1
|
Kang M, Lee CS, Son H, Lee J, Lee J, Seo HJ, Kim MK, Choi M, Cho HJ, Kim HS. Latrophilin-2 Deletion in Cardiomyocyte Disrupts Cell Junction, Leading to D-CMP. Circ Res 2024; 135:1098-1115. [PMID: 39421931 DOI: 10.1161/circresaha.124.324670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Latrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear. METHODS The embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2 flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre [Cyclization recombinase] recombinase) under the α-myosin heavy chain promoter. RESULTS Tamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK (p38 mitogen-activated protein kinases), which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins. CONCLUSIONS Lphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Mice, Knockout
- Mice
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Intercellular Junctions/metabolism
- Intercellular Junctions/drug effects
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Mice, Inbred C57BL
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/deficiency
- Tamoxifen/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
- Gene Deletion
- Male
- Cells, Cultured
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
- Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics
Collapse
Affiliation(s)
- Minjun Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Choon-Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - HyunJu Son
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Jeongha Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Jaewon Lee
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyun Ju Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Moo-Kang Kim
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, South Korea (Jeongha Lee, M.C.)
| | - Hyun-Jai Cho
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
| | - Hyo-Soo Kim
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, College of Medicine or College of Pharmacy, Seoul National University, South Korea (M.K., C.-S.L., H.S., H.J.S., H.-S.K.)
- Department of Internal Medicine (M.-K.K., H.-J.C., H.-S.K.), Seoul National University Hospital, South Korea
- Biomedical Research Institute (M.K., C.-S.L., H.S., Jaewon Lee, H.J.S., M.-K.K., H.-S.K.), Seoul National University Hospital, South Korea
| |
Collapse
|
2
|
Lee W, Lin SL, Chiang CS, Chen JY, Chieng WW, Huang SR, Chang TY, Linju Yen B, Hung MC, Chang KC, Lee HT, Jeng LB, Shyu WC. Role of HIF-1α-Activated IL-22/IL-22R1/Bmi1 Signaling Modulates the Self-Renewal of Cardiac Stem Cells in Acute Myocardial Ischemia. Stem Cell Rev Rep 2024; 20:2194-2214. [PMID: 39264501 PMCID: PMC11554697 DOI: 10.1007/s12015-024-10774-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2024] [Indexed: 09/13/2024]
Abstract
Impaired tissue regeneration negatively impacts on left ventricular (LV) function and remodeling after acute myocardial infarction (AMI). Little is known about the intrinsic regulatory machinery of ischemia-induced endogenous cardiac stem cells (eCSCs) self-renewing divisions after AMI. The interleukin 22 (IL-22)/IL-22 receptor 1 (IL-22R1) pathway has emerged as an important regulator of several cellular processes, including the self-renewal and proliferation of stem cells. However, whether the hypoxic environment could trigger the self-renewal of eCSCs via IL-22/IL-22R1 activation remains unknown. In this study, the upregulation of IL-22R1 occurred due to activation of hypoxia-inducible factor-1α (HIF-1α) under hypoxic and ischemic conditions. Systemic IL-22 administration not only attenuated cardiac remodeling, inflammatory responses, but also promoted eCSC-mediated cardiac repair after AMI. Unbiased RNA microarray analysis showed that the downstream mediator Bmi1 regulated the activation of CSCs. Therefore, the HIF-1α-induced IL-22/IL-22R1/Bmi1 cascade can modulate the proliferation and activation of eCSCs in vitro and in vivo. Collectively, investigating the HIF-1α-activated IL-22/IL-22R1/Bmi1 signaling pathway might offer a new therapeutic strategy for AMI via eCSC-induced cardiac repair.
Collapse
Affiliation(s)
- Wei Lee
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - Syuan-Ling Lin
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Chih-Sheng Chiang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan
| | - Jui-Yu Chen
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Wee-Wei Chieng
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Shu-Rou Huang
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan
| | - Ting-Yu Chang
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular and System Medicine, National Health Research Institutes (NHRI), Zhunan, 350, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, CMU, Taichung, 404, Taiwan
| | - Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, CMUH, Taichung, 404, Taiwan
- School of Medicine, CMU, Taichung, 404, Taiwan
| | - Hsu-Tung Lee
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 404, Taiwan
| | - Long-Bin Jeng
- Cell Therapy Center, China Medical University Hospital (CMUH), Taichung, 404, Taiwan
- Organ Transplantation Center, CMUH, Taichung, 404, Taiwan
| | - Woei-Cherng Shyu
- Translational Medicine Research Center, CMUH, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University (CMU), Taichung, 404, Taiwan.
- Neuroscience and Brain Disease Center and New Drug Development Center, CMU, Taichung, 404, Taiwan.
- Department of Neurology, CMUH, Taichung, 404, Taiwan.
- Department of Occupational Therapy, Asia University, No. 2, Yude Rd., North Dist, Taichung City, 404332, Taiwan.
| |
Collapse
|
3
|
Wang Y, Li Q, Zhao J, Chen J, Wu D, Zheng Y, Wu J, Liu J, Lu J, Zhang J, Wu Z. Mechanically induced pyroptosis enhances cardiosphere oxidative stress resistance and metabolism for myocardial infarction therapy. Nat Commun 2023; 14:6148. [PMID: 37783697 PMCID: PMC10545739 DOI: 10.1038/s41467-023-41700-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/14/2023] [Indexed: 10/04/2023] Open
Abstract
Current approaches in myocardial infarction treatment are limited by low cellular oxidative stress resistance, reducing the long-term survival of therapeutic cells. Here we develop a liquid-crystal substrate with unique surface properties and mechanical responsiveness to produce size-controllable cardiospheres that undergo pyroptosis to improve cellular bioactivities and resistance to oxidative stress. We perform RNA sequencing and study cell metabolism to reveal increased metabolic levels and improved mitochondrial function in the preconditioned cardiospheres. We test therapeutic outcomes in a rat model of myocardial infarction to show that cardiospheres improve long-term cardiac function, promote angiogenesis and reduce cardiac remodeling during the 3-month observation. Overall, this study presents a promising and effective system for preparing a large quantity of functional cardiospheres, showcasing potential for clinical application.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Qi Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jupeng Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiamin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Dongxue Wu
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jiaxin Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jie Liu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianlong Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Gallet R, Su JB, Corboz D, Chiaroni PM, Bizé A, Dai J, Panel M, Boucher P, Pallot G, Brehat J, Sambin L, Thery G, Mouri N, de Pommereau A, Denormandie P, Germain S, Lacampagne A, Teiger E, Marbán E, Ghaleh B. Three-vessel coronary infusion of cardiosphere-derived cells for the treatment of heart failure with preserved ejection fraction in a pre-clinical pig model. Basic Res Cardiol 2023; 118:26. [PMID: 37400630 DOI: 10.1007/s00395-023-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.
Collapse
Affiliation(s)
- Romain Gallet
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Jin-Bo Su
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Daphné Corboz
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Paul-Matthieu Chiaroni
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Alain Bizé
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Jianping Dai
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Mathieu Panel
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Pierre Boucher
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Gaëtan Pallot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Juliette Brehat
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Lucien Sambin
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Guillaume Thery
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Nadir Mouri
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Département de biochimie-pharmacologie-biologie moléculaire-génétique médicale, Créteil, France
| | - Aurélien de Pommereau
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Pierre Denormandie
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France
| | - Alain Lacampagne
- PhyMedExp, Université de Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Emmanuel Teiger
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service de Cardiologie, Créteil, France
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Bijan Ghaleh
- Inserm U955-IMRB, UPEC, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France.
| |
Collapse
|
5
|
Jiang L, Liang J, Huang W, Ma J, Park KH, Wu Z, Chen P, Zhu H, Ma JJ, Cai W, Paul C, Niu L, Fan GC, Wang HS, Kanisicak O, Xu M, Wang Y. CRISPR activation of endogenous genes reprograms fibroblasts into cardiovascular progenitor cells for myocardial infarction therapy. Mol Ther 2022; 30:54-74. [PMID: 34678511 PMCID: PMC8753567 DOI: 10.1016/j.ymthe.2021.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jialiang Liang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Zhichao Wu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Peng Chen
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jian-Jie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Wenfeng Cai
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Christian Paul
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
6
|
Lee CS, Cho HJ, Lee JW, Son HJ, Lee J, Kang M, Kim HS. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:332-342. [PMID: 35356977 PMCID: PMC8968580 DOI: 10.1093/stcltm/szab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022] Open
Abstract
Discovering cell–surface markers based on a comprehensive understanding of development is utilized to isolate a particular cell type with high purity for therapeutic purposes. Given that latrophilin-2 (Lphn2) substantially contributes to cardiac differentiation, we examined whether Lphn2 regulates functional significance in heart development and repair. We performed whole-mount immunostaining followed by clearing technique of embryo, RNA sequencing related to Lphn2-knockout (KO) embryo, and in vivo functional analyses of Lphn2+ cells using echocardiography. After immunostaining the cleared embryo sample, Lphn2 was exclusively observed in cardiac cells expressing α-sarcomeric actinin at embryonic days E9.5 and E10.5. Homozygous Lphn2-KO mice were embryonically lethal and showed underdevelopment of the ventricular myocardium. However, Lphn2 was not required to develop vessels, including endothelial cells and smooth muscle cells. For the purpose of cardiac regeneration, we transplanted pluripotent stem cell (PSC)–derived Lphn2+ cells into the infarcted heart. PSC–derived Lphn2+ cells differentiated into cardiomyocytes and regenerated the myocardium when transplanted into the infarcted heart, unlike Lphn2− cells. Transplanted Lphn2+ cells improved left-ventricle systolic function and reduced infarct size. We demonstrated that Lphn2 exhibits potential as a cardiomyogenic marker to facilitate targeted stem cell therapy for heart repair in clinical practice.
Collapse
Affiliation(s)
- Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Corresponding author: Hyun-Jai Cho, MD, Ph.D., Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, South Korea. Tel: +82 2 2072 3931; Fax: +82 2 3675 0805. E-mail: ;
| | - Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun Ju Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Minjun Kang
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Lee JW, Lee CS, Ryu YR, Lee J, Son H, Cho HJ, Kim HS. Lysophosphatidic Acid Receptor 4 Is Transiently Expressed during Cardiac Differentiation and Critical for Repair of the Damaged Heart. Mol Ther 2021; 29:1151-1163. [PMID: 33160074 PMCID: PMC7934582 DOI: 10.1016/j.ymthe.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/05/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient differentiation of pluripotent stem cells (PSCs) into cardiac cells is essential for the development of new therapeutic modalities to repair damaged heart tissue. We identified a novel cell surface marker, the G protein-coupled receptor lysophosphatidic acid receptor 4 (LPAR4), specific to cardiac progenitor cells (CPCs) and determined its functional significance and therapeutic potential. During in vitro differentiation of mouse and human PSCs toward cardiac lineage, LPAR4 expression peaked after 3−7 days of differentiation in cardiac progenitors and then declined. In vivo, LPAR4 was specifically expressed in the early stage of embryonal heart development, and as development progressed, LPAR4 expression decreased and was non-specifically distributed. We identified the effective agonist octadecenyl phosphate and a p38 MAPK blocker as the downstream signal blocker. Sequential stimulation and inhibition of LPAR4 using these agents enhanced the in vitro efficiency of cardiac differentiation from mouse and human PSCs. Importantly, in vivo, this sequential stimulation and inhibition of LPAR4 reduced the infarct size and rescued heart dysfunction in mice. In conclusion, LPAR4 is a novel CPC marker transiently expressed only in heart during embryo development. Modulation of LPAR4-positive cells may be a promising strategy for repairing myocardium after myocardial infarction.
Collapse
Affiliation(s)
- Jin-Woo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Choon-Soo Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong-Rim Ryu
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jaewon Lee
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - HyunJu Son
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea
| | - Hyun-Jai Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Hyo-Soo Kim
- Strategic Center of Cell & Bio Therapy, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Monsanto MM, Wang BJ, Ehrenberg ZR, Echeagaray O, White KS, Alvarez R, Fisher K, Sengphanith S, Muliono A, Gude NA, Sussman MA. Enhancing myocardial repair with CardioClusters. Nat Commun 2020; 11:3955. [PMID: 32769998 PMCID: PMC7414230 DOI: 10.1038/s41467-020-17742-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.
Collapse
Affiliation(s)
- Megan M Monsanto
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Bingyan J Wang
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Zach R Ehrenberg
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Oscar Echeagaray
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kevin S White
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Roberto Alvarez
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Kristina Fisher
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sharon Sengphanith
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Alvin Muliono
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Natalie A Gude
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Mark A Sussman
- San Diego Heart Research Institute, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA.
| |
Collapse
|
9
|
Dergilev KV, Vasilets ID, Tsokolaeva ZI, Zubkova ES, Parfenova EV. [Perspectives of cell therapy for myocardial infarction and heart failure based on cardiosphere cells]. TERAPEVT ARKH 2020; 92:111-120. [PMID: 32598708 DOI: 10.26442/00403660.2020.04.000634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide. In recent years, researchers are attracted to the use of cell therapy based on stem cell and progenitor cells, which has been a promising strategy for cardiac repair after injury. However, conducted research using intracoronary or intramyocardial transplantation of various types of stem/progenitor cells as a cell suspension showed modest efficiency. This is due to the low degree of integration and cell survival after transplantation. To overcome these limitations, the concept of the use of multicellular spheroids modeling the natural microenvironment of cells has been proposed, which allows maintaining their viability and therapeutic properties. It is of great interest to use so-called cardial spheroids (cardiospheres) spontaneously forming three-dimensional structures under low-adhesive conditions, consisting of a heterogeneous population of myocardial progenitor cells and extracellular matrix proteins. This review presents data on methods for creating cardiospheres, directed regulation of their properties and reparative potential, as well as the results of preclinical and clinical studies on their use for the treatment of heart diseases.
Collapse
Affiliation(s)
| | | | - Z I Tsokolaeva
- National Medical Research Center for Cardiology.,Negovsky Scientific Research Institute of General Reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
| | - E S Zubkova
- National Medical Research Center for Cardiology
| | - E V Parfenova
- National Medical Research Center for Cardiology.,Lomonosov Moscow State University
| |
Collapse
|
10
|
Kanda P, Benavente-Babace A, Parent S, Connor M, Soucy N, Steeves A, Lu A, Cober ND, Courtman D, Variola F, Alarcon EI, Liang W, Stewart DJ, Godin M, Davis DR. Deterministic paracrine repair of injured myocardium using microfluidic-based cocooning of heart explant-derived cells. Biomaterials 2020; 247:120010. [PMID: 32259654 DOI: 10.1016/j.biomaterials.2020.120010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
While encapsulation of cells within protective nanoporous gel cocoons increases cell retention and pro-survival integrin signaling, the influence of cocoon size and intra-capsular cell-cell interactions on therapeutic repair are unknown. Here, we employ a microfluidic platform to dissect the impact of cocoon size and intracapsular cell number on the regenerative potential of transplanted heart explant-derived cells. Deterministic increases in cocoon size boosted the proportion of multicellular aggregates within cocoons, reduced vascular clearance of transplanted cells and enhanced stimulation of endogenous repair. The latter being attributable to cell-cell stimulation of cytokine and extracellular vesicle production while also broadening of the miRNA cargo within extracellular vesicles. Thus, by tuning cocoon size and cell occupancy, the paracrine signature and retention of transplanted cells can be enhanced to promote paracrine stimulation of endogenous tissue repair.
Collapse
Affiliation(s)
- Pushpinder Kanda
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | | | - Sandrine Parent
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Michie Connor
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Nicholas Soucy
- Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, K1N6N5, Canada
| | - Alexander Steeves
- Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Aizhu Lu
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada
| | - Nicholas David Cober
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Emilio I Alarcon
- University of Ottawa Heart Institute, Division of Cardiac Surgery, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, K1H8M5, Canada
| | - Wenbin Liang
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, Division of Regenerative Medicine, Department of Medicine, University of Ottawa, Ottawa, K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada
| | - Michel Godin
- Department of Physics, University of Ottawa, K1N6N5, Canada; Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, K1N6N5, Canada; Department of Mechanical Engineering, University of Ottawa, K1N6N5, Canada
| | - Darryl R Davis
- University of Ottawa Heart Institute, Division of Cardiology, Department of Medicine, University of Ottawa, Ottawa, K1Y4W7, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H8M5, Canada.
| |
Collapse
|
11
|
Jeong HS, Park CY, Kim JH, Joo HJ, Choi SC, Choi JH, Lim IR, Park JH, Hong SJ, Lim DS. Cardioprotective effects of genetically engineered cardiac stem cells by spheroid formation on ischemic cardiomyocytes. Mol Med 2020; 26:15. [PMID: 32005100 PMCID: PMC6995053 DOI: 10.1186/s10020-019-0128-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sca-1+ cardiac stem cells and their limited proliferative potential were major limiting factors for use in various studies. METHODS Therefore, the effects of sphere genetically engineered cardiac stem cells (S-GECS) inserted with telomerase reverse transcriptase (TERT) were investigated to examine cardiomyocyte survival under hypoxic conditions. GECS was obtained from hTERT-immortalized Sca-1+ cardiac stem cell (CSC) lines, and S-GECS were generated using poly-HEMA. RESULTS The optimal conditions for S-GECS was determined to be 1052 GECS cells/mm2 and a 48 h culture period to produce spheroids. Compared to adherent-GECS (A-GECS) and S-GECS showed significantly higher mRNA expression of SDF-1α and CXCR4. S-GECS conditioned medium (CM) significantly reduced the proportion of early and late apoptotic cardiomyoblasts during CoCl2-induced hypoxic injury; however, gene silencing via CXCR4 siRNA deteriorated the protective effects of S-GECS against hypoxic injury. As downstream pathways of SDF-1α/CXCR4, the Erk and Akt signaling pathways were stimulated in the presence of S-GECS CM. S-GECS transplantation into a rat acute myocardial infarction model improved cardiac function and reduced the fibrotic area. These cardioprotective effects were confirmed to be related with the SDF-1α/CXCR4 pathway. CONCLUSIONS Our findings suggest that paracrine factors secreted from transplanted cells may protect host cardiomyoblasts in the infarcted myocardium, contributing to beneficial left ventricle (LV) remodeling after acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Han Saem Jeong
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chi-Yeon Park
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jong-Ho Kim
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyung Joon Joo
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hyun Choi
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - I-Rang Lim
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Soon Jun Hong
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Cruz T, López-Giraldo A, Noell G, Guirao A, Casas-Recasens S, Garcia T, Saco A, Sellares J, Agustí A, Faner R. Smoking Impairs the Immunomodulatory Capacity of Lung-Resident Mesenchymal Stem Cells in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2019; 61:575-583. [DOI: 10.1165/rcmb.2018-0351oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tamara Cruz
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Alejandra López-Giraldo
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Guillaume Noell
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Angela Guirao
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | | | - Tamara Garcia
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
| | - Adela Saco
- Department of Pathology, Hospital Clinic, Barcelona, Spain
| | - Jacobo Sellares
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Alvar Agustí
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Respiratory Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| | - Rosa Faner
- Centro Investigación Biomédica en Red Enfermedades Respiratorias, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; and
| |
Collapse
|
13
|
Trac D, Maxwell JT, Brown ME, Xu C, Davis ME. Aggregation of Child Cardiac Progenitor Cells Into Spheres Activates Notch Signaling and Improves Treatment of Right Ventricular Heart Failure. Circ Res 2019; 124:526-538. [PMID: 30590978 PMCID: PMC6375764 DOI: 10.1161/circresaha.118.313845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RATIONALE Congenital heart disease can lead to life-threatening right ventricular (RV) heart failure. Results from clinical trials support expanding cardiac progenitor cell (CPC) based therapies. However, our recent data show that CPCs lose function as they age, starting as early as 1 year. OBJECTIVE To determine whether the aggregation of child (1-5-year-old) CPCs into scaffold-free spheres can improve differentiation by enhancing Notch signaling, a known regulator of CPC fate. We hypothesized that aggregated (3-dimensional [3D]) CPCs will repair RV heart failure better than monolayer (2-dimensional [2D]) CPCs. METHODS AND RESULTS Spheres were produced with 1500 CPCs each using a microwell array. CPC aggregation significantly increased gene expression of Notch1 compared with 2D CPCs, accompanied by significant upregulation of cardiogenic transcription factors (GATA4, HAND1, MEF2C, NKX2.5, and TBX5) and endothelial markers (CD31, FLK1, FLT1, VWF). Blocking Notch receptor activation with the γ-secretase inhibitor DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) diminished these effects. To evaluate the therapeutic improvements of CPC aggregation, RV heart failure was induced in athymic rats by pulmonary artery banding, and cells were implanted into the RV free wall. Echocardiographic measurements 28 days postimplantation showed significantly improved RV function with 3D compared with 2D CPCs. Tracking implanted CPCs via DiR (1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide)-labeling showed improved retention of 3D CPCs. Transducing 3D CPCs with Notch1-shRNA (short hairpin RNA) did not reduce retention, but significantly reduced RV functional improvements. Histological analyses showed 3D treatment reduced RV fibrosis and increased angiogenesis. Although 3D CPCs formed CD31+ vessel-like cells in vivo, these effects are more likely because of improved 3D CPC exosome function compared with 2D CPC exosomes. CONCLUSIONS Spherical aggregation improves child CPC function in a Notch-dependent manner. The strong reparative ability of CPC spheres warrants further investigation as a treatment for pediatric heart failure, especially in older children where reparative ability may be reduced.
Collapse
Affiliation(s)
- David Trac
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Joshua T. Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Milton E. Brown
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Chunhui Xu
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, Georgia, 30322, USA
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, 30322, USA;,Children’s Heart Research & Outcomes (HeRO) Center, Children’s Healthcare of Atlanta & Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
14
|
Chang Y, Lee E, Kim J, Kwon YW, Kwon Y, Kim J. Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier. Biomaterials 2018; 192:500-509. [PMID: 30513475 DOI: 10.1016/j.biomaterials.2018.11.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
The reprogramming of induced cardiomyocytes (iCMs) has shown potential in regenerative medicine. However, in vivo reprogramming of iCMs is significantly inefficient, and novel gene delivery systems are required to more efficiently and safely induce in vivo reprogramming of iCMs for therapeutic applications in heart injury. In this study, we show that cationic gold nanoparticles (AuNPs) loaded with Gata4, Mef2c, and Tbx5 function as nanocarriers for cardiac reprogramming. The AuNP/GMT/PEI nanocomplexes show high reprogramming efficiency in human and mouse somatic cells with low cytotoxicity and direct conversion into iCMs without integrating factors into the genome. Importantly, AuNP/GMT/PEI nanocomplexes led to efficient in vivo conversion into cardiomyocytes after myocardial infarction (MI), resulting in the effective recovery of cardiac function and scar area. Taken together, these results show that the AuNP/GMT/PEI nanocarrier can be used to develop effective therapeutics for heart regeneration in cardiac disease patients.
Collapse
Affiliation(s)
- Yujung Chang
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Euiyeon Lee
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Junyeop Kim
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Yoo-Wook Kwon
- Biomedical Research Institute, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Youngeun Kwon
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea.
| | - Jongpil Kim
- Department of Biomedical Engineering (BK21plus), Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea; Department of Chemistry, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
15
|
Lee BH, Park JN, Lee EJ, Moon YW, Wang JH. Therapeutic Efficacy of Spherical Aggregated Human Bone Marrow-Derived Mesenchymal Stem Cells Cultured for Osteochondral Defects of Rabbit Knee Joints. Am J Sports Med 2018; 46:2242-2252. [PMID: 30011257 DOI: 10.1177/0363546518780991] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Engraftment and longevity of transplanted cells are crucial for stem cell-based cartilage treatment. PURPOSE To determine whether cultured spherical cell masses of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) could improve engraftment at defect sites and to examine their corresponding effects on osteochondral regeneration. STUDY DESIGN Controlled laboratory study. METHODS A cylindrical osteochondral defect (5 mm wide × 5 mm deep) was created in trochlear grooves of rabbit knees. The single-cell type of hBM-MSCs with fibrin glue, the spherical type of hBM-MSCs with fibrin glue, and cell-free fibrin glue (control) were each implanted into osteochondral defect sites. A total of 18 rabbit knees were randomly assigned to 1 of the 3 groups (3 rabbits per group). Animals were sacrificed at 6 and 12 weeks after transplantation. Repaired tissues were evaluated via gross examination, histologic examination, and immunofluorescence analysis. RESULTS Transplantation with spherical hBM-MSCs exhibited superior overall osteochondral restoration when compared with the single-type group, as evidenced by well-ordered mature collagen fibrils produced during subchondral bone formation in the zonation phenomenon. Immunofluorescence analysis of osteochondral defect areas with human-specific antigen revealed a larger number of mesenchymal stem cells in the spherical-type group than the single cell-type group. CONCLUSION Transplantation of spherical hBM-MSCs was better than single cells from monolayer culture in improving osteochondral regeneration. CLINICAL RELEVANCE The findings demonstrate a simple strategy for enhancing the potency of stem cells required for restoration of osteochondral defects. Furthermore, this strategy may be implemented with other types of stem/progenitor cell-based therapies.
Collapse
Affiliation(s)
- Byung Hoon Lee
- Department of Orthopedic Surgery, Kang-Dong Sacred Heart Hospital, Hallym University Medical School, Seoul, Republic of Korea
| | - Jong Nam Park
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Wan Moon
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joon Ho Wang
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Dutton LC, Church SAV, Hodgkiss-Geere H, Catchpole B, Huggins A, Dudhia J, Connolly DJ. Cryopreservation of canine cardiosphere-derived cells: Implications for clinical application. Cytometry A 2017; 93:115-124. [PMID: 28834400 DOI: 10.1002/cyto.a.23186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/27/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
The clinical application of cardiosphere-derived cells (CDCs) to treat cardiac disease has gained increasing interest over the past decade. Recent clinical trials confirm their regenerative capabilities, although much remains to be elucidated about their basic biology. To develop this new treatment modality, in a cost effective and standardized workflow, necessitates the creation of cryopreserved cell lines to facilitate access for cardiac patients requiring urgent therapy. Cryopreservation may however lead to alterations in cell behavior and potency. The aim of this study was to investigate the effect of cryopreservation on canine CDCs. CDCs and mesenchymal stem cells (MSCs) isolated from five dogs were characterized. CDCs demonstrated a population doubling time that was unchanged by cryopreservation (fresh vs. cryopreserved; 57.13 ± 5.27 h vs. 48.94 ± 9.55 h, P = 0.71). This was slower than for MSCs (30.46 h, P < 0.05). The ability to form clones, self-renew, and commit to multiple lineages was unaffected by cryopreservation. Cryopreserved CDCs formed larger cardiospheres compared to fresh cells (P < 0.0001). Fresh CDCs showed a high proportion of CD105+ (89.0% ± 4.98) and CD44+ (99.68% ± 0.13) cells with varying proportions of CD90+ (23.36% ± 9.78), CD34+ (7.18% ± 4.03) and c-Kit+ (13.17% ± 8.67) cells. CD45+ (0.015% ± 0.005) and CD29+ (2.92% ± 2.46) populations were negligible. Increasing passage number of fresh CDCs correlated with an increase in the proportion of CD34+ and a decrease in CD90+ cells (P = 0.003 and 0.03, respectively). Cryopreserved CDCs displayed increased CD34+ (P < 0.001) and decreased CD90+ cells (P = 0.042) when compared to fresh cells. Overall, our study shows that cryopreservation of canine CDCs is feasible without altering their stem characteristics, thereby facilitating their utilization for clinical trials. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Luke C Dutton
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Sophie A V Church
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | | | - Brian Catchpole
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Anthony Huggins
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, UK
| | - Jayesh Dudhia
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - David J Connolly
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
17
|
Bellio MA, Rodrigues CO, Landin AM, Hatzistergos KE, Kuznetsov J, Florea V, Valasaki K, Khan A, Hare JM, Schulman IH. Physiological and hypoxic oxygen concentration differentially regulates human c-Kit+ cardiac stem cell proliferation and migration. Am J Physiol Heart Circ Physiol 2016; 311:H1509-H1519. [PMID: 27694215 PMCID: PMC5206337 DOI: 10.1152/ajpheart.00449.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/24/2016] [Indexed: 02/07/2023]
Abstract
Cardiac stem cells (CSCs) are being evaluated for their efficacy in the treatment of heart failure. However, numerous factors impair the exogenously delivered cells' regenerative capabilities. Hypoxia is one stress that contributes to inadequate tissue repair. Here, we tested the hypothesis that hypoxia impairs cell proliferation, survival, and migration of human CSCs relative to physiological and room air oxygen concentrations. Human endomyocardial biopsy-derived CSCs were isolated, selected for c-Kit expression, and expanded in vitro at room air (21% O2). To assess the effect on proliferation, survival, and migration, CSCs were transferred to physiological (5%) or hypoxic (0.5%) O2 concentrations. Physiological O2 levels increased proliferation (P < 0.05) but did not affect survival of CSCs. Although similar growth rates were observed in room air and hypoxia, a significant reduction of β-galactosidase activity (-4,203 fluorescent units, P < 0.05), p16 protein expression (0.58-fold, P < 0.001), and mitochondrial content (0.18-fold, P < 0.001) in hypoxia suggests that transition from high (21%) to low (0.5%) O2 reduces senescence and promotes quiescence. Furthermore, physiological O2 levels increased migration (P < 0.05) compared with room air and hypoxia, and treatment with mesenchymal stem cell-conditioned media rescued CSC migration under hypoxia to levels comparable to physiological O2 migration (2-fold, P < 0.05 relative to CSC media control). Our finding that physiological O2 concentration is optimal for in vitro parameters of CSC biology suggests that standard room air may diminish cell regenerative potential. This study provides novel insights into the modulatory effects of O2 concentration on CSC biology and has important implications for refining stem cell therapies.
Collapse
Affiliation(s)
- Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Claudia O Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ana Marie Landin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | | | - Jeffim Kuznetsov
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida; and
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
18
|
Geng HH, Li R, Su YM, Xiao J, Pan M, Cai XX, Ji XP. The Circular RNA Cdr1as Promotes Myocardial Infarction by Mediating the Regulation of miR-7a on Its Target Genes Expression. PLoS One 2016; 11:e0151753. [PMID: 26998750 PMCID: PMC4801407 DOI: 10.1371/journal.pone.0151753] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/03/2016] [Indexed: 01/08/2023] Open
Abstract
Objectives Recent studies have demonstrated the role of Cdr1as (or CiRS-7), one of the well-identified circular RNAs (circRNAs), as a miR-7a/b sponge or inhibitor in brain tissues or islet cells. This study aimed to investigate the presence of Cdr1as/miR-7a pathway in cardiomyocytes, and explore the mechanism underlying the function of miR-7a in protecting against myocardial infarction (MI)-induced apoptosis. Methods Mouse MI injury model was established and evaluated by infarct size determination. Real-time PCR was performed to quantify the expression of Cdr1as and miR-7a in cardiomyocytes. Cell apoptosis was determined by caspase-3 activity analysis and flow cytometry assays with Annexin V/PI staining. Transfection of Cdr1as overexpressing plasmid and miR-7a mimic were conducted for gain-of-function studies. Luciferase reporter assay and western blot analysis were performed to verity potential miR-7a targets. Results Cdr1as and miR-7a were both upregulated in MI mice with increased cardiac infarct size, or cardiomyocytes under hypoxia treatment. Cdr1as overexpression in MCM cells promoted cell apoptosis, but was then reversed by miR-7a overexpression. The SP1 was identified as a new miR-7a target, in line with previously identified PARP, while miR-7a-induced decrease of cell apoptosis under hypoxia treatment was proven to be inhibited by PARP-SP1 overexpression. Moreover, Cdr1as overexpression in vivo increased cardiac infarct size with upregulated expression of PARP and SP1, while miR-7a overexpression reversed these changes. Conclusions Cdr1as also functioned as a powerful miR-7a sponge in myocardial cells, and showed regulation on the protective role of miR-7a in MI injury, involving the function of miR-7a targets, PARP and SP1.
Collapse
Affiliation(s)
- Hai-Hua Geng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
| | - Rui Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
| | - Ya-Min Su
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jie Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
| | - Min Pan
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xing-Xing Cai
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Xiao-Ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, 250012, Shandong, China
- * E-mail:
| |
Collapse
|
19
|
Gallet R, Tseliou E, Dawkins J, Middleton R, Valle J, Angert D, Reich H, Luthringer D, Kreke M, Smith R, Marbán L, Marbán E. Intracoronary delivery of self-assembling heart-derived microtissues (cardiospheres) for prevention of adverse remodeling in a pig model of convalescent myocardial infarction. Circ Cardiovasc Interv 2016; 8:CIRCINTERVENTIONS.115.002391. [PMID: 25953823 DOI: 10.1161/circinterventions.115.002391] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Preclinical studies in rodents and pigs indicate that the self-assembling microtissues known as cardiospheres may be more effective than dispersed cardiosphere-derived cells. However, the more desirable intracoronary route has been assumed to be unsafe for cardiosphere delivery: Cardiospheres are large (30-150 μm), raising concerns about likely microembolization. We questioned these negative assumptions by evaluating the safety and efficacy of optimized intracoronary delivery of cardiospheres in a porcine model of convalescent myocardial infarction. METHODS AND RESULTS First, we standardized the size of cardiospheres by modifying culture conditions. Then, dosage was determined by infusing escalating doses of cardiospheres in the left anterior descending artery of naive pigs, looking for acute adverse effects. Finally, in a randomized efficacy study, 14 minipigs received allogeneic cardiospheres (1.3 × 10(6)) or vehicle 1 month after myocardial infarction. Animals underwent magnetic resonance imaging before infusion and 1 month later to assess left ventricular ejection fraction, scar mass, and viable mass. In the dosing study, we did not observe any evidence of microembolization after cardiosphere infusion. In the post-myocardial infarction study, cardiospheres preserved LV function, reduced scar mass and increased viable mass, whereas placebo did not. Moreover, cardiosphere decreased collagen content, and increased vessel densities and myocardial perfusion. Importantly, intracoronary cardiospheres decreased left ventricular end-diastolic pressure and increased cardiac output. CONCLUSIONS Intracoronary delivery of cardiospheres is safe. Intracoronary cardiospheres are also remarkably effective in decreasing scar, halting adverse remodeling, increasing myocardial perfusion, and improving hemodynamic status after myocardial infarction in pigs. Thus, cardiospheres may be viable therapeutic candidates for intracoronary infusion in selected myocardial disorders.
Collapse
Affiliation(s)
- Romain Gallet
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Eleni Tseliou
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - James Dawkins
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Ryan Middleton
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Jackelyn Valle
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - David Angert
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Heidi Reich
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Daniel Luthringer
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Michelle Kreke
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Rachel Smith
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Linda Marbán
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.)
| | - Eduardo Marbán
- From the Cedars-Sinai Heart Institute, Los Angeles, CA (R.G., E.T., J.D., R.M., J.V., D.A., H.R., D.L., M.K., R.S., L.M.); and Capricor Inc, Los Angeles, CA (M.K., R.S., L.M.).
| |
Collapse
|
20
|
Bilgimol JC, Ragupathi S, Vengadassalapathy L, Senthil NS, Selvakumar K, Ganesan M, Manjunath SR. Stem cells: An eventual treatment option for heart diseases. World J Stem Cells 2015; 7:1118-1126. [PMID: 26435771 PMCID: PMC4591785 DOI: 10.4252/wjsc.v7.i8.1118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/04/2015] [Accepted: 08/03/2015] [Indexed: 02/06/2023] Open
Abstract
Stem cells are of global excitement for various diseases including heart diseases. It is worth to understand the mechanism or role of stem cells in the treatment of heart failure. Bone marrow derived stem cells are commonly practiced with an aim to improve the function of the heart. The majority of studies have been conducted with acute myocardial infarction and a few has been investigated with the use of stem cells for treating chronic or dilated cardiomyopathy. Heterogeneity in the treated group using stem cells has greatly emerged. Ever increasing demand for any alternative made is of at most priority for cardiomyopathy. Stem cells are of top priority with the current impact that has generated among physicians. However, meticulous selection of proper source is required since redundancy is clearly evident with the present survey. This review focuses on the methods adopted using stem cells for heart diseases and outcomes that are generated so far with an idea to determine the best therapeutic possibility in order to fulfill the present demand.
Collapse
|
21
|
Dixit P, Katare R. Challenges in identifying the best source of stem cells for cardiac regeneration therapy. Stem Cell Res Ther 2015; 6:26. [PMID: 25886612 PMCID: PMC4357059 DOI: 10.1186/s13287-015-0010-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/17/2015] [Indexed: 12/14/2022] Open
Abstract
The overall clinical cardiac regeneration experience suggests that stem cell therapy can be safely performed, but it also underlines the need for reproducible results for their effective use in a real-world scenario. One of the significant challenges is the identification and selection of the best suited stem cell type for regeneration therapy. Bone marrow mononuclear cells, bone marrow-derived mesenchymal stem cells, resident or endogenous cardiac stem cells, endothelial progenitor cells and induced pluripotent stem cells are some of the stem cell types which have been extensively tested for their ability to regenerate the lost myocardium. While most of these cell types are being evaluated in clinical trials for their safety and efficacy, results show significant heterogeneity in terms of efficacy. The enthusiasm surrounding regenerative medicine in the heart has been dampened by the reports of poor survival, proliferation, engraftment, and differentiation of the transplanted cells. Therefore, the primary challenge is to create clearcut evidence on what actually drives the improvement of cardiac function after the administration of stem cells. In this review, we provide an overview of different types of stem cells currently being considered for cardiac regeneration and discuss why associated factors such as practicality and difficulty in cell collection should also be considered when selecting the stem cells for transplantation. Next, we discuss how the experimental variables (type of disease, marker-based selection and use of different isolation techniques) can influence the study outcome. Finally, we provide an outline of the molecular and genetic approaches to increase the functional ability of stem cells before and after transplantation.
Collapse
Affiliation(s)
- Parul Dixit
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, 9010, New Zealand.
| |
Collapse
|
22
|
Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH. Cardiac stem cells: translation to human studies. Biophys Rev 2014; 7:127-139. [PMID: 28509972 DOI: 10.1007/s12551-014-0148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
The discovery of multiple classes of cardiac progenitor cells in the adult mammalian heart has generated hope for their use as a therapeutic in heart failure. However, successful results from animal models have not always yielded similar findings in human studies. Recent Phase I/II trials of c-Kit (SCIPIO) and cardiosphere-based (CADUCEUS) cardiac progenitor cells have demonstrated safety and some therapeutic efficacy. Gaps remain in our understanding of the origins, function and relationships between the different progenitor cell families, many of which are heterogeneous populations with overlapping definitions. Another challenge lies in the limitations of small animal models in replicating the human heart. Cryopreserved human cardiac tissue provides a readily available source of cardiac progenitor cells and may help address these questions. We review important findings and relative unknowns of the main classes of cardiac progenitor cells, highlighting differences between animal and human studies.
Collapse
Affiliation(s)
- Zijun Ge
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Thi Y L Le
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145
| | | | - James J H Chong
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145.
| |
Collapse
|
23
|
Zhang S, Liu P, Chen L, Wang Y, Wang Z, Zhang B. The effects of spheroid formation of adipose-derived stem cells in a microgravity bioreactor on stemness properties and therapeutic potential. Biomaterials 2014; 41:15-25. [PMID: 25522961 DOI: 10.1016/j.biomaterials.2014.11.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023]
Abstract
Adipose-derived stem cells (ADSCs) represent a valuable source of stem cells for regenerative medicine, but the loss of their stemness during in vitro expansion remains a major roadblock. We employed a microgravity bioreactor (MB) to develop a method for biomaterial-free-mediated spheroid formation to maintain the stemness properties of ADSCs. ADSCs spontaneously formed three-dimensional spheroids in the MB. Compared with monolayer culture, the expression levels of E-cadherin and pluripotent markers were significantly upregulated in ADSC spheroids. Spheroid-derived ADSCs exhibited increased proliferative ability and colony-forming efficiency. By culturing the spheroid-derived ADSCs in an appropriate induction medium, we found that the multipotency differentiation capacities of ADSCs were significantly improved by spheroid culture in the MB. Furthermore, when ADSCs were administered to mice with carbon tetrachloride-induced acute liver failure, spheroid-derived ADSCs showed more effective potentials to rescue liver failure than ADSCs derived from constant monolayer culture. Our results suggest that spheroid formation of ADSCs in an MB enhances their stemness properties and increases their therapeutic potential. Therefore, spheroid culture in an MB can be an efficient method to maintain stemness properties, without the involvement of any biomaterials for clinical applications of in vitro cultured ADSCs.
Collapse
Affiliation(s)
- Shichang Zhang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Ping Liu
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Li Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210017, China
| | - Yingjie Wang
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhengguo Wang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China
| | - Bo Zhang
- Department 4, Institute of Surgery Research, Daping Hospital, Third Military Medical University, State Key Lab of Trauma, Burns and Combined Injury, Chongqing 400042, China.
| |
Collapse
|
24
|
Zhang H, Wang H, Li N, Duan CE, Yang YJ. Cardiac progenitor/stem cells on myocardial infarction or ischemic heart disease: what we have known from current research. Heart Fail Rev 2014; 19:247-58. [PMID: 23381197 DOI: 10.1007/s10741-013-9372-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cell therapy has become a promising method for many diseases, including ischemic heart disease and heart failure. Several kinds of stem cells have been studied for heart diseases. Of them, bone marrow stem cells (BMSCs), which have been used in many clinical trials, are the most understood one. But the effect of BMSCs is mediated by paracrine factors instead of direct turning into cardiomyocytes. On the other hand, a lot of evidences have shown that resident cardiac stem cells could turn into cardiomyocytes directly in vivo. Currently, seven kinds of resident cardiac stem cells have been discovered. However, their mechanisms, development origins, and relationships have yet to be fully understood. Moreover, two Phase I clinical trials have been performed recently. They show promising results. In this review, we will summarize the current research on these cardiac stem cells and the methods to enhance their effects in clinical applications.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital and Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
25
|
Abstract
Stem cells have emerged as promising tools for the treatment of incurable neural and heart diseases and tissue damage. However, the survival of transplanted stem cells is reported to be low, reducing their therapeutic effects. The major causes of poor survival of stem cells in vivo are linked to anoikis, potential immune rejection, and oxidative damage mediating apoptosis. This review investigates novel methods and potential molecular mechanisms for stem cell preconditioning in vitro to increase their retention after transplantation in damaged tissues. Microenvironmental preconditioning (e.g., hypoxia, heat shock, and exposure to oxidative stress), aggregate formation, and hydrogel encapsulation have been revealed as promising strategies to reduce cell apoptosis in vivo while maintaining biological functions of the cells. Moreover, this review seeks to identify methods of optimizing cell dose preparation to enhance stem cell survival and therapeutic function after transplantation.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory , CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
26
|
Mayfield AE, Tilokee EL, Davis DR. Resident cardiac stem cells and their role in stem cell therapies for myocardial repair. Can J Cardiol 2014; 30:1288-98. [PMID: 25092406 DOI: 10.1016/j.cjca.2014.03.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
Abstract
Despite advances in treatment, heart failure remains one of the top killers in Canada. This recognition motivated a new research focus to harness the fundamental repair properties of the human heart. Since then, cardiac stem cells (CSCs) have emerged as a promising cell candidate to regenerate damaged hearts. The rationale of this approach is simple with ex vivo amplification of CSCs from clinical-grade biopsies, followed by delivery to areas of injury, where they engraft and regenerate the heart. In this review we will summarize recent advances and discuss future developments in CSC-mediated cardiac repair to treat the growing number of Canadians living with and dying from heart failure.
Collapse
Affiliation(s)
| | | | - Darryl R Davis
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
27
|
Lee HJ, Cho HJ, Kwon YW, Park YB, Kim HS. Phenotypic modulation of human cardiospheres between stemness and paracrine activity, and implications for combined transplantation in cardiovascular regeneration. Biomaterials 2013; 34:9819-29. [PMID: 24075481 DOI: 10.1016/j.biomaterials.2013.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 09/04/2013] [Indexed: 01/19/2023]
Abstract
As the search for new cell types for cardiovascular regeneration continues, it has become increasingly important to optimize ex vivo cell processing. We aimed to develop an optimal processing strategy for human cardiac progenitor cells. We hypothesized that enhancing the stemness potential and promoting the secretory activity for paracrine effects are mutually exclusive routes. Therefore, we investigated the two divergent cell processing methods to enhance cellular potency and humoral activity, respectively. We obtained human right ventricular tissues and sequentially generated primary cardiosphere (CS), primary CS-derived cells (PCDC) and secondary CSs. During secondary CS formation, inhibiting the ERK pathway, using selective RTK1 and TGF-β inhibitors, Oct4 increased 20 fold and VEGF was decreased. When the ERK pathway was stimulated by addition of EGF and TGF-β, VEGF expression was upregulated and Oct4 was downregulated, indicating that the ERK pathway serves a directional role for cellular potency versus paracrine capacity. Transplantation of PCDCs or secondary CSs into the infarcted heart of immunocompromised mouse showed significant angiogenic effects compared with PBS injection. Interestingly, combined transplantation of the two differently-processed, dual-purpose secondary CSs resulted in an additional increase in neovascularization. Human VEGF was primarily produced from secondary CSs under ERK stimulating conditions. Cardiomyocyte-like cells were produced from secondary CSs under ERK inhibitory conditions. These findings indicate that combined transplantation of specifically-processed human secondary CSs enhances infarct repair through the complementary enhancement of cardiopoietic regenerative and paracrine protective effect. Furthermore, these results underscore the fact that optimal cell processing methods have the potential to maximize the therapeutic benefits.
Collapse
Affiliation(s)
- Ho-Jae Lee
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea; National Research Laboratory for Stem Cell Niche, Seoul National University College of Medicine, Seoul, Republic of Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Dey D, Han L, Bauer M, Sanada F, Oikonomopoulos A, Hosoda T, Unno K, De Almeida P, Leri A, Wu JC. Dissecting the molecular relationship among various cardiogenic progenitor cells. Circ Res 2013; 112:1253-62. [PMID: 23463815 DOI: 10.1161/circresaha.112.300779] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Multiple progenitors derived from the heart and bone marrow (BM) have been used for cardiac repair. Despite this, not much is known about the molecular identity and relationship among these progenitors. To develop a robust stem cell therapy for the heart, it is critical to understand the molecular identity of the multiple cardiogenic progenitor cells. OBJECTIVE This study is the first report of high-throughput transcriptional profiling of cardiogenic progenitor cells carried out on an identical platform. METHOD AND RESULTS Microarray-based transcriptional profiling was carried out for 3 cardiac (ckit(+), Sca1(+), and side population) and 2 BM (ckit(+) and mesenchymal stem cell) progenitors, obtained from age- and sex-matched wild-type C57BL/6 mice. Analysis indicated that cardiac-derived ckit(+) population was very distinct from Sca1(+) and side population cells in the downregulation of genes encoding for cell-cell and cell-matrix adhesion proteins, and in the upregulation of developmental genes. Significant enrichment of transcripts involved in DNA replication and repair was observed in BM-derived progenitors. The BM ckit(+) cells seemed to have the least correlation with the other progenitors, with enrichment of immature neutrophil-specific molecules. CONCLUSIONS Our study indicates that cardiac ckit(+) cells represent the most primitive population in the rodent heart. Primitive cells of cardiac versus BM origin differ significantly with respect to stemness and cardiac lineage-specific genes, and molecules involved in DNA replication and repair. The detailed molecular profile of progenitors reported here will serve as a useful reference to determine the molecular identity of progenitors used in future preclinical and clinical studies.
Collapse
Affiliation(s)
- Devaveena Dey
- Division of Cardiology, Department of Medicine, Stanford Cardiovascular Institute, Institute of Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305-5454, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Generation of human secondary cardiospheres as a potent cell processing strategy for cell-based cardiac repair. Biomaterials 2013; 34:651-61. [DOI: 10.1016/j.biomaterials.2012.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/04/2012] [Indexed: 12/12/2022]
|
31
|
Díez Villanueva P, Sanz-Ruiz R, Núñez García A, Fernández Santos ME, Sánchez PL, Fernández-Avilés F. Functional multipotency of stem cells: what do we need from them in the heart? Stem Cells Int 2012; 2012:817364. [PMID: 22966237 PMCID: PMC3433152 DOI: 10.1155/2012/817364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/22/2012] [Accepted: 07/22/2012] [Indexed: 12/14/2022] Open
Abstract
After more than ten years of human research in the field of cardiac regenerative medicine, application of stem cells in different phases of ischemic heart disease has come to age. Randomized clinical trials have demonstrated that stem cell therapy can improve cardiac recovery after the acute phase of myocardial ischemia and in patients with chronic ischemic heart disease, and several efficacy phase III trials with clinical endpoints are on their way. Nevertheless, a complete knowledge on the mechanisms of action of stem cells still remains elusive. Of the three main mechanisms by which stem cells could exert their benefit, paracrine signaling from the administered cells and stimulation of endogenous repair are nowadays the most plausible ones. However, in this review we will define and discuss the concept of stem cell potency and differentiation, will examine the evidence available, and will depict future directions of research.
Collapse
Affiliation(s)
- Pablo Díez Villanueva
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Ricardo Sanz-Ruiz
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alberto Núñez García
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Pedro L. Sánchez
- Cardiology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | |
Collapse
|
32
|
Davis DR, Stewart DJ. Selectins for cardiosphere culture: the "E's" have it! Mol Ther 2012; 20:1296-7. [PMID: 22751514 PMCID: PMC3392986 DOI: 10.1038/mt.2012.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Darryl R Davis
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Duncan J Stewart
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|