1
|
Zhang J, Shi H, Qin X, Wang P, Ling Y, Jin X, Cui M, Song B, Wang H, He Y. Sterically Controlled Cyclobutane-Dioxetane Ultrabright Afterglow Nanosystem for Cyclic Therapy of Choroidal Neovascularization in Mice. J Am Chem Soc 2025. [PMID: 40392694 DOI: 10.1021/jacs.5c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Afterglow occurring after light excitation ceases offers a safer light source to the laser-activated verteporfin therapy approved by the FDA for choroidal neovascularization (CNV). However, conventional afterglow molecules, especially adamantane-dioxetanes with high steric hindrance, exhibit limited chemiexcitation, restricting electron transfer and diminishing therapeutic effects. Here, we constructed ultrabright afterglow nanosystems by integrating low-hindrance cyclobutane moieties into the dioxetane framework. Among these cyclobutane substituents, the benzyl oxocyclobutane-dioxetane is the brightest afterglow molecule due to its lowest hindrance, showing 35.7 times faster relative chemiexcitation rate and 59 times higher afterglow intensity than adamantane-dioxetane, alongside a three-order-of-magnitude increase in total afterglow emission. Consequently, at the equivalent concentration, the benzyl oxocyclobutane-dioxetane-based nanosystem produces nearly five times more singlet oxygen than free verteporfin. In a CNV mouse model, cyclic treatment with our nanosystem reduced lesion areas by 64.9%, outperforming the 39.3% reduction achieved by free verteporfin counterpart. By eliminating the need for laser activation, this strategy minimizes ocular damage, providing a safe and effective treatment for CNV and other retinal disorders.
Collapse
Affiliation(s)
- Jiawei Zhang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Xuan Qin
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Pengcheng Wang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangbowen Jin
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Mingyue Cui
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau 999078, SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, SAR, China
| |
Collapse
|
2
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Wykoff CC, Jackson TL, Price CF, Baldwin ME, Leitch IM, Slakter J. Sozinibercept Combination Therapy for Neovascular Age-related Macular Degeneration: Phase 2b Study Subgroup Analysis by Lesion Type. Ophthalmic Surg Lasers Imaging Retina 2025; 56:287-296. [PMID: 39999360 DOI: 10.3928/23258160-20250108-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to evaluate the angiographic predictors of response to the anti-vascular endothelial growth factor-C/-D agent, sozinibercept. PATIENTS AND METHODS Prespecified and post hoc subgroup analyses of a phase 2b, randomized, double-masked, sham-controlled trial of 240 participants with treatment-naïve neovascular age-related macular degeneration, comparing monthly intravitreal sozinibercept 0.5 mg or 2 mg, plus ranibizumab 0.5 mg, versus monthly ranibizumab monotherapy. RESULTS Visual acuity benefits at week 24 were greatest in participants with occult lesions receiving 2 mg sozinibercept combination therapy (+15.65 [n = 53] letters versus +9.62 [n = 51] with ranibizumab monotherapy; least squares mean difference +6.03; P = 0.0009). A composite analysis of occult and minimally classic lesions excluding retinal angiomatous proliferation (n = 175/240) also favored sozinibercept over control (+16.08 versus +10.34 letters; +5.74; P = 0.0002). Structural outcomes mirrored sozinibercept visual acuity benefits, with less leakage and smaller lesions on multimodal imaging. CONCLUSION Angiographic lesion characteristics were found to predict the response to sozinibercept combination therapy. [Ophthalmic Surg Lasers Imaging Retina 2025;56:287-296.].
Collapse
|
5
|
Ribatti D. Lymphatics in the chick embryo chorioallantoic membrane. Microvasc Res 2025; 160:104806. [PMID: 40120145 DOI: 10.1016/j.mvr.2025.104806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
The chick embryo chorioallantoic membrane (CAM) has been used as an experimental in vivo model to study angiogenesis and anti-angiogenesis. Moreover, due to the lack of a fully developed immunocompetent system, the CAM is suitable to study various aspects of tumor angiogenesis and metastatic potential. In this article, we emphasize the important role of the CAM also in the study of lymphangiogenesis and tumor lymphangiogenesis in vivo. This experimental model is more advantageous than other assays because it is a relatively simple, quick, and low-cost. Finally, it does not require administrative procedures to obtain ethics committee approval for animal experimentation.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
6
|
Grobbelaar C, Steenkamp V, Mabeta P. Vascular Endothelial Growth Factor Receptors in the Vascularization of Pancreatic Tumors: Implications for Prognosis and Therapy. Curr Issues Mol Biol 2025; 47:179. [PMID: 40136433 PMCID: PMC11941243 DOI: 10.3390/cimb47030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
In pancreatic cancer (PC), vascular endothelial growth factor (VEGF) and its primary receptor, vascular endothelial growth factor receptor (VEGFR)-2, are central drivers of angiogenesis and metastasis, with their overexpression strongly associated with poor prognosis. In some PC patients, VEGF levels correlate with disease stage, tumor burden, and survival outcomes. However, therapies targeting VEGF and VEGFR-2, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies, have demonstrated limited efficacy, partly due to the emergence of resistance mechanisms. Resistance appears to stem from the activation of alternative vascularization pathways. This review explores the multifaceted roles of VEGFRs in pancreatic cancer, including VEGFR-1 and VEGFR-3. Potential strategies to improve VEGFR-targeting therapies, such as combination treatments, the development of more selective inhibitors, and the use of biomarkers, are discussed as promising approaches to enhance treatment efficacy and outcomes.
Collapse
Affiliation(s)
- Craig Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Vanessa Steenkamp
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| | - Peace Mabeta
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
7
|
Luo G, Wu Z, Fan Q, Zhang C, Lin J, Li H, Zhao J, Huo H, Qi X, Wu G, Chen M, Yu J, Zheng L, Luo M. S-Allyl-Cysteine Ameliorates Cirrhotic Portal Hypertension by Enhancing Lymphangiogenesis via a VEGF-C-Independent Manner. Liver Int 2025; 45:e70024. [PMID: 39967382 DOI: 10.1111/liv.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND AND AIMS Lymphangiogenesis is enhanced during the development of liver cirrhosis and portal hypertension (PHT). However, hepatic lymphatic vascular system is understudied in liver cirrhosis and PHT. Hydrogen sulfide (H2S) and related compounds have potential prolymphangiogenic effects besides its previously reported vascular-protective effects. Therefore, we aimed to investigate the effects of endogenous H2S donor S-allyl-cysteine (SAC) on bile duct ligation (BDL)-induced liver cirrhosis and PHT. METHODS BDL rats with cholestatic liver cirrhosis and PHT were orally administrated with SAC at 100 or 200 mg/kg/day, as well as DL-propargylglycine (PAG) or MAZ-51 injections. Hemodynamic parameters were determined, and subsequent evaluations of liver fibrosis, intrahepatic vascular resistance (IHVR) and lymphangiogensis were performed. Human lymphatic endothelial cells (hLECs) were used for in vitro verification of prolymphangiogenic effects of SAC. RESULTS SAC treatment significantly decreased PP and promoted endogenous H2S production. Liver fibrosis and IHVR were also ameliorated. Hepatic and mesenteric lymphangiogenesis were enhanced in BDL rats and further promoted by SAC despite a significant downregulation of hepatic VEGF-C. Inhibition of H2S production by PAG significantly reduced lymphatic vessels, while inhibition of lymphangiogensis by MAZ-51 reversed the protective effects of SAC against PHT. SAC enhanced lymphangiogenic functions in vitro by promoting cellular H2S production and activating Akt phosphorylation without altering VEGF-C/D, which were reversed by PAG and MAZ-51. CONCLUSIONS SAC significantly alleviated BDL-induced liver cirrhosis and PHT. Meanwhile, elevated H2S induced by SAC facilitated lymphangiogenesis via a VEGF-C-independent manner, which contributed to the alleviation of PHT.
Collapse
Affiliation(s)
- Guqing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghao Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chihao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayun Lin
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinbo Zhao
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoliang Qi
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangbo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Yu
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Abedinzadeh M, Nazari A, Vahidi SA, Pourmasumi S, Khorramdelazad H. Critical Roles of VEGFR1, VEGFR2, VEGFR3, BAX, and BCL-2 in the Pathogenesis of Varicose Veins: Unveiling Molecular Mechanisms. Am J Mens Health 2025; 19:15579883251321588. [PMID: 40079569 PMCID: PMC11907509 DOI: 10.1177/15579883251321588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 03/15/2025] Open
Abstract
Varicocele is characterized by the abnormal dilation of veins within the testicular pampiniform plexus, contributing to inflammation, pain, and infertility in males. The precise roles of vascular endothelial growth factor receptors (VEGFRs), B-cell lymphoma 2 (BCL-2), and BCL-2-associated X-protein (BAX) in the pathology of varicocele still need to be clarified. This study sought to investigate the protein expression levels of VEGFR1, VEGFR2, VEGFR3, BCL-2, and BAX in varicose and healthy vessels from patients diagnosed with varicocele. Tissue samples were collected from 20 varicose veins and 20 healthy vessels from patients diagnosed with varicocele. Western blotting was utilized to quantify VEGFR1, VEGFR2, VEGFR3, BCL-2, and BAX protein levels. Analysis revealed a statistically significant increase in VEGFR3 protein expression within varicose veins compared to healthy vessels (p = .0473), while no significant differences were observed in the levels of VEGFR1 and VEGFR2 between the two groups. Concerning apoptotic signaling proteins, no significant differences were noted in the individual expression levels of BAX and BCL-2; however, the BAX/BCL-2 ratio was approximately 1.29 in varicose vessels. This ratio, exceeding 1.0, may suggest a pro-apoptotic shift in varicose veins and indicates a potential involvement of apoptosis in the pathology of varicocele. These findings suggest that VEGFR3 may play a pivotal role in the pathogenesis of varicocele and could contribute to vascular alterations associated with this condition. Furthermore, the elevated BAX/BCL-2 ratio implies a pro-apoptotic environment within varicose veins, thereby implicating apoptosis as a possible mechanism in the development of varicocele. Further exploration of VEGFR3-related signaling pathways and apoptotic markers may yield valuable insights for identifying therapeutic targets in managing varicocele.
Collapse
Affiliation(s)
- Mehdi Abedinzadeh
- Department of Urology, Shahid Rahnemoon Hospital, Shahid Sadoughi University of Medical Sciences and Health Service, Yazd, Iran
| | - Alireza Nazari
- Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Andrology Research Center, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seraj-Aldin Vahidi
- Andrology Research Center, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Research and Clinical Center for Infertility, Yazd Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Soheila Pourmasumi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Qiu T, Xiang S, Zhou J, Yang M, Lan Y, Zhang X, Gong X, Zhang Z, Ji Y. Sirolimus for kaposiform hemangioendothelioma: Potential mechanisms of action and resistance. Int J Cancer 2025; 156:689-699. [PMID: 39369447 DOI: 10.1002/ijc.35207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Kaposiform hemangioendotheliomas (KHEs) are vascular tumors that are considered borderline or locally aggressive and may lead to lethal outcomes. Traditional therapies, such as surgery and embolization, may be insufficient or technically impossible for patients with KHE. Sirolimus (or rapamycin), a specific inhibitor of mechanistic target of rapamycin, has recently been demonstrated to be very useful in the treatment of KHEs. Here, we highlight recent substantial progress regarding the effects of sirolimus on KHEs and discuss the potential mechanisms of action of sirolimus in treating this disease. The prevention of platelet activation and inflammation, along with antiangiogenic effects, the inhibition of lymphangiogenesis, the attenuation of fibrosis, or a combination of all these effects, may be responsible for the therapeutic effects of sirolimus. In addition, the mechanism of sirolimus resistance in some KHE patients is discussed. Finally, we review the somatic mutations that have recently been identified in KEH lesions, and discuss the potential of novel therapeutic targets based on these further understandings of the cellular and molecular pathogenesis of KHE.
Collapse
Affiliation(s)
- Tong Qiu
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Shanshan Xiang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Min Yang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Xuepeng Zhang
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery and Med-X Center for Informatics, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Kuonqui KG, Campbell AC, Pollack BL, Shin J, Sarker A, Brown S, Park HJ, Mehrara BJ, Kataru RP. Regulation of VEGFR3 signaling in lymphatic endothelial cells. Front Cell Dev Biol 2025; 13:1527971. [PMID: 40046235 PMCID: PMC11880633 DOI: 10.3389/fcell.2025.1527971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/22/2025] [Indexed: 03/09/2025] Open
Abstract
The receptor tyrosine kinase vascular endothelial growth factor (VEGF) receptor 3 (VEGFR3) is the principal transmembrane receptor responsible for sensing and coordinating cellular responses to environmental lymphangiogenic stimuli in lymphatic endothelial cells (LECs). VEGFC and D (VEGFC/D) function as the cognate ligands to VEGFR3 by stimulating autophosphorylation of intracellular VEGFR3 tyrosine kinase domains that activate signal cascades involved in lymphatic growth and survival. VEGFR3 primarily promotes downstream signaling through the phosphoinositide 3-kinase (PI3K) and Ras signaling cascades that promote functions including cell proliferation and migration. The importance of VEGFR3 cascades in lymphatic physiology is underscored by identification of dysfunctional VEGFR3 signaling across several lymphatic-related diseases. Recently, our group has shown that intracellular modification of VEGFR3 signaling is a potent means of inducing lymphangiogenesis independent of VEGFC. This is important because long-term treatment with recombinant VEGFC may have deleterious consequences due to off-target effects. A more complete understanding of VEGFR3 signaling pathways may lead to novel drug development strategies. The purpose of this review is to 1) characterize molecular mediators of VEGFC/VEGFR3 downstream signaling activation and their functional roles in LEC physiology and 2) explore molecular regulation of overall VEGFR3 expression and activity within LECs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Raghu P. Kataru
- Plastic and Reconstructive Surgery Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
11
|
Patra C, Rayrikar A, Wagh G, Kleefeldt F, Roshanbinfar K, Cop F, Nikolic I, Schmidt MHH, Acker‐Palmer A, Ergün S, Engel FB. Nephronectin Is Required for Vascularization in Zebrafish and Sufficient to Promote Mammalian Vessel-Like Structures in Hydrogels for Tissue Engineering. J Am Heart Assoc 2025; 14:e037943. [PMID: 39846290 PMCID: PMC12074719 DOI: 10.1161/jaha.123.037943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/05/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Organs and tissues need to be vascularized during development. Similarly, vascularization is required to engineer thick tissues. How vessels are formed during organogenesis is not fully understood, and vascularization of engineered tissues remains a significant challenge. METHODS AND RESULTS Here, we show that the extracellular matrix protein nephronectin is required for vascularization during zebrafish development as well as adult fin regeneration and is sufficient to promote mammalian vessel formation and maturation. Nephronectin a morphants and mutants exhibit diminished axial vein sprouting and posterior intersegmental vessel growth. Notably, the angiogenesis-associated integrins itgav and itgb3.1 are coexpressed with nephronectin a in the region of the caudal vein plexus and posterior somites; nephronectin binds to integrin alpha-V/integrin beta-3.1 (ITGAV/ITGB3.1), and itgav morphants phenocopy nephronectin a mutants. In addition, nephronectin a mutants showed decreased vessel maturation compared with wild-type siblings during caudal fin regeneration in adult zebrafish. Moreover, nephronectin promotes mammalian endothelial cell migration and tube formation in 2D and 3-dimensional in vitro tissue culture. Further, nephronectin enhances vascular endothelial growth factor-induced periaortic vascular capillary interconnectivity, vessel diameter, and vessel stability. CONCLUSIONS Collectively, our results identify nephronectin as a proangiogenic factor during embryonic development, which can be used to improve the vascularization of engineered tissues.
Collapse
Affiliation(s)
- Chinmoy Patra
- Department of Developmental BiologyAgharkar Research InstitutePuneIndia
| | - Amey Rayrikar
- Department of Developmental BiologyAgharkar Research InstitutePuneIndia
- Present address:
Division of Basic and Translational Cardiovascular Research, Department of CardiologyBoston Children’s HospitalBostonUSA
| | - Ganesh Wagh
- Department of Developmental BiologyAgharkar Research InstitutePuneIndia
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology IIJulius‐Maximilians‐UniversityWürzburgGermany
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology and Department of CardiologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Florian Cop
- Institute of Cell Biology and NeuroscienceJohann Wolfgang Goethe University Frankfurt am MainFrankfurt am MainGermany
| | - Iva Nikolic
- Department of Biochemistry and Molecular BiologyMonash Biomedicine Discovery InstituteMonash UniversityClaytonAustralia
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav CarusTechnische Universität Dresden School of MedicineDresdenGermany
| | - Amparo Acker‐Palmer
- Institute of Cell Biology and NeuroscienceJohann Wolfgang Goethe University Frankfurt am MainFrankfurt am MainGermany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology IIJulius‐Maximilians‐UniversityWürzburgGermany
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of NephropathologyInstitute of Pathology and Department of CardiologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| |
Collapse
|
12
|
Porada M, Bułdak Ł. From Pathophysiology to Practice: Evolving Pharmacological Therapies, Clinical Complications, and Pharmacogenetic Considerations in Portal Hypertension. Metabolites 2025; 15:72. [PMID: 39997697 PMCID: PMC11857179 DOI: 10.3390/metabo15020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Portal hypertension is a major complication of chronic liver diseases, leading to serious issues such as esophageal variceal bleeding. The increase in portal vein pressure is driven by both an organic component and a functional component, including tonic contraction of hepatic stellate cells. These processes result in a pathological rise in intrahepatic vascular resistance, stemming from partial impairment of hepatic microcirculation, which is further exacerbated by abnormalities in extrahepatic vessels, including increased portal blood flow. Objectives: This review aims to provide a comprehensive overview of the evolving pharmacological therapies for portal hypertension, with consideration and discussion of pathophysiological mechanisms, clinical complications, and pharmacogenetic considerations, highlighting potential directions for future research. Methods: A review of recent literature was performed to evaluate current knowledge and potential therapeutic strategies in portal hypertension. Results: For over 35 years, non-selective beta-blockers have been the cornerstone therapy for portal hypertension by reducing portal vein inflow as an extrahepatic target, effectively preventing decompensation and variceal hemorrhages. However, since not all patients exhibit an adequate response to non-selective beta-blockers (NSBBs), and some may not tolerate NSBBs, alternative or adjunctive therapies that enhance the effects of NSBBs on portal pressure are being investigated in preclinical and early clinical studies. Conclusions: A better understanding of pharmacogenetic factors and pathophysiological mechanisms could lead to more individualized and effective treatments for portal hypertension. These insights highlight potential directions for future research.
Collapse
Affiliation(s)
- Michał Porada
- Students’ Scientific Society, Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland;
| | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| |
Collapse
|
13
|
Lee NJ, Parab S, Lam AE, Leong JX, Matsuoka RL. Angiogenic mechanisms governing the segregation of blood-brain barrier and fenestrated capillaries derived from a multipotent cerebrovascular niche. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.10.627641. [PMID: 39868183 PMCID: PMC11760744 DOI: 10.1101/2024.12.10.627641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity. RNAscope analysis demonstrates restricted expression of flt4 in sprouting ECs contributing to fenestrated choroid plexus (CP) vasculature, identifying an early molecular distinction from adjacent BBB vessels. Mechanistically, flt4 null and cytoplasmic-domain-deletion mutants exhibit CP vascularization defects when combined with vegfr2 zebrafish paralog deletion. Pharmacological results support this co-requirement of Flt4 and Vegfr2 signaling and suggest the PI3K and ERK pathways as downstream effectors. These findings reveal a specialized developmental origin for BBB and fenestrated EC subtypes, and establish Flt4 as a crucial guidance receptor mediating their angiogenic segregation.
Collapse
|
14
|
Wang Y, Bai M, Peng Q, Li L, Tian F, Guo Y, Jing C. Angiogenesis, a key point in the association of gut microbiota and its metabolites with disease. Eur J Med Res 2024; 29:614. [PMID: 39710789 DOI: 10.1186/s40001-024-02224-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem that plays a crucial role in human health and disease, including obesity, diabetes, cardiovascular diseases, neurodegenerative diseases, inflammatory bowel disease, and cancer. Chronic inflammation is a common feature of these diseases and is closely related to angiogenesis (the process of forming new blood vessels), which is often dysregulated in pathological conditions. Inflammation potentially acts as a central mediator. This abstract aims to elucidate the connection between the gut microbiota and angiogenesis in various diseases. The gut microbiota influences angiogenesis through various mechanisms, including the production of metabolites that directly or indirectly affect vascularization. For example, short-chain fatty acids (SCFAs) such as butyrate, propionate, and acetate are known to regulate immune responses and inflammation, thereby affecting angiogenesis. In the context of cardiovascular diseases, the gut microbiota promotes atherosclerosis and vascular dysfunction by producing trimethylamine N-oxide (TMAO) and other metabolites that promote inflammation and endothelial dysfunction. Similarly, in neurodegenerative diseases, the gut microbiota may influence neuroinflammation and the integrity of the blood-brain barrier, thereby affecting angiogenesis. In cases of fractures and wound healing, the gut microbiota promotes angiogenesis by activating inflammatory responses and immune effects, facilitating the healing of tissue damage. In cancer, the gut microbiota can either inhibit or promote tumor growth and angiogenesis, depending on the specific bacterial composition and their metabolites. For instance, some bacteria can activate inflammasomes, leading to the production of inflammatory factors that alter the tumor immune microenvironment and activate angiogenesis-related signaling pathways, affecting tumor angiogenesis and metastasis. Some bacteria can directly interact with tumor cells, activating angiogenesis-related signaling pathways. Diet, as a modifiable factor, significantly influences angiogenesis through diet-derived microbial metabolites. Diet can rapidly alter the composition of the microbiota and its metabolic activity, thereby changing the concentration of microbial-derived metabolites and profoundly affecting the host's immune response and angiogenesis. For example, a high animal protein diet promotes the production of pro-atherogenic metabolites like TMAO, activating inflammatory pathways and interfering with platelet function, which is associated with the severity of coronary artery plaques, peripheral artery disease, and cardiovascular diseases. A diet rich in dietary fiber promotes the production of SCFAs, which act as ligands for cell surface or intracellular receptors, regulating various biological processes, including inflammation, tissue homeostasis, and immune responses, thereby influencing angiogenesis. In summary, the role of the gut microbiota in angiogenesis is multifaceted, playing an important role in disease progression by affecting various biological processes such as inflammation, immune responses, and multiple signaling pathways. Diet-derived microbial metabolites play a crucial role in linking the gut microbiota and angiogenesis. Understanding the complex interactions between diet, the gut microbiota, and angiogenesis has the potential to uncover novel therapeutic targets for managing these conditions. Therefore, interventions targeting the gut microbiota and its metabolites, such as through fecal microbiota transplantation (FMT) and the application of probiotics to alter the composition of the gut microbiota and enhance the production of beneficial metabolites, present a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Mingshuai Bai
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Qifan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Ying Guo
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
15
|
Schmidt K, Lerm D, Schmidt A, Dickel N, Fiedler J, Thum T, Kunz M. Automated High-Throughput Live Cell Monitoring of Scratch Wound Closure. Biomed Eng Comput Biol 2024; 15:11795972241295619. [PMID: 40291412 PMCID: PMC12032466 DOI: 10.1177/11795972241295619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/09/2024] [Indexed: 04/30/2025] Open
Abstract
Background Angiogenesis and regenerative wound healing rely on the promotion of distinct endothelial cell phenotypes exhibiting increased migratory capacity. Monitoring of these hallmark events in vitro is invaluable for discovering novel therapeutics. However, respective methods often lack a high-throughput character or accurate analysis tools, which are essential for effective screening suitability. Methods and results We stained nuclei of confluent human umbilical vein endothelial cells with Hoechst33342 prior to induction of an artificial scratch wound. Treatments with various growth factors and several concentrations of nintedanib were performed to microscopically evaluate impacts on wound closure. We developed 2 tools for automated analysis of wound closure image sets. Utilizing cell-free area measuring or cellular density evaluation, respectively, migration behavior was assessed well-wise for each time point. We identified pro-migratory effects of interleukin 1β as well as inhibitory actions of nintedanib. Hoechst33342 staining allowed for cell counting which was excluded as a contributing factor to wound closure in our assay. Conclusion We developed a cost-effective, high-throughput pipeline for monitoring cell migration in vitro. We believe that our protocol will accelerate pre-clinical screenings not only for medications targeting endothelial wound closure but also drug discovery research in a broad range of diseases involving cellular migration.
Collapse
Affiliation(s)
- Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Dominik Lerm
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Schmidt
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Nicholas Dickel
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
| | - Meik Kunz
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases, Hannover, Germany
- Chair of Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Yuan Y, Dai Y, Wang J, Shen G, Gai Y, Dong Q, Liu L, Zhu X, Jiang D, Xi L, Dai J, Li F. Identification of a Novel Vascular Endothelial Growth Factor Receptor-3-Targeting Peptide for Molecular Imaging of Metastatic Lymph Nodes. Bioconjug Chem 2024; 35:1843-1858. [PMID: 39469784 DOI: 10.1021/acs.bioconjchem.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Because of the insidious nature of lymphatic metastatic cancer, accurate imaging tracing is very difficult to achieve in the clinic. Previous studies have developed the LARGR peptide (named TMVP1) as a radiotracer for vascular endothelial growth factor receptor-3 (VEGFR-3) imaging in cancer. However, its affinity for the target remains insufficient, resulting in low imaging sensitivity. In this study, we identified a high-affinity VEGFR-3 targeting peptide, named TMVP1446, using a multiplex screening platform. TMVP1446 demonstrated a dissociation constant of 8.97 × 10-8 M. Both in vitro and in vivo assays confirmed that fluorescently labeled TMVP1446 specifically bound to VEGFR-3. In a 4T1-luciferase tumor mouse model, cyanine 7-labeled TMVP1446 effectively discriminated between contralateral normal lymph nodes (c-LN) and cancer-metastatic sentinel lymph nodes (m-SLN). To evaluate the potential of TMVP1446, we developed a novel VEGFR-3 positron emission tomography radiotracer ([68Ga]Ga-DOTA-TMVP1446) for cancer-m-SLN imaging. [68Ga]Ga-DOTA-TMVP1446 accurately detected and assessed the status of lymph node metastasis, even in micrometastatic tumors, in the B16-F10 mouse tumor model. These findings suggest that TMVP1446 has great potential for advancing VEGFR-3 molecular imaging and metastatic sentinel lymph node imaging.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yilin Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyang Shen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Luoxia Liu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Yuan Y, Dong X, Chen Y, Xi L, Ma D, Dai J, Li F. TMVP1448, a novel peptide improves detection of primary tumors and metastases by specifically targeting VEGFR-3. Biomed Pharmacother 2024; 177:116980. [PMID: 38908201 DOI: 10.1016/j.biopha.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
Lymphangiogenesis at primary tumor and draining lymph nodes plays a pivotal role in tumor metastasis, which has been demonstrated to be regulated by the vascular endothelial growth factor receptor 3 (VEGFR-3) pathway. However, the effect of molecular imaging peptides, which specifically bind VEGFR-3, in tracing tumors remains unclear. We prepared a novel peptide, TMVP1448, with high-affinity to VEGFR-3. The dissociation constant (KD) of TMVP1448 with VEGFR-3 was 7.07 ×10-7 M. In vitro cellular assay showed that TMVP1448 could bind specifically with VEGFR-3. Near infrared imaging results showed that Cy7-TMVP1448 was able to accurately trace primary and metastatic cancers, and PET/CT results showed that [68Ga]Ga-DOTA-TMVP1448 was superior to commonly used radiotracers 18F-FDG. Additionally, no significant negative effect of TMVP1448 was found in mice. Our results suggested that TMVP1448 had great potential for future clinical applications in fluorescence imaging and nuclear imaging of tumors.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xi
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fei Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Chen X, Zhang Z, Wang L, Zhang J, Zhao T, Cai J, Dang Y, Guo R, Liu R, Zhou Y, Wei R, Lou X, Xia F, Ma D, Li F, Dai J, Li F, Xi L. Homodimeric peptide radiotracer [ 68Ga]Ga-NOTA-(TMVP1) 2 for VEGFR-3 imaging of cervical cancer patients. Eur J Nucl Med Mol Imaging 2024; 51:2338-2352. [PMID: 38411667 DOI: 10.1007/s00259-024-06661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
PURPOSE Vascular endothelial growth factor receptor 3 (VEGFR-3) plays a critical role in tumor lymphangiogenesis and metastasis, holding promise as a promising therapeutic target for solid tumors. TMVP1 (LARGR) is a 5-amino acid peptide previously identified in our laboratory from bacterial peptide display system that specifically targets VEGFR-3. Radiolabeled TMVP1 can be used for non-invasive imaging of VEGFR-3 expressing tumors. Homodimeric peptides have better targeting ability than monomeric peptides, and it is worth exploring whether homodimers of TMVP1 ((TMVP1)2) can achieve better imaging effects. This study aimed to explore the peptide properties and tumor assessment value of [68Ga]Ga-labeled (TMVP1)2. METHODS In this study, we developed a TMVP1 homodimer that was conjugated with 1,4,7-triazacyclononane-N, N', N″-triacetic acid (NOTA) via tetraethyleneglycol (PEG4) and triglyicine (Gly3) spacer, and labeled with 68Ga, to construct [68Ga]Ga-NOTA-(TMVP1)2. Binding of VEGFR-3 by TMVP1 and (TMVP1)2, respectively, was modeled by molecular docking. The affinity of [68Ga]Ga-NOTA-(TMVP1)2 for VEGFR-3 and its ability to bind to cells were evaluated. MicroPET imaging and biodistribution studies of [68Ga]Ga-NOTA-(TMVP1)2 were performed in subcutaneous C33A cervical cancer xenografts. Five healthy volunteers and eight patients with cervical cancer underwent whole-body PET/CT acquisition 30-45 min after intravenous injection of [68Ga]Ga-NOTA-(TMVP1)2. RESULTS Both molecular docking and cellular experiments showed that homodimeric TMVP1 had a higher affinity for VEGFR-3 than monomeric TMVP1. [68Ga]Ga-NOTA-(TMVP1)2 was excreted mainly through the renal route and partly through the liver route. In mice bearing C33A xenografts, [68Ga]Ga-NOTA-(TMVP1)2 specifically localized in the tumor (2.32 ± 0.10% ID/g). Pretreatment of C33A xenograft mice with the unlabeled peptide NOTA-(TMVP1)2 reduced the enrichment of [68Ga]Ga-NOTA-(TMVP1)2 in tumors (0.58 ± 0.01% ID/g). [68Ga]Ga-NOTA-(TMVP1)2 proved to be safe in all healthy volunteers and recruited patients, with no side effects or allergies noted. In cervical cancer patients, a majority of the [18F]-FDG identified lesions (18/22, 81.8%) showed moderate to high signal intensity on [68Ga]Ga-NOTA-(TMVP1)2. SUVmax and SUVmean were 2.32 ± 0.77 and 1.61 ± 0.48, respectively. With normal muscle (gluteus maximus) as background, tumor-to-background ratios were 3.49 ± 1.32 and 3.95 ± 1.64 based on SUVmax and SUVmean, respectively. CONCLUSION The favorable characterizations of [68Ga]Ga-NOTA-(TMVP1)2 such as convenient synthesis, high specific activity, and high tumor uptake enable the evaluation of VEGFR-3 in cervical cancer patients and warrant further clinical studies. TRIAL REGISTRATION ChiCTR-DOD-17012458. Registered August 23, 2017 (retrospectively registered).
Collapse
Affiliation(s)
- Xi Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenzhong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- Department of Gynecologic Oncology, Henan Provincial Cancer Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiong Cai
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonghong Dang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Rui Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Fei Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Ling Xi
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
- National Clinical Research Centre for Obstetrics and Gynecology, Cancer Biology Research Centre (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
19
|
Lu Z, Ding L, Jiang X, Zhang S, Yan M, Yang G, Tian X, Wang Q. Single-nucleus RNA transcriptome profiling reveals murine adipose tissue endothelial cell proliferation gene networks involved in obesity development. Arch Biochem Biophys 2024; 757:110029. [PMID: 38729594 DOI: 10.1016/j.abb.2024.110029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Endothelial cells play an important role in the metabolism of adipose tissue (AT). This study aimed to analyze the changes that adipose tissue in AT endothelial cells undergo during the development of obesity, using single-nucleus RNA sequence (snRNA-seq). Mouse paraepididymal AT cells were subjected to snRNA-seq with the 10X Genomics platform. The cell types were then clustered using t-distributed stochastic neighbor embedding and unbiased computational informatics analyses. Protein-protein interactions network was established using the STRING database and visualized using Cytoscape. The dataset was subjected to differential gene enrichment analysis. In total, 21,333 cells acquired from 24 mouse paraepididymal AT samples were analyzed using snRNA-seq. This study identified 18 distinct clusters and annotated macrophages, fibroblasts, epithelial cells, T cells, endothelial cells, stem cells, neutrophil cells, and neutrophil cell types based on representative markers. Cluster 12 was defined as endothelial cells. The proportion of endothelial cells decreased with the development of obesity. Inflammatory factors, such as Vegfa and Prdm16 were upregulated in the medium obesity group but downregulated in the obesity group. Genes, such as Prox1, Erg, Flt4, Kdr, Flt1, and Pecam1 promoted the proliferation of AT endothelial cells and maintained the internal environment of AT. This study established a reference model and general framework for studying the mechanisms, biomarkers, and therapeutic targets of endothelial cell dysfunction-related diseases at the single-cell level.
Collapse
Affiliation(s)
- Zhimin Lu
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Ling Ding
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xing Jiang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Sen Zhang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Min Yan
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Guangxin Yang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China
| | - Xuewen Tian
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| | - Qinglu Wang
- College of Sport and Health, Shandong Sport University, 250102, Jinan, China.
| |
Collapse
|
20
|
Leitch IM, Gerometta M, Eichenbaum D, Finger RP, Steinle NC, Baldwin ME. Vascular Endothelial Growth Factor C and D Signaling Pathways as Potential Targets for the Treatment of Neovascular Age-Related Macular Degeneration: A Narrative Review. Ophthalmol Ther 2024; 13:1857-1875. [PMID: 38824253 PMCID: PMC11178757 DOI: 10.1007/s40123-024-00973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024] Open
Abstract
The development of treatments targeting the vascular endothelial growth factor (VEGF) signaling pathways have traditionally been firstly investigated in oncology and then advanced into retinal disease indications. Members of the VEGF family of endogenous ligands and their respective receptors play a central role in vasculogenesis and angiogenesis during both development and physiological homeostasis. They can also play a pathogenic role in cancer and retinal diseases. Therapeutic approaches have mostly focused on targeting VEGF-A signaling; however, research has shown that VEGF-C and VEGF-D signaling pathways are also important to the disease pathogenesis of tumors and retinal diseases. This review highlights the important therapeutic advances and the remaining unmet need for improved therapies targeting additional mechanisms beyond VEGF-A. Additionally, it provides an overview of alternative VEGF-C and VEGF-D signaling involvement in both health and disease, highlighting their key contributions in the multifactorial pathophysiology of retinal disease including neovascular age-related macular degeneration (nAMD). Strategies for targeting VEGF-C/-D signaling pathways will also be reviewed, with an emphasis on agents currently being developed for the treatment of nAMD.
Collapse
Affiliation(s)
- Ian M Leitch
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia.
| | - Michael Gerometta
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| | - David Eichenbaum
- Retina Vitreous Associates of Florida, St. Petersburg, FL, 33711, USA
| | - Robert P Finger
- Department of Ophthalmology, Medical Faculty Mannheim, University of Heidelberg, 69117, Heidelberg, Germany
| | | | - Megan E Baldwin
- Opthea Limited, 650 Chapel Street, Level 4, Melbourne, VIC, 3141, Australia
| |
Collapse
|
21
|
De Palma M, Hanahan D. Milestones in tumor vascularization and its therapeutic targeting. NATURE CANCER 2024; 5:827-843. [PMID: 38918437 DOI: 10.1038/s43018-024-00780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
Research into the mechanisms and manifestations of solid tumor vascularization was launched more than 50 years ago with the proposition and experimental demonstrations that angiogenesis is instrumental for tumor growth and was, therefore, a promising therapeutic target. The biological knowledge and therapeutic insights forthcoming have been remarkable, punctuated by new concepts, many of which were not foreseen in the early decades. This article presents a perspective on tumor vascularization and its therapeutic targeting but does not portray a historical timeline. Rather, we highlight eight conceptual milestones, integrating initial discoveries and recent progress and posing open questions for the future.
Collapse
Affiliation(s)
- Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| | - Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| |
Collapse
|
22
|
Giordano FA, Layer JP, Leonardelli S, Friker LL, Turiello R, Corvino D, Zeyen T, Schaub C, Müller W, Sperk E, Schmeel LC, Sahm K, Oster C, Kebir S, Hambsch P, Pietsch T, Bisdas S, Platten M, Glas M, Seidel C, Herrlinger U, Hölzel M. L-RNA aptamer-based CXCL12 inhibition combined with radiotherapy in newly-diagnosed glioblastoma: dose escalation of the phase I/II GLORIA trial. Nat Commun 2024; 15:4210. [PMID: 38806504 PMCID: PMC11133480 DOI: 10.1038/s41467-024-48416-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The chemokine CXCL12 promotes glioblastoma (GBM) recurrence after radiotherapy (RT) by facilitating vasculogenesis. Here we report outcomes of the dose-escalation part of GLORIA (NCT04121455), a phase I/II trial combining RT and the CXCL12-neutralizing aptamer olaptesed pegol (NOX-A12; 200/400/600 mg per week) in patients with incompletely resected, newly-diagnosed GBM lacking MGMT methylation. The primary endpoint was safety, secondary endpoints included maximum tolerable dose (MTD), recommended phase II dose (RP2D), NOX-A12 plasma levels, topography of recurrence, tumor vascularization, neurologic assessment in neuro-oncology (NANO), quality of life (QOL), median progression-free survival (PFS), 6-months PFS and overall survival (OS). Treatment was safe with no dose-limiting toxicities or treatment-related deaths. The MTD has not been reached and, thus, 600 mg per week of NOX-A12 was established as RP2D for the ongoing expansion part of the trial. With increasing NOX-A12 dose levels, a corresponding increase of NOX-A12 plasma levels was observed. Of ten patients enrolled, nine showed radiographic responses, four reached partial remission. All but one patient (90%) showed at best response reduced perfusion values in terms of relative cerebral blood volume (rCBV). The median PFS was 174 (range 58-260) days, 6-month PFS was 40.0% and the median OS 389 (144-562) days. In a post-hoc exploratory analysis of tumor tissue, higher frequency of CXCL12+ endothelial and glioma cells was significantly associated with longer PFS under NOX-A12. Our data imply safety of NOX-A12 and its efficacy signal warrants further investigation.
Collapse
Affiliation(s)
- Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| | - Julian P Layer
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sonia Leonardelli
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Lea L Friker
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Neuropathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Roberta Turiello
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Dillon Corvino
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thomas Zeyen
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Christina Schaub
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Wolf Müller
- Institute of Neuropathology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Elena Sperk
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Katharina Sahm
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Sied Kebir
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Peter Hambsch
- Department of Radiation Oncology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Sotirios Bisdas
- Lysholm Department of Neuroradiology, University College London, London, UK
| | - Michael Platten
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, Center for Translational Neuro- and Behavioral Sciences (C-TNBS) and West German Cancer Center, German Cancer Consortium, Partner Site Essen, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology, University Hospital Bonn, Bonn, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Farber G, Dong Y, Wang Q, Rathod M, Wang H, Dixit M, Keepers B, Xie Y, Butz K, Polacheck WJ, Liu J, Qian L. Direct conversion of cardiac fibroblasts into endothelial-like cells using Sox17 and Erg. Nat Commun 2024; 15:4170. [PMID: 38755186 PMCID: PMC11098819 DOI: 10.1038/s41467-024-48354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Endothelial cells are a heterogeneous population with various organ-specific and conserved functions that are critical to organ development, function, and regeneration. Here we report a Sox17-Erg direct reprogramming approach that uses cardiac fibroblasts to create differentiated endothelial cells that demonstrate endothelial-like molecular and physiological functions in vitro and in vivo. Injection of these induced endothelial cells into myocardial infarct sites after injury results in improved vascular perfusion of the scar region. Furthermore, we use genomic analyses to illustrate that Sox17-Erg reprogramming instructs cardiac fibroblasts toward an arterial-like identity. This results in a more efficient direct conversion of fibroblasts into endothelial-like cells when compared to traditional Etv2-based reprogramming. Overall, this Sox17-Erg direct reprogramming strategy offers a robust tool to generate endothelial cells both in vitro and in vivo, and has the potential to be used in repairing injured tissue.
Collapse
Grants
- R01 HL139880 NHLBI NIH HHS
- R01 HL164933 NHLBI NIH HHS
- R01HL139880 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 CA016086 NCI NIH HHS
- R35HL155656 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL139976 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AHA20EIA35320128 American Heart Association (American Heart Association, Inc.)
- R01 HL139976 NHLBI NIH HHS
- P30 ES010126 NIEHS NIH HHS
- AHA20EIA35310348 American Heart Association (American Heart Association, Inc.)
- F30 HL154659 NHLBI NIH HHS
- R35 HL155656 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Gregory Farber
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanhan Dong
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qiaozi Wang
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
- University of North Carolina Kidney Center, Chapel Hill, NC, USA
| | - Haofei Wang
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michelle Dixit
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Benjamin Keepers
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yifang Xie
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendall Butz
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - William J Polacheck
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, NC, USA
| | - Jiandong Liu
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Li Qian
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
24
|
Wang C, Xu J, Cheng X, Sun G, Li F, Nie G, Zhang Y. Anti-lymphangiogenesis for boosting drug accumulation in tumors. Signal Transduct Target Ther 2024; 9:89. [PMID: 38616190 PMCID: PMC11016544 DOI: 10.1038/s41392-024-01794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
The inadequate tumor accumulation of anti-cancer agents is a major shortcoming of current therapeutic drugs and remains an even more significant concern in the clinical prospects for nanomedicines. Various strategies aiming at regulating the intratumoral permeability of therapeutic drugs have been explored in preclinical studies, with a primary focus on vascular regulation and stromal reduction. However, these methods may trigger or facilitate tumor metastasis as a tradeoff. Therefore, there is an urgent need for innovative strategies that boost intratumoral drug accumulation without compromising treatment outcomes. As another important factor affecting drug tumor accumulation besides vasculature and stroma, the impact of tumor-associated lymphatic vessels (LVs) has not been widely considered. In the current research, we verified that anlotinib, a tyrosine kinase inhibitor with anti-lymphangiogenesis activity, and SAR131675, a selective VEGFR-3 inhibitor, effectively decreased the density of tumor lymphatic vessels in mouse cancer models, further enhancing drug accumulation in tumor tissue. By combining anlotinib with therapeutic drugs, including doxorubicin (Dox), liposomal doxorubicin (Lip-Dox), and anti-PD-L1 antibody, we observed improved anti-tumor efficacy in comparison with monotherapy regimens. Meanwhile, this strategy significantly reduced tumor metastasis and elicited stronger anti-tumor immune responses. Our work describes a new, clinically transferrable approach to augmenting intratumoral drug accumulation, which shows great potential to address the current, unsatisfactory efficacies of therapeutic drugs without introducing metastatic risk.
Collapse
Affiliation(s)
- Chunling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China
- Sino-Danish Center for Education and Research, Beijing, 100190, China
| | - Junchao Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaoyu Cheng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ge Sun
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fenfen Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China.
- Sino-Danish Center for Education and Research, Beijing, 100190, China.
| | - Yinlong Zhang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
25
|
Zhang X, Ma L, Xue M, Sun Y, Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal 2024; 22:201. [PMID: 38566083 PMCID: PMC10986052 DOI: 10.1186/s12964-024-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is a deeply malignant tumor with high incidence and mortality. Despite the rapid development of diagnosis and treatment technology, abundant patients with lung cancer are still inevitably faced with recurrence and metastasis, contributing to death. Lymphatic metastasis is the first step of distant metastasis and an important prognostic indicator of non-small cell lung cancer. Tumor-induced lymphangiogenesis is involved in the construction of the tumor microenvironment, except promoting malignant proliferation and metastasis of tumor cells, it also plays a crucial role in individual response to treatment, especially immunotherapy. Thus, this article reviews the current research status of lymphatic metastasis in non-small cell lung cancer, in order to provide some insights for the basic research and clinical and translational application in this field.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Li Ma
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Man Xue
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yanning Sun
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Zhaoxia Wang
- Cancer Medical Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China.
| |
Collapse
|
26
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
27
|
Shaw P, Dwivedi SKD, Bhattacharya R, Mukherjee P, Rao G. VEGF signaling: Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer 2024; 1879:189079. [PMID: 38280470 DOI: 10.1016/j.bbcan.2024.189079] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024]
Abstract
Angiogenesis is a crucial process for tissue development, repair, and tumor survival. Vascular endothelial growth factor (VEGF) is a key driver secreted by cancer cells, promoting neovascularization. While VEGF's role in angiogenesis is well-documented, its influence on the other aspects in tumor microenvironemt is less discussed. This review elaborates on VEGF's impact on intercellular interactions within the tumor microenvironment, including how VEGF affects pericyte proliferation and migration and mediates interactions between tumor-associated macrophages and cancer cells, resulting in PDL-1-mediated immunosuppression and Nrf2-mediated epithelial-mesenchymal transition. The review discusses VEGF's involvement in intra-organelle crosstalk, tumor metabolism, stemness, and epithelial-mesenchymal transition. It also provides insights into current anti-VEGF therapies and their limitations in cancer treatment. Overall, this review aims to provide a thorough overview of the current state of knowledge concerning VEGF signaling and its impact, not only on angiogenesis but also on various other oncogenic processes.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
28
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
29
|
Guo Y, Zhang S, Wang D, Heng BC, Deng X. Role of cell rearrangement and related signaling pathways in the dynamic process of tip cell selection. Cell Commun Signal 2024; 22:24. [PMID: 38195565 PMCID: PMC10777628 DOI: 10.1186/s12964-023-01364-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/25/2023] [Indexed: 01/11/2024] Open
Abstract
Angiogenesis is a complex, highly-coordinated and multi-step process of new blood vessel formation from pre-existing blood vessels. When initiated, the sprouting process is spearheaded by the specialized endothelial cells (ECs) known as tip cells, which guide the organization of accompanying stalk cells and determine the function and morphology of the finally-formed blood vessels. Recent studies indicate that the orchestration and coordination of angiogenesis involve dynamic tip cell selection, which is the competitive selection of cells to lead the angiogenic sprouts. Therefore, this review attempt to summarize the underlying mechanisms involved in tip cell specification in a dynamic manner to enable readers to gain a systemic and overall understanding of tip cell formation, involving cooperative interaction of cell rearrangement with Notch and YAP/TAZ signaling. Various mechanical and chemical signaling cues are integrated to ensure the right number of cells at the right place during angiogenesis, thereby precisely orchestrating morphogenic functions that ensure correct patterning of blood vessels. Video Abstract.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Dandan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
30
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Iwanek G, Ponikowska B, Zdanowicz A, Fudim M, Hurkacz M, Zymliński R, Ponikowski P, Biegus J. Relationship of Vascular Endothelial Growth Factor C, a Lymphangiogenesis Modulator, With Edema Formation, Congestion and Outcomes in Acute Heart Failure. J Card Fail 2023; 29:1629-1638. [PMID: 37121266 DOI: 10.1016/j.cardfail.2023.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Although vascular endothelial growth factor C (VEGF-C) is a known lymphangiogenesis modulator, its relationship with congestion formation and outcomes in acute heart failure (AHF) is unknown. METHODS Serum VEGF-C levels were measured in 237 patients hospitalized for AHF. The population was stratified by VEGF-C levels and linked with clinical signs of congestion and outcomes. RESULTS The study's population was divided in VEGF-C tertiles: low (median [Q25-Q75]: 33 [15-175]), medium (606 [468-741]) and high (1141 [968-1442] pg/mL). The group with low VEGF-C on admission presented with the highest prevalence of severe lower-extremity edema (low VEGF-C vs medium VEGF-C vs high VEGF-C): 30% vs 13% vs 20%; P = 0.02); the highest percentage of patients with ascites: 22% vs 9% vs 6%; P = 0.006; and the lowest proportion of patients with pulmonary congestion: 22% vs 30% vs 46%; P = 0.004. The 1-year mortality rate was the highest in the low VEGF-C tertile: 35% vs 28% vs 18%, respectively; P = 0.049. The same pattern was observed for the composite endpoint (death and AHF rehospitalization): 45% vs 43% vs 26%; P = 0.029. The risks of death at 1-year follow-up and composite endpoint were significantly lower in the high VEGF-C group. CONCLUSIONS Low VEGF-C was associated with more severe signs of congestion (signs of fluid accumulation) and adverse clinical outcomes.
Collapse
Affiliation(s)
- Gracjan Iwanek
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland.
| | - Barbara Ponikowska
- Student Scientific Organization, Wroclaw Medical University, Wroclaw, Poland
| | - Agata Zdanowicz
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marat Fudim
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA
| | - Magdalena Hurkacz
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Robert Zymliński
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
32
|
Yan W, Hou N, Zheng J, Zhai W. Predictive genomic biomarkers of therapeutic effects in renal cell carcinoma. Cell Oncol (Dordr) 2023; 46:1559-1575. [PMID: 37223875 DOI: 10.1007/s13402-023-00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND In recent years, there have been great improvements in the therapy of renal cell carcinoma. Nevertheless, the therapeutic effect varies significantly from person to person. To discern the effective treatment for different populations, predictive molecular biomarkers in response to target, immunological, and combined therapies are widely studied. CONCLUSION This review summarized those studies from three perspectives (SNPs, mutation, and expression level) and listed the relationship between biomarkers and therapeutic effect, highlighting the great potential of predictive molecular biomarkers in metastatic RCC therapy. However, due to a series of reasons, most of these findings require further validation.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Naiqiao Hou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junhua Zheng
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Cho WJ, Elbasiony E, Singh A, Mittal SK, Chauhan SK. IL-36γ Augments Ocular Angiogenesis by Promoting the Vascular Endothelial Growth Factor-Vascular Endothelial Growth Factor Receptor Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1740-1749. [PMID: 36740182 PMCID: PMC10616713 DOI: 10.1016/j.ajpath.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023]
Abstract
Prevention of inflammatory angiogenesis is critical for suppressing chronic inflammation and inhibiting inflammatory tissue damage. Angiogenesis is particularly detrimental to the cornea because pathologic growth of new blood vessels can lead to marked vision impairment and even loss of vision. The expression of proinflammatory cytokines by injured tissues exacerbates the inflammatory cascade, including angiogenesis. IL-36 cytokine, a subfamily of the IL-1 superfamily, consists of three proinflammatory agonists, IL-36α, IL-36β, and IL-36γ, and an IL-36 receptor antagonist (IL-36Ra). Data from the current study indicate that human vascular endothelial cells constitutively expressed the cognate IL-36 receptor. The current investigation, for the first time, characterized the direct contribution of IL-36γ to various angiogenic processes. IL-36γ up-regulated the expression of vascular endothelial growth factors (VEGFs) and their receptors VEGFR2 and VEGFR3 by human vascular endothelial cells, suggesting that IL-36γ mediates the VEGF-VEGFR signaling by endothelial cells. Moreover, by using a naturally occurring antagonist IL-36Ra in a murine model of inflammatory angiogenesis, this study demonstrated that blockade of endogenous IL-36γ signaling results in significant retardation of inflammatory angiogenesis. The current investigation on the proangiogenic function of IL-36γ provides novel evidence of the development of IL-36γ-targeting strategies to hamper inflammatory angiogenesis.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Elsayed Elbasiony
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Aastha Singh
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
34
|
Fan Y, Jin L, He Z, Wei T, Luo T, Zhang J, Liu C, Dai C, A C, Liang Y, Tao X, Lv X, Gu Y, Li M. A cell transcriptomic profile provides insights into adipocytes of porcine mammary gland across development. J Anim Sci Biotechnol 2023; 14:126. [PMID: 37805503 PMCID: PMC10560433 DOI: 10.1186/s40104-023-00926-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/03/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Studying the composition and developmental mechanisms in mammary gland is crucial for healthy growth of newborns. The mammary gland is inherently heterogeneous, and its physiological function dependents on the gene expression of multiple cell types. Most studies focused on epithelial cells, disregarding the role of neighboring adipocytes. RESULTS Here, we constructed the largest transcriptomic dataset of porcine mammary gland cells thus far. The dataset captured 126,829 high-quality nuclei from physiological mammary glands across five developmental stages (d 90 of gestation, G90; d 0 after lactation, L0; d 20 after lactation, L20; 2 d post natural involution, PI2; 7 d post natural involution, PI7). Seven cell types were identified, including epithelial cells, adipocytes, endothelial cells, fibroblasts cells, immune cells, myoepithelial cells and precursor cells. Our data indicate that mammary glands at different developmental stages have distinct phenotypic and transcriptional signatures. During late gestation (G90), the differentiation and proliferation of adipocytes were inhibited. Meanwhile, partly epithelial cells were completely differentiated. Pseudo-time analysis showed that epithelial cells undergo three stages to achieve lactation, including cellular differentiation, hormone sensing, and metabolic activation. During lactation (L0 and L20), adipocytes area accounts for less than 0.5% of mammary glands. To maintain their own survival, the adipocyte exhibited a poorly differentiated state and a proliferative capacity. Epithelial cells initiate lactation upon hormonal stimulation. After fulfilling lactation mission, their undergo physiological death under high intensity lactation. Interestingly, the physiological dead cells seem to be actively cleared by immune cells via CCL21-ACKR4 pathway. This biological process may be an important mechanism for maintaining homeostasis of the mammary gland. During natural involution (PI2 and PI7), epithelial cell populations dedifferentiate into mesenchymal stem cells to maintain the lactation potential of mammary glands for the next lactation cycle. CONCLUSION The molecular mechanisms of dedifferentiation, proliferation and redifferentiation of adipocytes and epithelial cells were revealed from late pregnancy to natural involution. This cell transcriptomic profile constitutes an essential reference for future studies in the development and remodeling of the mammary gland at different stages.
Collapse
Affiliation(s)
- Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Tiantian Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Changjiu Dai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Chao A
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuan Tao
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, 610041 China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, 610000 China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
35
|
Vimalraj S, Hariprabu KNG, Rahaman M, Govindasami P, Perumal K, Sekaran S, Ganapathy D. Vascular endothelial growth factor-C and its receptor-3 signaling in tumorigenesis. 3 Biotech 2023; 13:326. [PMID: 37663750 PMCID: PMC10474002 DOI: 10.1007/s13205-023-03719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
The cancer-promoting ligand vascular endothelial growth factor-C (VEGF-C) activates VEGF receptor-3 (VEGFR-3). The VEGF-C/VEGFR-3 axis is expressed by a range of human tumor cells in addition to lymphatic endothelial cells. Activating the VEGF-C/VEGFR-3 signaling enhances metastasis by promoting lymphangiogenesis and angiogenesis inside and around tumors. Stimulation of VEGF-C/VEGFR-3 signaling promotes tumor metastasis in tumors, such as ovarian, renal, pancreatic, prostate, lung, skin, gastric, colorectal, cervical, leukemia, mesothelioma, Kaposi sarcoma, and endometrial carcinoma. We discuss and update the role of VEGF-C/VEGFR-3 signaling in tumor development and the research is still needed to completely comprehend this multifunctional receptor.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology, Madras, Chennai, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Periyasami Govindasami
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210 USA
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu 600 077 India
| |
Collapse
|
36
|
Dürig J, Calcagni M, Buschmann J. Transition metals in angiogenesis - A narrative review. Mater Today Bio 2023; 22:100757. [PMID: 37593220 PMCID: PMC10430620 DOI: 10.1016/j.mtbio.2023.100757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The aim of this paper is to offer a narrative review of the literature regarding the influence of transition metals on angiogenesis, excluding lanthanides and actinides. To our knowledge there are not any reviews up to date offering such a summary, which inclined us to write this paper. Angiogenesis describes the process of blood vessel formation, which is an essential requirement for human growth and development. When the complex interplay between pro- and antiangiogenic mediators falls out of balance, angiogenesis can quickly become harmful. As it is so fundamental, both its inhibition and enhancement take part in various diseases, making it a target for therapeutic treatments. Current methods come with limitations, therefore, novel agents are constantly being researched, with metal agents offering promising results. Various transition metals have already been investigated in-depth, with studies indicating both pro- and antiangiogenic properties, respectively. The transition metals are being applied in various formulations, such as nanoparticles, complexes, or scaffold materials. Albeit the increasing attention this field is receiving, there remain many unanswered questions, mostly regarding the molecular mechanisms behind the observed effects. Notably, approximately half of all the transition metals have not yet been investigated regarding potential angiogenic effects. Considering the promising results which have already been established, it should be of great interest to begin investigating the remaining elements whilst also further analyzing the established effects.
Collapse
Affiliation(s)
- Johannes Dürig
- University of Zürich, Faculty of Medicine, Pestalozzistrasse 3, 8032, Zurich, Switzerland
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Maurizio Calcagni
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johanna Buschmann
- University Hospital of Zürich, Department of Plastic Surgery and Hand Surgery, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
37
|
Wu X, Mu L, Dong Z, Wu J, Zhang S, Su J, Zhang Y. Hu-Zhang Qing-Mai Formulation anti-oxidative stress alleviates diabetic retinopathy: Network pharmacology analysis and in vitro experiment. Medicine (Baltimore) 2023; 102:e35034. [PMID: 37682156 PMCID: PMC10489428 DOI: 10.1097/md.0000000000035034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND In this study, the potential mechanism of the Hu-Zhang Qing-Mai Formulation (HZQMF) on diabetic retinopathy (DR) in inhibiting oxidative stress was explored through network pharmacology analysis and in vitro experiments. METHODS The Traditional Chinese Medicine Systematic Pharmacology Analysis Platform was used to retrieve the active pharmaceutical ingredients and targets of HZQMF. DR-related genes and oxidative stress-related genes were obtained from PharmGKB, TTD, OMIM, GeneCards, and Drugbank. STRING was used to construct a protein-protein interaction network to screen core targets. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses were performed using R 4.0.3. Network topology analysis was carried out using Cytoscape 3.8.2. Finally, we looked into how well the main API protected human retinal pigment epithelial cells from damage brought on by hydrogen peroxide (H2O2). RESULTS Quercetin (Que) was identified as the primary API of HZQMF through network pharmacology analysis, while JUN, MAPK1, and STAT3 were identified as the primary hub genes. Kyoto encyclopedia of genes and genomes enrichment analysis showed that the AGE-RAGE signaling pathway may be crucial to the therapeutic process. In vitro experiments confirmed that Que increased cell vitality and inhibited apoptosis. CONCLUSION Que might significantly reduce H2O2-induced ARPE-19 cell injury by inhibiting apoptosis-related genes of the AGE-RAGE pathway (JUN, MAPK1, STAT3). This study lays the foundation for further research on HZQMF in treating DR.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Mu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Zhiguo Dong
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Su
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Zheng L, Wu J, Hu H, Cao H, Xu N, Chen K, Wen B, Wang H, Yuan H, Xie L, Jiang Y, Li Z, Liang C, Yuan J, Li Z, Yuan X, Xiao W, Wang J. Single-cell RNA transcriptome landscape of murine liver following systemic administration of mesoporous silica nanoparticles. J Control Release 2023; 361:427-442. [PMID: 37487929 DOI: 10.1016/j.jconrel.2023.07.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/28/2023] [Accepted: 07/22/2023] [Indexed: 07/26/2023]
Abstract
Due to the unique physicochemical properties, mesoporous silica nanoparticles (MONs) have been widely utilized in biomedical fields for drug delivery, gene therapy, disease diagnosis and imaging. With the extensive applications and large-scale production of MONs, the potential effects of MONs on human health are gaining increased attention. To better understand the cellular and molecular mechanisms underlying the effects of MONs on the mouse liver, we profiled the transcriptome of 63,783 single cells from mouse livers following weekly intravenous administration of MONs for 2 weeks. The results showed that the proportion of endothelial cells and CD4+ T cells was increased, whereas that of Kupffer cells was decreased, in a dose-dependent manner after MONs treatment in the mouse liver. We also observed that the proportion of inflammation-related Kupffer cell subtype and wound healing-related hepatocyte subtype were elevated, but the number of hepatocytes with detoxification characteristics was reduced after MONs treatment. The cell-cell communication network revealed that there was more crosstalk between cholangiocytes and Kupffer cells, liver capsular macrophages, hepatic stellate cells, and endothelial cells following MONs treatment. Furthermore, we identified key ligand-receptor pairs between crucial subtypes after MONs treatment that are known to promote liver fibrosis. Collectively, our study explored the effects of MONs on mouse liver at a single-cell level and provides comprehensive information on the potential hepatotoxicity of MONs.
Collapse
Affiliation(s)
- Liuhai Zheng
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jiangpeng Wu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hong Hu
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Hua Cao
- Department of Oncology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Nan Xu
- Division of Thyroid surgery, Department of General Surgery, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Kun Chen
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Bowen Wen
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Guangzhou, Guangdong 510642, China
| | - Huifang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Haitao Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lulin Xie
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Yuke Jiang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Cailing Liang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Jimin Yuan
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Zhijie Li
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Xiaopeng Yuan
- Department of Laboratory Medicine, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Wei Xiao
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| | - Jigang Wang
- Department of Breast Surgery, Department of General Surgery, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
39
|
Bokhari SMZ, Hamar P. Vascular Endothelial Growth Factor-D (VEGF-D): An Angiogenesis Bypass in Malignant Tumors. Int J Mol Sci 2023; 24:13317. [PMID: 37686121 PMCID: PMC10487419 DOI: 10.3390/ijms241713317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of vasculogenesis in normal and oncological development. VEGF-A is the most studied angiogenic factor secreted by malignant tumor cells under hypoxic and inflammatory stress, which made VEGF-A a rational target for anticancer therapy. However, inhibition of VEGF-A by monoclonal antibody drugs led to the upregulation of VEGF-D. VEGF-D was primarily described as a lymphangiogenic factor; however, VEGF-D's blood angiogenic potential comparable to VEGF-A has already been demonstrated in glioblastoma and colorectal carcinoma. These findings suggested a role for VEGF-D in facilitating malignant tumor growth by bypassing the anti-VEGF-A antiangiogenic therapy. Owing to its high mitogenic ability, higher affinity for VEGFR-2, and higher expression in cancer, VEGF-D might even be a stronger angiogenic driver and, hence, a better therapeutic target than VEGF-A. In this review, we summarized the angiogenic role of VEGF-D in blood vasculogenesis and its targetability as an antiangiogenic therapy in cancer.
Collapse
Affiliation(s)
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| |
Collapse
|
40
|
Kartikasari A, Mardia AI, Safriadi F, Suryanti S, Usman HA, Oehadian A. Sporadic renal cell carcinoma with widespread metastasis in young patient: A rare case report. Urol Case Rep 2023; 49:102457. [PMID: 37293371 PMCID: PMC10244687 DOI: 10.1016/j.eucr.2023.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
Renal cell carcinoma occurrence is increasing from time to time and known as one of the most common cancers worldwide. RCC usually found in older age and common acquired risk factors for RCC including obesity, hypertension, diabetes, smoking and long-term use of NSAIDs. As for genetic risk, it is noted that Von Hippel-Lindau gene involved in the pathogenesis of RCC. Many treatment strategies were developed for RCC with various outcome. Here, we present a sporadic clear cell renal carcinoma in young male without VHL gene mutation and survive for long term period despite progressivity of treatment.
Collapse
Affiliation(s)
| | - Andri Iskandar Mardia
- Division of Hematology and Oncology Medic, Department of Internal Medicine Faculty of Medicine, Universitas Padjadjaran/ Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
- Faculty of Medicine, Universitas Sumatera Utara, Indonesia
| | - Ferry Safriadi
- Department of Urology Faculty of Medicine, Universitas Padjadjaran/ Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Sri Suryanti
- Division of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/ Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Hermin Aminah Usman
- Division of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/ Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| | - Amaylia Oehadian
- Division of Hematology and Oncology Medic, Department of Internal Medicine Faculty of Medicine, Universitas Padjadjaran/ Dr. Hasan Sadikin General Hospital, Bandung, Indonesia
| |
Collapse
|
41
|
Cook CM, Craddock VD, Ram AK, Abraham AA, Dhillon NK. HIV and Drug Use: A Tale of Synergy in Pulmonary Vascular Disease Development. Compr Physiol 2023; 13:4659-4683. [PMID: 37358518 PMCID: PMC10693986 DOI: 10.1002/cphy.c210049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Over the past two decades, with the advent and adoption of highly active anti-retroviral therapy, HIV-1 infection, a once fatal and acute illness, has transformed into a chronic disease with people living with HIV (PWH) experiencing increased rates of cardio-pulmonary vascular diseases including life-threatening pulmonary hypertension. Moreover, the chronic consequences of tobacco, alcohol, and drug use are increasingly seen in older PWH. Drug use, specifically, can have pathologic effects on the cardiovascular health of these individuals. The "double hit" of drug use and HIV may increase the risk of HIV-associated pulmonary arterial hypertension (HIV-PAH) and potentiate right heart failure in this population. This article explores the epidemiology and pathophysiology of PAH associated with HIV and recreational drug use and describes the proposed mechanisms by which HIV and drug use, together, can cause pulmonary vascular remodeling and cardiopulmonary hemodynamic compromise. In addition to detailing the proposed cellular and signaling pathways involved in the development of PAH, this article proposes areas ripe for future research, including the influence of gut dysbiosis and cellular senescence on the pathobiology of HIV-PAH. © 2023 American Physiological Society. Compr Physiol 13:4659-4683, 2023.
Collapse
Affiliation(s)
- Christine M Cook
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Vaughn D Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anil K Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ashrita A Abraham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
42
|
Cao Y, Langer R, Ferrara N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat Rev Drug Discov 2023; 22:476-495. [PMID: 37041221 DOI: 10.1038/s41573-023-00671-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
Angiogenesis is an essential process in normal development and in adult physiology, but can be disrupted in numerous diseases. The concept of targeting angiogenesis for treating diseases was proposed more than 50 years ago, and the first two drugs targeting vascular endothelial growth factor (VEGF), bevacizumab and pegaptanib, were approved in 2004 for the treatment of cancer and neovascular ophthalmic diseases, respectively. Since then, nearly 20 years of clinical experience with anti-angiogenic drugs (AADs) have demonstrated the importance of this therapeutic modality for these disorders. However, there is a need to improve clinical outcomes by enhancing therapeutic efficacy, overcoming drug resistance, defining surrogate markers, combining with other drugs and developing the next generation of therapeutics. In this Review, we examine emerging new targets, the development of new drugs and challenging issues such as the mode of action of AADs and elucidating mechanisms underlying clinical benefits; we also discuss possible future directions of the field.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, Stockholm, Sweden.
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Napoleone Ferrara
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Qin H, Weng J, Zhou B, Zhang W, Li G, Chen Y, Qi T, Zhu Y, Yu F, Zeng H. Magnesium Ions Promote In Vitro Rat Bone Marrow Stromal Cell Angiogenesis Through Notch Signaling. Biol Trace Elem Res 2023; 201:2823-2842. [PMID: 35870071 DOI: 10.1007/s12011-022-03364-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Bone defects are often caused by trauma or surgery and can lead to delayed healing or even bone nonunion, thereby resulting in impaired function of the damaged site. Magnesium ions and related metallic materials play a crucial role in repairing bone defects, but the mechanism remains unclear. In this study, we induced the angiogenic differentiation of bone marrow stromal cells (BMSCs) with different concentrations of magnesium ions. The mechanism was investigated using γ-secretase inhibitor (DAPT) at different time points (7 and 14 days). Angiogenesis, differentiation, migration, and chemotaxis were detected using the tube formation assay, wound-healing assay, and Transwell assay. Besides, we analyzed mRNA expression and the angiogenesis-related protein levels of genes by RT-qPCR and western blot. We discovered that compared with other concentrations, the 5 mM magnesium ion concentration was more conducive to forming tubes. Additionally, hypoxia-inducible factor 1 alpha (Hif-1α) and endothelial nitric oxide (eNOS) expression both increased (p < 0.05). After 7 and 14 days of induction, 5 mM magnesium ion group tube formation, migration, and chemotaxis were enhanced, and the expression of Notch pathway genes increased. Moreover, expression of the Notch target genes hairy and enhancer of split 1 (Hes1) and Hes5 (hairy and enhancer of split 5), as well as the angiogenesis-related genes Hif-1α and eNOS, were enhanced (p < 0.05). However, these trends did not occur when DAPT was applied. This indicates that 5 mM magnesium ion is the optimal concentration for promoting the angiogenesis and differentiation of BMSCs in vitro. By activating the Notch signaling pathway, magnesium ions up-regulate the downstream genes Hes1 and Hes5 and the angiogenesis-related genes Hif-1α and eNOS, thereby promoting the angiogenesis differentiation of BMSCs. Additionally, magnesium ion-induced differentiation enhances the migration and chemotaxis of BMSCs. Thus, we can conclude that magnesium ions and related metallic materials promote angiogenesis to repair bone defects. This provides the rationale for developing artificial magnesium-containing bone materials through tissue engineering.
Collapse
Affiliation(s)
- Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Zhou
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Guoqing Li
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
44
|
Guo PC, Zuo J, Huang KK, Lai GY, Zhang X, An J, Li JX, Li L, Wu L, Lin YT, Wang DY, Xu JS, Hao SJ, Wang Y, Li RH, Ma W, Song YM, Liu C, Liu CY, Dai Z, Xu Y, Sharma AD, Ott M, Ou-Yang Q, Huo F, Fan R, Li YY, Hou JL, Volpe G, Liu LQ, Esteban MA, Lai YW. Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses. Zool Res 2023; 44:451-466. [PMID: 36994536 PMCID: PMC10236302 DOI: 10.24272/j.issn.2095-8137.2023.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/11/2023] [Indexed: 03/12/2023] Open
Abstract
Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.
Collapse
Affiliation(s)
- Peng-Cheng Guo
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Jing Zuo
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Ke-Ke Huang
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Guang-Yao Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
| | - Xiao Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Juan An
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xiu Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yi-Ting Lin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Dong-Ye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Jiang-Shan Xu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Shi-Jie Hao
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Rong-Hai Li
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Wen Ma
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Yu-Mo Song
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chang Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Chuan-Yu Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Zhen Dai
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yan Xu
- Biotherapy Centre, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Qing Ou-Yang
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Feng Huo
- Department of Hepatobiliary Surgery and Liver Transplant Center, General Hospital of Southern Theater Command, Guangzhou, Guangdong 510010, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Yong-Yin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Jin-Lin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, Guangdong 510515, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari 70124, Italy
| | - Long-Qi Liu
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
| | - Miguel A Esteban
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Institute of Experimental Hematology, Hannover Medical School, Hannover 30625, Germany. E-mail:
| | - Yi-Wei Lai
- BGI-Hangzhou, Hangzhou, Zhejiang 310012, China
- BGI-Shenzhen, Shenzhen, Guangdong 518103, China. E-mail:
| |
Collapse
|
45
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
46
|
Li Z, Solomonidis EG, Berkeley B, Tang MNH, Stewart KR, Perez-Vicencio D, McCracken IR, Spiroski AM, Gray GA, Barton AK, Sellers SL, Riley PR, Baker AH, Brittan M. Multi-species meta-analysis identifies transcriptional signatures associated with cardiac endothelial responses in the ischaemic heart. Cardiovasc Res 2023; 119:136-154. [PMID: 36082978 PMCID: PMC10022865 DOI: 10.1093/cvr/cvac151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022] Open
Abstract
AIM Myocardial infarction remains the leading cause of heart failure. The adult human heart lacks the capacity to undergo endogenous regeneration. New blood vessel growth is integral to regenerative medicine necessitating a comprehensive understanding of the pathways that regulate vascular regeneration. We sought to define the transcriptomic dynamics of coronary endothelial cells following ischaemic injuries in the developing and adult mouse and human heart and to identify new mechanistic insights and targets for cardiovascular regeneration. METHODS AND RESULTS We carried out a comprehensive meta-analysis of integrated single-cell RNA-sequencing data of coronary vascular endothelial cells from the developing and adult mouse and human heart spanning healthy and acute and chronic ischaemic cardiac disease. We identified species-conserved gene regulatory pathways aligned to endogenous neovascularization. We annotated injury-associated temporal shifts of the endothelial transcriptome and validated four genes: VEGF-C, KLF4, EGR1, and ZFP36. Moreover, we showed that ZFP36 regulates human coronary endothelial cell proliferation and defined that VEGF-C administration in vivo enhances clonal expansion of the cardiac vasculature post-myocardial infarction. Finally, we constructed a coronary endothelial cell meta-atlas, CrescENDO, to empower future in-depth research to target pathways associated with coronary neovascularization. CONCLUSION We present a high-resolution single-cell meta-atlas of healthy and injured coronary endothelial cells in the mouse and human heart, revealing a suite of novel targets with great potential to promote vascular regeneration, and providing a rich resource for therapeutic development.
Collapse
Affiliation(s)
- Ziwen Li
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emmanouil G Solomonidis
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Katherine Ross Stewart
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Daniel Perez-Vicencio
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ian R McCracken
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Ana-Mishel Spiroski
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Anna K Barton
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stephanie L Sellers
- Division of Cardiology, Centre for Heart Lung Innovation, Providence Research, University of British Columbia, Vancouver, Canada
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | |
Collapse
|
47
|
Improving the protective ability of lignin against vascular and neurological development in BPAF-induced zebrafish by high-pressure homogenization technology. Int J Biol Macromol 2023; 231:123356. [PMID: 36682655 DOI: 10.1016/j.ijbiomac.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The lack of a sufficient amount of functional groups in the lignin structure limits its bioapplication. In this work, high-pressure homogenization was performed on original kraft lignin (L-ORI) to prepare lignin nanoparticles (L-NANO), which aimed to improve its functional group contents for further vascular and neurological applications. The results showed that the prepared L-NANO possessed spherical structures with diameters of 40.3-160.4 nm and increased amount of hydroxyl groups. Compared to L-ORI, L-NANO possessed better in vivo and in vitro antioxidant capacity, which could endow it with enhanced protective effects for the vascular and neural development of bisphenol AF (BPAF)-induced zebrafish. In addition, L-NANO reduced the neurotoxicity and cardiovascular toxicity of BPAF in zebrafish by upregulating the expression levels of oxidative stress-related genes (Cu/Zn-Sod and cat), which could further significantly upregulate the expression levels of neurogenesis genes (elavl3, gap43, mbp, and syn2a) and protect the contraction of the cardinal vein (CCV) and early central nervous system development by upregulating the expression levels of vascular genes (flk1 and flt4). The excellent cardiovascular and neurodevelopmental protective ability of L-NANO indicated that high-pressure homogenization is a promising technology for improving the bioactivity of lignin.
Collapse
|
48
|
Chiang IKN, Graus MS, Kirschnick N, Davidson T, Luu W, Harwood R, Jiang K, Li B, Wong YY, Moustaqil M, Lesieur E, Skoczylas R, Kouskoff V, Kazenwadel J, Arriola‐Martinez L, Sierecki E, Gambin Y, Alitalo K, Kiefer F, Harvey NL, Francois M. The blood vasculature instructs lymphatic patterning in a SOX7-dependent manner. EMBO J 2023; 42:e109032. [PMID: 36715213 PMCID: PMC9975944 DOI: 10.15252/embj.2021109032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/31/2023] Open
Abstract
Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.
Collapse
Affiliation(s)
- Ivy K N Chiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Matthew S Graus
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Nils Kirschnick
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Tara Davidson
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Winnie Luu
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Richard Harwood
- Sydney Microscopy and MicroanalysisUniversity of SydneySydneyNSWAustralia
| | - Keyi Jiang
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Bitong Li
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
| | - Yew Yan Wong
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| | - Mehdi Moustaqil
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Emmanuelle Lesieur
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Renae Skoczylas
- Institute for Molecular BioscienceThe University of QueenslandSt. LuciaQLDAustralia
| | - Valerie Kouskoff
- Division of Developmental Biology & MedicineThe University of ManchesterManchesterUK
| | - Jan Kazenwadel
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Luis Arriola‐Martinez
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Friedmann Kiefer
- European Institute for Molecular Imaging (EIMI)University of MünsterMünsterGermany
| | - Natasha L Harvey
- Centre for Cancer BiologyUniversity of South Australia and SA PathologyAdelaideSAAustralia
| | - Mathias Francois
- The Centenary Institute, David Richmond Program for Cardio‐Vascular Research: Gene Regulation and Editing, Sydney Medical SchoolUniversity of SydneySydneyNSWAustralia
- The Genome Imaging CenterThe Centenary InstituteSydneyNSWAustralia
| |
Collapse
|
49
|
Como CN, Cervantes C, Pawlikowski B, Siegenthaler J. Retinoic acid signaling in mouse retina endothelial cells is required for early angiogenic growth. Differentiation 2023; 130:16-27. [PMID: 36528974 PMCID: PMC10006372 DOI: 10.1016/j.diff.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
The development of the retinal vasculature is essential to maintain health of the tissue, but the developmental mechanisms are not completely understood. The aim of this study was to investigate the cell-autonomous role of retinoic acid signaling in endothelial cells during retina vascular development. Using a temporal and cell-specific mouse model to disrupt retinoic acid signaling in endothelial cells in the postnatal retina (Pdgfbicre/+dnRAR403fl/fl mutants), we discovered that angiogenesis in the retina is significantly decreased with a reduction in retina vascularization, endothelial tip cell number and filipodia, and endothelial 'crowding' of stalk cells. Interestingly, by P15, the vasculature can overcome the early angiogenic defect and fully vascularized the retina. At P60, the vasculature is intact with no evidence of retina cell death or altered blood retinal barrier integrity. Further, we identified that the angiogenic defect seen in mutants at P6 correlates with decreased Vegfr3 expression in endothelial cells. Collectively, our work identified a previously unappreciated function for endothelial retinoic acid signaling in early retinal angiogenesis.
Collapse
Affiliation(s)
- Christina N Como
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA
| | - Cesar Cervantes
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA
| | - Brad Pawlikowski
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA
| | - Julie Siegenthaler
- University of Colorado, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Neuroscience Graduate Program, Aurora, CO, 80045, USA; University of Colorado, Anschutz Medical Campus, Summer Research Training Program, Aurora, CO, 80045, USA.
| |
Collapse
|
50
|
Negri F, Bottarelli L, Pedrazzi G, Maddalo M, Leo L, Milanese G, Sala R, Lecchini M, Campanini N, Bozzetti C, Zavani A, Di Rienzo G, Azzoni C, Silini EM, Sverzellati N, Gaiani F, de’ Angelis GL, Gnetti L. Notch-Jagged1 signaling and response to bevacizumab therapy in advanced colorectal cancer: A glance to radiomics or back to physiopathology? Front Oncol 2023; 13:1132564. [PMID: 36925919 PMCID: PMC10011088 DOI: 10.3389/fonc.2023.1132564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION The Notch intracellular domain (NICD) and its ligands Jagged-1(Jag1), Delta-like ligand (DLL-3) and DLL4 play an important role in neoangiogenesis. Previous studies suggest a correlation between the tissue levels of NICD and response to therapy with bevacizumab in colorectal cancer (CRC). Another marker that may predict outcome in CRC is radiomics of liver metastases. The aim of this study was to investigate the expression of NICD and its ligands and the role of radiomics in the selection of treatment-naive metastatic CRC patients receiving bevacizumab. METHODS Immunohistochemistry (IHC) for NICD, Jag1 and E-cadherin was performed on the tissue microarrays (TMAs) of 111 patients with metastatic CRC treated with bevacizumab and chemotherapy. Both the intensity and the percentage of stained cells were evaluated. The absolute number of CD4+ and CD8+ lymphocytes was counted in three different high-power fields and the mean values obtained were used to determine the CD4/CD8 ratio. The positivity of tumor cells to DLL3 and DLL4 was studied. The microvascular density (MVD) was assessed in fifteen cases by counting the microvessels at 20x magnification and expressed as MVD score. Abdominal CT scans were retrieved and imported into a dedicated workstation for radiomic analysis. Manually drawn regions of interest (ROI) allowed the extraction of radiomic features (RFs) from the tumor. RESULTS A positive association was found between NICD and Jag1 expression (p < 0.001). Median PFS was significantly shorter in patients whose tumors expressed high NICD and Jag1 (6.43 months vs 11.53 months for negative cases; p = 0.001). Those with an MVD score ≥5 (CD31-high, NICD/Jag1 positive) experienced significantly poorer survival. The radiomic model developed to predict short and long-term survival and PFS yielded a ROC-AUC of 0.709; when integrated with clinical and histopathological data, the integrated model improved the predictive score (ROC-AUC of 0.823). DISCUSSION These results show that high NICD and Jag1 expression are associated with progressive disease and early disease progression to anti VEGF-based therapy; the preliminary radiomic analyses show that the integration of quantitative information with clinical and histological data display the highest performance in predicting the outcome of CRC patients.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
| | - Lorena Bottarelli
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Maddalo
- Medical Physics Department, University Hospital of Parma, Parma, Italy
| | - Ludovica Leo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gianluca Milanese
- Radiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberto Sala
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Lecchini
- Radiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicoletta Campanini
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Andrea Zavani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Cinzia Azzoni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Enrico Maria Silini
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Nicola Sverzellati
- Radiology, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federica Gaiani
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gian Luigi de’ Angelis
- Gastroenterology and Endoscopy Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| |
Collapse
|