1
|
Seo C, Song J, Choi Y, Kim T, Lee D, Jon S. A Cross-Linked Cyclosiloxane Polymer Matrix as a Platform Enabling Long-Term Culture of Human Induced Pluripotent Stem Cells with Naïve-Like Features. Biomater Res 2025; 29:0197. [PMID: 40296880 PMCID: PMC12034926 DOI: 10.34133/bmr.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
Culture platforms for human induced pluripotent stem cells (hiPSCs) that rely on feeder cells or extracellular matrices (ECMs) face substantial limitations for practical regenerative medicine applications, including undefined components, high costs, and a tendency to maintain hiPSCs in the primed pluripotent state, which has lower differentiation potential than the naïve state. To overcome these challenges, we developed a long-term hiPSC culture platform based on a cross-linked cyclosiloxane polymer matrix that preserves pluripotency with naïve-like characteristics. Through optimization, we identified an ideal cyclosiloxane polymer matrix, designated as poly-Z, which supported the growth of hiPSCs as spheroids. Even after 60 d of continuous culture, hiPSC spheroids maintained on poly-Z retained pluripotency markers and normal karyotypes at levels comparable to those of hiPSC colonies cultured on conventional vitronectin (VN)-coated plates. Furthermore, mRNA sequencing revealed that hiPSC spheroids cultured on poly-Z not only exhibited up-regulation of typical pluripotency-related genes but also showed increased expression of genes associated with the naïve pluripotent state, in contrast to the primed state observed in hiPSCs cultured on VN-coated plates or in suspension culture. Gene ontology (GO) analysis and gene set enrichment analysis (GSEA) further suggested that the down-regulation of genes involved in cell-ECM interactions contributed to the induction of naïve-like features in poly-Z-cultured hiPSC spheroids. These findings highlight the potential of cross-linked cyclosiloxane-based polymer matrices as an innovative platform for human pluripotent stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Changjin Seo
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyuk Song
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - Taemook Kim
- Deargen Inc., Daejeon 35220, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences,
KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Precision Bio-Nanomedicine,
Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Neri-Cruz CE, Chang L, Emidio Teixeira FM, Hakobyan S, Gutfreund P, Campana M, Zarbakhsh A, Gautrot JE. The formation and architecture of surface-initiated polymer brush gene delivery complexes. J Colloid Interface Sci 2025; 684:600-612. [PMID: 39809021 DOI: 10.1016/j.jcis.2024.12.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown. In this report, we characterise the binding capacity and adsorption kinetics of different types of nucleic acid materials for gene delivery (single and double stranded oligo RNA and DNA, mRNA and plasmid DNA) to PDMAEMA and PMETAC brushes, using surface plasmon resonance. The type and size of these nucleic acid macromolecules are found to have an important impact on their maximum surface density, and the association and adsorption constants of the resulting complexes. To gain further insight into the mechanisms that restrict the adsorption of higher molecular weight materials, and promote particularly effective RNA capture, the architecture of PDMAEMA brushes prior and after complexation is investigated by in situ ellipsometry and neutron reflectometry. Deep infiltration of oligonucleotides was found, irrespective of their binding capacity, suggesting that their infiltration is not a limiting factor in their dense capture on polymer brushes. In contrast, mRNA and pDNA were found to partially infiltrate within PDMAEMA brushes, although some of the nucleic acid materials could be found deep into the brush layer. This indicates that the size of these macromolecules and their partial infiltration may restrict further adsorption and high binding capacities, but also suggests that oligonucleotides will experience enhanced protection within polymer brushes, with fewer residues accessible for enzymatic degradation.
Collapse
Affiliation(s)
- Carlos E Neri-Cruz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Lan Chang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Franciane Mouradian Emidio Teixeira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo 05403-000, Brazil
| | - Shoghik Hakobyan
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Philipp Gutfreund
- Institute Laue Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Mario Campana
- Science & Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX
| | - Ali Zarbakhsh
- School of Physical and Chemical Sciences, Queen Mary, University of London, Mile End Road, London, E1 4NS, United Kingdom.
| | - Julien E Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
3
|
Mulero-Russe A, Mora-Boza A, Marquez EN, Ziegelski M, Helmrath M, García AJ. Synthetic hydrogel substrate for human induced pluripotent stem cell definitive endoderm differentiation. Biomaterials 2025; 315:122920. [PMID: 39504708 PMCID: PMC11625597 DOI: 10.1016/j.biomaterials.2024.122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) can give rise to multiple lineages derived from three germ layers, endoderm, mesoderm and ectoderm. Definitive endoderm (DE) cell types and tissues have great potential for regenerative medicine applications. Current hiPSC differentiation protocols focus on the addition of soluble factors; however, extracellular matrix properties are known to also play a role in dictating cell fate. Matrigel™ is the gold standard for DE differentiation, but this xenogeneic, poorly defined basement membrane extract limits the clinical translatability of DE-derived tissues. Here we present a fully defined PEG-based hydrogel substrate to support hiPSC-derived DE differentiation. We screened hydrogel formulations presenting different adhesive peptides and matrix stiffness. Our results demonstrate that presenting a short peptide, cyclic RGD, on the engineered PEG hydrogel supports the transition from undifferentiated hiPSCs to DE using a serum-free, commercially available kit. We show that increasing substrate stiffness (G' = 1.0-4.0 kPa) results in an increased linear response in DE differentiation efficiency. We also include a temporal analysis of the expression of integrin and syndecan receptors as the hiPSCs undergo specification towards DE lineage. Finally, we show that focal adhesion kinase activity regulates hiPSC growth and DE differentiation efficiency. Overall, we present a fully defined matrix as a synthetic alternative for Matrigel™ supporting DE differentiation.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ana Mora-Boza
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elijah N Marquez
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Morgan Ziegelski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Ma H, Xu L, Wu S, Wang S, Li J, Ai S, Yang Z, Mo R, Lin L, Li Y, Wang S, Gao J, Li C, Kong D. Supragel-mediated efficient generation of pancreatic progenitor clusters and functional glucose-responsive islet-like clusters. Bioact Mater 2024; 41:1-14. [PMID: 39101030 PMCID: PMC11292262 DOI: 10.1016/j.bioactmat.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Although several synthetic hydrogels with defined stiffness have been developed to facilitate the proliferation and maintenance of human pluripotent stem cells (hPSCs), the influence of biochemical cues in lineage-specific differentiation and functional cluster formation has been rarely reported. Here, we present the application of Supragel, a supramolecular hydrogel formed by synthesized biotinylated peptides, for islet-like cluster differentiation. We observed that Supragel, with a peptide concentration of 5 mg/mL promoted spontaneous hPSCs formation into uniform clusters, which is mainly attributable to a supporting stiffness of ∼1.5 kPa as provided by the Supragel matrix. Supragel was also found to interact with the hPSCs and facilitate endodermal and subsequent insulin-secreting cell differentiation, partially through its components: the sequences of RGD and YIGSR that interacts with cell membrane molecules of integrin receptor. Compared to Matrigel and suspension culturing conditions, more efficient differentiation of the hPSCs was also observed at the stages 3 and 4, as well as the final stage toward generation of insulin-secreting cells. This could be explained by 1) suitable average size of the hPSCs clusters cultured on Supragel; 2) appropriate level of cell adhesive sites provided by Supragel during differentiation. It is worth noting that the Supragel culture system was more tolerance in terms of the initial seeding densities and less demanding, since a standard static cell culture condition was sufficient for the entire differentiation process. Our observations demonstrate a positive role of Supragel for hPSCs differentiation into islet-like cells, with additional potential in facilitating germ layer differentiation.
Collapse
Affiliation(s)
- Hongmeng Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lilin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shengjie Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songdi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Sifan Ai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zhuangzhuang Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Rigen Mo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
- College of Life Science, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, Xu Rongxiang Regeneration Life Science Center, Nankai University, 300071, Tianjin, China
| |
Collapse
|
5
|
Asadikorayem M, Brunel LG, Weber P, Heilshorn SC, Zenobi-Wong M. Porosity dominates over microgel stiffness for promoting chondrogenesis in zwitterionic granular hydrogels. Biomater Sci 2024; 12:5504-5520. [PMID: 39347711 PMCID: PMC11441418 DOI: 10.1039/d4bm00233d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Granular hydrogels comprised of jammed, crosslinked microgels offer great potential as biomaterial scaffolds for cell-based therapies, including for cartilage tissue regeneration. As stiffness and porosity of hydrogels affect the phenotype of encapsulated cells and the extent of tissue regeneration, the design of tunable granular hydrogels to control and optimize these parameters is highly desirable. We hypothesized that chondrogenesis could be modulated using a granular hydrogel platform based on biocompatible, zwitterionic materials with independent intra- and inter-microgel crosslinking mechanisms. Microgels are made with mechanical fragmentation of photocrosslinked zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) hydrogels, and secondarily crosslinked in the presence of cells using horseradish peroxide (HRP) to produce cell-laden granular hydrogels. We varied the intra-microgel crosslinking density to produce microgels with varied stiffnesses (1-3 kPa) and swelling properties. These microgels, when resuspended at the same weight fraction and secondarily crosslinked, resulted in granular hydrogels with distinct porosities (5-40%) due to differing swelling properties. The greatest extent of chondrogenesis was achieved in scaffolds with the highest microgel stiffness and highest porosity. However, when scaffold porosity was kept constant and just microgel stiffness varied, cell phenotype and chondrogenesis were similar across scaffolds. These results indicate the dominant role of granular scaffold porosity on chondrogenesis, whereas microgel stiffness appears to play a relatively minor role. These observations are in contrast to cells encapsulated within conventional bulk hydrogels, where stiffness has been shown to significantly affect chondrocyte response. In summary, we introduce chemically-defined, zwitterionic biomaterials to fabricate versatile granular hydrogels allowing for tunable scaffold porosity and microgel stiffness to study and influence chondrogenesis.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Patrick Weber
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Marcy Zenobi-Wong
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Asadikorayem M, Surman F, Weber P, Weber D, Zenobi-Wong M. Zwitterionic Granular Hydrogel for Cartilage Tissue Engineering. Adv Healthc Mater 2024; 13:e2301831. [PMID: 37501337 DOI: 10.1002/adhm.202301831] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Zwitterionic hydrogels have high potential for cartilage tissue engineering due to their ultra-hydrophilicity, nonimmunogenicity, and superior antifouling properties. However, their application in this field has been limited so far, due to the lack of injectable zwitterionic hydrogels that allow for encapsulation of cells in a biocompatible manner. Herein, a novel strategy is developed to engineer cartilage employing zwitterionic granular hydrogels that are injectable, self-healing, in situ crosslinkable and allow for direct encapsulation of cells with biocompatibility. The granular hydrogel is produced by mechanical fragmentation of bulk photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA), or a mixture of CBAA and zwitterionic sulfobetaine methacrylate (SBMA). The produced microgels are enzymatically crosslinkable using horseradish peroxidase, to quickly stabilize the construct, resulting in a microporous hydrogel. Encapsulated human primary chondrocytes are highly viable and able to proliferate, migrate, and produce cartilaginous extracellular matrix (ECM) in the zwitterionic granular hydrogel. It is also shown that by increasing hydrogel porosity and incorporation of SBMA, cell proliferation and ECM secretion are further improved. This strategy is a simple and scalable method, which has high potential for expanding the versatility and application of zwitterionic hydrogels for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Asadikorayem
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Patrick Weber
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Daniel Weber
- Division of Hand Surgery, University Children's Hospital, Zürich, 8032, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
7
|
Cho Y, Lee H, Jeong W, Jung KB, Lee SY, Park S, Yeun J, Kwon O, Son JG, Lee TG, Son MY, Im SG. Long-Term Culture of Human Pluripotent Stem Cells in Xeno-Free Condition Using Functional Polymer Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403952. [PMID: 39015054 DOI: 10.1002/adma.202403952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/18/2024]
Abstract
Human pluripotent stem cells (hPSCs), encompassing human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold immense potential in regenerative medicine, offering new opportunities for personalized cell therapies. However, their clinical translation is hindered by the inevitable reliance on xenogeneic components in culture environments. This study addresses this challenge by engineering a fully synthetic, xeno-free culture substrate, whose surface composition is tailored systematically for xeno-free culture of hPSCs. A functional polymer surface, pGC2 (poly(glycidyl methacrylate-grafting-guanidine-co-carboxylic acrylate)), offers excellent cell-adhesive properties as well as non-cytotoxicity, enabling robust hESCs and hiPSCs growth while presenting cost-competitiveness and scalability over Matrigel. This investigation includes comprehensive evaluations of pGC2 across diverse experimental conditions, demonstrating its wide adaptability with various pluripotent stem cell lines, culture media, and substrates. Crucially, pGC2 supports long-term hESCs and hiPSCs expansion, up to ten passages without compromising their stemness and pluripotency. Notably, this study is the first to confirm an identical proteomic profile after ten passages of xeno-free cultivation of hiPSCs on a polymeric substrate compared to Matrigel. The innovative substrate bridges the gap between laboratory research and clinical translation, offering a new promising avenue for advancing stem cell-based therapies.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Wonji Jeong
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kwang Bo Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Young Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Seonghyeon Park
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jemin Yeun
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ohman Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jin Gyeong Son
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Tae Geol Lee
- Korea Research Institute of Standards and Science (KRISS), Daejeon, 34141, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sung Gap Im
- Functional Thin Film Laboratory, Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Ogiwara N, Nakano T, Baba K, Noguchi H, Masuda T, Takai M. High-Quality Three-Dimensionally Cultured Cells Using Interfaces of Diblock Copolymers Containing Different Ratios of Zwitterionic N-Oxides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44575-44589. [PMID: 39160767 PMCID: PMC11368093 DOI: 10.1021/acsami.4c10118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
To control three-dimensional (3D) cell spheroid formation, it is well-known the surface physicochemical and mechanical properties of cell culture materials are important; however, the formation and function of 3D cells are still unclear. This study demonstrated the precise control of the formation of 3D cells and 3D cell functions using diblock copolymers containing different ratios of a zwitterionic trimethylamine N-oxide group. The diblock copolymers were composed of poly(n-butyl methacrylate) (PBMA) as the hydrophobic unit for surface coating on a cell culture dish and stabilization in water, and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) as the precursor of N-oxide. The zwitterionic N-oxide converted from 0 to 100% using PDMAEMA. The wettability and surface zeta potential varied with different ratios of N-oxide diblock copolymer-coated surfaces, and the amount of protein adsorbed in the cell culture medium decreased monotonically with increasing N-oxide ratio. 3D cell spheroid formations were observed by seeding human umbilical cord mesenchymal stem cells (hUC-MSCs) in diblock copolymer-coated flat-bottom well plates, and the N-oxide ratio was over 40%. The cells proliferated in two-dimensions (2D) and did not form spheroids when the N-oxide ratio was less than 20%. Interestingly, the expression of undifferentiated markers of hUC-MSCs was higher on surfaces that adsorbed proteins to some extent and formed 50-150 μm spheroids in the range of 40-70% of N-oxide ratio. We revealed that a moderately protein-adsorbed surface allows precise control of spheroid formation and undifferentiated 3D cells and has potential applications for high-quality spheroids in regenerative medicine and drug screening.
Collapse
Affiliation(s)
- Naoto Ogiwara
- Biotech
Business Unit, Incubation Center, artience
Co., Ltd., 5-6-7 Chiyoda, Sakado-city, Saitama 350-0214, Japan
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takenobu Nakano
- Biotech
Business Unit, Incubation Center, artience
Co., Ltd., 5-6-7 Chiyoda, Sakado-city, Saitama 350-0214, Japan
| | - Koki Baba
- Biotech
Business Unit, Incubation Center, artience
Co., Ltd., 5-6-7 Chiyoda, Sakado-city, Saitama 350-0214, Japan
| | - Hidenori Noguchi
- Center
for Green Research on Energy and Environmental Materials and Global
Research Center for Environment and Energy based on Nanomaterials
Science (GREEN), National Institute for
Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Tsukuru Masuda
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Madoka Takai
- Department
of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Tian Z, Liu Q, Lin HY, Zhu YR, Ling L, Sung TC, Wang T, Li W, Gao M, Cheng S, Renuka RR, Subbiah SK, Fan G, Wu GJ, Higuchi A. Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells. Regen Biomater 2024; 11:rbae091. [PMID: 39233867 PMCID: PMC11374035 DOI: 10.1093/rb/rbae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.
Collapse
Affiliation(s)
- Zeyu Tian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qian Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hui-Yu Lin
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Yu-Ru Zhu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
| | - Ling Ling
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tzu-Cheng Sung
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wanqi Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Sitian Cheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan, China
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, China
| |
Collapse
|
10
|
Li C, Gao D, Li C, Cheng G, Zhang L. Fighting against biofilm: The antifouling and antimicrobial material. Biointerphases 2024; 19:040802. [PMID: 39023091 DOI: 10.1116/6.0003695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.
Collapse
Affiliation(s)
- Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, The Third People's Hospital of Dalian, Dalian, Liaoning 116033, China
| |
Collapse
|
11
|
Kim JK, Villa-Diaz LG, Saunders TL, Saul RP, Timilsina S, Liu F, Mishina Y, Krebsbach PH. Selective Inhibition of mTORC1 Signaling Supports the Development and Maintenance of Pluripotency. Stem Cells 2024; 42:13-28. [PMID: 37931173 PMCID: PMC10787279 DOI: 10.1093/stmcls/sxad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.
Collapse
Affiliation(s)
- Jin Koo Kim
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| | - Luis G Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan, Ann Arbor, MI, USA
| | - Ruiz P Saul
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Fei Liu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Division of Oral and Systemic Health Sciences, University of California, Los Angeles School of Dentistry, Los Angeles, CA, USA
| |
Collapse
|
12
|
Esfahani SN, Zheng Y, Arabpour A, Irizarry AMR, Kobayashi N, Xue X, Shao Y, Zhao C, Agranonik NL, Sparrow M, Hunt TJ, Faith J, Lara MJ, Wu QY, Silber S, Petropoulos S, Yang R, Chien KR, Clark AT, Fu J. Derivation of human primordial germ cell-like cells in an embryonic-like culture. Nat Commun 2024; 15:167. [PMID: 38167821 PMCID: PMC10762101 DOI: 10.1038/s41467-023-43871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, USA
| | - Auriana Arabpour
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Norio Kobayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, 100084, Beijing, China
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
| | - Nicole L Agranonik
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Megan Sparrow
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy J Hunt
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jared Faith
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mary Jasmine Lara
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Instituet, 14186, Stockholm, Sweden
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, Montreal, QC, H2X 19A, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, QC, Canada
| | - Ran Yang
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Amander T Clark
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
13
|
Murota Y, Nagane M, Wu M, Santra M, Venkateswaran S, Tanaka S, Bradley M, Taga T, Tabu K. A niche-mimicking polymer hydrogel-based approach to identify molecular targets for tackling human pancreatic cancer stem cells. Inflamm Regen 2023; 43:46. [PMID: 37759310 PMCID: PMC10523636 DOI: 10.1186/s41232-023-00296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is one of the most fatal human cancers, but effective therapies remain to be established. Cancer stem cells (CSCs) are highly resistant to anti-cancer drugs and a deeper understanding of their microenvironmental niche has been considered important to provide understanding and solutions to cancer eradication. However, as the CSC niche is composed of a wide variety of biological and physicochemical factors, the development of multidisciplinary tools that recapitulate their complex features is indispensable. Synthetic polymers have been studied as attractive biomaterials due to their tunable biofunctionalities, while hydrogelation technique further renders upon them a diversity of physical properties, making them an attractive tool for analysis of the CSC niche. METHODS To develop innovative materials that recapitulate the CSC niche in pancreatic cancers, we performed polymer microarray analysis to identify niche-mimicking scaffolds that preferentially supported the growth of CSCs. The niche-mimicking activity of the identified polymers was further optimized by polyethylene glycol (PEG)-based hydrogelation. To reveal the biological mechanisms behind the activity of the optimized hydrogels towards CSCs, proteins binding onto the hydrogel were analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS), and the potential therapeutic targets were validated by looking at gene expression and patients' outcome in the TCGA database. RESULTS PA531, a heteropolymer composed of 2-methoxyethyl methacrylate (MEMA) and 2-(diethylamino)ethyl methacrylate (DEAEMA) (5.5:4.5) that specifically supports the growth and maintenance of CSCs was identified by polymer microarray screening using the human PAAD cell line KLM1. The polymer PA531 was converted into five hydrogels (PA531-HG1 to HG5) and developed to give an optimized scaffold with the highest CSC niche-mimicking activities. From this polymer that recapitulated CSC binding and control, the proteins fetuin-B and angiotensinogen were identified as candidate target molecules with clinical significance due to the correlation between gene expression levels and prognosis in PAAD patients and the proteins associated with the niche-mimicking polymer. CONCLUSION This study screened for biofunctional polymers suitable for recapitulation of the pancreatic CSC niche and one hydrogel with high niche-mimicking abilities was successfully fabricated. Two soluble factors with clinical significance were identified as potential candidates for biomarkers and therapeutic targets in pancreatic cancers. Such a biomaterial-based approach could be a new platform in drug discovery and therapy development against CSCs, via targeting of their niche.
Collapse
Affiliation(s)
- Yoshitaka Murota
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mariko Nagane
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Mei Wu
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Mithun Santra
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Seshasailam Venkateswaran
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8519, Japan
| | - Mark Bradley
- School of Chemistry, University of Edinburgh, Joseph Black Building, West Mains Road, Edinburgh, EH9 3FJ, UK
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45, Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
14
|
Timilsina S, McCandliss KF, Trivedi E, Villa-Diaz LG. Enhanced Expansion of Human Pluripotent Stem Cells and Somatic Cell Reprogramming Using Defined and Xeno-Free Culture Conditions. Bioengineering (Basel) 2023; 10:999. [PMID: 37760101 PMCID: PMC10525589 DOI: 10.3390/bioengineering10090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/29/2023] Open
Abstract
Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; p < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.
Collapse
Affiliation(s)
- Suraj Timilsina
- Department of Biomarkers and Investigative Pathology Unit (BIPU), Charles River Laboratories, Mattawan, MI 49071, USA;
| | | | - Evan Trivedi
- Department of Chemistry, Oakland University, Rochester, MI 48309, USA;
| | - Luis G. Villa-Diaz
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA;
- Department of Bioengineering, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
15
|
Xu S, Qi G, Durrett TP, Li Y, Liu X, Bai J, Chen MS, Sun XS, Wang W. High Nutritional Quality of Human-Induced Pluripotent Stem Cell-Generated Proteins through an Advanced Scalable Peptide Hydrogel 3D Suspension System. Foods 2023; 12:2713. [PMID: 37509805 PMCID: PMC10380007 DOI: 10.3390/foods12142713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cell-cultured protein technology has become increasingly attractive due to its sustainability and climate benefits. The aim of this study is to determine the nutritional quality of the human-induced pluripotent stem cell (hiPSC)-cultured proteins in an advanced 3D peptide hydrogel system for the highly efficient production of cell-cultured proteins. Our previous study demonstrated a PGmatrix peptide hydrogel for the 3D embedded culture of long-term hiPSC maintenance and expansion (PGmatrix-hiPSC (PG-3D)), which showed significantly superior pluripotency when compared with traditional 2D cell culture on Matrigel and/or Vitronectin and other existing 3D scaffolding systems such as Polyethylene glycol (PEG)-based hydrogels. In this study, we designed a PGmatrix 3D suspension (PG-3DSUSP) system from the PG-3D embedded system that allows scaling up a hiPSC 3D culture volume by 20 times (e.g., from 0.5 mL to 10 mL). The results indicated that the PG-3DSUSP was a competitive system compared to the well-established PG-3D embedded method in terms of cell growth performance and cell pluripotency. hiPSCs cultured in PG-3DSUSP consistently presented a 15-20-fold increase in growth and a 95-99% increase in viability across multiple passages with spheroids with a size range of 30-50 μm. The expression of pluripotency-related genes, including NANOG, OCT4, hTERT, REX1, and UTF1, in PG-3DSUSP-cultured hiPSCs was similar to or higher than that observed in a PG-3D system, suggesting continuous pluripotent maintenance. The nutritional value of the hiPSC-generated proteins from the PG-3DSUSP system was further evaluated for amino acid composition and in vitro protein digestibility. The amino acid composition of the hiPSC-generated proteins demonstrated a significantly higher essential amino acid content (39.0%) than human skeletal muscle protein (31.8%). In vitro protein digestibility of hiPSC-generated proteins was significantly higher (78.0 ± 0.7%) than that of the commercial beef protein isolate (75.7 ± 0.6%). Taken together, this is the first study to report an advanced PG-3DSUSP culture system to produce highly efficient hiPSC-generated proteins that possess more essential amino acids and better digestibility. The hiPSC-generated proteins with superior nutrition quality may be of particular significance as novel alternative proteins in food engineering and industries for future food, beverage, and supplement applications.
Collapse
Affiliation(s)
- Shan Xu
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Timothy P Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Xuming Liu
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, USA
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
17
|
Li J, Wu Y, Yao X, Tian Y, Sun X, Liu Z, Ye X, Wu C. Preclinical Research of Stem Cells: Challenges and Progress. Stem Cell Rev Rep 2023:10.1007/s12015-023-10528-y. [PMID: 37097496 DOI: 10.1007/s12015-023-10528-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/26/2023]
Abstract
In recent years, great breakthroughs have been made in basic research and clinical applications of stem cells in regenerative medicine and other fields, which continue to inspire people to explore the field of stem cells. With nearly unlimited self-renewal ability, stem cells can generate at least one type of highly differentiated daughter cell, which provides broad development prospects for the treatment of human organ damage and other diseases. In the field of stem cell research, related technologies for inducing or isolating stem cells are relatively mature, and a variety of stable stem cell lines have been successfully constructed. To realize the full clinical application of stem cells as soon as possible, it is more and more important to further optimize each stage of stem cell research while conforming to Current Good Manufacture Practices (cGMP) standards. Here, we synthesized recent developments in stem cell research and focus on the introduction of xenogenicity in the preclinical research process and the remaining problems of various cell bioreactors. Our goal is to promote the development of technologies for xeno-free culture and clinical expansion of stem cells through in-depth discussion of current research. This review will provide new insight into stem cell research protocols and will contribute to the creation of efficient and stable stem cell expansion systems.
Collapse
Affiliation(s)
- Jinhu Li
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yurou Wu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang Yao
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Tian
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Sun
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zibo Liu
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xun Ye
- School of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
18
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
19
|
Wang T, Yu T, Tsai CY, Hong ZY, Chao WH, Su YS, Subbiah SK, Renuka RR, Hsu ST, Wu GJ, Higuchi A. Xeno-free culture and proliferation of hPSCs on 2D biomaterials. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 199:63-107. [PMID: 37678982 DOI: 10.1016/bs.pmbts.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Human pluripotent stem cells (human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs)) have unlimited proliferative potential, whereas adult stem cells such as bone marrow-derived stem cells and adipose-derived stem cells have problems with aging. When hPSCs are intended to be cultured on feeder-free or xeno-free conditions without utilizing mouse embryonic fibroblasts or human fibroblasts, they cannot be cultured on conventional tissue culture polystyrene dishes, as adult stem cells can be cultured but should be cultivated on material surfaces grafted or coated with (a) natural or recombinant extracellular matrix (ECM) proteins, (b) ECM protein-derived peptides and specific synthetic polymer surfaces in xeno-free and/or chemically defined conditions. This review describes current developing cell culture biomaterials for the proliferation of hPSCs while maintaining the pluripotency and differentiation potential of the cells into 3 germ layers. Biomaterials for the cultivation of hPSCs without utilizing a feeder layer are essential to decrease the risk of xenogenic molecules, which contributes to the potential clinical usage of hPSCs. ECM proteins such as human recombinant vitronectin, laminin-511 and laminin-521 have been utilized instead of Matrigel for the feeder-free cultivation of hPSCs. The following biomaterials are also discussed for hPSC cultivation: (a) decellularized ECM, (b) peptide-grafted biomaterials derived from ECM proteins, (c) recombinant E-cadherin-coated surface, (d) polysaccharide-immobilized surface, (e) synthetic polymer surfaces with and without bioactive sites, (f) thermoresponsive polymer surfaces with and without bioactive sites, and (g) synthetic microfibrous scaffolds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Tao Yu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Chang-Yen Tsai
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Zhao-Yu Hong
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Wen-Hui Chao
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Yi-Shuo Su
- Department of Chemical and Materials Engineering, National Central University, Jhongli, Taoyuan, Taiwan
| | - Suresh Kumar Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Remya Rajan Renuka
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai, India
| | - Shih-Tien Hsu
- Department of Internal Medicine, Landseed International Hospital, Pingjen City, Taoyuan, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Akon Higuchi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China; Graduate Institute of Medical Sciences and Department of Obstetrics & Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
20
|
Gravity-driven microfluidic device placed on a slow-tilting table enables constant unidirectional perfusion culture of human induced pluripotent stem cells. J Biosci Bioeng 2023; 135:151-159. [PMID: 36586792 DOI: 10.1016/j.jbiosc.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/30/2022]
Abstract
Gravity-driven microfluidics, which utilizes gravity force to drive liquid flow, offers portability and multi-condition setting flexibility because they do not require pumps or connection tubes to drive the flow. However, because the flow rate decreases with time in gravity-driven microfluidics, it is not suitable for stem cell experiments, which require long-term (at least a day) stability. In this study, gravity-driven microfluidics and a slow-tilting table were developed to culture cells under constant unidirectional perfusion. The microfluidic device was placed on a slow-tilting table, which tilts unidirectionally at a rate of approximately 7° per day to compensate for the reduction in the flow rate. Computational simulations showed that the pulsation of the flow arising from the stepwise movement of the table was less than 0.2%, and the flow was laminar. Hydrophilization of the tanks increased the flow rate, which is consistent with the theoretical values. We showed that vitronectin is better than laminin 511 fragments as a coating material for adhering human induced pluripotent stem cells on a microchamber made of polydimethylsiloxane, and succeeded in culturing the cells for 3 days. It is believed that the system offers easy-to-use cell culture tools, such as conventional multiwell culture vessels, and enables the control of the cell microenvironment.
Collapse
|
21
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
22
|
Wang S, Tao Y. Construction of graphene oxide-modified peptide-coated nanofibrous enhances the osteogenic conversion of induced pluripotent stem cells. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shu Wang
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| | - Yang Tao
- Chongqing Emergency Medical Center, Chongqing, China
- Chongqing Key Laboratory of Emergency Medicine, Chongqing, China
| |
Collapse
|
23
|
Açarı İK, Sel E, Özcan İ, Ateş B, Köytepe S, Thakur VK. Chemistry and engineering of brush type polymers: Perspective towards tissue engineering. Adv Colloid Interface Sci 2022; 305:102694. [PMID: 35597039 DOI: 10.1016/j.cis.2022.102694] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
In tissue engineering, it is imperative to control the behaviour of cells/stem cells, such as adhesion, proliferation, propagation, motility, and differentiation for tissue regeneration. Surfaces that allow cells to behave in this way are critical as support materials in tissue engineering. Among these surfaces, brush-type polymers have an important potential for tissue engineering and biomedical applications. Brush structure and length, end groups, bonding densities, hydrophilicity, surface energy, structural flexibility, thermal stability, surface chemical reactivity, rheological and tribological properties, electron and energy transfer ability, cell binding and absorption abilities for various biological molecules of brush-type polymers were increased its importance in tissue engineering applications. In addition, thanks to these functional properties and adjustable surface properties, brush type polymers are used in different high-tech applications such as electronics, sensors, anti-fouling, catalysis, purification and energy etc. This review comprehensively highlights the use of brush-type polymers in tissue engineering applications. Considering the superior properties of brush-type polymer structures, it is believed that in the future, it will be an effective tool in structure designs containing many different biomolecules (enzymes, proteins, etc.) in the field of tissue engineering.
Collapse
|
24
|
Tamura A, Nishida K, Zhang S, Kang TW, Tonegawa A, Yui N. Cografting of Zwitterionic Sulfobetaines and Cationic Amines on β-Cyclodextrin-Threaded Polyrotaxanes Facilitates Cellular Association and Tissue Accumulation with High Biocompatibility. ACS Biomater Sci Eng 2022; 8:2463-2476. [PMID: 35536230 DOI: 10.1021/acsbiomaterials.2c00324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Cyclodextrins (β-CDs) and β-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of β-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for β-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than β-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Kei Nishida
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Shunyao Zhang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tae Woong Kang
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
25
|
Yang F, Zhang D, Zhou Q, Li M, Xie C, Li S, Wang X, Wang W, Guo Y, Xiao Q, Wang Y, Gao L. Peptides-modified polystyrene-based polymers as high-performance substrates for the growth and propagation of human embryonic stem cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
27
|
Takahashi K, Okubo C, Nakamura M, Iwasaki M, Kawahara Y, Tabata T, Miyamoto Y, Woltjen K, Yamanaka S. A stress-reduced passaging technique improves the viability of human pluripotent cells. CELL REPORTS METHODS 2022; 2:100155. [PMID: 35474962 PMCID: PMC9017214 DOI: 10.1016/j.crmeth.2021.100155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Xeno-free culture systems have expanded the clinical and industrial application of human pluripotent stem cells (PSCs). However, reproducibility issues, often arising from variability during passaging steps, remain. Here, we describe an improved method for the subculture of human PSCs. The revised method significantly enhances the viability of human PSCs by lowering DNA damage and apoptosis, resulting in more efficient and reproducible downstream applications such as gene editing and directed differentiation. Furthermore, the method does not alter PSC characteristics after long-term culture and attenuates the growth advantage of abnormal subpopulations. This robust passaging method minimizes experimental error and reduces the rate of PSCs failing quality control of human PSC research and application.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Mio Iwasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuka Kawahara
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Tsuyoshi Tabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yousuke Miyamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
29
|
Shimizu E, Iguchi H, Le MNT, Nakamura Y, Kobayashi D, Arai Y, Takakura K, Benno S, Yoshida N, Tsukahara M, Haneda S, Hasegawa K. A chemically-defined plastic scaffold for the xeno-free production of human pluripotent stem cells. Sci Rep 2022; 12:2516. [PMID: 35169157 PMCID: PMC8847402 DOI: 10.1038/s41598-022-06356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/25/2022] [Indexed: 11/09/2022] Open
Abstract
Clinical use of human pluripotent stem cells (hPSCs) is hampered by the technical limitations of their expansion. Here, we developed a chemically synthetic culture substrate for human pluripotent stem cell attachment and maintenance. The substrate comprises a hydrophobic polyvinyl butyral-based polymer (PVB) and a short peptide that enables easy and uniform coating of various types of cell culture ware. The coated ware exhibited thermotolerance, underwater stability and could be stored at room temperature. The substrate supported hPSC expansion in combination with most commercial culture media with an efficiency similar to that of commercial substrates. It supported not only the long-term expansion of examined iPS and ES cell lines with normal karyotypes during their undifferentiated state but also directed differentiation of three germ layers. This substrate resolves major concerns associated with currently used recombinant protein substrates and could be applied in large-scale automated manufacturing; it is suitable for affordable and stable production of clinical-grade hPSCs and hPSC-derived products.
Collapse
Affiliation(s)
- Eiko Shimizu
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- CiRA Foundation, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Hiroki Iguchi
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuta Nakamura
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Daigo Kobayashi
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Yuhei Arai
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Kenta Takakura
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Seiko Benno
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan
| | - Noriko Yoshida
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masayoshi Tsukahara
- CiRA Foundation, Kyoto University, 53 Shogoin-Kawara-cho, Sakyo-ku, Kyoto, 606-8397, Japan
| | - Satoshi Haneda
- Sekisui Chemical Co., Ltd., 2-1 Hyakuyama, Shimamoto-cho, Mishima-gun, Osaka, 618-0021, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
30
|
Li S, Yoshioka M, Li J, Liu L, Ye S, Kamei KI, Chen Y. Nanocasting of fibrous morphology on a substrate for long-term propagation of human induced pluripotent stem cells. Biomed Mater 2022; 17. [PMID: 35114658 DOI: 10.1088/1748-605x/ac51b8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/03/2022] [Indexed: 11/12/2022]
Abstract
Human-induced pluripotent stem cells (hiPSCs) can be self-renewed for many generations on nanofibrous substrates. Herein, a casting method is developed to replicate the nanofibrous morphology into a thin layer of polymethylsiloxane (PDMS). The template is obtained by electrospinning and chemical crosslinking of gelatin nanofibers on a glass slide. The replicas of the template are surface-functionalized by gelatin and used for propagation of hiPSCs over tenth generations. The performance of the propagated hiPSCs is checked by immunofluorescence imaging, flowcytometry, and RT-PCR, confirming the utility of the method. The results are also compared with those obtained using electrospun nanofiber substrates. Inherently, the PDMS replicas is of low stiffness and can be reproduced easily. Compared to other patterning techniques, casting is more flexible and cost-effective, suggesting that this method might find applications in cell-based assays that rely on stringent consideration of both substrate stiffness and surface morphology.
Collapse
Affiliation(s)
- Sisi Li
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, Paris, Île-de-France, 75230, FRANCE
| | - Momoko Yoshioka
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Li Liu
- Kyoto University, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Sixin Ye
- University of Paris, 94276 Le Kremlin Bicêtre, Paris, 75006, FRANCE
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences, Yoshida Ushinomiya-cho, Kyoto, 606-8501, JAPAN
| | - Yong Chen
- Chemistry, Ecole Normale Superieure, 24 rue Lhomond, F-75231 Paris Cedex 05, Paris, Île-de-France, 75230, FRANCE
| |
Collapse
|
31
|
Liu C, Cheng F, Liu B, Gao D, Cheng G, Li C, Wang H, He W. Versatile, Oxygen-Insensitive Surface-Initiated Anionic Polymerization to Prepare Functional Polymer Brushes in Aqueous Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1001-1010. [PMID: 34949091 DOI: 10.1021/acs.langmuir.1c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface-initiated polymerization is an attractive approach to achieve desired interfacial compositions and properties on a wide range of substrates and surfaces. Due to mild reaction conditions, multiple surface-initiated polymerization methods, such as atom-transfer radical polymerization (ATRP), reversible addition-fragmentation chain-transfer polymerization, and so forth, have been developed and studied in academia and industry. However, the current methods require the combination of metal catalysts, special initiators, and oxygen removal. Herein, we developed a surface-initiated carbanion-mediated anionic polymerization (SI-CMAP), which can be conducted in aqueous solutions in the presence of oxygen without the need for metal catalysts. Zwitterionic 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate (SBMA) was selected as a model monomer to develop and demonstrate this strategy. The vinyl sulfone (VS) groups displayed on substrate surfaces reacted with N-methylimidazole (NMIM), which was used as the in situ initiator. The polymerization mechanism was extensively studied from many aspects at room temperature, including the changes in reaction conditions, factors affecting the polymerization extent, and substrate surfaces. We also demonstrated the compatibility of this method with a broad spectrum of monomers ranging from SBMA to other acrylates and acrylamides by using glycine betaine as a reaction additive. This method was also evaluated for the preparation of polymer-coated nanoparticles. For polymer-coated silica nanoparticles, their hydrodynamic diameter, copper contamination, and effects of salt and protein concentrations were compared with SI-ATRP in parallel. SI-CMAP in aqueous solutions in air and the absence of metal catalysts make this method sustainable and cost-effective. We believe that SI-CMAP can be readily adapted to the industrial surface coating and large-scale nanoparticle preparation under mild conditions.
Collapse
Affiliation(s)
- Chong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Bo Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Dongdong Gao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan, Guangdong 523000, China
| | - Huanan Wang
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
- Department of Polymer Science & Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
32
|
Bomkamp C, Skaalure SC, Fernando GF, Ben‐Arye T, Swartz EW, Specht EA. Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102908. [PMID: 34786874 PMCID: PMC8787436 DOI: 10.1002/advs.202102908] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Indexed: 05/03/2023]
Abstract
Cultivating meat from stem cells rather than by raising animals is a promising solution to concerns about the negative externalities of meat production. For cultivated meat to fully mimic conventional meat's organoleptic and nutritional properties, innovations in scaffolding technology are required. Many scaffolding technologies are already developed for use in biomedical tissue engineering. However, cultivated meat production comes with a unique set of constraints related to the scale and cost of production as well as the necessary attributes of the final product, such as texture and food safety. This review discusses the properties of vertebrate skeletal muscle that will need to be replicated in a successful product and the current state of scaffolding innovation within the cultivated meat industry, highlighting promising scaffold materials and techniques that can be applied to cultivated meat development. Recommendations are provided for future research into scaffolds capable of supporting the growth of high-quality meat while minimizing production costs. Although the development of appropriate scaffolds for cultivated meat is challenging, it is also tractable and provides novel opportunities to customize meat properties.
Collapse
Affiliation(s)
- Claire Bomkamp
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | | | | - Tom Ben‐Arye
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | - Elliot W. Swartz
- The Good Food Institute1380 Monroe St. NW #229WashingtonDC20010USA
| | | |
Collapse
|
33
|
Esfahani SN, Resto Irizarry AM, Xue X, Lee SBD, Shao Y, Fu J. Micro/nanoengineered technologies for human pluripotent stem cells maintenance and differentiation. NANO TODAY 2021; 41:101310. [PMID: 34745321 PMCID: PMC8570530 DOI: 10.1016/j.nantod.2021.101310] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a promising source of cells for cell replacement-based therapies as well as modeling human development and diseases in vitro. However, achieving fate control of hPSC with a high yield and specificity remains challenging. The fate specification of hPSCs is regulated by biochemical and biomechanical cues in their environment. Driven by this knowledge, recent exciting advances in micro/nanoengineering have been leveraged to develop a broad range of tools for the generation of extracellular biomechanical and biochemical signals that determine the behavior of hPSCs. In this review, we summarize such micro/nanoengineered technologies for controlling hPSC fate and highlight the role of biochemical and biomechanical cues such as substrate rigidity, surface topography, and cellular confinement in the hPSC-based technologies that are on the horizon.
Collapse
Affiliation(s)
- Sajedeh Nasr Esfahani
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel Byung-Deuk Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yue Shao
- Department of Engineering Mechanics, Tsinghua University, Beijing, China
| | - Jiangping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
34
|
Tang X, Wu H, Xie J, Wang N, Chen Q, Zhong Z, Qiu Y, Wang J, Li X, Situ P, Lai L, Zern MA, Chen H, Duan Y. The combination of dextran sulphate and polyvinyl alcohol prevents excess aggregation and promotes proliferation of pluripotent stem cells in suspension culture. Cell Prolif 2021; 54:e13112. [PMID: 34390064 PMCID: PMC8450127 DOI: 10.1111/cpr.13112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/13/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES For clinical applications of cell-based therapies, a large quantity of human pluripotent stem cells (hPSCs) produced in standardized and scalable culture processes is required. Currently, microcarrier-free suspension culture shows potential for large-scale expansion of hPSCs; however, hPSCs tend to aggregate during culturing leading to a negative effect on cell yield. To overcome this problem, we developed a novel protocol to effectively control the sizes of cell aggregates and enhance the cell proliferation during the expansion of hPSCs in suspension. MATERIALS AND METHODS hPSCs were expanded in suspension culture supplemented with polyvinyl alcohol (PVA) and dextran sulphate (DS), and 3D suspension culture of hPSCs formed cell aggregates under static or dynamic conditions. The sizes of cell aggregates and the cell proliferation as well as the pluripotency of hPSCs after expansion were assessed using cell counting, size analysis, real-time quantitative polymerase chain reaction, flow cytometry analysis, immunofluorescence staining, embryoid body formation, teratoma formation and transcriptome sequencing. RESULTS Our results demonstrated that the addition of DS alone effectively prevented hPSC aggregation, while the addition of PVA significantly enhanced hPSC proliferation. The combination of PVA and DS not only promoted cell proliferation of hPSCs but also produced uniform and size-controlled cell aggregates. Moreover, hPSCs treated with PVA, or DS or a combination, maintained the pluripotency and were capable of differentiating into all three germ layers. mRNA-seq analysis demonstrated that the combination of PVA and DS significantly promoted hPSC proliferation and prevented cell aggregation through improving energy metabolism-related processes, regulating cell growth, cell proliferation and cell division, as well as reducing the adhesion among hPSC aggregates by affecting expression of genes related to cell adhesion. CONCLUSIONS Our results represent a significant step towards developing a simple and robust approach for the expansion of hPSCs in large scale.
Collapse
Affiliation(s)
- Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Qicong Chen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China.,Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Jue Wang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiajing Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ping Situ
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liangxue Lai
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell, Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mark A Zern
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA, USA
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
| |
Collapse
|
35
|
Soheilmoghaddam F, Rumble M, Cooper-White J. High-Throughput Routes to Biomaterials Discovery. Chem Rev 2021; 121:10792-10864. [PMID: 34213880 DOI: 10.1021/acs.chemrev.0c01026] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many existing clinical treatments are limited in their ability to completely restore decreased or lost tissue and organ function, an unenviable situation only further exacerbated by a globally aging population. As a result, the demand for new medical interventions has increased substantially over the past 20 years, with the burgeoning fields of gene therapy, tissue engineering, and regenerative medicine showing promise to offer solutions for full repair or replacement of damaged or aging tissues. Success in these fields, however, inherently relies on biomaterials that are engendered with the ability to provide the necessary biological cues mimicking native extracellular matrixes that support cell fate. Accelerating the development of such "directive" biomaterials requires a shift in current design practices toward those that enable rapid synthesis and characterization of polymeric materials and the coupling of these processes with techniques that enable similarly rapid quantification and optimization of the interactions between these new material systems and target cells and tissues. This manuscript reviews recent advances in combinatorial and high-throughput (HT) technologies applied to polymeric biomaterial synthesis, fabrication, and chemical, physical, and biological screening with targeted end-point applications in the fields of gene therapy, tissue engineering, and regenerative medicine. Limitations of, and future opportunities for, the further application of these research tools and methodologies are also discussed.
Collapse
Affiliation(s)
- Farhad Soheilmoghaddam
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Madeleine Rumble
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| | - Justin Cooper-White
- Tissue Engineering and Microfluidics Laboratory (TEaM), Australian Institute for Bioengineering and Nanotechnology (AIBN), University Of Queensland, St. Lucia, Queensland, Australia 4072.,School of Chemical Engineering, University Of Queensland, St. Lucia, Queensland, Australia 4072
| |
Collapse
|
36
|
Ramasubramanian A, Muckom R, Sugnaux C, Fuentes C, Ekerdt BL, Clark DS, Healy KE, Schaffer DV. High-Throughput Discovery of Targeted, Minimally Complex Peptide Surfaces for Human Pluripotent Stem Cell Culture. ACS Biomater Sci Eng 2021; 7:1344-1360. [PMID: 33750112 DOI: 10.1021/acsbiomaterials.0c01462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human pluripotent stem cells harbor an unlimited capacity to generate therapeutically relevant cells for applications in regenerative medicine. However, to utilize these cells in the clinic, scalable culture systems that activate defined receptors and signaling pathways to sustain stem cell self-renewal are required; and synthetic materials offer considerable promise to meet these needs. De novo development of materials that target novel pathways has been stymied by a limited understanding of critical receptor interactions maintaining pluripotency. Here, we identify peptide agonists for the human pluripotent stem cell (hPSC) laminin receptor and pluripotency regulator, α6-integrin, through unbiased, library-based panning strategies. Biophysical characterization of adhesion suggests that identified peptides bind hPSCs through α6-integrin with sub-μM dissociation constants similar to laminin. By harnessing a high-throughput microculture platform, we developed predictive guidelines for presenting these integrin-targeting peptides alongside canonical binding motifs at optimal stoichiometries to generate nascent culture surfaces. Finally, when presented as self-assembled monolayers, predicted peptide combinations supported hPSC expansion, highlighting how unbiased screens can accelerate the discovery of targeted biomaterials.
Collapse
Affiliation(s)
- Anusuya Ramasubramanian
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Caroline Sugnaux
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christina Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Barbara L Ekerdt
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Nasir A, Thorpe J, Burroughs L, Meurs J, Pijuan‐Galito S, Irvine DJ, Alexander MR, Denning C. Discovery of a Novel Polymer for Xeno-Free, Long-Term Culture of Human Pluripotent Stem Cell Expansion. Adv Healthc Mater 2021; 10:e2001448. [PMID: 33369242 PMCID: PMC11469126 DOI: 10.1002/adhm.202001448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
Human pluripotent stem cells (hPSCs) can be expanded and differentiated in vitro into almost any adult tissue cell type, and thus have great potential as a source for cell therapies with biomedical application. In this study, a fully-defined polymer synthetic substrate is identified for hPSC culture in completely defined, xenogenic (xeno)-free conditions. This system can overcome the cost, scalability, and reproducibility limitations of current hPSC culture strategies, and facilitate large-scale production. A high-throughput, multi-generational polymer microarray platform approach is used to test over 600 unique polymers and rapidly assess hPSC-polymer interactions in combination with the fully defined xeno-free medium, Essential 8 (E8). This study identifies a novel nanoscale phase separated blend of poly(tricyclodecane-dimethanol diacrylate) and poly(butyl acrylate) (2:1 v/v), which supports long-term expansion of hPSCs and can be readily coated onto standard cultureware. Analysis of cell-polymer interface interactions through mass spectrometry and integrin blocking studies provides novel mechanistic insight into the role of the E8 proteins in promoting integrin-mediated hPSC attachment and maintaining hPSC signaling, including ability to undergo multi-lineage differentiation. This study therefore identifies a novel substrate for long-term serial passaging of hPSCs in serum-free, commercial chemically-defined E8, which provides a promising and economic hPSC expansion platform for clinical-scale application.
Collapse
Affiliation(s)
- Aishah Nasir
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Jordan Thorpe
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Joris Meurs
- School of PharmacyUniversity of NottinghamNottinghamNG7 2RDUK
| | - Sara Pijuan‐Galito
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| | - Derek J. Irvine
- Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | | | - Chris Denning
- Division of Cancer & Stem CellsBiodiscovery InstituteUniversity of NottinghamNottinghamNG7 2RDUK
| |
Collapse
|
38
|
Wetzel R, Hauser S, Lin W, Berg P, Werner C, Pietzsch J, Kempermann G, Zhang Y. Screening Arrays of Laminin Peptides on Modified Cellulose for Promotion of Adhesion of Primary Endothelial and Neural Precursor Cells. Adv Biol (Weinh) 2021. [DOI: 10.1002/adbi.201900303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Richard Wetzel
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400 Dresden 01328 Germany
| | - Weilin Lin
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Peggy Berg
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden Institute of Biofunctional Polymer Materials/Max Bergmann Center of Biomaterials Hohe Str. 6 Dresden 01069 Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology Helmholtz‐Zentrum Dresden‐Rossendorf Institute of Radiopharmaceutical Cancer Research Bautzner Landstraße 400 Dresden 01328 Germany
- Faculty of Chemistry and Food Chemistry, School of Science Technische Universität Dresden Dresden 01062 Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Tatzberg 41 Dresden 01307 Germany
- CRTD—Center for Regenerative Therapies Dresden Technische Universität Dresden Fetscherstraße 105 Dresden 01307 Germany
| | - Yixin Zhang
- B CUBE Center for Molecular Bioengineering Technische Universität Dresden Tatzberg 41 Dresden 01307 Germany
| |
Collapse
|
39
|
Taga T, Tabu K. Glioma progression and recurrence involving maintenance and expansion strategies of glioma stem cells by organizing self-advantageous niche microenvironments. Inflamm Regen 2020; 40:33. [PMID: 32952746 PMCID: PMC7493875 DOI: 10.1186/s41232-020-00142-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022] Open
Abstract
Due to the nature of enhanced resistance to conventional chemo/radiotherapies and metastasis, highly tumorigenic cancer stem cells (CSCs) have been proposed as a promising target for cancer eradication. To tackle the therapeutic difficulties of cancers involving CSCs, extensive research efforts have been directed toward understanding the extracellular microenvironments of CSCs, i.e., CSC niche, which plays important roles in CSC maintenance and expansion. Here we review recently identified mechanisms of maintenance and expansion of glioma CSCs (GSCs) leading to glioma progression and recurrence, with particular emphasis on the reports made by studies with a unique approach using polymer microarrays screening and with a unique viewpoint of necrotic particles. The polymer-based approach identified two groups of niche components, extracellular matrices (ECMs) and iron, and uncovered that co-expression of ECM-, iron-, and macrophage-related genes is predictive of glioma patients' outcome. The study in view of a unique fraction of GSC-derived necrotic particles proposed that such particles develop GSC-supportive tumor-associated macrophages (TAMs). Taken together, these studies provide new insights into the mechanisms underlying GSC-driven niche development, i.e., organization of the self-advantageous niche microenvironments for GSC maintenance and expansion leading to glioma progression and recurrence. A series of such studies can redefine the current concept of anti-GSC niche therapy that targets ligands/receptors supporting GSCs, and have potential to accelerate cancer therapy development.
Collapse
Affiliation(s)
- Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU) , 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kouichi Tabu
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU) , 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|
40
|
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel. NATURE REVIEWS. MATERIALS 2020; 5:539-551. [PMID: 32953138 PMCID: PMC7500703 DOI: 10.1038/s41578-020-0199-8] [Citation(s) in RCA: 536] [Impact Index Per Article: 107.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/31/2020] [Indexed: 05/19/2023]
Abstract
Matrigel, a basement-membrane matrix extracted from Engelbreth-Holm-Swarm mouse sarcomas, has been used for more than four decades for a myriad of cell culture applications. However, Matrigel is limited in its applicability to cellular biology, therapeutic cell manufacturing and drug discovery owing to its complex, ill-defined and variable composition. Variations in the mechanical and biochemical properties within a single batch of Matrigel - and between batches - have led to uncertainty in cell culture experiments and a lack of reproducibility. Moreover, Matrigel is not conducive to physical or biochemical manipulation, making it difficult to fine-tune the matrix to promote intended cell behaviours and achieve specific biological outcomes. Recent advances in synthetic scaffolds have led to the development of xenogenic-free, chemically defined, highly tunable and reproducible alternatives. In this Review, we assess the applications of Matrigel in cell culture, regenerative medicine and organoid assembly, detailing the limitations of Matrigel and highlighting synthetic scaffold alternatives that have shown equivalent or superior results. Additionally, we discuss the hurdles that are limiting a full transition from Matrigel to synthetic scaffolds and provide a brief perspective on the future directions of synthetic scaffolds for cell culture applications.
Collapse
Affiliation(s)
| | - William L. Murphy
- Department of Biomedical Engineering, University of Wisconsin–Madison, WI, USA
- Department of Orthopedics and Rehabilitation, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
41
|
Khalil AS, Xie AW, Johnson HJ, Murphy WL. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. Biomaterials 2020; 248:120007. [PMID: 32302801 PMCID: PMC8445021 DOI: 10.1016/j.biomaterials.2020.120007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/24/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Translation of human pluripotent stem cell (hPSC)-derived therapies to the clinic demands scalable, cost-effective methods for cell expansion. Culture media currently used for hPSC expansion rely on high concentrations and frequent supplementation of recombinant growth factors due to their short half-life at physiological temperatures. Here, we developed a biomaterial strategy using mineral-coated microparticles (MCMs) to sustain delivery of basic fibroblast growth factor (bFGF), a thermolabile protein critical for hPSC pluripotency and proliferation. We show that the MCMs stabilize bFGF against thermally induced activity loss and provide more efficient sustained release of active growth factor compared to polymeric carriers commonly used for growth factor delivery. Using a statistically driven optimization approach called Design of Experiments, we generated a bFGF-loaded MCM formulation that supported hPSC expansion over 25 passages without the need for additional bFGF supplementation to the media, resulting in greater than 80% reduction in bFGF usage compared to standard approaches. This materials-based strategy to stabilize and sustain delivery of a thermolabile growth factor has broad potential to reduce costs associated with recombinant protein supplements in scalable biomanufacturing of emerging cell therapies.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Angela W Xie
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
42
|
Kasai K, Tohyama S, Suzuki H, Tanosaki S, Fukuda K, Fujita J, Miyata S. Cost-effective culture of human induced pluripotent stem cells using UV/ozone-modified culture plastics with reduction of cell-adhesive matrix coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110788. [PMID: 32279811 DOI: 10.1016/j.msec.2020.110788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) are considered to be one of the most promising cell resources for regenerative medicine. HiPSCs usually maintain their pluripotency when they are cultured on feeder cell layers or are attached to a cell-adhesive extracellular matrix. In this study, we developed a culture system based on UV/ozone modification for conventional cell culture plastics to generate a suitable surface condition for hiPSCs. Time of flight secondary ion mass spectrometry (ToF-SIMS) was carried out to elucidate the relationship between hiPSC adhesion and UV/ozone irradiation-induced changes to surface chemistry of cell culture plastics. Cell culture plastics with modified surfaces enabled growth of a feeder-free hiPSC culture with markedly reduced cell-adhesive matrix coating. Our cell culture system using UV/ozone-modified cell culture plastics may produce clinically relevant hiPSCs at low costs, and can be easily scaled up in culture systems to produce a large number of hiPSCs.
Collapse
Affiliation(s)
- Kohei Kasai
- Graduate School of Science and Technology, Keio University, 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hayato Suzuki
- Graduate School of Science and Technology, Keio University, 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan
| | - Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
43
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
44
|
Borys BS, So T, Roberts EL, Ferrie L, Larijani L, Abraham B, Krawetz R, Rancourt DE, Kallos MS. Large-scale expansion of feeder-free mouse embryonic stem cells serially passaged in stirred suspension bioreactors at low inoculation densities directly from cryopreservation. Biotechnol Bioeng 2020; 117:1316-1328. [PMID: 31960947 DOI: 10.1002/bit.27279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/23/2022]
Abstract
Embryonic stem cells (ESCs) have almost unlimited proliferation capacity in vitro and can retain the ability to contribute to all cell lineages, making them an ideal platform material for cell-based therapies. ESCs are traditionally cultured in static flasks on a feeder layer of murine embryonic fibroblast cells. Although sufficient to generate cells for research purposes, this approach is impractical to achieve large quantities for clinical applications. In this study, we have developed protocols that address a variety of challenges that currently bottleneck clinical translation of ESCs expanded in stirred suspension bioreactors. We demonstrated that mouse ESCs (mESCs) cryopreserved in the absence of feeder cells could be thawed directly into stirred suspension bioreactors at extremely low inoculation densities (100 cells/ml). These cells sustained proliferative capacity through multiple passages and various reactor sizes and geometries, producing clinically relevant numbers (109 cells) and maintaining pluripotency phenotypic and functional properties. Passages were completed in stirred suspension bioreactors of increasing scale, under defined batch conditions which greatly improved resource efficiency. Output mESCs were analyzed for pluripotency marker expression (SSEA-1, SOX-2, and Nanog) through flow cytometry, and spontaneous differentiation and teratoma analysis was used to demonstrate functional maintenance of pluripotency.
Collapse
Affiliation(s)
- Breanna S Borys
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Tania So
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Roberts
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Leah Ferrie
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Leila Larijani
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett Abraham
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Roman Krawetz
- Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E Rancourt
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael S Kallos
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada.,Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
45
|
Li Z, Cai Z, Fu W, Liu Y, Tian C, Wang H, Fu T, Wu Z, Wu D, Jin Y, Cheng Z, Terada N, Liu L, Wu W, Jin S, Bai F. High-efficiency protein delivery into transfection-recalcitrant cell types. Biotechnol Bioeng 2019; 117:816-831. [PMID: 31814110 DOI: 10.1002/bit.27245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Intracellular delivery of functional proteins is of great interest for basic biological research as well as for clinical applications. Transfection is the most commonly used method, however, it is not applicable to large-scale manipulation and inefficient in important cell types implicated in biomedical applications, such as epithelial, immune and pluripotent stem cells. In this study, we explored a bacterial type III secretion system (Bac-T3SS)-mediated proteofection method to overcome these limitations. An attenuated Pseudomonas aeruginosa vector was constructed, which has features of low toxicity, high T3SS activity, and self-limiting growth. Compared to the method of transfection, the Bac-T3SS showed significantly higher efficiencies of Cre recombinase translocation and target site recombination for hard-to-transfect human cell lines. Furthermore, through the delivery of β-lactamase in live animals, we demonstrated the feasibility and biosafety of in vivo application of the Bac-T3SS. This study provided an efficient and low-cost proteofection strategy for laboratory use as well as for application in large-scale cell manipulations.
Collapse
Affiliation(s)
- Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zeqiong Cai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weixin Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ying Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tongtong Fu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhenzhou Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Donghai Wu
- Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Naohiro Terada
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Méhes E, Biri-Kovács B, Isai DG, Gulyás M, Nyitray L, Czirók A. Matrigel patterning reflects multicellular contractility. PLoS Comput Biol 2019; 15:e1007431. [PMID: 31652274 PMCID: PMC6834294 DOI: 10.1371/journal.pcbi.1007431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 11/06/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023] Open
Abstract
Non-muscle myosin II (NMII)-induced multicellular contractility is essential for development, maintenance and remodeling of tissue morphologies. Dysregulation of the cytoskeleton can lead to birth defects or enable cancer progression. We demonstrate that the Matrigel patterning assay, widely used to characterize endothelial cells, is a highly sensitive tool to evaluate cell contractility within a soft extracellular matrix (ECM) environment. We propose a computational model to explore how cell-exerted contractile forces can tear up the cell-Matrigel composite material and gradually remodel it into a network structure. We identify measures that are characteristic for cellular contractility and can be obtained from image analysis of the recorded patterning process. The assay was calibrated by inhibition of NMII activity in A431 epithelial carcinoma cells either directly with blebbistatin or indirectly with Y27632 Rho kinase inhibitor. Using Matrigel patterning as a bioassay, we provide the first functional demonstration that overexpression of S100A4, a calcium-binding protein that is frequently overexpressed in metastatic tumors and inhibits NMIIA activity by inducing filament disassembly, effectively reduces cell contractility. Sensing and exerting forces is a fundamental aspect of tissue organization. We demonstrate that contractile cells form an intricate network structure when placed in a pliable culture environment, a phenomenon often associated with vascular networks and is being actively used to characterize endothelial cells in culture. We propose a computational model that operates with mechanical stresses, plastic deformation and material failure within the cell-extracellular matrix composite to explain the patterning process. In addition to re-interpret a decades-old tool of experimental cell biology, our work suggests a potentially high throughput computational assay to characterize cellular contractility within a soft ECM environment.
Collapse
Affiliation(s)
- Előd Méhes
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - Beáta Biri-Kovács
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - Dona G. Isai
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Márton Gulyás
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
| | - László Nyitray
- Department of Biochemistry, Eotvos Lorand University, Budapest, Hungary
| | - András Czirók
- Department of Biological Physics, Eotvos Lorand University, Budapest, Hungary
- Department of Anatomy & Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Sci Rep 2019; 9:13037. [PMID: 31506597 PMCID: PMC6737067 DOI: 10.1038/s41598-019-49669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688–2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.
Collapse
|
48
|
Zheng Y, Xue X, Shao Y, Wang S, Esfahani SN, Li Z, Muncie JM, Lakins JN, Weaver VM, Gumucio DL, Fu J. Controlled modelling of human epiblast and amnion development using stem cells. Nature 2019; 573:421-425. [PMID: 31511693 PMCID: PMC8106232 DOI: 10.1038/s41586-019-1535-2] [Citation(s) in RCA: 315] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/06/2019] [Indexed: 11/09/2022]
Abstract
Early human embryonic development involves extensive lineage diversification, cell-fate specification and tissue patterning1. Despite its basic and clinical importance, early human embryonic development remains relatively unexplained owing to interspecies divergence2,3 and limited accessibility to human embryo samples. Here we report that human pluripotent stem cells (hPSCs) in a microfluidic device recapitulate, in a highly controllable and scalable fashion, landmarks of the development of the epiblast and amniotic ectoderm parts of the conceptus, including lumenogenesis of the epiblast and the resultant pro-amniotic cavity, formation of a bipolar embryonic sac, and specification of primordial germ cells and primitive streak cells. We further show that amniotic ectoderm-like cells function as a signalling centre to trigger the onset of gastrulation-like events in hPSCs. Given its controllability and scalability, the microfluidic model provides a powerful experimental system to advance knowledge of human embryology and reproduction. This model could assist in the rational design of differentiation protocols of hPSCs for disease modelling and cell therapy, and in high-throughput drug and toxicity screens to prevent pregnancy failure and birth defects.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sicong Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Zida Li
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon M Muncie
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, San Francisco, CA, USA
| | - Johnathon N Lakins
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Le MNT, Hasegawa K. Expansion Culture of Human Pluripotent Stem Cells and Production of Cardiomyocytes. Bioengineering (Basel) 2019; 6:E48. [PMID: 31137703 PMCID: PMC6632060 DOI: 10.3390/bioengineering6020048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/25/2022] Open
Abstract
Transplantation of human pluripotent stem cell (hPSCs)-derived cardiomyocytes for the treatment of heart failure is a promising therapy. In order to implement this therapy requiring numerous cardiomyocytes, substantial production of hPSCs followed by cardiac differentiation seems practical. Conventional methods of culturing hPSCs involve using a 2D culture monolayer that hinders the expansion of hPSCs, thereby limiting their productivity. Advanced culture of hPSCs in 3D aggregates in the suspension overcomes the limitations of 2D culture and attracts immense attention. Although the hPSC production needs to be suitable for subsequent cardiac differentiation, many studies have independently focused on either expansion of hPSCs or cardiac differentiation protocols. In this review, we summarize the recent approaches to expand hPSCs in combination with cardiomyocyte differentiation. A comparison of various suspension culture methods and future prospects for dynamic culture of hPSCs are discussed in this study. Understanding hPSC characteristics in different models of dynamic culture helps to produce numerous cells that are useful for further clinical applications.
Collapse
Affiliation(s)
- Minh Nguyen Tuyet Le
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (iCeMS), Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
50
|
Hsu YT, Wu CY, Guan ZY, Sun HY, Mei C, Chen WC, Cheng NC, Yu J, Chen HY. Characterization of Mechanical Stability and Immunological Compatibility for Functionalized Modification Interfaces. Sci Rep 2019; 9:7644. [PMID: 31113975 PMCID: PMC6529445 DOI: 10.1038/s41598-019-43999-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Surface modification layers are performed on the surfaces of biomaterials and have exhibited promise for decoupling original surface properties from bulk materials and enabling customized and advanced functional properties. The physical stability and the biological compatibility of these modified layers are equally important to ensure minimized delamination, debris, leaching of molecules, and other problems that are related to the failure of the modification layers and thus can provide a long-term success for the uses of these modified layers. A proven surface modification tool of the functionalized poly-para-xylylene (PPX) system was used as an example, and in addition to the demonstration of their chemical conjugation capabilities and the functional properties that have been well-documented, in the present report, we additionally devised the characterization protocols to examine stability properties, including thermostability and adhesive strength, as well as the biocompatibility, including cell viability and the immunological responses, for the modified PPX layers. The results suggested a durable coating stability for PPXs and firmly attached biomolecules under these stability and compatibility tests. The durable and stable modification layers accompanied by the native properties of the PPXs showed high cell viability against fibroblast cells and macrophages (MΦs), and the resulting immunological activities created by the MΦs exhibited excellent compatibility with non-activated immunological responses and no indication of inflammation.
Collapse
Affiliation(s)
- Yao-Tsung Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chih-Yu Wu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Zhen-Yu Guan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Ho-Yi Sun
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chieh Mei
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chien Chen
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, College of Medicine Chang Gung University, Taoyuan, 333, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital, Taipei, 10018, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|