challenges, and future perspectives. Genomics 2025; 117:111014. [PMID: 39952413 DOI: 10.1016/j.ygeno.2025.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Gene editing technologies, particularly CRISPR/Cas9, have emerged as transformative tools in genetic modification, significantly advancing the use of porcine embryos in biomedical and agricultural research. This review comprehensively examines the various methodologies for gene editing and delivery methods, such as somatic cell nuclear transfer (SCNT), microinjection, electroporation, and lipofection. This review, focuses on the advantages or limitations of using different biological sources (in vivo- vs. in vitro oocytes/embryos). Male germ cell manipulation using sperm-mediated gene transfer (SMGT) and testis-mediated gene transfer (TMGT) represent innovative approaches for producing genetically modified animals. Although these technologies have revolutionized the genetic engineering field, all these strategies face challenges, including high rates of off-target events and mosaicism. This review emphasizes the need to refine these methods, with a focus on reducing mosaicism and improving editing accuracy. Further advancements are essential to unlocking the full potential of gene editing for both agricultural applications and biomedical innovations.
Collapse
Affiliation(s)
- Julieta G Hamze
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain.
| | - Josep M Cambra
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Munich, Germany.
| | | | - Cristina A Martinez-Serrano
- Department of Biotechnology, National Institute for Agriculture and Food Research and Technology (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Sato M, Inada E, Saitoh I, Morohoshi K, Nakamura S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BIOTECH 2024; 13:45. [PMID: 39584902 PMCID: PMC11587059 DOI: 10.3390/biotech13040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Advances in genome editing technology have made it possible to create genome-edited (GE) animals, which are useful for identifying isolated genes and producing models of human diseases within a short period of time. The production of GE animals mainly relies on the gene manipulation of pre-implantation embryos, such as fertilized eggs and two-cell embryos, which can usually be achieved by the microinjection of nucleic acids, electroporation in the presence of nucleic acids, or infection with viral vectors, such as adeno-associated viruses. In contrast, GE animals can theoretically be generated by fertilizing ovulated oocytes with GE sperm. However, there are only a few reports showing the successful production of GE animals using GE sperm. Artificial insemination (AI) is an assisted reproduction technology based on the introduction of isolated sperm into the female reproductive tract, such as the uterine horn or oviductal lumen, for the in vivo fertilization of ovulated oocytes. This approach is simpler than the in vitro fertilization-based production of offspring, as the latter always requires an egg transfer to recipient females, which is labor-intensive and time-consuming. In this review, we summarize the various methods for AI reported so far, the history of sperm-mediated gene transfer, a technology to produce genetically engineered animals through in vivo fertilization with sperm carrying exogenous DNA, and finally describe the possibility of AI-mediated creation of GE animals using GE sperm.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Department of Pediatric Dentistry, Asahi University School of Dentistry, Gifu 501-0296, Japan
| | - Kazunori Morohoshi
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
5
|
Sun X, Zhang H, Jia Y, Li J, Jia M. CRISPR-Cas9-based genome-editing technologies in engineering bacteria for the production of plant-derived terpenoids. ENGINEERING MICROBIOLOGY 2024; 4:100154. [PMID: 39629108 PMCID: PMC11611024 DOI: 10.1016/j.engmic.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 12/06/2024]
Abstract
Terpenoids are widely used as medicines, flavors, and biofuels. However, the use of these natural products is largely restricted by their low abundance in native plants. Fortunately, heterologous biosynthesis of terpenoids in microorganisms offers an alternative and sustainable approach for efficient production. Various genome-editing technologies have been developed for microbial strain construction. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9) is the most commonly used system owing to its outstanding efficiency and convenience in genome editing. In this review, the basic principles of CRISPR-Cas9 systems are briefly introduced and their applications in engineering bacteria for the production of plant-derived terpenoids are summarized. The aim of this review is to provide an overview of the current developments of CRISPR-Cas9-based genome-editing technologies in bacterial engineering, concluding with perspectives on the challenges and opportunities of these technologies.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haobin Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuping Jia
- Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Jingyi Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meirong Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biosynthesis of Natural Products, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Kubota K. Molecular approaches to mammalian uterine receptivity for conceptus implantation. J Reprod Dev 2024; 70:207-212. [PMID: 38763760 PMCID: PMC11310385 DOI: 10.1262/jrd.2024-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024] Open
Abstract
Mammalian reproduction is more inefficient than expected and embryo/conceptus implantation into the maternal endometrium is considered to be a rate-limiting process. Although extensive physiological and structural diversity exists among mammalian species, the basic molecular mechanisms underlying successful implantation are conserved. The extensive use of genetically engineered mouse models has provided considerable information on uterine receptivity for embryo implantation. The molecular mechanisms and cellular processes identified thus far require further validation in other mammalian species. In this review, representative ovarian steroid hormone-induced signaling pathways controlling uterine adaptation are presented based on the results of rodent studies. Selected examples of functional conservation in mammals, such as humans and cattle, are briefly described. To date, molecular therapeutic trials for fertility improvement have not been conducted. Considerable efforts are required to provide further understanding of these molecular mechanisms. Such understanding will contribute to the development of reliable clinical diagnostics and therapeutics for implantation failure, leading to reproductive success in a wide variety of mammals in the future.
Collapse
Affiliation(s)
- Kaiyu Kubota
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tochigi 329-2793, Japan
- Present: Research Promotion Office, Core Technology Research Headquaters, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8517, Japan
| |
Collapse
|
7
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Tatwavedi D, Pellagatti A, Boultwood J. Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Adv Biol Regul 2024; 91:100993. [PMID: 37827894 DOI: 10.1016/j.jbior.2023.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Acquired myeloid malignancies are a spectrum of clonal disorders known to be caused by sequential acquisition of genetic lesions in hematopoietic stem and progenitor cells, leading to their aberrant self-renewal and differentiation. The increasing use of induced pluripotent stem cell (iPSC) technology to study myeloid malignancies has helped usher a paradigm shift in approaches to disease modeling and drug discovery, especially when combined with gene-editing technology. The process of reprogramming allows for the capture of the diversity of genetic lesions and mutational burden found in primary patient samples into individual stable iPSC lines. Patient-derived iPSC lines, owing to their self-renewal and differentiation capacity, can thus be a homogenous source of disease relevant material that allow for the study of disease pathogenesis using various functional read-outs. Furthermore, genome editing technologies like CRISPR/Cas9 enable the study of the stepwise progression from normal to malignant hematopoiesis through the introduction of specific driver mutations, individually or in combination, to create isogenic lines for comparison. In this review, we survey the current use of iPSCs to model acquired myeloid malignancies including myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), acute myeloid leukemia and MDS/MPN overlap syndromes. The use of iPSCs has enabled the interrogation of the underlying mechanism of initiation and progression driving these diseases. It has also made drug testing, repurposing, and the discovery of novel therapies for these diseases possible in a high throughput setting.
Collapse
Affiliation(s)
- Dharamveer Tatwavedi
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Marei HE, Khan MUA, Hasan A. Potential use of iPSCs for disease modeling, drug screening, and cell-based therapy for Alzheimer's disease. Cell Mol Biol Lett 2023; 28:98. [PMID: 38031028 PMCID: PMC10687886 DOI: 10.1186/s11658-023-00504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic illness marked by increasing cognitive decline and nervous system deterioration. At this time, there is no known medication that will stop the course of Alzheimer's disease; instead, most symptoms are treated. Clinical trial failure rates for new drugs remain high, highlighting the urgent need for improved AD modeling for improving understanding of the underlying pathophysiology of disease and improving drug development. The development of induced pluripotent stem cells (iPSCs) has made it possible to model neurological diseases like AD, giving access to an infinite number of patient-derived cells capable of differentiating neuronal fates. This advance will accelerate Alzheimer's disease research and provide an opportunity to create more accurate patient-specific models of Alzheimer's disease to support pathophysiological research, drug development, and the potential application of stem cell-based therapeutics. This review article provides a complete summary of research done to date on the potential use of iPSCs from AD patients for disease modeling, drug discovery, and cell-based therapeutics. Current technological developments in AD research including 3D modeling, genome editing, gene therapy for AD, and research on familial (FAD) and sporadic (SAD) forms of the disease are discussed. Finally, we outline the issues that need to be elucidated and future directions for iPSC modeling in AD.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Muhammad Umar Aslam Khan
- Biomedical Research Center, Qatar University, 2713, Doha, Qatar
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 PMCID: PMC11926995 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
11
|
Teper D, White FF, Wang N. The Dynamic Transcription Activator-Like Effector Family of Xanthomonas. PHYTOPATHOLOGY 2023; 113:651-666. [PMID: 36449529 DOI: 10.1094/phyto-10-22-0365-kd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) are bacterial proteins that are injected into the eukaryotic nucleus to act as transcriptional factors and function as key virulence factors of the phytopathogen Xanthomonas. TALEs are translocated into plant host cells via the type III secretion system and induce the expression of host susceptibility (S) genes to facilitate disease. The unique modular DNA binding domains of TALEs comprise an array of nearly identical direct repeats that enable binding to DNA targets based on the recognition of a single nucleotide target per repeat. The very nature of TALE structure and function permits the proliferation of TALE genes and evolutionary adaptations in the host to counter TALE function, making the TALE-host interaction the most dynamic story in effector biology. The TALE genes appear to be a relatively young effector gene family, with a presence in all virulent members of some species and absent in others. Genome sequencing has revealed many TALE genes throughout the xanthomonads, and relatively few have been associated with a cognate S gene. Several species, including Xanthomonas oryzae pv. oryzae and X. citri pv. citri, have near absolute requirement for TALE gene function, while the genes appear to be just now entering the disease interactions with new fitness contributions to the pathogens of tomato and pepper among others. Deciphering the simple and effective DNA binding mechanism also has led to the development of DNA manipulation tools in fields of gene editing and transgenic research. In the three decades since their discovery, TALE research remains at the forefront of the study of bacterial evolution, plant-pathogen interactions, and synthetic biology. We also discuss critical questions that remain to be addressed regarding TALEs.
Collapse
Affiliation(s)
- Doron Teper
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Frank F White
- Department of Plant Pathology, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, FL, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, U.S.A
| |
Collapse
|
12
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
13
|
Morita K, Honda A, Asano M. A Simple and Efficient Method for Generating KO Rats Using In Vitro Fertilized Oocytes. Methods Mol Biol 2023; 2637:233-246. [PMID: 36773151 DOI: 10.1007/978-1-0716-3016-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The development of ZFN, TALEN, and CRISPR/Cas9 systems has simplified the process of generating knockout (KO) and knock-in (KI) rats in addition to mice. However, in rats, an efficient genome editing technique that uses in vitro fertilized oocytes has not been established. Recently, we reported the stable generation of offspring from five standard strains of rats by superovulation and in vitro fertilization (IVF). Furthermore, genome-edited rats can be easily generated by electroporation. First, juvenile female rats are administered LHRH (luteinizing hormone-releasing hormone) to synchronize the estrous cycle and then AIS (Automatic Identification System) with PMSG (pregnant mare serum gonadotropin) before hCG (human chorionic gonadotropin) for superovulation. Sperm collected from a sexually mature male rat the following morning is then pre-cultured. Cumulus cell-oocyte complexes (COCs) are collected from female rats under anesthesia, and COCs are induced into a medium containing concentration-adjusted sperm. Thereafter, oocytes with two pronucleus are selected as fertilized oocytes. Next, fertilized oocytes are transferred into a glass chamber containing CRISPR ribonucleoprotein (RNP) complexes formed from gRNA and Cas9 protein. After electroporation, fertilized oocytes are then immediately transferred to culture medium. The next day, embryos are transferred into the oviduct of pseudopregnant female rats. Using the above method, offspring can be obtained 22 days after the day of embryo transfer. In this paper, we outline a method allowing simple and efficient generation of genetically modified rats without the need for technically difficult micromanipulation techniques.
Collapse
Affiliation(s)
- Kohtaro Morita
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Arata Honda
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Jichi Medical University, School of Medicine, Tochigi, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Kaneko T. Genome Editing of Rat. Methods Mol Biol 2023; 2637:223-231. [PMID: 36773150 DOI: 10.1007/978-1-0716-3016-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Many genetically engineered rat strains have been produced by the development of genome editing technology, although it used to be technical difficulty and low production efficiency. Knockout and knock-in strains can be simple and quick produced using zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Presently, genome edited strains have been produced by microinjection and a new electroporation method named technique for animal knockout system by electroporation (TAKE). This chapter presents the latest protocols for producing genome edited rats.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
15
|
Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells 2023; 12:cells12040538. [PMID: 36831205 PMCID: PMC9954744 DOI: 10.3390/cells12040538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) arise from the disruption of highly coordinated mechanisms underlying brain development, which results in impaired sensory, motor and/or cognitive functions. Although rodent models have offered very relevant insights to the field, the translation of findings to clinics, particularly regarding therapeutic approaches for these diseases, remains challenging. Part of the explanation for this failure may be the genetic differences-some targets not being conserved between species-and, most importantly, the differences in regulation of gene expression. This prompts the use of human-derived models to study NDDS. The generation of human induced pluripotent stem cells (hIPSCs) added a new suitable alternative to overcome species limitations, allowing for the study of human neuronal development while maintaining the genetic background of the donor patient. Several hIPSC models of NDDs already proved their worth by mimicking several pathological phenotypes found in humans. In this review, we highlight the utility of hIPSCs to pave new paths for NDD research and development of new therapeutic tools, summarize the challenges and advances of hIPSC-culture and neuronal differentiation protocols and discuss the best way to take advantage of these models, illustrating this with examples of success for some NDDs.
Collapse
|
16
|
Goto T, Yogo K, Hochi S, Hirabayashi M. Characterization of homozygous Foxn1 mutations induced in rat embryos by different delivery forms of Cas9 nuclease. Mol Biol Rep 2023; 50:1231-1239. [PMID: 36441374 DOI: 10.1007/s11033-022-08054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Cas9 nuclease is delivered in the form of either Cas9 protein or mRNA along with CRISPR guide RNA (gRNA: dual-crRNA:tracrRNA or chimeric single-guide RNA) or in a plasmid package encoding both Cas9 and the CRISPR gRNA. METHODS AND RESULTS We directly compared the efficiency of producing rat blastocysts with homozygous mutations of the Foxn1 locus by pronuclear injection of Cas9 in the form of protein, mRNA, or plasmid DNA. For highly efficient production of rat blastocysts with homozygous Foxn1 mutations, pronuclear injection of Cas9 protein at 60 ng/µl was likely optimal. While blastocyst harvest in the mRNA groups was higher than those in the protein and plasmid DNA groups, genotype analysis showed that 63.6%, 8.7-20.0%, and 25.0% of the analyzed blastocysts were homozygous mutants in the protein, mRNA, and plasmid DNA groups, respectively. The high efficiency of producing homozygous mutant blastocysts in the 60 ng/µl protein group may be associated with primary genome editing being initiated before the first cleavage. In most cases, homozygous mutations at the target Foxn1 locus are triggered by deletion and repair via nonhomologous end joining or microhomology-mediated end joining. Deletion downstream of the Cas9 break site was more likely than deletion in the upstream direction. CONCLUSIONS The Cas9 nuclease in protein form, when coinjected with the CRISPR gRNA (ribonucleoprotein) into a rat zygote pronucleus, can access the target genome site and induce double-strand breaks promptly, resulting in the efficient production of homozygous mutants.
Collapse
Affiliation(s)
- Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan.,Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, 650-0047, Kobe, Hyogo, Japan
| | - Kyoko Yogo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan
| | - Shinichi Hochi
- Faculty of Textile Science and Technology, Shinshu University, 386-8567, Ueda, Nagano, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan. .,The Graduate University of Advanced Studies, 444-8787, Okazaki, Aichi, Japan.
| |
Collapse
|
17
|
Abstract
Many genome-edited mouse and rat strains have been produced using engineered endonucleases, including zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9. Especially, CRISPR-Cas9 is powerful tool that can be easy, rapid, and high-efficiency-produced new genome-edited strains. Furthermore, new technique, Technique for Animal Knockout system by Electroporation (TAKE), efficiently accelerate production of new strains by direct nuclease introduction into intact embryos using electroporation. This chapter presents a latest technical information in the production of genome-edited mouse and rat by TAKE method.
Collapse
Affiliation(s)
- Takehito Kaneko
- Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan.
| |
Collapse
|
18
|
Yamashita MS, Melo EO. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol Biol 2023; 2647:121-149. [PMID: 37041332 DOI: 10.1007/978-1-0716-3064-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.
Collapse
Affiliation(s)
- Melissa S Yamashita
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Graduation Program in Animal Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Eduardo O Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Graduation Program in Biotechnology, University of Tocantins, Gurupi, Tocantins, Brazil.
| |
Collapse
|
19
|
Montoliu L. Transgenesis and Genome Engineering: A Historical Review. Methods Mol Biol 2023; 2631:1-32. [PMID: 36995662 DOI: 10.1007/978-1-0716-2990-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our ability to modify DNA molecules and to introduce them into mammalian cells or embryos almost appears in parallel, starting from the 1970s of the last century. Genetic engineering techniques rapidly developed between 1970 and 1980. In contrast, robust procedures to microinject or introduce DNA constructs into individuals did not take off until 1980 and evolved during the following two decades. For some years, it was only possible to add transgenes, de novo, of different formats, including artificial chromosomes, in a variety of vertebrate species or to introduce specific mutations essentially in mice, thanks to the gene-targeting methods by homologous recombination approaches using mouse embryonic stem (ES) cells. Eventually, genome-editing tools brought the possibility to add or inactivate DNA sequences, at specific sites, at will, irrespective of the animal species involved. Together with a variety of additional techniques, this chapter will summarize the milestones in the transgenesis and genome engineering fields from the 1970s to date.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
- National Centre for Biotechnology (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Ozawa M, Taguchi J, Katsuma K, Ishikawa-Yamauchi Y, Kikuchi M, Sakamoto R, Yamada Y, Ikawa M. Efficient simultaneous double DNA knock-in in murine embryonic stem cells by CRISPR/Cas9 ribonucleoprotein-mediated circular plasmid targeting for generating gene-manipulated mice. Sci Rep 2022; 12:21558. [PMID: 36513736 PMCID: PMC9748034 DOI: 10.1038/s41598-022-26107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Gene targeting of embryonic stem (ES) cells followed by chimera production has been conventionally used for developing gene-manipulated mice. Although direct knock-in (KI) using murine zygote via CRISPR/Cas9-mediated genome editing has been reported, ES cell targeting still has merits, e.g., high throughput work can be performed in vitro. In this study, we first compared the KI efficiency of mouse ES cells with CRISPR/Cas9 expression vector and ribonucleoprotein (RNP), and confirmed that KI efficiency was significantly increased by using RNP. Using CRISPR/Cas9 RNP and circular plasmid with homologous arms as a targeting vector, knock-in within ES cell clones could be obtained efficiently without drug selection, thus potentially shortening the vector construction or cell culture period. Moreover, by incorporating a drug-resistant cassette into the targeting vectors, double DNA KI can be simultaneously achieved at high efficiency by a single electroporation. This technique will help to facilitate the production of genetically modified mouse models that are fundamental for exploring topics related to human and mammalian biology.
Collapse
Affiliation(s)
- Manabu Ozawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Jumpei Taguchi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Kento Katsuma
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yu Ishikawa-Yamauchi
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Mio Kikuchi
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Reiko Sakamoto
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Yasuhiro Yamada
- grid.26999.3d0000 0001 2151 536XDivision of Stem Cell Pathology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan
| | - Masahito Ikawa
- grid.26999.3d0000 0001 2151 536XLaboratory of Reproductive Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639 Japan ,grid.136593.b0000 0004 0373 3971Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| |
Collapse
|
21
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
22
|
Wei X, Pu A, Liu Q, Hou Q, Zhang Y, An X, Long Y, Jiang Y, Dong Z, Wu S, Wan X. The Bibliometric Landscape of Gene Editing Innovation and Regulation in the Worldwide. Cells 2022; 11:cells11172682. [PMID: 36078090 PMCID: PMC9454589 DOI: 10.3390/cells11172682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gene editing (GE) has become one of the mainstream bioengineering technologies over the past two decades, mainly fueled by the rapid development of the CRISPR/Cas system since 2012. To date, plenty of articles related to the progress and applications of GE have been published globally, but the objective, quantitative and comprehensive investigations of them are relatively few. Here, 13,980 research articles and reviews published since 1999 were collected by using GE-related queries in the Web of Science. We used bibliometric analysis to investigate the competitiveness and cooperation of leading countries, influential affiliations, and prolific authors. Text clustering methods were used to assess technical trends and research hotspots dynamically. The global application status and regulatory framework were also summarized. This analysis illustrates the bottleneck of the GE innovation and provides insights into the future trajectory of development and application of the technology in various fields, which will be helpful for the popularization of gene editing technology.
Collapse
Affiliation(s)
- Xun Wei
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| | - Aqing Pu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Qianqian Liu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yong Zhang
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Yilin Jiang
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
| | - Zhenying Dong
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Research Center of Biology and Agriculture, Shunde Graduate School, University of Science and Technology Beijing, Beijing 100024, China
- Beijing Beike Institute of Precision Medicine and Health Technology, Beijing 100192, China
- Correspondence: (X.W.); (X.W.); Tel.: +86-189-1087-6260 (X.W.); +86-186-0056-1850 (X.W.)
| |
Collapse
|
23
|
Freuchet A, Salama A, Bézie S, Tesson L, Rémy S, Humeau R, Règue H, Sérazin C, Flippe L, Peterson P, Vimond N, Usal C, Ménoret S, Heslan JM, Duteille F, Blanchard F, Giral M, Colonna M, Anegon I, Guillonneau C. IL-34 deficiency impairs FOXP3 + Treg function in a model of autoimmune colitis and decreases immune tolerance homeostasis. Clin Transl Med 2022; 12:e988. [PMID: 36030499 PMCID: PMC9420423 DOI: 10.1002/ctm2.988] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Immune homeostasis requires fully functional Tregs with a stable phenotype to control autoimmunity. Although IL‐34 is a cytokine first described as mainly involved in monocyte cell survival and differentiation, we recently described its expression by CD8+ Tregs in a rat model of transplantation tolerance and by activated FOXP3+ CD4+ and CD8+ Tregs in human healthy individuals. However, its role in autoimmunity and potential in human diseases remains to be determined. Methods We generated Il34−/− rats and using both Il34−/− rats and mice, we investigated their phenotype under inflammatory conditions. Using Il34−/− rats, we further analyzed the impact of the absence of expression of IL‐34 for CD4+ Tregs suppressive function. We investigated the potential of IL‐34 in human disease to prevent xenogeneic GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, taking advantage of a biocollection, we investigated the correlation between presence of IL‐34 in the serum and kidney transplant rejection. Results Here we report that the absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with production of multiple auto‐antibodies, exacerbated under inflammatory conditions with increased susceptibility to DSS‐ and TNBS‐colitis in Il34−/− animals. Moreover, we revealed the striking inability of Il34−/− CD4+ Tregs to protect Il2rg−/− rats from a wasting disease induced by transfer of pathogenic cells, in contrast to Il34+/+ CD4+ Tregs. We also showed that IL‐34 treatment delayed EAE in mice as well as GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, we show that presence of IL‐34 in the serum is associated with a longer rejection‐free period in kidney transplanted patients. Conclusion Altogether, our data emphasize on the crucial necessity of IL‐34 for immune homeostasis and for CD4+ Tregs suppressive function. Our data also shows the therapeutic potential of IL‐34 in human transplantation and auto‐immunity. Highlights
Absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with a production of multiple auto‐antibodies and exacerbated immune pathology under inflammatory conditions. Il34−/− CD4+ Tregs are unable to protect Il2rg−/− rats from colitis induced by transfer of pathogenic cells. IL‐34 treatment delayed EAE in mice, as well as acute GVHD and human skin allograft rejection in immune‐humanized immunodeficient NSG mice.
Collapse
Affiliation(s)
- Antoine Freuchet
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Apolline Salama
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Bézie
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Laurent Tesson
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Rémy
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Romain Humeau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Hadrien Règue
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Céline Sérazin
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Léa Flippe
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nadège Vimond
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Claire Usal
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France.,CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Franck Duteille
- Chirurgie Plastique Reconstructrice et Esthétique, CHU Nantes, Nantes, France
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and remodeling of calcified tissues, Nantes University, Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Carole Guillonneau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| |
Collapse
|
24
|
Krishnan V, Wade-Kleyn LC, Israeli RR, Pelled G. Peripheral Nerve Injury Induces Changes in the Activity of Inhibitory Interneurons as Visualized in Transgenic GAD1-GCaMP6s Rats. BIOSENSORS 2022; 12:bios12060383. [PMID: 35735531 PMCID: PMC9221547 DOI: 10.3390/bios12060383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 01/11/2023]
Abstract
Peripheral nerve injury induces cortical remapping that can lead to sensory complications. There is evidence that inhibitory interneurons play a role in this process, but the exact mechanism remains unclear. Glutamate decarboxylase-1 (GAD1) is a protein expressed exclusively in inhibitory interneurons. Transgenic rats encoding GAD1–GCaMP were generated to visualize the activity in GAD1 neurons through genetically encoded calcium indicators (GCaMP6s) in the somatosensory cortex. Forepaw denervation was performed in adult rats, and fluorescent Ca2+ imaging on cortical slices was obtained. Local, intrahemispheric stimulation (cortical layers 2/3 and 5) induced a significantly higher fluorescence change of GAD1-expressing neurons, and a significantly higher number of neurons were responsive to stimulation in the denervated rats compared to control rats. However, remote, interhemispheric stimulation of the corpus callosum induced a significantly lower fluorescence change of GAD1-expressing neurons, and significantly fewer neurons were deemed responsive to stimulation within layer 5 in denervated rats compared to control rats. These results suggest that injury impacts interhemispheric communication, leading to an overall decrease in the activity of inhibitory interneurons in layer 5. Overall, our results provide direct evidence that inhibitory interneuron activity in the deprived S1 is altered after injury, a phenomenon likely to affect sensory processing.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Ron R. Israeli
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA;
| | - Galit Pelled
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA;
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA;
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: ; Tel.: +1-(517)-884-7464
| |
Collapse
|
25
|
3R measures in facilities for the production of genetically modified rodents. Lab Anim (NY) 2022; 51:162-177. [PMID: 35641635 DOI: 10.1038/s41684-022-00978-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
Sociocultural changes in the human-animal relationship have led to increasing demands for animal welfare in biomedical research. The 3R concept is the basis for bringing this demand into practice: Replace animal experiments with alternatives where possible, Reduce the number of animals used to a scientifically justified minimum and Refine the procedure to minimize animal harm. The generation of gene-modified sentient animals such as mice and rats involves many steps that include various forms of manipulation. So far, no coherent analysis of the application of the 3Rs to gene manipulation has been performed. Here we provide guidelines from the Committee on Genetics and Breeding of Laboratory Animals of the German Society for Laboratory Animal Science to implement the 3Rs in every step during the generation of genetically modified animals. We provide recommendations for applying the 3Rs as well as success/intervention parameters for each step of the process, from experiment planning to choice of technology, harm-benefit analysis, husbandry conditions, management of genetically modified lines and actual procedures. We also discuss future challenges for animal welfare in the context of developing technologies. Taken together, we expect that our comprehensive analysis and our recommendations for the appropriate implementation of the 3Rs to technologies for genetic modifications of rodents will benefit scientists from a wide range of disciplines and will help to improve the welfare of a large number of laboratory animals worldwide.
Collapse
|
26
|
Raza SHA, Hassanin AA, Pant SD, Bing S, Sitohy MZ, Abdelnour SA, Alotaibi MA, Al-Hazani TM, Abd El-Aziz AH, Cheng G, Zan L. Potentials, prospects and applications of genome editing technologies in livestock production. Saudi J Biol Sci 2022; 29:1928-1935. [PMID: 35531207 PMCID: PMC9072931 DOI: 10.1016/j.sjbs.2021.11.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, significant progress has been achieved in genome editing applications using new programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9). These genome editing tools are capable of nicking DNA precisely by targeting specific sequences, and enable the addition, removal or substitution of nucleotides via double-stranded breakage at specific genomic loci. CRISPR/Cas system, one of the most recent genome editing tools, affords the ability to efficiently generate multiple genomic nicks in single experiment. Moreover, CRISPR/Cas systems are relatively easy and cost effective when compared to other genome editing technologies. This is in part because CRISPR/Cas systems rely on RNA-DNA binding, unlike other genome editing tools that rely on protein-DNA interactions, which affords CRISPR/Cas systems higher flexibility and more fidelity. Genome editing tools have significantly contributed to different aspects of livestock production such as disease resistance, improved performance, alterations of milk composition, animal welfare and biomedicine. However, despite these contributions and future potential, genome editing technologies also have inherent risks, and therefore, ethics and social acceptance are crucial factors associated with implementation of these technologies. This review emphasizes the impact of genome editing technologies in development of livestock breeding and production in numerous species such as cattle, pigs, sheep and goats. This review also discusses the mechanisms behind genome editing technologies, their potential applications, risks and associated ethics that should be considered in the context of livestock.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameer D. Pant
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650 Australia
| | - Sun Bing
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Mahmoud Z. Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Sameh A. Abdelnour
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | | | - Tahani Mohamed Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University, P.O. Box: 83, Al-Kharj 11940, Saudi Arabia
| | - Ayman H. Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Daman Hour University, Damanhour, Egypt
| | - Gong Cheng
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Linsen Zan
- State Key Laboratory of Animal Genetics Breeding & Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, 712100 Yangling, Shaanxi, PR China
| |
Collapse
|
27
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
28
|
Abstract
For four decades, genetically altered laboratory animals have provided invaluable information. Originally, genetic modifications were performed on only a few animal species, often chosen because of the ready accessibility of embryonic materials and short generation times. The methods were often slow, inefficient and expensive. In 2013, a new, extremely efficient technology, namely CRISPR/Cas9, not only made the production of genetically altered organisms faster and cheaper, but also opened it up to non-conventional laboratory animal species. CRISPR/Cas9 relies on a guide RNA as a 'location finder' to target DNA double strand breaks induced by the Cas9 enzyme. This is a prerequisite for non-homologous end joining repair to occur, an error prone mechanism often generating insertion or deletion of genetic material. If a DNA template is also provided, this can lead to homology directed repair, allowing precise insertions, deletions or substitutions. Due to its high efficiency in targeting DNA, CRISPR/Cas9-mediated genetic modification is now possible in virtually all animal species for which we have genome sequence data. Furthermore, modifications of Cas9 have led to more refined genetic alterations from targeted single base-pair mutations to epigenetic modifications. The latter offer altered gene expression without genome alteration. With this ever growing genetic toolbox, the number and range of genetically altered conventional and non-conventional laboratory animals with simple or complex genetic modifications is growing exponentially.
Collapse
|
29
|
Montoliu L. Historical DNA Manipulation Overview. Methods Mol Biol 2022; 2495:3-28. [PMID: 35696025 DOI: 10.1007/978-1-0716-2301-5_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The history of DNA manipulation for the creation of genetically modified animals began in the 1970s, using viruses as the first DNA molecules microinjected into mouse embryos at different preimplantation stages. Subsequently, simple DNA plasmids were used to microinject into the pronuclei of fertilized mouse oocytes and that method became the reference for many years. The isolation of embryonic stem cells together with advances in genetics allowed the generation of gene-specific knockout mice, later on improved with conditional mutations. Cloning procedures expanded the gene inactivation to livestock and other non-model mammalian species. Lentiviruses, artificial chromosomes, and intracytoplasmic sperm injections expanded the toolbox for DNA manipulation. The last chapter of this short but intense history belongs to programmable nucleases, particularly CRISPR-Cas systems, triggering the development of genomic-editing techniques, the current revolution we are living in.
Collapse
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC) and Center for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), Madrid, Spain.
| |
Collapse
|
30
|
Nakano K, Shimizu Y, Arai T, Kaneko T, Okamura T. The versatile electric condition in mouse embryos for genome editing using a three-step square-wave pulse electroporator. Exp Anim 2021; 71:214-223. [PMID: 34880157 PMCID: PMC9130034 DOI: 10.1538/expanim.21-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Technique for Animal Knockout system by Electroporation (TAKE) is a simple and efficient method to generate genetically modified (GM) mice using the clustered regularly interspaced short
palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) systems. To reinforce the versatility of electroporation used for gene editing in mice, the electric condition was optimized
for vitrified-warmed mouse embryos, and applied to the fresh embryos from widely used inbred strains (C57BL/6NCr, BALB/cCrSlc, FVB/NJcl, and C3H/HeJJcl). The electric pulse settings (poring
pulse: voltage, 150 V; pulse width, 1.0 ms; pulse interval, 50 ms; number of pulses, +4; transfer pulse: voltage, 20 V; pulse width, 50 ms; pulse interval, 50 ms; number of pulses, ±5) were
optimal for vitrified-warmed mouse embryos, which could efficiently deliver the gRNA/Cas9 complex into the zygotes without zona pellucida thinning process and edit the target locus. These
electric condition efficiently generated GM mice in widely used inbred mouse strains. In addition, electroporation using the electrode with a 5 mm gap could introduce more than 100 embryos
within 5 min without specific pretreatment and sophisticated technical skills, such as microinjection, and exhibited a high developmental rate of embryos and genome-editing efficiency in the
generated offspring, leading to the rapid and efficient generation of genome editing mice. The electric condition used in this study is highly versatile and can contribute to understanding
human diseases and gene functions by generating GM mice more easily and efficiently.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Tetsuya Arai
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| | - Taketo Kaneko
- Department of Chemistry and Biological Sciences, Faculty of Science and Engineering, Iwate University.,Division of Fundamental and Applied Sciences, Graduate School of Science and Engineering, Iwate University
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine (NCGM)
| |
Collapse
|
31
|
Akkapeddi P, Teng KW, Koide S. Monobodies as tool biologics for accelerating target validation and druggable site discovery. RSC Med Chem 2021; 12:1839-1853. [PMID: 34820623 PMCID: PMC8597423 DOI: 10.1039/d1md00188d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022] Open
Abstract
Despite increased investment and technological advancement, new drug approvals have not proportionally increased. Low drug approval rates, particularly for new targets, are linked to insufficient target validation at early stages. Thus, there remains a strong need for effective target validation techniques. Here, we review the use of synthetic binding proteins as tools for drug target validation, with focus on the monobody platform among several advanced synthetic binding protein platforms. Monobodies with high affinity and high selectivity can be rapidly developed against challenging targets, such as KRAS mutants, using protein engineering technologies. They have strong tendency to bind to functional sites and thus serve as drug-like molecules, and they can serve as targeting ligands for constructing bio-PROTACs. Genetically encoded monobodies are effective "tool biologics" for validating intracellular targets. They promote crystallization and help reveal the atomic structures of the monobody-target interface, which can inform drug design. Using case studies, we illustrate the potential of the monobody technology in accelerating target validation and small-molecule drug discovery.
Collapse
Affiliation(s)
- Padma Akkapeddi
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Medical Center New York NY USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine New York NY USA
| |
Collapse
|
32
|
Chen YF, Yu SF, Wu CY, Wu N, Shen J, Shen J, Gao JM, Wen YZ, Hide G, Lai DH, Lun ZR. Innate Resistance to Leishmania amazonensis Infection in Rat Is Dependent on NOS2. Front Microbiol 2021; 12:733286. [PMID: 34777283 PMCID: PMC8586549 DOI: 10.3389/fmicb.2021.733286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmania infection causes diverse clinical manifestations in humans. The disease outcome is complicated by the combination of many host and parasite factors. Inbred mouse strains vary in resistance to Leishmania major but are highly susceptible to Leishmania amazonensis infection. However, rats are highly resistant to L. amazonensis infection due to unknown mechanisms. We use the inducible nitric oxide synthase (Nos2) gene knockout rat model (Nos2−/− rat) to investigate the role of NOS2 against leishmania infection in rats. Our results demonstrated that diversion toward the NOS2 pathway is the key factor explaining the resistance of rats against L. amazonensis infection. Rats deficient in NOS2 are susceptible to L. amazonensis infection even though their immune response to infection is still strong. Moreover, adoptive transfer of NOS2 competent macrophages into Nos2−/− rats significantly reduced disease development and parasite load. Thus, we conclude that the distinct L-arginine metabolism, observed in rat macrophages, is the basis of the strong innate resistance to Leishmania. These data highlight that macrophages from different hosts possess distinctive properties and produce different outcomes in innate immunity to Leishmania infections.
Collapse
Affiliation(s)
- Yun-Fu Chen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si-Fei Yu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Chang-You Wu
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Na Wu
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jia Shen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Juan Shen
- Institute of Immunology and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiang-Mei Gao
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yan-Zi Wen
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geoff Hide
- Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| | - De-Hua Lai
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Rong Lun
- Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Ecosystems and Environment Research Centre and Biomedical Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
33
|
Chao CC, Shen PW, Tzeng TY, Kung HJ, Tsai TF, Wong YH. Human iPSC-Derived Neurons as A Platform for Deciphering the Mechanisms behind Brain Aging. Biomedicines 2021; 9:1635. [PMID: 34829864 PMCID: PMC8615703 DOI: 10.3390/biomedicines9111635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
With an increased life expectancy among humans, aging has recently emerged as a major focus in biomedical research. The lack of in vitro aging models-especially for neurological disorders, where access to human brain tissues is limited-has hampered the progress in studies on human brain aging and various age-associated neurodegenerative diseases at the cellular and molecular level. In this review, we provide an overview of age-related changes in the transcriptome, in signaling pathways, and in relation to epigenetic factors that occur in senescent neurons. Moreover, we explore the current cell models used to study neuronal aging in vitro, including immortalized cell lines, primary neuronal culture, neurons directly converted from fibroblasts (Fib-iNs), and iPSC-derived neurons (iPSC-iNs); we also discuss the advantages and limitations of these models. In addition, the key phenotypes associated with cellular senescence that have been observed by these models are compared. Finally, we focus on the potential of combining human iPSC-iNs with genome editing technology in order to further our understanding of brain aging and neurodegenerative diseases, and discuss the future directions and challenges in the field.
Collapse
Affiliation(s)
- Chuan-Chuan Chao
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Department of Neurology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Po-Wen Shen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 112, Taiwan;
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA
| | - Ting-Fen Tsai
- Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-C.C.); (T.-F.T.)
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Hui Wong
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
34
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
35
|
Tse DH, Becker NA, Young RT, Olson WK, Peters JP, Schwab TL, Clark KJ, Maher LJ. Designed architectural proteins that tune DNA looping in bacteria. Nucleic Acids Res 2021; 49:10382-10396. [PMID: 34478548 PMCID: PMC8501960 DOI: 10.1093/nar/gkab759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/28/2022] Open
Abstract
Architectural proteins alter the shape of DNA. Some distort the double helix by introducing sharp kinks. This can serve to relieve strain in tightly-bent DNA structures. Here, we design and test artificial architectural proteins based on a sequence-specific Transcription Activator-like Effector (TALE) protein, either alone or fused to a eukaryotic high mobility group B (HMGB) DNA-bending domain. We hypothesized that TALE protein binding would stiffen DNA to bending and twisting, acting as an architectural protein that antagonizes the formation of small DNA loops. In contrast, fusion to an HMGB domain was hypothesized to generate a targeted DNA-bending architectural protein that facilitates DNA looping. We provide evidence from Escherichia coli Lac repressor gene regulatory loops supporting these hypotheses in living bacteria. Both data fitting to a thermodynamic DNA looping model and sophisticated molecular modeling support the interpretation of these results. We find that TALE protein binding inhibits looping by stiffening DNA to bending and twisting, while the Nhp6A domain enhances looping by bending DNA without introducing twisting flexibility. Our work illustrates artificial approaches to sculpt DNA geometry with functional consequences. Similar approaches may be applicable to tune the stability of small DNA loops in eukaryotes.
Collapse
Affiliation(s)
- David H Tse
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Robert T Young
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Wilma K Olson
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, Center for Quantitative Biology, Piscataway, NJ 08854, USA
| | - Justin P Peters
- Department of Chemistry and Biochemistry, University of Northern Iowa, 1227 West 27th Street, Cedar Falls, IA 50614, USA
| | - Tanya L Schwab
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
36
|
Lee M, Choi K, Oh J, Kim S, Lee D, Choe GC, Jeong J, Lee C. SOX2 plays a crucial role in cell proliferation and lineage segregation during porcine pre-implantation embryo development. Cell Prolif 2021; 54:e13097. [PMID: 34250657 PMCID: PMC8349655 DOI: 10.1111/cpr.13097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Gene regulation in early embryos has been widely studied for a long time because lineage segregation gives rise to the formation of a pluripotent cell population, known as the inner cell mass (ICM), during pre-implantation embryo development. The extraordinarily longer pre-implantation embryo development in pigs leads to the distinct features of the pluripotency network compared with mice and humans. For these reasons, a comparative study using pre-implantation pig embryos would provide new insights into the mammalian pluripotency network and help to understand differences in the roles and networks of genes in pre-implantation embryos between species. MATERIALS AND METHODS To analyse the functions of SOX2 in lineage segregation and cell proliferation, loss- and gain-of-function studies were conducted in pig embryos using an overexpression vector and the CRISPR/Cas9 system. Then, we analysed the morphological features and examined the effect on the expression of downstream genes through immunocytochemistry and quantitative real-time PCR. RESULTS Our results showed that among the core pluripotent factors, only SOX2 was specifically expressed in the ICM. In SOX2-disrupted blastocysts, the expression of the ICM-related genes, but not OCT4, was suppressed, and the total cell number was also decreased. Likewise, according to real-time PCR analysis, pluripotency-related genes, excluding OCT4, and proliferation-related genes were decreased in SOX2-targeted blastocysts. In SOX2-overexpressing embryos, the total blastocyst cell number was greatly increased but the ICM/TE ratio decreased. CONCLUSIONS Taken together, our results demonstrated that SOX2 is essential for ICM formation and cell proliferation in porcine early-stage embryogenesis.
Collapse
Affiliation(s)
- Mingyun Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Kwang‐Hwan Choi
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Research and Development CenterSpace F corporationHwasungKorea
| | - Jong‐Nam Oh
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Seung‐Hun Kim
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Dong‐Kyung Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Research and Development CenterSpace F corporationHwasungKorea
| | - Gyung Cheol Choe
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Jinsol Jeong
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
| | - Chang‐Kyu Lee
- Department of Agricultural BiotechnologyAnimal Biotechnology Major, and Research Institute of Agriculture and Life SciencesSeoul National UniversityGwanak‐guKorea
- Institute of Green Bio Science and TechnologySeoul National UniversityPyeongchangKorea
| |
Collapse
|
37
|
Lu J, Fang W, Huang J, Li S. The application of genome editing technology in fish. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:326-346. [PMID: 37073287 PMCID: PMC10077250 DOI: 10.1007/s42995-021-00091-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 01/11/2021] [Indexed: 05/03/2023]
Abstract
The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish (Danio rerio) disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.
Collapse
Affiliation(s)
- Jianguo Lu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Junrou Huang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China
| |
Collapse
|
38
|
Abstract
The emergence of an array of genome-editing tools in recent years has facilitated the introduction of genetic modifications directly into the embryo, increasing the ease, efficiency and catalogue of alleles accessible to researchers across a range of species. Bypassing the requirement for a selection cassette and resulting in a broad range of outcomes besides the desired allele, genome editing has altered the allele validation process both temporally and technically. Whereas traditional gene targeting relies upon selection and allows allele validation at the embryonic stem cell modification stage, screening for the presence of the intended allele now occurs in the (frequently mosaic) founder animals. Final confirmation of the edited allele can only take place at the subsequent G1 generation and the validation strategy must differentiate the desired allele from a range of unintended outcomes. Here we present some of the challenges posed by gene editing, strategies for validation and considerations for animal colony management.
Collapse
Affiliation(s)
| | - Gemma F Codner
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| | - Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, UK
| |
Collapse
|
39
|
Gertsenstein M, Nutter LMJ. Production of knockout mouse lines with Cas9. Methods 2021; 191:32-43. [PMID: 33524495 DOI: 10.1016/j.ymeth.2021.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Knockout mice are used extensively to explore the phenotypic effects of mammalian gene dysfunction. With the application of RNA-guided Cas9 nuclease technology for the production of knockout mouse lines, the time, as well as the resources needed, to progress from identification of a gene of interest to production of a knockout line is significantly reduced. Here we present our standard methodology to produce knockout mouse lines by the electroporation of Cas9 ribonucleoprotein (RNP) into mouse zygotes. Using this protocol, we have obtained an 80% success rate in the generation of founders for null alleles with a subsequent 93% germline transmission rate. These methods rely on equipment already present in the majority of transgenic facilities and should be straightforward to implement where appropriate embryo handling expertise exists.
Collapse
Affiliation(s)
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto M5T 3H7, Canada; The Hospital for Sick Children, Toronto M5G 1X8, Canada
| |
Collapse
|
40
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
41
|
Eksi YE, Sanlioglu AD, Akkaya B, Ozturk BE, Sanlioglu S. Genome engineering and disease modeling via programmable nucleases for insulin gene therapy; promises of CRISPR/Cas9 technology. World J Stem Cells 2021; 13:485-502. [PMID: 34249224 PMCID: PMC8246254 DOI: 10.4252/wjsc.v13.i6.485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change, insert, or remove a genomic sequence of interest. These advanced molecular tools include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and RNA-guided engineered nucleases (RGENs), which create double-strand breaks at specific target sites in the genome, and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism. A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype, without the need for the reengineering of the specific enzyme when targeting different sequences. CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function. RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes, as summarized and exemplified in this manuscript.
Collapse
Affiliation(s)
- Yunus E Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bahar Akkaya
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey.
| |
Collapse
|
42
|
Flores SRL, Nelson S, Woloshun RR, Wang X, Ha JH, Lee JK, Yu Y, Merlin D, Collins JF. Intestinal iron absorption is appropriately modulated to match physiological demand for iron in wild-type and iron-loaded Hamp (hepcidin) knockout rats during acute colitis. PLoS One 2021; 16:e0252998. [PMID: 34143808 PMCID: PMC8213193 DOI: 10.1371/journal.pone.0252998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Mucosal damage, barrier breach, inflammation, and iron-deficiency anemia (IDA) typify ulcerative colitis (UC) in humans. The anemia in UC appears to mainly relate to systemic inflammation. The pathogenesis of this ‘anemia of inflammation’ (AI) involves cytokine-mediated transactivation of hepatic Hamp (encoding the iron-regulatory hormone, hepcidin). In AI, high hepcidin represses iron absorption (and iron release from stores), thus lowering serum iron, and restricting iron for erythropoiesis (causing anemia). In less-severe disease states, inflammation may be limited to the intestine, but whether this perturbs iron homeostasis is uncertain. We hypothesized that localized gut inflammation will increase overall iron demand (to support the immune response and tissue repair), and that hepatic Hamp expression will decrease in response, thus derepressing (i.e., enhancing) iron absorption. Accordingly, we developed a rat model of mild, acute colitis, and studied iron absorption and homeostasis. Rats exposed (orally) to DSS (4%) for 7 days had intestinal (but not systemic) inflammation, and biomarker analyses demonstrated that iron utilization was elevated. Iron absorption was enhanced (by 2-3-fold) in DSS-treated, WT rats of both sexes, but unexpectedly, hepatic Hamp expression was not suppressed. Therefore, to gain a better understanding of regulation of iron absorption during acute colitis, Hamp KO rats were used for further experimentation. The severity of DSS-colitis was similar in Hamp KOs as in WT controls. In the KOs, increased iron requirements associated with the physiological response to colitis were satisfied by mobilizing hepatic storage iron, rather than by increasing absorption of enteral iron (as occurred in WT rats). In conclusion then, in both sexes and genotypes of rats, iron absorption was appropriately modulated to match physiological demand for dietary iron during acute intestinal inflammation, but regulatory mechanisms may not involve hepcidin.
Collapse
Affiliation(s)
- Shireen R. L. Flores
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Savannah Nelson
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Regina R. Woloshun
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Xiaoyu Wang
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Jung-Heun Ha
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Jennifer K. Lee
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Yang Yu
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Didier Merlin
- Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta, GA, United States of America
- Atlanta Veterans Affairs Medical Center, Decatur, GA, United States of America
| | - James F. Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
43
|
Yu Y, Wei X, Deng Q, Lan Q, Guo Y, Han L, Yuan Y, Fan P, Wu P, Shangguan S, Liu Y, Lai Y, Volpe G, Esteban MA, Liu C, Hou Y, Liu L. Single-Nucleus Chromatin Accessibility Landscape Reveals Diversity in Regulatory Regions Across Distinct Adult Rat Cortex. Front Mol Neurosci 2021; 14:651355. [PMID: 34079438 PMCID: PMC8166204 DOI: 10.3389/fnmol.2021.651355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023] Open
Abstract
Rats have been widely used as an experimental organism in psychological, pharmacological, and behavioral studies by modeling human diseases such as neurological disorders. It is critical to identify and characterize cell fate determinants and their regulatory mechanisms in single-cell resolutions across rat brain regions. Here, we applied droplet-based single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq) to systematically profile the single-cell chromatin accessibility across four dissected brain areas in adult Sprague-Dawley (SD) rats with a total of 59,023 single nuclei and identified 16 distinct cell types. Interestingly, we found that different cortex regions exhibit diversity in both cellular compositions and gene regulatory regions. Several cell-type-specific transcription factors (TFs), including SPI1, KLF4, KLF6, and NEUROD2, have been shown to play important roles during the pathogenesis of various neurological diseases, such as Alzheimer's disease (AD), astrocytic gliomas, autism spectrum disorder (ASD), and intellectual disabilities. Therefore, our single-nucleus atlas of rat cortex could serve as an invaluable resource for dissecting the regulatory mechanisms underlying diverse cortex cell fates and further revealing the regulatory networks of neuropathogenesis.
Collapse
Affiliation(s)
- Yeya Yu
- BGI College, Zhengzhou University, Zhengzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Xiaoyu Wei
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Qing Lan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yiping Guo
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Han
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yue Yuan
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Peng Fan
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peiying Wu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Shuncheng Shangguan
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Miguel A. Esteban
- College of Veterinary Medicine, Jilin University, Changchun, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong 16 Laboratory, Guangzhou, China
| | - Chuanyu Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Yong Hou
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen, China
| | - Longqi Liu
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
44
|
Gao B, Sun Q. Programming gene expression in multicellular organisms for physiology modulation through engineered bacteria. Nat Commun 2021; 12:2689. [PMID: 33976154 PMCID: PMC8113242 DOI: 10.1038/s41467-021-22894-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023] Open
Abstract
A central goal of synthetic biology is to predictably and efficiently reprogram living systems to perform computations and carry out specific biological tasks. Although there have been many advances in the bio-computational design of living systems, these advances have mainly been applied to microorganisms or cell lines; programming animal physiology remains challenging for synthetic biology because of the system complexity. Here, we present a bacteria-animal symbiont system in which engineered bacteria recognize external signals and modulate animal gene expression, twitching phenotype, and fat metabolism through RNA interference toward gfp, sbp-1, and unc-22 gene in C. elegans. By using genetic circuits in bacteria to control these RNA expressions, we are able to program the physiology of the model animal Caenorhabditis elegans with logic gates. We anticipate that engineered bacteria can be used more extensively to program animal physiology for agricultural, therapeutic, and basic science applications.
Collapse
Affiliation(s)
- Baizhen Gao
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Qing Sun
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
45
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
46
|
Singh V. An introduction to CRISPR-Cas systems for reprogramming the genome of mammalian cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 181:1-13. [PMID: 34127190 DOI: 10.1016/bs.pmbts.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In the past few decades, it has been possible to introduce unprecedented mutations in genes of the mammalian cells owing to the development of advanced technologies/methods/assays. Sometimes, these mutations occurring at the cellular level may even cost the life of organisms. A number of diseases in mammals have shown to leave some serious impact on their lives. There are no drugs or medicines available in market for the correction or repair of these mutated genes in order to reverse gene function. A pressing need therefore arises to develop a next generation technology that cannot just corrects gene mutations but also restores gene function. Recent advances in CRISPR-Cas9 technology play a key role for correction of defective genes in wide range of mammalian cells. This chapter highlights CRISPR-Cas systems for basic, biomedical, biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
47
|
The evolution and history of gene editing technologies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:1-62. [PMID: 33685594 DOI: 10.1016/bs.pmbts.2021.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Scientific enquiry must be the driving force of research. This sentiment is manifested as the profound impact gene editing technologies are having in our current world. There exist three main gene editing technologies today: Zinc Finger Nucleases, TALENs and the CRISPR-Cas system. When these systems were being uncovered, none of the scientists set out to design tools to engineer genomes. They were simply trying to understand the mechanisms existing in nature. If it was not for this simple sense of wonder, we probably would not have these breakthrough technologies. In this chapter, we will discuss the history, applications and ethical issues surrounding these technologies, focusing on the now predominant CRISPR-Cas technology. Gene editing technologies, as we know them now, are poised to have an overwhelming impact on our world. However, it is impossible to predict the route they will take in the future or to comprehend the full impact of its repercussions.
Collapse
|
48
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
49
|
Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet 2021; 12:614379. [PMID: 33603774 PMCID: PMC7885269 DOI: 10.3389/fgene.2021.614379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Rabbits are one of the most used experimental animals for investigating the mechanisms of human cardiovascular disease and lipid metabolism because they are phylogenetically closer to human than rodents (mice and rats). Cholesterol-fed wild-type rabbits were first used to study human atherosclerosis more than 100 years ago and are still playing an important role in cardiovascular research. Furthermore, transgenic rabbits generated by pronuclear microinjection provided another means to investigate many gene functions associated with human disease. Because of the lack of both rabbit embryonic stem cells and the genome information, for a long time, it has been a dream for scientists to obtain knockout rabbits generated by homologous recombination-based genomic manipulation as in mice. This obstacle has greatly hampered using genetically modified rabbits to disclose the molecular mechanisms of many human diseases. The advent of genome editing technologies has dramatically extended the applications of experimental animals including rabbits. In this review, we will update genetically modified rabbits, including transgenic, knock-out, and knock-in rabbits during the past decades regarding their use in cardiovascular research and point out the perspectives in future.
Collapse
Affiliation(s)
- Jianglin Fan
- Department of Pathology, Xi'an Medical University, Xi'an, China.,Department of Molecular Pathology, Faculty of Medicine, Graduate School of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yanli Wang
- Department of Pathology, Xi'an Medical University, Xi'an, China
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, United States
| |
Collapse
|
50
|
Tsunekawa Y, Terhune RK, Matsuzaki F. Protocol for De Novo Gene Targeting Via In Utero Electroporation. Methods Mol Biol 2021; 2312:309-320. [PMID: 34228299 DOI: 10.1007/978-1-0716-1441-9_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developments in genome-editing technology, especially CRISPR-Cas9, have revolutionized the way in which genetically engineered animals are generated. However, the process of generation includes microinjection to the one-cell stage embryo and the transfer of the microinjected embryo to the surrogate animals, which requires trained personnel. We recently reported the method includes introduction of CRISPR-Cas9 systems to the developing cerebral cortex via in utero electroporation thus generating gene-targeted neural stem cells in vivo. This technique is widely applicable for gene knockout, monitoring gene expression, and lineage analysis in developmental biology. In this chapter, the detailed protocol of EGFP (enhanced green fluorescent protein) knock-in method via in utero electroporation is described.
Collapse
Affiliation(s)
- Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Division of Molecular and Medical Genetics, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.
| |
Collapse
|