1
|
Suwittayarak R, Klincumhom N, Phrueksotsai C, Limjeerajarus N, Limjeerajarus CN, Egusa H, Osathanon T. Shear stress preconditioning enhances periodontal ligament stem cell survival. Arch Oral Biol 2025; 173:106232. [PMID: 40086040 DOI: 10.1016/j.archoralbio.2025.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE The study investigated in vitro the influences of shear stress preconditioning on human periodontal ligament stem cells (hPDLSCs) under serum deprivation. DESIGN hPDLSCs were subjected to shear stress at 0.5 and 5 dyn/cm², both with and without serum starvation. Cell viability and apoptosis were assessed using the Resazurin assay and flow cytometry analysis, respectively. Gene and protein expressions were analysed by real-time polymerase chain reaction, immunofluorescent staining, and Western blotting. RESULTS Our results revealed that shear stress potentially mitigated serum derivation-induced cell death by inducing cell viability, enhancing colony formation, and inhibiting cell apoptosis. The addition of an ERK inhibitor inhibited the shear stress-induced cell apoptosis resistance. Shear stress treatment upregulated cell viability-related gene expression, including SOX2, SOD1 and BIRC5. In particular, shear stress promoted the nuclear translocation of SOX2. Meanwhile, the expression of BIRC5 was not inhibited by cycloheximide. Shear stress-induced SOX2 and BIRC5 expression was attenuated by PI3K and ERK inhibitors, respectively. CONCLUSIONS Shear stress contributes to promoting SOX2 and BIRC5 expression by hPDLSCs, implicating the promotion of stemness and cell survival under serum starvation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaloemrit Phrueksotsai
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuttapol Limjeerajarus
- Office of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chalida Nakalekha Limjeerajarus
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Li K, Li M, Liu Z, Yang J, Li J, Jiang T. NLK knockdown in hBMSCs enhance repair of critical-size bone defects by modulating neurogenic and osteogenic differentiation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167870. [PMID: 40280200 DOI: 10.1016/j.bbadis.2025.167870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/23/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved MAP kinase-related kinase, is highly expressed in neural tissues and critically regulates cell proliferation, migration, and apoptosis by regulating numerous transcriptional molecules. Despite the widespread application of mesenchymal stem cells (MSCs) in regenerative medicine, the functional role and molecular mechanisms of NLK in MSC-mediated tissue repair remained poorly understood. Here, the dual regulatory effects of NLK on both neurogenic and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) were investigated. The results showed that NLK acted as a potent inhibitor of hBMSC neurogenesis in vitro and suppressed osteogenesis both in vitro and in vivo. Mechanistically, NLK downregulated the transcriptional coactivators LEF1 and TCF4, thereby impairing their pro-differentiation functions during neural and bone formation. These findings suggested that NLK-mediated suppression of LEF1/TCF4 signaling might hinder endogenous bone repair by dual inhibition of hBMSC neurogenic and osteogenic capacities. Targeting this pathway could offer novel therapeutic strategies for enhancing bone defect regeneration and inform the design of advanced biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Ke Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Mengdi Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Zhongning Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Jingwen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Jian Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| | - Ting Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
3
|
Zhao B, Suh J, Zhang Y, Yin E, Kadota-Watanabe C, Chang IW, Yaung J, Lao-Ngo I, Young NM, Kim RH, Klein OD, Hong C. p75 neurotrophin receptor regulates craniofacial growth and morphology in postnatal development. Front Cell Dev Biol 2025; 13:1569533. [PMID: 40171227 PMCID: PMC11959563 DOI: 10.3389/fcell.2025.1569533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Craniofacial abnormalities are among the most prevalent congenital defects, significantly affecting appearance, function, and quality of life. While the role of genetic mutations in craniofacial malformations is recognized, the underlying molecular mechanisms remain poorly understood. In this study, we investigate the role of p75 neurotrophin receptor (p75NTR) in craniofacial development by comparing wild-type (p75NTR+/+) mice against p75NTR-deficient (p75NTR-/-) knockout mice. We employed histology, micro-CT surface distance, volumetric analysis, and geometric morphometric analysis to assess craniofacial development and growth. On postnatal day 7 (P7), p75NTR-/- mice exhibited reduced skull length compared to wild-type controls. By P28, micro-CT analysis revealed significant reductions in calvarial bone volume and trabecular bone thickness in p75NTR-/- mice. Geometric morphometric analysis identified significant shape alterations in the nasal, parietal, and occipital regions, with p75NTR-/- mice showing a shortened cranium and tapered nasal bone morphology. These findings highlight the critical role of p75NTR in regulating postnatal craniofacial development. Disruption of p75NTR signaling impairs both the growth and morphological integrity of craniofacial structures, which may contribute to the pathogenesis of congenital craniofacial abnormalities. In the future, a better understanding of the molecular mechanisms through which p75NTR mediates craniofacial development may offer valuable insights for future targeted therapeutic strategies for craniofacial defects.
Collapse
Affiliation(s)
- Byron Zhao
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jinsook Suh
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Yan Zhang
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Yin
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Chiho Kadota-Watanabe
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
- Division of Maxillofacial and Neck Reconstruction, Department of Maxillofacial Orthognathics, Institute of Science Tokyo, Tokyo, Japan
| | - In Won Chang
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jun Yaung
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabelle Lao-Ngo
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Nathan M. Young
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Reuben H. Kim
- Shapiro Family Laboratory of Viral Oncology and Aging Research, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ophir D. Klein
- Department of Orofacial Sciences, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, Cedars-Sinai Guerin Children’s, Los Angeles, CA, United States
| | - Christine Hong
- Division of Orthodontics, Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
5
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
6
|
Yan T, Li H, Yan J, Ma S, Tan J. Age-related mitophagy regulates orthodontic tooth movement by affecting PDLSCs mitochondrial function and RANKL/OPG. FASEB J 2024; 38:e23865. [PMID: 39096136 DOI: 10.1096/fj.202401280r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.
Collapse
Affiliation(s)
- Tong Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Huilin Li
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiayin Yan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Siyuan Ma
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiali Tan
- Department of Orthodontics, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Yao H, Tang L, Wang D, Pang H, Yang K. F-actin microfilaments affect the LIPUS-promoted osteogenic differentiation of BMSCs through TRPM7. Biotechnol J 2024; 19:e2400310. [PMID: 39212193 DOI: 10.1002/biot.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
The differentiation of bone marrow mesenchymal stem cells (BMSCs) toward osteogenesis can be induced by low-intensity pulsed ultrasound (LIPUS). However, the molecular mechanisms responsible for LIPUS stimulation are unclear. The possible molecular mechanisms by which LIPUS promotes osteogenic differentiation of BMSCs were investigated in this study. The quantification of alkaline phosphatase (ALP) activity, Alizarin Red S staining, ALP staining, and the establishment of a calvarial defect model were used to evaluate osteogenic effects. Immunofluorescence was performed to observe the expression of microfilaments and transient receptor potential melastatin 7 (TRPM7). The levels of F-actin/G-actin and osteogenesis-related proteins under LIPUS alone or LIPUS combined with cytoskeleton interfering drugs (Cytochalasin D [CytoD] or Jasplakinolide [JA]) were assayed by western blot. Quantitative real-time reverse transcription polymerase chain reaction was utilized to measure the expression of Trpm7 mRNA. Moreover, adenoviral Trpm7 knockdown was verified using western blot. The results demonstrated that LIPUS promoted bone formation in vivo. Under osteogenic induction in vitro, the osteogenesis of BMSCs induced by LIPUS was accompanied by the depolymerization and rearrangement of microfilaments and increased levels of TRPM7. By perturbing intracellular actin dynamics, CytoD enhanced the pro-osteogenicity of LIPUS and increased TRPM7 level, while JA inhibited the pro-osteogenicity of LIPUS and reduced TRPM7 level. Additionally, the knockdown of Trpm7 suppressed the osteogenic promotion of BMSCs induced by LIPUS. The transient depolymerization and rearrangement of the cytoskeleton microfilaments mediated by LIPUS can affect TRPM7 expression and subsequently promote the osteogenesis of BMSCs. This study provides further direction for exploring the molecular mechanism of LIPUS, as a mechanical stress, in facilitating the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Huan Yao
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Tang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Wang
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ke Yang
- Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Seki Y, Takebe H, Nakao Y, Sato K, Mizoguchi T, Nakamura H, Iijima M, Hosoya A. Osteoblast differentiation of Gli1⁺ cells via Wnt and BMP signaling pathways during orthodontic tooth movement. J Oral Biosci 2024; 66:373-380. [PMID: 38499228 DOI: 10.1016/j.job.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVES Factors that induce bone formation during orthodontic tooth movement (OTM) remain unclear. Gli1 was recently identified as a stem cell marker in the periodontal ligament (PDL). Therefore, we evaluated the mechanism of differentiation of Cre/LoxP-mediated Gli1/Tomato+ cells into osteoblasts during OTM. METHODS After the final administration of tamoxifen to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato mice for 2 days, nickel-titanium closed coil springs were attached between the upper anterior alveolar bone and the first molar. Immunohistochemical localizations of β-catenin, Smad4, and Runx2 were observed in the PDL on 2, 5, and 10 days after OTM initiation. RESULTS In the untreated tooth, few Gli1/Tomato+ cells were detected in the PDL. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased in the PDL on the tension side. On this side, 49.3 ± 7.0% of β-catenin+ and 48.7 ± 5.7% of Smad4+ cells were found in the PDL, and Runx2 expression was detected in some Gli1/Tomato+ cells apart from the alveolar bone. The number of positive cells in the PDL reached a maximum on day 5. In contrast, on the compression side, β-catenin and Smad4 exhibited less immunoreactivity. On day 10, Gli1/Tomato+ cells were aligned on the alveolar bone on the tension side, with some expressing Runx2. CONCLUSIONS Gli1+ cells in the PDL differentiated into osteoblasts during OTM. Wnt and bone morphogenetic proteins signaling pathways may be involved in this differentiation.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Yuya Nakao
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Kohei Sato
- Division of Periodontology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, 399-0781, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Science University of Hokkaido. Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.
| |
Collapse
|
9
|
Lv H, Xu J, Wang Y, Liu X, Chen S, Chen J, Zhai J, Zhou Y. Isolation, identification and osteogenic capability analysis of mesenchymal stem cells derived from different layers of human maxillary sinus membrane. J Clin Periodontol 2024; 51:754-765. [PMID: 38379293 DOI: 10.1111/jcpe.13956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/22/2024]
Abstract
AIM To discover the populations of mesenchymal stem cells (MSCs) derived from different layers of human maxillary sinus membrane (hMSM) and evaluate their osteogenic capability. MATERIALS AND METHODS hMSM was isolated into a monolayer using the combined method of physical separation and enzymatic digestion. The localization of MSCs in hMSM was performed by immunohistological staining and other techniques. Lamina propria layer-derived MSCs (LMSCs) and periosteum layer-derived MSCs (PMSCs) from hMSM were expanded using the explant cell culture method and identified by multilineage differentiation assays, colony formation assay, flow cytometry and so on. The biological characteristics of LMSCs and PMSCs were compared using RNA sequencing, reverse transcription and quantitative polymerase chain reaction, immunofluorescence staining, transwell assay, western blotting and so forth. RESULTS LMSCs and PMSCs from hMSMs were both CD73-, CD90- and CD105-positive, and CD34-, CD45- and HLA-DR-negative. LMSCs and PMSCs were identified as CD171+/CD90+ and CD171-/CD90+, respectively. LMSCs displayed stronger proliferation capability than PMSCs, and PMSCs presented stronger osteogenic differentiation capability than LMSCs. Moreover, PMSCs could recruit and promote osteogenic differentiation of LMSCs. CONCLUSIONS This study identified and isolated two different types of MSCs from hMSMs. Both MSCs served as good potential candidates for bone regeneration.
Collapse
Affiliation(s)
- Huixin Lv
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jing Xu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yihan Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiuyu Liu
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Sheng Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingxia Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingjie Zhai
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Yanmin Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
10
|
Zou X, Xie B, Peng X, Lu M, Xu D, Yuan H, Zhang Y, Wang D, Zhao M, Liu R, Wen X. p75NTR antibody-conjugated microspheres: an approach to guided tissue regeneration by selective recruitment of endogenous periodontal ligament cells. Front Bioeng Biotechnol 2024; 12:1338029. [PMID: 38357709 PMCID: PMC10864659 DOI: 10.3389/fbioe.2024.1338029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Repairing defects in alveolar bone is essential for regenerating periodontal tissue, but it is a formidable challenge. One promising therapeutic approach involves using a strategy that specifically recruits periodontal ligament cells (PDLCs) with high regenerative potential to achieve in situ regeneration of alveolar bone. In this study, we have created a new type of microsphere conjugated with an antibody to target p75 neurotrophin receptor (p75NTR), which is made of nano-hydroxyapatite (nHA) and chitosan (CS). The goal of this design is to attract p75NTR+hPDLCs selectively and promote osteogenesis. In vitro experiments demonstrated that the antibody-conjugated microspheres attracted significantly more PDLCs compared to non-conjugated microspheres. Incorporating nHA not only enhances cell adhesion and proliferation on the surface of the microsphere but also augments its osteoinductive properties. Microspheres effectively recruited p75NTR+ cells at bone defect sites in SD rats, as observed through immunofluorescent staining of p75NTR antibodies. This p75NTR antibody-conjugated nHA/CS microsphere presents a promising approach for selectively recruiting cells and repairing bone defects.
Collapse
Affiliation(s)
- Xuqiang Zou
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Bo Xie
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xuelian Peng
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Mingjie Lu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Dan Xu
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Hongyan Yuan
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yixin Zhang
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| | - Di Wang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Manzhu Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Rui Liu
- Department of Stomatology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiujie Wen
- Department of Orthodontics, School of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Chatzimentor I, Tsamesidis I, Ioannou ME, Pouroutzidou GK, Beketova A, Giourieva V, Papi R, Kontonasaki E. Study of Biological Behavior and Antimicrobial Properties of Cerium Oxide Nanoparticles. Pharmaceutics 2023; 15:2509. [PMID: 37896269 PMCID: PMC10610395 DOI: 10.3390/pharmaceutics15102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: An element that has gained much attention in industrial and biomedical fields is Cerium (Ce). CeO2 nanoparticles have been proven to be promising regarding their different biomedical applications for the control of infection and inflammation. The aim of the present study was to investigate the biological properties and antimicrobial behavior of cerium oxide (CeO2) nanoparticles (NPs). (2) Methods: The investigation of the NPs' biocompatibility with human periodontal ligament cells (hPDLCs) was evaluated via the MTT assay. Measurement of alkaline phosphatase (ALP) levels and alizarine red staining (ARS) were used as markers in the investigation of CeO2 NPs' capacity to induce the osteogenic differentiation of hPDLCs. Induced inflammatory stress conditions were applied to hPDLCs with H2O2 to estimate the influence of CeO2 NPs on the viability of cells under these conditions, as well as to reveal any ROS scavenging properties. Total antioxidant capacity (TAC) of cell lysates with NPs was also investigated. Finally, the macro broth dilution method was the method of choice for checking the antibacterial capacity of CeO2 against the anaerobic pathogens Porphyromonas gingivalis and Prevotella intermedia. (3) Results: Cell viability assay indicated that hPDLCs increase their proliferation rate in a time-dependent manner in the presence of CeO2 NPs. ALP and ARS measurements showed that CeO2 NPs can promote the osteogenic differentiation of hPDLCs. In addition, the MTT assay and ROS determination demonstrated some interesting results concerning the viability of cells under oxidative stress conditions and, respectively, the capability of NPs to decrease free radical levels over the course of time. Antimicrobial toxicity was observed mainly against P. gingivalis. (4) Conclusions: CeO2 NPs could provide an excellent choice for use in clinical practices as they could prohibit bacterial proliferation and control inflammatory conditions.
Collapse
Affiliation(s)
- Iason Chatzimentor
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Maria-Eleni Ioannou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
- Laboratory of Advanced Materials and Devices (AMDeLab), Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Veronica Giourieva
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| |
Collapse
|
12
|
Fujii S, Takebe H, Mizoguchi T, Nakamura H, Shimo T, Hosoya A. Bone formation ability of Gli1 + cells in the periodontal ligament after tooth extraction. Bone 2023; 173:116786. [PMID: 37164217 DOI: 10.1016/j.bone.2023.116786] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
During the process of socket healing after tooth extraction, osteoblasts appear in the tooth socket and form alveolar bone; however, the source of these osteoblasts is still uncertain. Recently, it has been demonstrated that cells expressing Gli1, a downstream factor of sonic hedgehog signaling, exhibit stem cell properties in the periodontal ligament (PDL). Therefore, in the present study, the differentiation ability of Gli1+-PDL cells after tooth extraction was analyzed using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. After the final administration of tamoxifen to iGli1/Tomato mice, Gli1/Tomato+ cells were rarely detected in the PDL. One day after the tooth extraction, although inflammatory cells appeared in the tooth socket, Periostin+ PDL-like tissues having a few Gli1/Tomato+ cells remained near the alveolar bone. Three days after the extraction, the number of Gli1/Tomato+ cells increased as evidenced by numerous PCNA+ cells in the socket. Some of these Gli1/Tomato+ cells expressed BMP4 and Phosphorylated (P)-Smad1/5/8. After seven days, the Osteopontin+ bone matrix was formed in the tooth socket apart from the alveolar bone. Many Gli1/Tomato+ osteoblasts that were positive for Runx2+ were arranged on the surface of the newly formed bone matrix. In the absence of Gli1+-PDL cells in Gli1-CreERT2/Rosa26-loxP-stop-loxP-tdDTA (iGli1/DTA) mice, the amount of newly formed bone matrix was significantly reduced in the tooth socket. Therefore, these results collectively suggest that Gli1+-PDL cells differentiate into osteoblasts to form the bone matrix in the tooth socket; thus, this differentiation might be regulated, at least in part, by bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Saki Fujii
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
13
|
Chen H, Feng X, Yang Q, Yang K, Man S. Expression Pattern and Value of Brain-Derived Neurotrophic Factor in Periodontitis. Int Dent J 2023:S0020-6539(23)00055-2. [PMID: 36997422 PMCID: PMC10390664 DOI: 10.1016/j.identj.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Periodontitis is a common human disease with an increasing incidence. Brain-derived neurotrophic factor (BDNF) is known to play a crucial role in the regeneration of periodontal tissue; however, the expression, methylation level, molecular function, and clinical value of BDNF in periodontitis require further investigation. This study aimed to investigate the expression and potential functions of BDNF in periodontitis. METHODS RNA expression and methylation data were obtained from the Gene Expression Omnibus (GEO) database, and the expression and methylation levels of BDNF were compared between periodontitis and normal tissues. In addition, bioinformatics analysis was performed to investigate the downstream molecular functions of BDNF. Finally, Reverse transcription Quantitative real-time polymerase chain reaction was performed to determine the level of BDNF expression in periodontitis and normal tissues. RESULTS GEO database analysis revealed that BDNF was hypermethylated in periodontitis tissues and that its expression was downregulated. Reverse transcription Quantitative real-time polymerase chain reaction confirmed that BDNF expression was downregulated in periodontitis tissues. Several genes that interact with BDNF were determined using a protein-protein interaction network. Functional analysis of BDNF revealed that it was enriched in the Gene Ontology terms cytoplasmic dynein complex, glutathione transferase activity, and glycoside metabolic process. Kyoto Encyclopedia of Genes and Genomes analysis suggested that BDNF was associated with the mechanistic target of rapamycin signaling pathway, fatty acid metabolism, the Janus kinase-signal transducer and activator of transcription signaling pathway, glutathione metabolism, and others. Furthermore, the level of BDNF expression was correlated with the immune infiltration degree of B cells and CD4+ T cells. CONCLUSIONS This study shown that BDNF was hypermethylated and downregulated in periodontitis tissues, which could be a biomarker and treatment target of periodontitis.
Collapse
|
14
|
Seki Y, Takebe H, Mizoguchi T, Nakamura H, Iijima M, Irie K, Hosoya A. Differentiation ability of Gli1 + cells during orthodontic tooth movement. Bone 2023; 166:116609. [PMID: 36371039 DOI: 10.1016/j.bone.2022.116609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Orthodontic tooth movement (OTM) induces bone formation on the alveolar bone of the tension side; however, the mechanism of osteoblast differentiation is not fully understood. Gli1 is an essential transcription factor for hedgehog signaling and functions in undifferentiated cells during embryogenesis. In this study, we examined the differentiation of Gli1+ cells in the periodontal ligament (PDL) during OTM using a lineage-tracing analysis. After the final administration of tamoxifen for 2 days to 8-week-old Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice, Gli1/Tomato+ cells were rarely observed near endomucin+ blood vessels in the PDL. Osteoblasts lining the alveolar bone did not exhibit Gli1/Tomato fluorescence. To move the first molar of iGli1/Tomato mice medially, nickel-titanium closed-coil springs were attached between the upper anterior alveolar bone and the first molar. Two days after OTM initiation, the number of Gli1/Tomato+ cells increased along with numerous PCNA+ cells in the PDL of the tension side. As some Gli1/Tomato+ cells exhibited positive expression of osterix, an osteoblast differentiation marker, Gli1+ cells probably differentiated into osteoblast progenitor cells. On day 10, the newly formed bone labeled by calcein administration during OTM was detected on the surface of the original alveolar bone of the tension side. Gli1/Tomato+ cells expressing osterix localized to the surface of the newly formed bone. In contrast, in the PDL of the compression side, Gli1/Tomato+ cells proliferated before day 10 and expressed type I collagen, suggesting that the Gli1+ cells also differentiated into fibroblasts. Collectively, these results demonstrate that Gli1+ cells in the PDL can differentiate into osteoblasts at the tension side and may function in bone remodeling as well as fibril formation in the PDL during OTM.
Collapse
Affiliation(s)
- Yuri Seki
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan; Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Masahiro Iijima
- Division of Orthodontics and Dentofacial Orthopedics, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Kazuharu Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| |
Collapse
|
15
|
Liu Z, Suh JS, Deng P, Bezouglaia O, Do M, Mirnia M, Cui ZK, Lee M, Aghaloo T, Wang CY, Hong C. Epigenetic Regulation of NGF-Mediated Osteogenic Differentiation in Human Dental Mesenchymal Stem Cells. Stem Cells 2022; 40:818-830. [PMID: 35728620 PMCID: PMC9512103 DOI: 10.1093/stmcls/sxac042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022]
Abstract
Nerve growth factor (NGF) is the best-characterized neurotrophin and is primarily recognized for its key role in the embryonic development of the nervous system and neuronal cell survival/differentiation. Recently, unexpected actions of NGF in bone regeneration have emerged as NGF is able to enhance the osteogenic differentiation of mesenchymal stem cells. However, little is known regarding how NGF signaling regulates osteogenic differentiation through epigenetic mechanisms. In this study, using human dental mesenchymal stem cells (DMSCs), we demonstrated that NGF mediates osteogenic differentiation through p75NTR, a low-affinity NGF receptor. P75NTR-mediated NGF signaling activates the JNK cascade and the expression of KDM4B, an activating histone demethylase, by removing repressive H3K9me3 epigenetic marks. Mechanistically, NGF-activated c-Jun binds to the KDM4B promoter region and directly upregulates KDM4B expression. Subsequently, KDM4B directly and epigenetically activates DLX5, a master osteogenic gene, by demethylating H3K9me3 marks. Furthermore, we revealed that KDM4B and c-Jun from the JNK signaling pathway work in concert to regulate NGF-mediated osteogenic differentiation through simultaneous recruitment to the promoter region of DLX5. We identified KDM4B as a key epigenetic regulator during the NGF-mediated osteogenesis both in vitro and in vivo using the calvarial defect regeneration mouse model. In conclusion, our study thoroughly elucidated the molecular and epigenetic mechanisms during NGF-mediated osteogenesis.
Collapse
Affiliation(s)
- Zhenqing Liu
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jin Sook Suh
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Peng Deng
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Megan Do
- School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Mojan Mirnia
- School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zhong-Kai Cui
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Min Lee
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Hong
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
16
|
Shalehin N, Seki Y, Takebe H, Fujii S, Mizoguchi T, Nakamura H, Yoshiba N, Yoshiba K, Iijima M, Shimo T, Irie K, Hosoya A. Gli1 +-PDL Cells Contribute to Alveolar Bone Homeostasis and Regeneration. J Dent Res 2022; 101:1537-1543. [PMID: 35786034 DOI: 10.1177/00220345221106921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) contains mesenchymal stem cells (MSCs) that can differentiate into osteoblasts, cementoblasts, and fibroblasts. Nevertheless, the distribution and characteristics of these cells remain uncertain. Gli1, an essential hedgehog signaling transcription factor, functions in undifferentiated cells during embryogenesis. Therefore, in the present study, the differentiation ability of Gli1+ cells was examined using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. In 4-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were only slightly detected in the PDL, around endomucin-expressing blood vessels. These cells had proliferated over time, localizing in the PDL as well as on the bone and cementum surfaces at day 28. However, in 8-wk-old iGli1/Tomato mice, Gli1/Tomato+ cells were quiescent, as most cells were not immunoreactive for Ki-67. These cells in 8-wk-old mice exhibited high colony-forming unit fibroblast activity and were capable of osteogenic, chondrogenic, and adipogenic differentiation in vitro. In addition, after transplantation of teeth of iGli1/Tomato mice into the hypodermis of wild-type mice, Tomato fluorescence indicating the progeny of Gli1+ cells was detected in the osteoblasts and osteocytes of the regenerated bone. These results demonstrate that Gli1+ cells in the PDL were MSCs and could contribute to the alveolar bone regeneration.
Collapse
Affiliation(s)
- N Shalehin
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Y Seki
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.,Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - H Takebe
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - S Fujii
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Mizoguchi
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - H Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - N Yoshiba
- Division of Cariology, Department of Oral Health Science, Operative Dentistry and Endodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - M Iijima
- Division of Orthodontics and Dentofacial Orthopedics, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - T Shimo
- Division of Oral Surgery, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - K Irie
- Division of Anatomy, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - A Hosoya
- Division of Histology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
17
|
The Role of Epigenetic in Dental and Oral Regenerative Medicine by Different Types of Dental Stem Cells: A Comprehensive Overview. Stem Cells Int 2022; 2022:5304860. [PMID: 35721599 PMCID: PMC9203206 DOI: 10.1155/2022/5304860] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Postnatal teeth, wisdom teeth, and exfoliated deciduous teeth can be harvested for dental stem cell (DSC) researches. These mesenchymal stem cells (MSCs) can differentiate and also consider as promising candidates for dental and oral regeneration. Thus, the development of DSC therapies can be considered a suitable but challenging target for tissue regeneration. Epigenetics describes changes in gene expression rather than changes in DNA and broadly happens in bone homeostasis, embryogenesis, stem cell fate, and disease development. The epigenetic regulation of gene expression and the regulation of cell fate is mainly governed by deoxyribonucleic acid (DNA) methylation, histone modification, and noncoding RNAs (ncRNAs). Tissue engineering utilizes DSCs as a target. Tissue engineering therapies are based on the multipotent regenerative potential of DSCs. It is believed that epigenetic factors are essential for maintaining the multipotency of DSCs. A wide range of host and environmental factors influence stem cell differentiation and differentiation commitment, of which epigenetic regulation is critical. Several lines of evidence have shown that epigenetic modification of DNA and DNA-correlated histones are necessary for determining cells' phenotypes and regulating stem cells' pluripotency and renewal capacity. It is increasingly recognized that nuclear enzyme activities, such as histone deacetylases, can be used pharmacologically to induce stem cell differentiation and dedifferentiation. In this review, the role of epigenetic in dental and oral regenerative medicine by different types of dental stem cells is discussed in two new and promising areas of medical and biological researches in recent studies (2010-2022).
Collapse
|
18
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
19
|
Adolpho LF, Lopes HB, Freitas GP, Weffort D, Campos Totoli GG, Loyola Barbosa AC, Freire Assis RI, Silverio Ruiz KG, Andia DC, Rosa AL, Beloti MM. Human periodontal ligament stem cells with distinct osteogenic potential induce bone formation in rat calvaria defects. Regen Med 2022; 17:341-353. [PMID: 35291805 DOI: 10.2217/rme-2021-0178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: This study aimed to evaluate the ability of human periodontal ligament stem cells (PDLSCs) with high (HP-PDLSCs) and low (LP-PDLSCs) osteogenic potential, in addition to mixed cells, to repair bone tissue. Methods: Cell phenotype, proliferation and differentiation were evaluated. Undifferentiated PDLSCs were injected into rat calvarial defects and the new bone was evaluated by μCT, histology and real-time PCR. Results: PDLSCs exhibited a typical mesenchymal stem cell phenotype and HP-PDLSCs showed lower proliferative and higher osteogenic potential than LP-PDLSCs. PDLSCs induced similar bone formation and histological analysis suggests a remodeling process, confirmed by osteogenic and osteoclastogenic markers, especially in tissues derived from defects treated with HP-PDLSCs. Conclusion: PDLSCs induced similar bone formation irrespective of their in vitro osteogenic potential.
Collapse
Affiliation(s)
- Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Denise Weffort
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gabriela Guaraldo Campos Totoli
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Ana Carolina Loyola Barbosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Rahyza Inacio Freire Assis
- Department of Prosthodontics & Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Av Limeira, 901, Piracicaba, SP, 13414-903, Brazil
| | - Karina Gonzales Silverio Ruiz
- Department of Prosthodontics & Periodontics, Periodontics Division, Piracicaba Dental School, University of Campinas, Av Limeira, 901, Piracicaba, SP, 13414-903, Brazil
| | - Denise Carleto Andia
- Health Science Institute, Dental Research Division, Paulista University, Dr Bacelar St, 1212, São Paulo, SP, 04026-002, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| |
Collapse
|
20
|
Rad MR, Atarbasi-Moghadam F, Khodayari P, Sijanivandi S. Periodontal ligament stem cell isolation protocol: A systematic review. Curr Stem Cell Res Ther 2022; 17:537-563. [PMID: 35088677 DOI: 10.2174/1574888x17666220128114825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/08/2021] [Accepted: 12/19/2021] [Indexed: 11/22/2022]
Abstract
Despite the plethora of literature regarding isolation and characterization of periodontal ligament stem cells (PDLSCs), due to the existence of controversies in the results, in this comprehensive review, we aimed to summarize and compare the effect of isolation methods on PDLSC properties, including clonogenicity, viability/proliferation, markers expression, cell morphology, differentiation, and regeneration. Moreover, the outcomes of included studies, considering various parameters such as teeth developmental stages, donor age, periodontal ligament health status, and part of the teeth root from which PDLSCs were derived, have been systematically discussed. It has been shown that from included studies PDLSCs can be isolated from teeth from any developmental stages, any health status condition, and any donor age. Also, a non-enzymatic digestion method, named as an explant or outgrowth technique, is a suitable protocol for of PDLSCs isolation.
Collapse
Affiliation(s)
- Maryam Rezai Rad
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fazele Atarbasi-Moghadam
- Department of Periodontics, Dental School of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouya Khodayari
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soran Sijanivandi
- Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Pedrosa MDS, Alves T, Rahhal JG, Nogueira FN, Sipert CR. Cytotoxicity of Reparative Endodontic Cements on Human Periodontal Ligament Stem Cells. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2022. [DOI: 10.1590/pboci.2022.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Pedrosa MDS, Alves T, Nogueira FN, Holzhausen M, Sipert CR. Cytotoxicity and cytokine production by calcium silicate-based materials on periodontal ligament stem cells. Braz Dent J 2021; 32:65-74. [PMID: 34755791 DOI: 10.1590/0103-6440202104467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022] Open
Abstract
This study investigated the effect of three commercial calcium silicate-based materials (CSBM) on cytotoxicity and pro-and anti-inflammatory cytokines production in cultured human periodontal ligament stem cells (hPDLSCs). Culture of hPDLSCs was established and characterized. Extracts of Bio-C Sealer (Angelus, Londrina, PR, Brazil), MTA Fillapex (Angelus, Londrina, PR, Brazil) and PBS Cimmo HP (Cimmo Soluções em Saúde, Pouso Alegre, MG, Brazil) were prepared by placing cement specimens (5 x 3 mm) in culture medium. Then, the extracts were serially two-fold diluted (1, 1:2, 1:4, 1:8, 1:16) and inserted into the cell-seeded wells for 24, 48 and 72 h for MTT assays. TNF-α and IL-10 cytokines were quantified by ELISA at 24h-cell supernatants. Data were analyzed by ANOVA and Tukey's test (α = 0.05). All CSBM exhibited some cytotoxicity that varied according to extract concentration and time of evaluation. MTA Fillapex presented the highest cytotoxic effects with significant reduction of metabolic activity/cell viability when compared to Bio-C Sealer and Cimmo HP®. TNF-α was significantly upregulated by the three tested cements (p < 0.05) while only MTA Fillapex significantly upregulated IL-10 in comparison to control. Taken collectively, the results showed that PBS Cimmo HP®, Bio-C Sealer and MTA Fillapex present mild and transient cytotoxicity and slightly induced TNF-α production. MTA Fillapex upregulated IL-10 release by hPDLSCs.
Collapse
Affiliation(s)
- Marlus da Silva Pedrosa
- University of São Paulo - USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Tomaz Alves
- University of São Paulo - USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Fernando Neves Nogueira
- University of São Paulo - USP, School of Dentistry, Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Marinella Holzhausen
- University of São Paulo - USP, School of Dentistry, Discipline of Periodontology, Department of Stomatology, São Paulo, SP, Brazil
| | - Carla Renata Sipert
- University of São Paulo - USP, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Venkataiah VS, Yahata Y, Kitagawa A, Inagaki M, Kakiuchi Y, Nakano M, Suzuki S, Handa K, Saito M. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells 2021; 10:2687. [PMID: 34685667 PMCID: PMC8534498 DOI: 10.3390/cells10102687] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
Bone tissue engineering (BTE) is a process of combining live osteoblast progenitors with a biocompatible scaffold to produce a biological substitute that can integrate into host bone tissue and recover its function. Mesenchymal stem cells (MSCs) are the most researched post-natal stem cells because they have self-renewal properties and a multi-differentiation capacity that can give rise to various cell lineages, including osteoblasts. BTE technology utilizes a combination of MSCs and biodegradable scaffold material, which provides a suitable environment for functional bone recovery and has been developed as a therapeutic approach to bone regeneration. Although prior clinical trials of BTE approaches have shown promising results, the regeneration of large bone defects is still an unmet medical need in patients that have suffered a significant loss of bone function. In this present review, we discuss the osteogenic potential of MSCs in bone tissue engineering and propose the use of immature osteoblasts, which can differentiate into osteoblasts upon transplantation, as an alternative cell source for regeneration in large bone defects.
Collapse
Affiliation(s)
- Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Yoshio Yahata
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Akira Kitagawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| | - Masahiko Inagaki
- National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Nagoya 463-8560, Japan;
| | - Yusuke Kakiuchi
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Masato Nakano
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Shigeto Suzuki
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- Department of Oral Science, Division of Oral Biochemistry, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan; (Y.Y.); (A.K.); (Y.K.); (M.N.); (S.S.); (K.H.); (M.S.)
- OsteRenatos Ltd., Sendai Capital Tower 2F, 4-10-3 Central, Aoba-ku, Sendai 980-0021, Japan
| |
Collapse
|
24
|
Queiroz A, Pelissari C, Arana-Chavez VE, Trierveiler M. Temporo-spatial distribution of stem cell markers CD146 and p75NTR during odontogenesis in mice. J Appl Oral Sci 2021; 29:e20210138. [PMID: 34550167 PMCID: PMC8462488 DOI: 10.1590/1678-7757-2021-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal and epithelial stem cells were identified in dental tissues; however, knowledge about the odontogenic stem cells is limited, and there are some questions regarding their temporo-spatial dynamics in tooth development. OBJECTIVE Our study aimed to analyze the expression of the stem cell markers CD146 and p75NTR during the different stages of odontogenesis. METHODOLOGY The groups consisted of 13.5, 15.5, 17.5 days old embryos, and 14 days postnatal BALB/c mice. The expression of CD146 and p75NTR was evaluated by immunohistochemistry. RESULTS Our results showed that positive cells for both markers were present in all stages of tooth development, and the number of positive cells increased with the progression of this process. Cells of epithelial and ectomesenchymal origin were positive for CD146, and the expression of p75NTR was mainly detected in the dental papilla and dental follicle. In the postnatal group, dental pulp cells were positive for CD146, and the reduced enamel epithelium and the oral mucosa epithelium showed immunostaining for p75NTR. CONCLUSIONS These results suggest that the staining pattern of CD146 and p75NTR underwent temporal and spatial changes during odontogenesis and both markers were expressed by epithelial and mesenchymal cell types, which is relevant due to the significance of the epithelial-ectomesenchymal interactions in tooth development.
Collapse
Affiliation(s)
- Aline Queiroz
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Cibele Pelissari
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| | - Victor Elias Arana-Chavez
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Biomateriais e Biologia Oral, São Paulo, SP, Brasil
| | - Marília Trierveiler
- Universidade de São Paulo, Faculdade de Odontologia, Departamento de Estomatologia, Disciplina de Patologia Oral e Maxilofacial, Laboratório de Biologia de Células-Tronco em Odontologia LABITRON, São Paulo, SP, Brasil
| |
Collapse
|
25
|
Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BND, Pelissari C, Trierveiler M, Holzhausen M. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells 2021; 13:605-618. [PMID: 34249230 PMCID: PMC8246246 DOI: 10.4252/wjsc.v13.i6.605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.
Collapse
Affiliation(s)
- Aline Queiroz
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Emmanuel Albuquerque-Souza
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Leticia Miquelitto Gasparoni
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruno Nunes de França
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cibele Pelissari
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marília Trierveiler
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
26
|
Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells Int 2021; 2021:8886854. [PMID: 34194509 PMCID: PMC8184333 DOI: 10.1155/2021/8886854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Since mesenchymal stem cells derived from human teeth are characterized as having the properties of excellent proliferation, multilineage differentiation, and immune regulation. Dental stem cells exhibit fibroblast-like microscopic appearance and express mesenchymal markers, embryonic markers, and vascular markers but do not express hematopoietic markers. Dental stem cells are a mixed population with different sensitive markers, characteristics, and therapeutic effects. Single or combined surface markers are not only helpful for understanding the subpopulation of mixed stem cell populations according to cell function but also for improving the stable treatment effect of dental stem cells. Focusing on the discovery and characterization of stem cells isolated from human teeth over the past 20 years, this review outlines the effect of marker sorting on cell proliferation and differentiation ability and the assessment of the clinical application potential. Classified dental stem cells from markers and functional molecules can solve the problem of heterogeneity and ensure the efficacy of cell therapy strategies including dentistry, neurologic diseases, bone repair, and tissue engineering.
Collapse
|
27
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
28
|
Xie DM, Chen Y, Liao Y, Lin W, Dai G, Lu DH, Zhu S, Yang K, Wu B, Chen Z, Peng C, Jiang MH. Cardiac Derived CD51-Positive Mesenchymal Stem Cells Enhance the Cardiac Repair Through SCF-Mediated Angiogenesis in Mice With Myocardial Infarction. Front Cell Dev Biol 2021; 9:642533. [PMID: 33968928 PMCID: PMC8098770 DOI: 10.3389/fcell.2021.642533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Many tissues contained resident mesenchymal stromal/stem cells (MSCs) that facilitated tissue hemostasis and repair. However, there is no typical marker to identify the resident cardiac MSCs. We aimed to determine if CD51 could be an optimal marker of cardiac MSCs and assess their therapeutic potential for mice with acute myocardial infarction (AMI). Methods: Cardiac-derived CD51+CD31–CD45–Ter119– cells (named CD51+cMSCs) were isolated from C57BL/6 mice(7-day-old) by flow cytometry. The CD51+cMSCs were characterized by proliferation capacity, multi-differentiation potential, and expression of typical MSC-related markers. Adult C57BL/6 mice (12-week-old) were utilized for an AMI model via permanently ligating the left anterior descending coronary artery. The therapeutic efficacy of CD51+cMSCs was estimated by echocardiography and pathological staining. To determine the underlying mechanism, lentiviruses were utilized to knock down gene (stem cell factor [SCF]) expression of CD51+cMSCs. Results: In this study, CD51 was expressed in the entire layers of the cardiac wall in mice, including endocardium, epicardium, and myocardium, and its expression was decreased with age. Importantly, the CD51+cMSCs possessed potent self-renewal potential and multi-lineage differentiation capacity in vitro and also expressed typical MSC-related surface proteins. Furthermore, CD51+cMSC transplantation significantly improved cardiac function and attenuated cardiac fibrosis through pro-angiogenesis activity after myocardial infarction in mice. Moreover, SCF secreted by CD51+cMSCs played an important role in angiogenesis both in vivo and in vitro. Conclusions: Collectively, CD51 is a novel marker of cardiac resident MSCs, and CD51+cMSC therapy enhances cardiac repair at least partly through SCF-mediated angiogenesis.
Collapse
Affiliation(s)
- Dong Mei Xie
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yang Chen
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Liao
- Shenzhen Beike Biotechnology Co., Ltd., Shenzhen, China
| | - Wanwen Lin
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Di Han Lu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanghua Zhu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke Yang
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingyuan Wu
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Chen
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Chaoquan Peng
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Hua Jiang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Li Y, Hoffman MD, Benoit DSW. Matrix metalloproteinase (MMP)-degradable tissue engineered periosteum coordinates allograft healing via early stage recruitment and support of host neurovasculature. Biomaterials 2021; 268:120535. [PMID: 33271450 PMCID: PMC8110201 DOI: 10.1016/j.biomaterials.2020.120535] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/17/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Despite serving as the clinical "gold standard" treatment for critical size bone defects, decellularized allografts suffer from long-term failure rates of ~60% due to the absence of the periosteum. Stem and osteoprogenitor cells within the periosteum orchestrate autograft healing through host cell recruitment, which initiates the regenerative process. To emulate periosteum-mediated healing, tissue engineering approaches have been utilized with mixed outcomes. While vascularization has been widely established as critical for bone regeneration, innervation was recently identified to be spatiotemporally regulated together with vascularization and similarly indispensable to bone healing. Notwithstanding, there are no known approaches that have focused on periosteal matrix cues to coordinate host vessel and/or axon recruitment. Here, we investigated the influence of hydrogel degradation mechanism, i.e. hydrolytic or enzymatic (cell-dictated), on tissue engineered periosteum (TEP)-modified allograft healing, especially host vessel/nerve recruitment and integration. Matrix metalloproteinase (MMP)-degradable hydrogels supported endothelial cell migration from encapsulated spheroids whereas no migration was observed in hydrolytically degradable hydrogels in vitro, which correlated with increased neurovascularization in vivo. Specifically, ~2.45 and 1.84-fold, and ~3.48 and 2.58-fold greater vessel and nerve densities with high levels of vessel and nerve co-localization was observed using MMP degradable TEP (MMP-TEP) -modified allografts versus unmodified and hydrolytically degradable TEP (Hydro-TEP)-modified allografts, respectively, at 3 weeks post-surgery. MMP-TEP-modified allografts exhibited greater longitudinal graft-localized vascularization and endochondral ossification, along with 4-fold and 2-fold greater maximum torques versus unmodified and Hydro-TEP-modified allografts after 9 weeks, respectively, which was comparable to that of autografts. In summary, our results demonstrated that the MMP-TEP coordinated allograft healing via early stage recruitment and support of host neurovasculature.
Collapse
Affiliation(s)
- Yiming Li
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Michael D Hoffman
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Orthopaedics and Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA; Materials Science Program, University of Rochester, Rochester, NY, USA; Department of Chemical Engineering, University of Rochester, Rochester, NY, USA; Department of Biomedical Genetics and Center for Oral Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
30
|
Kim MG, Park CH. The Topographical Optimization of 3D Microgroove Pattern Intervals for Ligamentous Cell Orientations: In Vitro. Int J Mol Sci 2020; 21:E9358. [PMID: 33302558 PMCID: PMC7763543 DOI: 10.3390/ijms21249358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Specific orientations of periodontal ligaments (PDLs) to tooth-root surface play an important role in offering positional stabilities of teeth, transmitting and absorbing various stresses under masticatory/occlusal loading conditions, or promoting tissue remodeling by mechanical stimulations to periodontal cells. However, it is still challenging to spatially control PDL orientations and collective PDL cell alignments using 3D scaffold architectures. Here, we investigated the optimization of scaffold topographies in order to control orientations of human PDL cells with predictability in in vitro. The 3D PDL-guiding architectures were designed by computer-aided design (CAD) and microgroove patterns on the scaffold surfaces were created with four different slice intervals such as 25.40 µm (μG-25), 19.05 µm (μG-19), 12.70 µm (μG-12), and 6.35 µm (μG-6) by the digital slicing step. After scaffold design and 3D wax printing, poly-ε-caprolactone (PCL) was casted into 3D printed molds and human PDL cells were cultured for 7 days. In the results, μG-25 with low vertical resolution can angularly organize seeded cells predictably rather than μG-6 created by the highest resolution for high surface quality (or smooth surface). Moreover, nuclear orientations and deformability were quantitatively analyzed and a significant correlation between microgroove pattern intervals and cell alignments was calculated for the topographic optimization. In conclusion, controllable microgroove intervals can specifically organize human PDL cells by 3D printing, which can create various surface topographies with structural consistence. The optimal surface topography (μG-25) can angularly guide human PDL cells, but 6.35 µm-thick patterns (μG-6) showed random organization of cell collectivity.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
31
|
Stem cell properties of Gli1-positive cells in the periodontal ligament. J Oral Biosci 2020; 62:299-305. [DOI: 10.1016/j.job.2020.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/14/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
|
32
|
Deng P, Yu Y, Hong C, Wang CY. Growth differentiation factor 6, a repressive target of EZH2, promotes the commitment of human embryonic stem cells to mesenchymal stem cells. Bone Res 2020; 8:39. [PMID: 33298857 PMCID: PMC7672114 DOI: 10.1038/s41413-020-00116-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from human embryonic stem cells (hESCs) have significant potential for cell-mediated bone regeneration. Our recent study revealed that inhibiting the epigenetic regulator EZH2 plays a key role in promoting the mesodermal differentiation of hESCs. In this study, an epigenome-wide analysis of hESCs and MSCs revealed that growth differentiation factor 6 (GDF6), which is involved in bone formation, was the most upregulated gene associated with MSCs compared to hESCs. Furthermore, we identified GDF6 as a repressive target of EZH2 and found that ectopic GDF6 selectively promoted hESC differentiation towards the mesodermal lineage and enriched the MSC population. Our results provide molecular insights governing the mesenchymal commitment of hESCs and identify an inducing factor that offers strong promise for the future of regenerative medicine.
Collapse
Affiliation(s)
- Pend Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yongxin Yu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Christine Hong
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Institute and Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Shanbhag S, Suliman S, Bolstad AI, Stavropoulos A, Mustafa K. Xeno-Free Spheroids of Human Gingiva-Derived Progenitor Cells for Bone Tissue Engineering. Front Bioeng Biotechnol 2020; 8:968. [PMID: 32974308 PMCID: PMC7466771 DOI: 10.3389/fbioe.2020.00968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gingiva has been identified as a minimally invasive source of multipotent progenitor cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation, it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates several advantages of three-dimensional (3D) spheroid cultures of mesenchymal stromal cells (MSCs) over conventional 2D monolayers. The present study aimed to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum (FBS) and characterized based on in vitro proliferation, immunophenotype and multi-lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG) and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high cell viability were formed in HPL media. Expression of stemness- and osteogenesis-related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally, secretion of several growth factors and chemokines was enhanced in GPC/BMSC spheroids, while that of pro-inflammatory cytokines was reduced, compared to monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid culture further enhances stemness- and osteogenesis-related gene expression, and cytokine secretion in GPCs, comparable to that of BMSCs.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
34
|
Talaei-Khozani T, Aleahmad F, Bazrafshan A, Aliabadi E, Vojdani Z. Lectin Profile Variation in Mesenchymal Stem Cells Derived from Different Sources. Cells Tissues Organs 2020; 208:101-112. [PMID: 32464631 DOI: 10.1159/000505238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/05/2019] [Indexed: 11/19/2022] Open
Abstract
Human mesenchymal stem cells (MSCs), a promising source of stem cells for regenerative medicine, have different morphological and functional characteristics. Carbohydrate moieties on the cell surface play an important role, including cell-cell interaction and cell recognition. The objective of this study was to determine possible differences in glycoconjugate distribution patterns of MSCs derived from various sources. MSCs were isolated from adipose tissue, bone marrow, Wharton's jelly, and cord blood. Then, they were stained with FITC-conjugated wheat germ agglutinin (WGA), peanut agglutinin (PNA), concanavalin A (ConA), Ulex europaeus (UEA), Dolichos biflorus (DBA), and Atto-488 conjugated Phytolacca americana (PWM) lectins. The intensity of the reactions was scored using ImageJ software. Flow cytometry was performed to detect the expression of the endothelial marker CD144. The obtained data were analyzed by ANOVA and LSD. Cord blood-derived MSCs showed the most significant staining intensities with all lectins. All MSCs were also moderately stained with PNA. Bone marrow-derived MSCs failed to react with UEA, DBA, and ConA. Wharton's jelly-derived MSCs could also not be stained with ConA. Cord blood-derived MSCs contained 2 subpopulations: osteoclast- and fibroblast-like cells. Both lectin staining intensity and distribution pattern were different in these 2 cell types; therefore, the central part of osteoclast-like cells stained more intensive with PNA and PWM, while that part in fibroblast-like cells stained more intensive with ConA. None of them expressed CD144. The glycoconjugate content of MSCs derived from various sources is different.
Collapse
Affiliation(s)
- Tahereh Talaei-Khozani
- Laboratory for Stem Cell Research, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Aleahmad
- Laboratory for Stem Cell Research, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ameneh Bazrafshan
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran, .,Maternal-Fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,
| | - Elham Aliabadi
- Laboratory for Stem Cell Research, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Vojdani
- Laboratory for Stem Cell Research, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
35
|
Li J, Zhao M, Wang Y, Shen M, Wang S, Tang M, Li M, Luo Y, Yang K, Wen X. p75NTR optimizes the osteogenic potential of human periodontal ligament stem cells by up-regulating α1 integrin expression. J Cell Mol Med 2020; 24:7563-7575. [PMID: 32424966 PMCID: PMC7339167 DOI: 10.1111/jcmm.15390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/18/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) are a promising source in regenerative medicine. Due to the complexity and heterogeneity of hPDLSCs, it is critical to isolate homogeneous hPDLSCs with high regenerative potential. In this study, p75 neurotrophin receptor (p75NTR) was used to isolate p75NTR+ and p75NTR− hPDLSCs by fluorescence‐activated cell sorting. Differences in osteogenic differentiation among p75NTR+, p75NTR− and unsorted hPDLSCs were observed. Differential gene expression profiles between p75NTR+ and p75NTR− hPDLSCs were analysed by RNA sequencing. α1 Integrin (ITGA1) small interfering RNA and ITGA1‐overexpressing adenovirus were used to transfect p75NTR+ and p75NTR− hPDLSCs. The results showed that p75NTR+ hPDLSCs demonstrated superior osteogenic capacity than p75NTR− and unsorted hPDLSCs. Differentially expressed genes between p75NTR+ and p75NTR− hPDLSCs were highly involved in the extracellular matrix‐receptor interaction signalling pathway, and p75NTR+ hPDLSCs expressed higher ITGA1 levels than p75NTR− hPDLSCs. ITGA1 silencing inhibited the osteogenic differentiation of p75NTR+ hPDLSCs, while ITGA1 overexpression enhanced the osteogenic differentiation of p75NTR− hPDLSCs. These findings indicate that p75NTR optimizes the osteogenic potential of hPDLSCs by up‐regulating ITGA1 expression, suggesting that p75NTR can be used as a novel cell surface marker to identify and purify hPDLSCs to promote their applications in regenerative medicine.
Collapse
Affiliation(s)
- Jun Li
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Manzhu Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Shen
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Shuai Wang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Mengying Tang
- Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Meng Li
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Yuting Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Kun Yang
- Hospital of Stomatology, Zunyi Medical University, Zunyi, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Hospital of Stomatology, Southwest Medical University, Luzhou, China
| |
Collapse
|
36
|
Wang Y, Yang K, Li G, Liu R, Liu J, Li J, Tang M, Zhao M, Song J, Wen X. p75NTR -/- mice exhibit an alveolar bone loss phenotype and inhibited PI3K/Akt/β-catenin pathway. Cell Prolif 2020; 53:e12800. [PMID: 32215984 PMCID: PMC7162804 DOI: 10.1111/cpr.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of p75 neurotrophin receptor (p75NTR) in regulating the mouse alveolar bone development and the mineralization potential of murine ectomesenchymal stem cells (EMSCs). Moreover, we tried to explore the underlying mechanisms associated with the PI3K/Akt/β-catenin pathway. MATERIALS AND METHODS p75NTR knockout (p75NTR-/- ) mice and wild-type (WT) littermates were used. E12.5d p75NTR-/- and WT EMSCs were isolated in the same pregnant p75NTR-/+ mice from embryonic maxillofacial processes separately. Mouse alveolar bone mass was evaluated using micro-CT. Differential osteogenic differentiation pathways between p75NTR-/- and WT EMSCs were analysed by RNA-sequencing. The PI3K inhibitor LY294002 and PI3K agonist 740Y-P were used to regulate the PI3K/Akt pathway in EMSCs. p75NTR overexpression lentiviruses, p75NTR knock-down lentiviruses and recombined mouse NGF were used to transfect cells. RESULTS The alveolar bone mass was found reduced in the p75NTR knockout mouse comparing to the WT mouse. During mineralization induction, p75NTR-/- EMSCs displayed decreased osteogenic capacity and downregulated PI3K/Akt/β-catenin signalling. The PI3K/Akt/β-catenin pathway positively regulates the potential of differential mineralization in EMSCs. The promotive effect of p75NTR overexpression can be attenuated by LY294002, while the inhibitory effect of p75NTR knock-down on Runx2 and Col1 expression can be reversed by 740Y-P. CONCLUSION Deletion of p75NTR reduced alveolar bone mass in mice. P75NTR positively regulated the osteogenic differentiation of EMSCs via enhancing the PI3K/Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Yingying Wang
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kun Yang
- Department of PeriodontologyStomatological HospitalZunyi Medical UniversityZunyiChina
| | - Gang Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Rui Liu
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junyu Liu
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jun Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengying Tang
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| | - Manzhu Zhao
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Xiujie Wen
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
37
|
Ouchi T, Nakagawa T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen Ther 2020; 14:72-78. [PMID: 31970269 PMCID: PMC6962327 DOI: 10.1016/j.reth.2019.12.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is commonly observed and is an important concern in dental health. It is characterized by a multifactorial etiology, including imbalance of oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include elimination of the microbial pathogen and application of biomaterials for treating bone defects. However, the periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. To elucidate the process of periodontal regeneration, it is essential to understand the developmental background and intercellular cross-talk. Several recent studies have reported the efficacy of transplantation of mesenchymal stem cells for periodontal tissue regeneration. In this review, we discuss the basic knowledge of periodontal tissue regeneration using mesenchymal stem cells and highlight the potential of stem cell-based periodontal regenerative medicine.
Neural crest cells regulate the development and homeostasis of periodontal tissues. Dental mesenchymal stem cells (MSCs) are used for treating alveolar bone defects. Non-odontogenic MSCs can be investigated for periodontal tissue regeneration. Using appropriate growth factors and scaffold may improve periodontium regeneration.
Collapse
Key Words
- BMMSCs, bone marrow MSCs
- BMP, bone morphogenetic protein
- C-MSCs, clumps of MSC/ECM complexes
- DFSCs, dental follicle stem cells
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- GDF-5, growth/differentiation factor-5
- HERS, Hertwig epithelial root sheath
- IFN-γ, interferon-gamma
- IGFBP-6, insulin-like growth factor binding protein-6
- LepR, leptin receptor
- MSCs, mesenchymal stem cells
- Mesenchymal stem cells
- NCCs, neural crest cells
- PDGFRα, platelet derived growth factor receptor α
- PDL, periodontal ligament
- PDLSCs, periodontal ligament stem cells
- Periodontal tissue
- Periodontitis
- Pluripotent stem cells
- TNF-α, tumor necrosis factor-alpha
- Tissue regeneration
- Wnt, wingless-INT
- iPSC-MSCs, iPSC-derived MSCs
- iPSCs, induced pluripotent stem cells
- scRNA-seq, single-cell RNA sequence
Collapse
Affiliation(s)
- Takehito Ouchi
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
38
|
Khoei SG, Dermani FK, Malih S, Fayazi N, Sheykhhasan M. The Use of Mesenchymal Stem Cells and their Derived Extracellular Vesicles in Cardiovascular Disease Treatment. Curr Stem Cell Res Ther 2020; 15:623-638. [PMID: 32357818 DOI: 10.2174/1574888x15666200501235201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD), including disorders of cardiac muscle and vascular, is the major cause of death globally. Many unsuccessful attempts have been made to intervene in the disease's pathogenesis and treatment. Stem cell-based therapies, as a regeneration strategy, cast a new hope for CVD treatment. One of the most well-known stem cells is mesenchymal stem cells (MSCs), classified as one of the adult stem cells and can be obtained from different tissues. These cells have superior properties, such as proliferation and highly specialized differentiation. On the other hand, they have the potential to modulate the immune system and anti-inflammatory activity. One of their most important features is the secreting the extracellular vesicles (EVs) like exosomes (EXOs) as an intercellular communication system mediating the different physiological and pathophysiological affairs. METHODS In this review study, the importance of MSC and its secretory exosomes for the treatment of heart disease has been together and specifically addressed and the use of these promising natural and accessible agents is predicted to replace the current treatment modalities even faster than we imagine. RESULTS MSC derived EXOs by providing a pro-regenerative condition allowing innate stem cells to repair damaged tissues successfully. As a result, MSCs are considered as the appropriate cellular source in regenerative medicine. In the plethora of experiments, MSCs and MSC-EXOs have been used for the treatment and regeneration of heart diseases and myocardial lesions. CONCLUSION Administration of MSCs has been provided a replacement therapeutic option for heart regeneration, obtaining great attention among the basic researcher and the medical doctors.
Collapse
Affiliation(s)
- Saeideh Gholamzadeh Khoei
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nashmin Fayazi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cell, the Academic Center for Education, Culture and Research, Qom, Iran
| |
Collapse
|
39
|
Xie DM, Li YL, Li J, Li Q, Lu G, Zhai Y, Zhang J, Huang Z, Gao X. CD51 distinguishes a subpopulation of bone marrow mesenchymal stem cells with distinct migratory potential: a novel cell-based strategy to treat acute myocardial infarction in mice. Stem Cell Res Ther 2019; 10:331. [PMID: 31747966 PMCID: PMC6865070 DOI: 10.1186/s13287-019-1439-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022] Open
Abstract
Background Experimental and clinical trials have demonstrated the efficiency of bone marrow-derived mesenchymal stromal/stem cells (bMSCs) in the treatment of myocardial infarction. However, after intravenous injection, the ineffective migration of engrafted bMSCs to the hearts remains an obstacle, which has an undesirable impact on the efficiency of cell-based therapy. Therefore, we attempted to identify a marker that could distinguish a subpopulation of bMSCs with a promising migratory capacity. Methods Here, CD51-negative and CD51-positive cells were isolated by flow cytometry from Ter119−CD45−CD31−bMSCs and cultured in specifically modified medium. The proliferation ability of the cells was evaluated by 5-ethynyl-2′-deoxyuridine (EdU) staining or continuously monitored during culture, and the differentiation potential was assessed by culturing the cells in the appropriate conditioned media. Wound healing assays, transwell assays and quantitative polymerase chain reaction (qPCR) were used to measure the migratory ability. The mice were subjected to a sham operation or myocardial infarction (MI) by permanently occluding the coronary artery, and green fluorescent protein (GFP)-labelled cells were transplanted into the mice via intravenous infusion immediately after MI. Heart function was measured by echocardiography; infarct myocardium tissues were detected by triphenyl tetrazolium chloride (TTC) staining. Additionally, immunofluorescence staining was used to verify the characteristics of CD51+bMSCs and inflammatory responses in vivo. Statistical comparisons were performed using a two-tailed Student’s t test. Results In this study, the isolated CD51−bMSCs and CD51+bMSCs, especially the CD51+ cells, presented a favourable proliferative capacity and could differentiate into adipocytes, osteocytes and chondrocytes in vitro. After the cells were transplanted into the MI mice by intravenous injection, the therapeutic efficiency of CD51+bMSCs in improving left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) was better than that of CD51−bMSCs. Compared with CD51−bMSCs, CD51+bMSCs preferentially migrated to and were retained in the infarcted hearts at 48 h and 8 days after intravenous injection. Accordingly, the migratory capacity of CD51+bMSCs exceeded that of CD51−bMSCs in vitro, and the former cells expressed higher levels of chemokine receptors or ligands. Interestingly, the retained CD51+bMSCs retained in the myocardium possessed proliferative potential but only differentiated into endothelial cells, smooth muscle cells, fibroblasts or cardiomyocytes. Transplantation of CD51+bMSCs partially attenuated the inflammatory response in the hearts after MI, while the potential for inflammatory suppression was low in CD51−bMSC-treated mice. Conclusions These findings indicated that the CD51-distinguished subpopulation of bMSCs facilitated proliferation and migration both in vitro and in vivo, which provided a novel cell-based strategy to treat acute MI in mice by intravenous injection.
Collapse
Affiliation(s)
- Dong-Mei Xie
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Yuan-Long Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jie Li
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Qinglang Li
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Guihua Lu
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Yuansheng Zhai
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Juhong Zhang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China
| | - Zhibin Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiuren Gao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, 510080, China.
| |
Collapse
|
40
|
The Role of Extracellular Matrix Expression, ERK1/2 Signaling and Cell Cohesiveness for Cartilage Yield from iPSCs. Int J Mol Sci 2019; 20:ijms20174295. [PMID: 31480758 PMCID: PMC6747490 DOI: 10.3390/ijms20174295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Current therapies involving chondrocytes or mesenchymal stromal cells (MSCs) remain inefficient in restoring cartilage properties upon injury. The induced pluripotent stem-cell (iPSC)-derived mesenchymal progenitor cells (iMPCs) have been put forward as a promising alternative cell source due to their high proliferation and differentiation potential. However, the observed cell loss during in vitro chondrogenesis is currently a bottleneck in establishing articular chondrocyte generation from iPSCs. In a search for candidate mechanisms underlying the low iPSC-derived cartilage tissue yield, global transcriptomes were compared between iMPCs and MSCs and the cell properties were analyzed via a condensation assay. The iMPCs had a more juvenile mesenchymal gene signature than MSCs with less myofibroblast-like characteristics, including significantly lower ECM- and integrin-ligand-related as well as lower α-smooth-muscle-actin expression. This correlated with less substrate and more cell-cell adhesion, impaired aggregate formation and consequently inferior cohesive tissue properties of the iMPC-pellets. Along lower expression of pro-survival ECM molecules, like decorin, collagen VI, lumican and laminin, the iMPC populations had significantly less active ERK1/2 compared to MSCs. Overall, this study proposes that this ECM and integrin-ligand shortage, together with insufficient pro-survival ERK1/2-activity, explains the loss of a non-aggregating iMPC sub-fraction during pellet formation and reduced survival of cells in early pellets. Enhancing ECM production and related signaling in iMPCs may be a promising new means to enrich the instructive microenvironment with pro-survival cues allowing to improve the final cartilage tissue yield from iPSCs.
Collapse
|
41
|
Li X, Guo W, Zha K, Jing X, Wang M, Zhang Y, Hao C, Gao S, Chen M, Yuan Z, Wang Z, Zhang X, Shen S, Li H, Zhang B, Xian H, Zhang Y, Sui X, Qin L, Peng J, Liu S, Lu S, Guo Q. Enrichment of CD146 + Adipose-Derived Stem Cells in Combination with Articular Cartilage Extracellular Matrix Scaffold Promotes Cartilage Regeneration. Theranostics 2019; 9:5105-5121. [PMID: 31410204 PMCID: PMC6691381 DOI: 10.7150/thno.33904] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Heterogeneity of mesenchymal stem cells (MSCs) influences the cell therapy outcome and the application in tissue engineering. Also, the application of subpopulations of MSCs in cartilage regeneration remains poorly characterized. CD146+ MSCs are identified as the natural ancestors of MSCs and the expression of CD146 are indicative of greater pluripotency and self-renewal potential. Here, we sorted a CD146+ subpopulation from adipose-derived mesenchymal stem cells (ADSCs) for cartilage regeneration. Methods: CD146+ ADSCs were sorted using magnetic activated cell sorting (MACS). Cell surface markers, viability, apoptosis and proliferation were evaluated in vitro. The molecular signatures were analyzed by mRNA and protein expression profiling. By intra-articular injections of cells in a rat osteochondral defect model, we assessed the role of the specific subpopulation in cartilage microenvironment. Finally, CD146+ ADSCs were combined with articular cartilage extracellular matrix (ACECM) scaffold for long term (3, 6 months) cartilage repair. Results: The enriched CD146+ ADSCs showed a high expression of stem cell and pericyte markers, good viability, and immune characteristics to avoid allogeneic rejection. Gene and protein expression profiles revealed that the CD146+ ADSCs had different cellular functions especially in regulation inflammation. In a rat model, CD146+ ADSCs showed a better inflammation-modulating property in the early stage of intra-articular injections. Importantly, CD146+ ADSCs exhibited good biocompatibility with the ACECM scaffold and the CD146+ cell-scaffold composites produced less subcutaneous inflammation. The combination of CD146+ ADSCs with ACECM scaffold can promote better cartilage regeneration in the long term. Conclusion: Our data elucidated the function of the CD146+ ADSC subpopulation, established their role in promoting cartilage repair, and highlighted the significance of cell subpopulations as a novel therapeutic for cartilage regeneration.
Collapse
Affiliation(s)
- Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
- Department of Orthopaedic Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kangkang Zha
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shi Shen
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Haojiang Li
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Bin Zhang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hai Xian
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yuan Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopaedics; Key Laboratory of Musculoskeletal Trauma & War Injuries,PLA; 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
42
|
Das EC, Dhawan S, Babu J, Anil Kumar PR, Kumary TV, Haridas V, Komath M. Self‐assembling polymeric dendritic peptide as functional osteogenic matrix for periodontal regeneration scaffolds—an in vitro study. J Periodontal Res 2019; 54:468-480. [DOI: 10.1111/jre.12647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Eva C. Das
- Biomedical Technology WingSree Chitra Tirunal Institute of Medical Sciences and Technology Thiruvananthapuram India
| | - Sameer Dhawan
- Department of ChemistryIndian Institute of Technology Delhi New Delhi India
| | - Jisha Babu
- Department of ChemistryIndian Institute of Technology Delhi New Delhi India
| | - PR Anil Kumar
- Biomedical Technology WingSree Chitra Tirunal Institute of Medical Sciences and Technology Thiruvananthapuram India
| | - Thrikkovil Variathu Kumary
- Biomedical Technology WingSree Chitra Tirunal Institute of Medical Sciences and Technology Thiruvananthapuram India
| | - V Haridas
- Department of ChemistryIndian Institute of Technology Delhi New Delhi India
| | - Manoj Komath
- Biomedical Technology WingSree Chitra Tirunal Institute of Medical Sciences and Technology Thiruvananthapuram India
| |
Collapse
|
43
|
Xiang L, Zhang X, Yu H, Wang B, Lin Z, Gong P. Overexpression of αCGRP promotes osteogenesis of periodontal ligament cells by regulation of YAP signaling. J Cell Physiol 2018; 234:5077-5085. [PMID: 30256408 DOI: 10.1002/jcp.27311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/02/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Lin Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xinyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Hui Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Bin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Zhihui Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral Implantology West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
44
|
Chopra H, Liao C, Zhang CF, Pow EHN. Lapine periodontal ligament stem cells for musculoskeletal research in preclinical animal trials. J Transl Med 2018; 16:174. [PMID: 29929550 PMCID: PMC6013849 DOI: 10.1186/s12967-018-1551-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Human periodontal ligament stem cells (hPDLSCs) have been shown to be a reliable source of mesenchymal stem cells (MSCs). On the other hand, rabbits have been commonly used in preclinical trials for musculoskeletal research. However, there is a lack of sufficient data on using rabbit periodontal ligament stem cells (rPDLSCs) for regenerative dentistry. This study, for the first time, comprehensively compared rPDLSCs against hPDLSCs in terms of clonogenicity, growth potential, multi-differential capacity and surface antigens. Methods Periodontal ligament (PDL) was obtained from the rabbit and human teeth. rPDL and hPDL cells were isolated from PDL using enzymatic digestion method. After culturing for 2 weeks, the cells were first analyzed microscopically. STRO-1+CD146+ PDLSCs were then sorted from PDL cells by fluorescence-activated cell sorting (FACS) followed by examination of CD34, CD45, CD90, vimentin and desmin markers. The cells were also evaluated by immunohistocytochemical and multi-differentiation potential tests. The clonogenicity and growth of PDL cells were analyzed by Independent T test and 2-way repeated measures ANOVA respectively. Results rPDL cells were broader and less elongated as compared to hPDL cells. STRO-1+CD146+ hPDLSCs were isolated from hPDL cells but not from the rPDL cells. Therefore, heterogeneous population of rabbit and human PDL cells were subsequently used for latter comparative studies. FACS analysis and immunohistocytochemistry revealed that rPDL cells were partially positive for STRO-1 as compared to hPDL cells. Furthermore, both rPDL cells and hPDL cells were positive for CD146, CD90, vimentin, and desmin, while negative for CD34 and CD45. No difference in clonogenicity between rPDL and hPDL cells was found (p > 0.05). The proliferative potential of rPDL cells displayed significantly slower growth as compared to hPDL cells (p < 0.05). Osteogenic, adipogenic, and chondrogenic differentiation potential was comparatively less in rPDL cells than that of hPDL cells, but the neurogenic differential potential was similar. Conclusion Although rPDL cells manifested variable differences in expression of stem cell markers and multi-differential potential as compared to hPDL cells, they demonstrated the attributes of stemness. Further studies are also required to validate if the regenerative potential of rPDL cells is similar to rPDLSCs.
Collapse
Affiliation(s)
- H Chopra
- Discipline of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - C Liao
- Discipline of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - C F Zhang
- Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China
| | - E H N Pow
- Discipline of Prosthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, China. .,3/F, The Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong, China.
| |
Collapse
|
45
|
Luo H, Wang C, Liu M, Yin B, A P, Huang D, Ye L. Inhibition of SOX9 Promotes Inflammatory and Immune Responses of Dental Pulp. J Endod 2018; 44:792-799. [PMID: 29571909 DOI: 10.1016/j.joen.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The process of pulpitis is characterized by extracellular matrix imbalance and inflammatory cell infiltration. As an essential transcription factor, sex-determining region Y-box 9 (SOX9) is significantly inhibited by tumor necrosis factor alpha in inflammatory joint diseases. The aim of this study was to explore the role of SOX9 in extracellular matrix balance, cytokine expression, and the immune response in dental pulp. METHODS The expression of SOX9 in normal and inflamed pulp tissue/human dental pulp cells (HDPCs) was detected by immunohistochemistry, Western blot, and quantitative polymerase chain reaction (qPCR). SOX9 small interfering RNA was used to knock down SOX9 expression of dental cells in vitro; extracellular matrix imbalance was analyzed by qPCR, Western blot, and gelatin/collagen zymography, and the secretion of cytokines was scanned by antibody arrays. The immune response of THP-1 was investigated by cell migration assay, cell attachment assay, phagocytosis assay, and enzyme-linked immunosorbent assay. The interaction of SOX9 with target genes was explored by chromatin immunoprecipitation (ChIP). RESULTS SOX9 was strongly expressed in normal dental pulp tissue and HDPCs and reduced in inflamed pulp. SOX9 knockdown could inhibit the production of type I collagen, stimulate the enzymatic activities of MMP2 and MMP13, and regulate the production of interleukin (IL) 8 of HDPCs. SOX9 knockdown also effectively suppressed the differentiation and functional activities of THP-1. ChIP showed that the binding of the SOX9 protein with matrix metalloproteinase (MMP)-1, MMP-13, and IL-8 gene promoters was reduced after being treated with recombinant human tumor necrosis factor alpha. CONCLUSIONS SOX9 was inhibited in inflamed dental pulp and may participate in the regulation of extracellular matrix balance, the inflammatory process, and the immune response.
Collapse
Affiliation(s)
- Haiyun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng A
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Suarez-Franco JL, Vázquez-Vázquez FC, Pozos-Guillen A, Montesinos JJ, Alvarez-Fregoso O, Alvarez-Perez MA. Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells. Dent Mater J 2018; 37:465-473. [PMID: 29553121 DOI: 10.4012/dmj.2016-329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study evaluated the influence in the biocompatibility of human periodontal ligament (hPDL) mesenchymal stromal cell onto poly lactic-acid (PLA) films and PLA fiber membrane. Fiber scaffold was prepared via air jet spinning (AJS) from PLA solutions (6, 7, and 10%) and analyzed using SEM, AFM and FTIR. Biocompatibility was evaluated by adhesion, proliferation and cell-material interaction. PLA film exhibited a smooth and homogenously surface topography in comparison with random orientation of PLA fiber with roughness structure where diameter size depends on PLA solution. Moreover, cell adhesion; proliferation and cell-material interaction has the best respond on random orientation nanofiber of 10, followed by 7, and 6% of PLA in comparison with PLA films. It could be concluded that AJS is an attractive alternative technique for manufacture fiber scaffolds with a tunable random orientation geometry of fibers that allow to produce interconnected porous formed by nanometric fiber diameter structures that could be a potential scaffold for periodontal tissue engineering applications.
Collapse
Affiliation(s)
- José Luis Suarez-Franco
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research of the Faculty of Dentistry, UNAM
| | | | - Amaury Pozos-Guillen
- Basic Science Laboratory, Faculty of Stomatology, Autonomous University of San Luis Potosi
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS
| | | | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Division of Graduate Studies and Research of the Faculty of Dentistry, UNAM
| |
Collapse
|
47
|
Zhou J, Zhang Y, Li L, Fu H, Yang W, Yan F. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. Int J Nanomedicine 2018; 13:555-567. [PMID: 29416335 PMCID: PMC5790078 DOI: 10.2147/ijn.s150897] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective It is a great challenge to absorb and conduct biophysicochemical interactions at the nano-bio interface. Peptides are emerging as versatile materials whose function can be programmed to perform specific tasks. Peptides combined nanoparticles might be utilized as a new approach of treatment. Human β-defensin 3 (hBD3), possesses both antimicrobial and proregeneration properties. Gold nanoparticles (AuNPs) have shown promising applications in the field of tissue engineering. However, the coordinating effects of AuNPs and hBD3 on human periodontal ligament cells (hPDLCs) remain unknown. In this study, we systematically investigated whether AuNPs and hBD3 would be able to coordinate and enhance the osteogenic differentiation of hPDLCs in inflammatory microenvironments, and the underlying mechanisms was explored. Methods hPDLCs were stimulated with E. coli-LPS, hBD3 and AuNPs. Alkaline phosphatase (ALP) and alizarin red S staining were used to observe the effects of hBD3 and AuNPs on the osteogenic differentiation of hPDLCs. Real-time PCR and western blot were performed to evaluate the osteogenic differentiation and Wnt/β-catenin signaling pathway related gene and protein expression. Results In the inflammatory microenvironments stimulated by E. coli-LPS, we found that AuNPs and hBD3 increased the proliferation of hPDLCs slightly. In addition, hBD3-combined AuNPs could significantly enhance ALP activities and mineral deposition in vitro. Meanwhile, we observed that the osteogenic differentiation-related gene and protein expressions of ALP, collagenase-I (COL-1) and runt-related transcription factor 2 (Runx-2) were remarkably upregulated in the presence of hBD3 and AuNPs. Moreover, hBD3-combined AuNPs strongly activated the Wnt/β-catenin signaling pathway and upregulated the gene and protein expression of β-catenin and cyclin D1. Furthermore, hBD3-combined AuNPs induced osteogenesis, which could be reversed by the Wnt/β-catenin signaling pathway inhibitor (ICG-001). Conclusion The present study demonstrated that hBD3 combined AuNPs could significantly promote the osteogenic differentiation of hPDLCs in inflammatory microenvironments via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
48
|
Mu S, Guo S, Wang X, Zhan Y, Li Y, Jiang Y, Zhang R, Zhang B. Effects of deferoxamine on the osteogenic differentiation of human periodontal ligament cells. Mol Med Rep 2017; 16:9579-9586. [PMID: 29039615 DOI: 10.3892/mmr.2017.7810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 08/17/2017] [Indexed: 11/06/2022] Open
Abstract
Hypoxia regulates a number of cell biological processes, including cell survival, development and differentiation. Deferoxamine (DFO), an oral chelator for blood transfusion patients, has been demonstrated to induce hypoxia and is frequently used as a hypoxia‑mimicking agent. The purpose of the present study was to investigate the influence of DFO on the proliferation, migration and osteogenic differentiation of human periodontal ligament cells (hPDLCs). The effects of DFO on hPDLC viability and migration were measured using an MTT and wound healing assay. To characterize the hypoxia microenvironment, the expression of hypoxia‑inducible factor‑1α (HIF‑1α) in hPDLCs treated with DFO was quantified using the reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Subsequently, the osteogenic differentiation potential of DFO was determined by RT‑qPCR of the mRNA of osteogenic markers (runt‑related transcription factor 2 [Runx‑2], osteopontin [OPN] and collagen type I [Col‑1]). The alkaline phosphatase activity and mineral deposition were analyzed using alizarin red S staining. The MTT and wound healing assays demonstrated that low‑concentrations of DFO had little impact on hPDLC viability and migration 48 h into the treatment. DFO upregulated the expression of hPDLC genes specific for osteogenic differentiation: HIF‑1α, Runx‑2, OPN and Col‑1. Furthermore, formation of mineralized nodules was enhanced by DFO. The present study suggests that DFO provided favorable culture conditions to promote the osteogenic differentiation and mineralization of hPDLCs. The mechanism underlying these alterations remains to be elucidated.
Collapse
Affiliation(s)
- Sen Mu
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shuanlong Guo
- Department of Stomatology, Fenyang Hospital, Fenyang, Shanxi 032200, P.R. China
| | - Xiang Wang
- Department of General Dentistry, Yinzhou Stomatology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Yuanbo Zhan
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ying Jiang
- Pediatric Department of Stomatology, Yinzhou Stomatology Hospital, Ningbo, Zhejiang 315000, P.R. China
| | - Ruimin Zhang
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
49
|
Yu Y, Deng P, Yu B, Szymanski JM, Aghaloo T, Hong C, Wang CY. Inhibition of EZH2 Promotes Human Embryonic Stem Cell Differentiation into Mesoderm by Reducing H3K27me3. Stem Cell Reports 2017; 9:752-761. [PMID: 28826853 PMCID: PMC5599223 DOI: 10.1016/j.stemcr.2017.07.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/16/2023] Open
Abstract
Mesoderm derived from human embryonic stem cells (hESCs) is a major source of the mesenchymal stem/stromal cells (MSCs) that can differentiate into osteoblasts and chondrocytes for tissue regeneration. While significant progress has been made in understanding of molecular mechanisms of hESC differentiation into mesodermal cells, little is known about epigenetic factors controlling hESC fate toward mesoderm and MSCs. Identifying potential epigenetic factors that control hESC differentiation will undoubtedly lead to advancements in regenerative medicine. Here, we conducted an epigenome-wide analysis of hESCs and MSCs and uncovered that EZH2 was enriched in hESCs and was downregulated significantly in MSCs. The specific EZH2 inhibitor GSK126 directed hESC differentiation toward mesoderm and generated more MSCs by reducing H3K27me3. Our results provide insights into epigenetic landscapes of hESCs and MSCs and suggest that inhibiting EZH2 promotes mesodermal differentiation of hESCs.
Inhibiting EZH2 directs hESC differentiation to mesoderm and generates more MSCs H3K27me3 levels decrease on specific gene clusters as hESCs differentiate to MSCs EZH2 is downregulated as hESC differentiate to MSCs
Collapse
Affiliation(s)
- Yongxin Yu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Deng
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Yu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John M Szymanski
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tara Aghaloo
- Section of Oral and Maxillofacial Surgery, Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christine Hong
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Research Institute and Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
50
|
Niu C, Yuan K, Ma R, Gao L, Jiang W, Hu X, Lin W, Zhang X, Huang Z. Gold nanoparticles promote osteogenic differentiation of human periodontal ligament stem cells via the p38 MAPK signaling pathway. Mol Med Rep 2017; 16:4879-4886. [PMID: 28791361 DOI: 10.3892/mmr.2017.7170] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/30/2017] [Indexed: 11/06/2022] Open
Abstract
Gold nanoparticles (AuNPs) are a promising material for use in regenerative medicine due to their biocompatibility and easy functionalization with biomolecules including growth factors, DNA and peptides. In the present study, transmission electron microscopy indicated that the AuNPs were monodisperse and spherical in shape, with an estimated average diameter of 13 nm. And the cellular effects of AuNPs on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and the associated signaling pathways in cell differentiation were investigated based on histochemical analysis of alkaline phosphatase activity and mineralization, quantitative polymerase chain reaction, and western blotting. The results indicated that AuNPs enhanced the differentiation of hPDLSCs into osteoblasts, increasing their osteogenic transcriptional profile including alkaline phosphatase, osterix, collagen type I and runt‑related transcription factor 2 (RUNX2) and activating the p38 mitogen‑activated protein kinase (MAPK) signaling pathway. Furthermore, AuNPs increased the protein level of RUNX2, which is crucial for osteogenic differentiation. These results suggested that AuNPs stimulate the osteogenesis of hPDLSCs partially via activation of the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Keyong Yuan
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Rui Ma
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Li Gao
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenxin Jiang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xuchen Hu
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Wenzhen Lin
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200092, P.R. China
| | - Zhengwei Huang
- Department of Endodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|