1
|
Wen S, Zheng R, Cai C, Jiang W. Chemical-based epigenetic reprogramming to advance pluripotency and totipotency. Nat Chem Biol 2025; 21:635-647. [PMID: 40251434 DOI: 10.1038/s41589-025-01874-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/06/2025] [Indexed: 04/20/2025]
Abstract
Reprogramming technology, breaking the inherent limitations of cellular identity and turning somatic cells into pluripotent cells with more developmental potential, holds great promise for cell therapy and regenerative medicine. Compared with traditional methods based on overexpressing transcription factors, chemical reprogramming with small molecules exhibits substantial advantages in safety and convenience, thus being the leading edge. Over the past decade, a notable focus has been reshaping cellular pluripotency and totipotency using pure small-molecule systems. Here, we provide a concise Review comparing the chemical approaches that have emerged to date and discussing the epigenetic regulatory mechanisms involved in chemical reprogramming. This Review highlights the remarkable potential of small-molecule potions to reformulate cell fate through epigenetic reprogramming and newly discovered actions. We aim to offer insights into chemically controlled cell manipulation and key challenges and future application prospects of chemical reprogramming.
Collapse
Affiliation(s)
- Shanshan Wen
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ran Zheng
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China
| | - Cheguo Cai
- Shenzhen Beike Biotechnology Co., Ltd, Shenzhen, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
2
|
Cheng L, Wang Y, Guan J, Deng H. Decoding human chemical reprogramming: mechanisms and principles. Trends Biochem Sci 2025:S0968-0004(25)00053-2. [PMID: 40169299 DOI: 10.1016/j.tibs.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/03/2025]
Abstract
Pluripotent stem cells hold great promise as an unlimited resource for regenerative medicine due to their capacity to self-renew and differentiate into various cell types. Chemical reprogramming using small molecules precisely regulates cell signaling pathways and epigenetic states, providing a novel approach for generating human pluripotent stem cells. Since its successful establishment in 2022, human chemical reprogramming has rapidly achieved significant progress, demonstrating its significant potential in regenerative medicine. Mechanistic analyses have revealed distinct molecular pathways and regulatory mechanisms unique to chemical reprogramming, differing from traditional transcription-factor-driven methods. In this review we highlight recent advancements in our understanding of the mechanisms of human chemical reprogramming, with the goal of enhancing insights into the principles of cell fate control and advancing regenerative medicine.
Collapse
Affiliation(s)
- Lin Cheng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanglu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jingyang Guan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hongkui Deng
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
3
|
Chen ZY, Ji SJ, Huang CW, Tu WZ, Ren XY, Guo R, Xie X. In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals. Acta Pharmacol Sin 2024; 45:2290-2299. [PMID: 38890526 PMCID: PMC11489685 DOI: 10.1038/s41401-024-01308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.
Collapse
Affiliation(s)
- Zi-Yang Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Jia Ji
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Chen-Wen Huang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Zhi Tu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China
| | - Xin Xie
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
4
|
Yagi M, Horng JE, Hochedlinger K. Manipulating cell fate through reprogramming: approaches and applications. Development 2024; 151:dev203090. [PMID: 39348466 PMCID: PMC11463964 DOI: 10.1242/dev.203090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Cellular plasticity progressively declines with development and differentiation, yet these processes can be experimentally reversed by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) using defined transcription factors. Advances in reprogramming technology over the past 15 years have enabled researchers to study diseases with patient-specific iPSCs, gain fundamental insights into how cell identity is maintained, recapitulate early stages of embryogenesis using various embryo models, and reverse aspects of aging in cultured cells and animals. Here, we review and compare currently available reprogramming approaches, including transcription factor-based methods and small molecule-based approaches, to derive pluripotent cells characteristic of early embryos. Additionally, we discuss our current understanding of mechanisms that resist reprogramming and their role in cell identity maintenance. Finally, we review recent efforts to rejuvenate cells and tissues with reprogramming factors, as well as the application of iPSCs in deriving novel embryo models to study pre-implantation development.
Collapse
Affiliation(s)
- Masaki Yagi
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joy E. Horng
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Center for Regenerative Medicine and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
5
|
Jin K, Zhou J, Wu G, Li Z, Zhu X, Liang Y, Li T, Chen G, Zuo Q, Niu Y, Song J, Han W. CHIR99021 and Brdu Are Critical in Chicken iPSC Reprogramming via Small-Molecule Screening. Genes (Basel) 2024; 15:1206. [PMID: 39336797 PMCID: PMC11431361 DOI: 10.3390/genes15091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Induced pluripotent stem cells (iPSCs) reprogrammed from somatic cells into cells with most of the ESC (embryonic stem cell) characteristics show promise toward solving ethical problems currently facing stem cell research and eventually yield clinical grade pluripotent stem cells for therapies and regenerative medicine. In recent years, an increasing body of research suggests that the chemical induction of pluripotency (CIP) method can yield iPSCs in vitro, yet its application in avian species remains unreported. Methods: Herein, we successfully obtained stably growing chicken embryonic fibroblasts (CEFs) using the tissue block adherence method and employed 12 small-molecule compounds to induce chicken iPSC formation. Results: The final optimized iPSC induction system was bFGF (10 ng/mL), CHIR99021 (3 μM), RepSox (5 μM), DZNep (0.05 μM), BrdU (10 μM), BMP4 (10 ng/mL), vitamin C (50 μg/mL), EPZ-5676 (5 μM), and VPA (0.1 mM). Optimization of the induction system revealed that the highest number of clones was induced with 8 × 104 cells per well and at 1.5 times the original concentration. Upon characterization, these clones exhibited iPSC characteristics, leading to the development of a stable compound combination for iPSC generation in chickens. Concurrently, employing a deletion strategy to investigate the functionality of small-molecule compounds during induction, we identified CHIR99021 and BrdU as critical factors for inducing chicken iPSC formation. Conclusions: In conclusion, this study provides a reference method for utilizing small-molecule combinations in avian species to reprogram cells and establish a network of cell fate determination mechanisms.
Collapse
Affiliation(s)
- Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jing Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Gaoyuan Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Youchen Liang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Tingting Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (J.Z.); (G.W.); (Z.L.); (X.Z.); (Y.L.); (T.L.); (G.C.); (Q.Z.); (Y.N.)
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Wei Han
- Jiangsu Institute of Poultry Sciences/Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China;
| |
Collapse
|
6
|
Chang D, Sun C, Tian X, Liu H, Jia Y, Guo Z. Regulation of cardiac fibroblasts reprogramming into cardiomyocyte-like cells with a cocktail of small molecule compounds. FEBS Open Bio 2024; 14:983-1000. [PMID: 38693086 PMCID: PMC11148126 DOI: 10.1002/2211-5463.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Myocardial infarction results in extensive cardiomyocyte apoptosis, leading to the formation of noncontractile scar tissue. Given the limited regenerative capacity of adult mammalian cardiomyocytes, direct reprogramming of cardiac fibroblasts (CFs) into cardiomyocytes represents a promising therapeutic strategy for myocardial repair, and small molecule drugs might offer a more attractive alternative to gene editing approaches in terms of safety and clinical feasibility. This study aimed to reprogram rat CFs into cardiomyocytes using a small molecular chemical mixture comprising CHIR99021, Valproic acid, Dorsomorphin, SB431542, and Forskolin. Immunofluorescence analysis revealed a significant increase in the expression of cardiomyocyte-specific markers, including cardiac troponin T (cTnT), Connexin 43 (Cx43), α-actinin, and Tbx5. Changes in intracellular calcium ion levels and Ca2+ signal transfer between adjacent cells were monitored using a calcium ion fluorescence probe. mRNA sequencing analysis demonstrated the upregulation of genes associated with cardiac morphogenesis, myocardial differentiation, and muscle fiber contraction during CF differentiation induced by the small-molecule compounds. Conversely, the expression of fibroblast-related genes was downregulated. These findings suggest that chemical-induced cell fate conversion of rat CFs into cardiomyocyte-like cells is feasible, offering a potential therapeutic solution for myocardial injury.
Collapse
Affiliation(s)
| | - Changye Sun
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Xiangqin Tian
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Hongyin Liu
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Yangyang Jia
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue RegenerationXinxiang Medical UniversityChina
| |
Collapse
|
7
|
Lin YC, Ku CC, Wuputra K, Liu CJ, Wu DC, Satou M, Mitsui Y, Saito S, Yokoyama KK. Possible Strategies to Reduce the Tumorigenic Risk of Reprogrammed Normal and Cancer Cells. Int J Mol Sci 2024; 25:5177. [PMID: 38791215 PMCID: PMC11120835 DOI: 10.3390/ijms25105177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The reprogramming of somatic cells to pluripotent stem cells has immense potential for use in regenerating or redeveloping tissues for transplantation, and the future application of this method is one of the most important research topics in regenerative medicine. These cells are generated from normal cells, adult stem cells, or neoplastic cancer cells. They express embryonic stem cell markers, such as OCT4, SOX2, and NANOG, and can differentiate into all tissue types in adults, both in vitro and in vivo. However, tumorigenicity, immunogenicity, and heterogeneity of cell populations may hamper the use of this method in medical therapeutics. The risk of cancer formation is dependent on mutations of these stemness genes during the transformation of pluripotent stem cells to cancer cells and on the alteration of the microenvironments of stem cell niches at genetic and epigenetic levels. Recent reports have shown that the generation of induced pluripotent stem cells (iPSCs) derived from human fibroblasts could be induced using chemicals, which is a safe, easy, and clinical-grade manufacturing strategy for modifying the cell fate of human cells required for regeneration therapies. This strategy is one of the future routes for the clinical application of reprogramming therapy. Therefore, this review highlights the recent progress in research focused on decreasing the tumorigenic risk of iPSCs or iPSC-derived organoids and increasing the safety of iPSC cell preparation and their application for therapeutic benefits.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cha-Chien Ku
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Maki Satou
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Yukio Mitsui
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
| | - Shigeo Saito
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Research Institute, Horus Co., Ltd., Iruma 358-0032, Saitama, Japan; (M.S.); (Y.M.)
- Saito Laboratory of Cell Technology, Yaita 329-1571, Tochigi, Japan
| | - Kazunari K. Yokoyama
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Graduate Institute of Medicine, Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (C.-J.L.); (D.-C.W.)
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
8
|
Martí-Clúa J. 5-Bromo-2'-deoxyuridine labeling: historical perspectives, factors influencing the detection, toxicity, and its implications in the neurogenesis. Neural Regen Res 2024; 19:302-308. [PMID: 37488882 PMCID: PMC10503596 DOI: 10.4103/1673-5374.379038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 07/26/2023] Open
Abstract
The halopyrimidine 5-bromo-2'-deoxyuridine (BrdU) is an exogenous marker of DNA synthesis. Since the introduction of monoclonal antibodies against BrdU, an increasing number of methodologies have been used for the immunodetection of this synthesized bromine-tagged base analogue into replicating DNA. BrdU labeling is widely used for identifying neuron precursors and following their fate during the embryonic, perinatal, and adult neurogenesis in a variety of vertebrate species including birds, reptiles, and mammals. Due to BrdU toxicity, its incorporation into replicating DNA presents adverse consequences on the generation, survival, and settled patterns of cells. This may lead to false results and misinterpretation in the identification of proliferative neuroblasts. In this review, I will indicate the detrimental effects of this nucleoside during the development of the central nervous system, as well as the reliability of BrdU labeling to detect proliferating neuroblasts. Moreover, it will show factors influencing BrdU immunodetection and the contribution of this nucleoside to the study of prenatal, perinatal, and adult neurogenesis. Human adult neurogenesis will also be discussed. It is my hope that this review serves as a reference for those researchers who focused on detecting cells that are in the synthetic phase of the cell cycle.
Collapse
Affiliation(s)
- Joaquín Martí-Clúa
- Unidad de Citología e Histología. Departament de Biologia Cel·lular, de Fisiologia i d’Immunologia. Facultad de Biociencias. Institut de Neurociències. Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
9
|
Li C, Xu X, Chen S, Xu A, Guan T, Wu H, Pei D, Liu J. Epigenetic reshaping through damage: promoting cell fate transition by BrdU and IdU incorporation. Cell Biosci 2024; 14:9. [PMID: 38229206 DOI: 10.1186/s13578-024-01192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Thymidine analogs have long been recognized for their ability to randomly incorporate into DNA. However, the precise mechanisms through which thymidine analogs facilitate cell fate transition remains unclear. RESULTS Here, we discovered a strong correlation between the dosage dependence of thymidine analogs and their ability to overcome reprogramming barrier. The extraembryonic endoderm (XEN) state seems to be a cell's selective response to DNA damage repair (DDR), offering a shortcut to overcome reprogramming barriers. Meanwhile, we found that homologous recombination repair (HRR) pathway causes an overall epigenetic reshaping of cells and enabling them to overcome greater barriers. This response leads to the creation of a hypomethylated environment, which facilitates the transition of cell fate in various reprogramming systems. We term this mechanism as Epigenetic Reshaping through Damage (ERD). CONCLUSION Overall, our study finds that BrdU/IdU can activate the DNA damage repair pathway (HRR), leading to increased histone acetylation and genome-wide DNA demethylation, regulating somatic cell reprogramming. This offers valuable insights into mechanisms underlying cell fate transition.
Collapse
Affiliation(s)
- Chuang Li
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoduo Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shuyan Chen
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Science, Beijing, 100049, People's Republic of China
| | - Anchun Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Tongxing Guan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Haokaifeng Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, People's Republic of China.
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Duanqing Pei
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Jing Liu
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
10
|
Nath SC, Menendez L, Friedrich Ben-Nun I. Overcoming the Variability of iPSCs in the Manufacturing of Cell-Based Therapies. Int J Mol Sci 2023; 24:16929. [PMID: 38069252 PMCID: PMC10706975 DOI: 10.3390/ijms242316929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Various factors are known to contribute to the diversity of human induced pluripotent stem cells (hiPSCs). Among these are the donor's genetic background and family history, the somatic cell source, the iPSC reprogramming method, and the culture system of choice. Moreover, variability is seen even in iPSC clones, generated in a single reprogramming event, where the donor, somatic cell type, and reprogramming platform are the same. The diversity seen in iPSC lines often translates to epigenetic differences, as well as to differences in the expansion rate, iPSC line culture robustness, and their ability to differentiate into specific cell types. As such, the diversity of iPSCs presents a hurdle to standardizing iPSC-based cell therapy manufacturing. In this review, we will expand on the various factors that impact iPSC diversity and the strategies and tools that could be taken by the industry to overcome the differences amongst various iPSC lines, therefore enabling robust and reproducible iPSC-based cell therapy manufacturing processes.
Collapse
Affiliation(s)
- Suman C. Nath
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | - Laura Menendez
- Cell Therapy Process Department, Lonza Inc., Houston, TX 77047, USA; (S.C.N.); (L.M.)
| | | |
Collapse
|
11
|
Wang J, Sun S, Deng H. Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell 2023; 30:1130-1147. [PMID: 37625410 DOI: 10.1016/j.stem.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023]
Abstract
Chemical reprogramming offers an unprecedented opportunity to control somatic cell fate and generate desired cell types including pluripotent stem cells for applications in biomedicine in a precise, flexible, and controllable manner. Recent success in the chemical reprogramming of human somatic cells by activating a regeneration-like program provides an alternative way of producing stem cells for clinical translation. Likewise, chemical manipulation enables the capture of multiple (stem) cell states, ranging from totipotency to the stabilization of somatic fates in vitro. Here, we review progress in using chemical approaches for cell fate manipulation in addition to future opportunities in this promising field.
Collapse
Affiliation(s)
- Jinlin Wang
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shicheng Sun
- Changping Laboratory, 28 Life Science Park Road, Beijing, China; Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, Australia.
| | - Hongkui Deng
- MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Changping Laboratory, 28 Life Science Park Road, Beijing, China.
| |
Collapse
|
12
|
Jin Y, Lu Y, Lin L, Liu C, Ma X, Chen X, Zhou Z, Hu Z, Pu J, Chen G, Deng Q, Jiang L, Li Y, Zhao Y, Wang H, Fu J, Li W, Zhu S. Harnessing endogenous transcription factors directly by small molecules for chemically induced pluripotency inception. Proc Natl Acad Sci U S A 2023; 120:e2215155120. [PMID: 37192170 PMCID: PMC10214147 DOI: 10.1073/pnas.2215155120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/27/2023] [Indexed: 05/18/2023] Open
Abstract
Chemistry-alone approach has recently been applied for incepting pluripotency in somatic cells, representing a breakthrough in biology. However, chemical reprogramming is hampered by low efficiency, and the underlying molecular mechanisms remain unclear. Particularly, chemical compounds do not have specific DNA-recognition domains or transcription regulatory domains, and then how do small molecules work as a driving force for reinstating pluripotency in somatic cells? Furthermore, how to efficiently clear materials and structures of an old cell to prepare the rebuilding of a new one? Here, we show that small molecule CD3254 activates endogenous existing transcription factor RXRα to significantly promote mouse chemical reprogramming. Mechanistically, CD3254-RXRα axis can directly activate all the 11 RNA exosome component genes (Exosc1-10 and Dis3) at transcriptional level. Unexpectedly, rather than degrading mRNAs as its substrates, RNA exosome mainly modulates the degradation of transposable element (TE)-associated RNAs, particularly MMVL30, which is identified as a new barrier for cell-fate determination. In turn, MMVL30-mediated inflammation (IFN-γ and TNF-α pathways) is reduced, contributing to the promotion of successful reprogramming. Collectively, our study provides conceptual advances for translating environmental cues into pluripotency inception, particularly, identifies that CD3254-RXRα-RNA exosome axis can promote chemical reprogramming, and suggests modulation of TE-mediated inflammation via CD3254-inducible RNA exosome as important opportunities for controlling cell fates and regenerative medicine.
Collapse
Affiliation(s)
- Yan Jin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yunkun Lu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Lianyu Lin
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Xiaojie Ma
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Xi Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Ziyu Zhou
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Zhensheng Hu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Jiaqi Pu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Guo Chen
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Qian Deng
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Liling Jiang
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yuhan Li
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| | - Yulong Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Hao Wang
- Hangzhou Women’s Hospital, Prenatal Diagnosis Center, Zhejiang University, Hangzhou310008, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou310052, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing100101, China
| | - Saiyong Zhu
- The Second Affiliated Hospital and Life Sciences Institute and School of Medicine, The Ministry of Education Key Laboratory of Biosystems Homeostasis and Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
13
|
Jeong D, Lee Y, Lee SW, Ham S, Lee M, Choi NY, Wu G, Scholer HR, Ko K. Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells. Mol Cells 2023; 46:209-218. [PMID: 36852435 PMCID: PMC10086553 DOI: 10.14348/molcells.2023.2127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 03/01/2023] Open
Abstract
In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.
Collapse
Affiliation(s)
- Dahee Jeong
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Yukyeong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Seung-Won Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Seokbeom Ham
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Minseong Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Na Young Choi
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
| | - Guangming Wu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Hans R. Scholer
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster 48149, Germany
| | - Kinarm Ko
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul 05029, Korea
- Research Institute of Medical Science, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
14
|
En A, Watanabe K, Ayusawa D, Fujii M. The key role of a basic domain of histone H2B N-terminal tail in the action of 5-bromodeoxyuridine to induce cellular senescence. FEBS J 2023; 290:692-711. [PMID: 35882390 DOI: 10.1111/febs.16584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here, we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuaki Watanabe
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
15
|
Alexanian AR. Combination of the modulators of epigenetic machinery and specific cell signaling pathways as a promising approach for cell reprogramming. Mol Cell Biochem 2022; 477:2309-2317. [PMID: 35503191 DOI: 10.1007/s11010-022-04442-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/08/2022] [Indexed: 11/27/2022]
Abstract
During embryogenesis and further development, mammalian epigenome undergoes global remodeling, which leads to the emergence of multiple fate-restricted cell lines as well as to their further differentiation into different specialized cell types. There are multiple lines of evidence suggesting that all these processes are mainly controlled by epigenetic mechanisms such as DNA methylation, histone covalent modifications, and the regulation of ATP-dependent remolding of chromatin structure. Based on the histone code hypothesis, distinct chromatin covalent modifications can lead to functionally distinct chromatin structures and thus distinctive gene expression that determine the fate of the cells. A large amount of recently accumulated data showed that small molecule biologically active compounds that involved in the regulation of chromatin structure and function in discriminative signaling environments can promote changes in cells fate. These data suggest that agents that involved in the regulation of chromatin modifying enzymes combined with factors that modulate specific cell signaling pathways could be effective tools for cell reprogramming. The goal of this review is to gather the most relevant and most recent literature that supports this proposition.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, 10437 Innovation drive, Suite 321, Wauwatosa, WI, 53226, USA.
| |
Collapse
|
16
|
Lin X, Rong C, Wu S. Two Sets of Compound Complex Driving for High Efficiency of Nonintegration Reprogramming of Human Fibroblasts. Cell Reprogram 2022; 24:71-79. [PMID: 35255219 DOI: 10.1089/cell.2021.0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Currently, plentiful chemical-assisted methods have been applied for mouse induced pluripotent stem cells (iPSCs). It has been reported that small-molecule compounds can only reprogram mouse embryonic fibroblasts into mouse chemically induced pluripotent stem cells (mouse CiPSCs). However, human CiPSCs have not been reported. Therefore, it is still necessary to search for safer chemically assisted human pluripotent stem cells, which might realize the potential of human iPSCs. Here, we developed two sets of chemical cocktails to greatly improve the induction efficiency of human nonintegrated iPSCs, including the 4 compound mixture (4M) and the 5 compound mixture (4MI). These two sets of complex driving strategies might greatly improve the reprogramming efficiency to generate integration-free iPSCs.
Collapse
Affiliation(s)
- Xiangyi Lin
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,China-World Bright-Future Education Development Organization, Beijing, China
| | - Cuiping Rong
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shouhai Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Bailly A, Milhavet O, Lemaitre JM. RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics 2022; 14:317. [PMID: 35214051 PMCID: PMC8876983 DOI: 10.3390/pharmaceutics14020317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cell therapy approaches to treat a wide range of pathologies have greatly benefited from cell reprogramming techniques that allow the conversion of a somatic cell into a pluripotent cell. Many technological developments have been made since the initial major discovery of this biological process. Recently reprogramming methods based on the use of RNA have emerged and seem very promising. Thus, in this review we will focus on presenting the interest of such methods for cell reprogramming but also how these RNA-based strategies can be extended to eventually lead to medical applications to improve healthspan and longevity.
Collapse
Affiliation(s)
- Anaëlle Bailly
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- INGRAALYS, SA, IRMB, Incubator Cyborg, 34295 Montpellier, France
| | - Ollivier Milhavet
- IRMB, University Montpellier, INSERM, CNRS, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- SAFE-iPSC Facility, CHU Montpellier, 34295 Montpellier, France
| |
Collapse
|
18
|
Cui G, Xu Y, Cao S, Shi K. Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development. Mol Reprod Dev 2022; 89:70-85. [PMID: 35075695 DOI: 10.1002/mrd.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The early embryonic development starts with the totipotent zygote upon fertilization of differentiated sperm and egg, which undergoes a range of reprogramming and transformation to acquire pluripotency. Induced pluripotent stem cells (iPSCs), a nonclonal technique to produce stem cells, are originated from differentiated somatic cells via accomplishment of cell reprogramming, which shares common reprogramming process with early embryonic development. iPSCs are attractive in recent years due to the potentially significant applications in disease modeling, potential value in genetic improvement of husbandry animal, regenerative medicine, and drug screening. This review focuses on introducing the research advance of both somatic cell reprogramming and early embryonic development, indicating that the mechanisms of iPSCs also shares common features with that of early embryonic development in several aspects, such as germ cell factors, DNA methylation, histone modification, and/or X chromosome inactivation. As iPSCs can successfully avoid ethical concerns that are naturally present in the embryos and/or embryonic stem cells, the practicality of somatic cell reprogramming (iPSCs) could provide an insightful platform to elucidate the mechanisms underlying the early embryonic development.
Collapse
Affiliation(s)
- Guina Cui
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yanwen Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyuan Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
19
|
Small molecules for cell reprogramming: a systems biology analysis. Aging (Albany NY) 2021; 13:25739-25762. [PMID: 34919532 PMCID: PMC8751603 DOI: 10.18632/aging.203791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/24/2021] [Indexed: 12/22/2022]
Abstract
If somatic stem cells would be able to maintain their regenerative capacity over time, this might, to a great extent, resolve rejuvenation issues. Unfortunately, the pool of somatic stem cells is limited, and they undergo cell aging with a consequent loss of functionality. During the last decade, low molecular weight compounds that are able to induce or enhance cell reprogramming have been reported. They were named “Small Molecules” (SMs) and might present definite advantages compared to the exogenous introduction of stemness-related transcription factors (e.g. Yamanaka’s factors). Here, we undertook a systemic analysis of SMs and their potential gene targets. Data mining and curation lead to the identification of 92 SMs. The SM targets fall into three major functional categories: epigenetics, cell signaling, and metabolic “switchers”. All these categories appear to be required in each SM cocktail to induce cell reprogramming. Remarkably, many enriched pathways of SM targets are related to aging, longevity, and age-related diseases, thus connecting them with cell reprogramming. The network analysis indicates that SM targets are highly interconnected and form protein-protein networks of a scale-free topology. The extremely high contribution of hubs to network connectivity suggests that (i) cell reprogramming may require SM targets to act cooperatively, and (ii) their network organization might ensure robustness by resistance to random failures. All in all, further investigation of SMs and their relationship with longevity regulators will be helpful for developing optimal SM cocktails for cell reprogramming with a perspective for rejuvenation and life span extension.
Collapse
|
20
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
21
|
Wang W, Ren S, Lu Y, Chen X, Qu J, Ma X, Deng Q, Hu Z, Jin Y, Zhou Z, Ge W, Zhu Y, Yang N, Li Q, Pu J, Chen G, Ye C, Wang H, Zhao X, Liu Z, Zhu S. Inhibition of Syk promotes chemical reprogramming of fibroblasts via metabolic rewiring and H 2 S production. EMBO J 2021; 40:e106771. [PMID: 33909912 DOI: 10.15252/embj.2020106771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
Chemical compounds have recently been introduced as alternative and non-integrating inducers of pluripotent stem cell fate. However, chemical reprogramming is hampered by low efficiency and the molecular mechanisms remain poorly characterized. Here, we show that inhibition of spleen tyrosine kinase (Syk) by R406 significantly promotes mouse chemical reprogramming. Mechanistically, R406 alleviates Syk / calcineurin (Cn) / nuclear factor of activated T cells (NFAT) signaling-mediated suppression of glycine, serine, and threonine metabolic genes and dependent metabolites. Syk inhibition upregulates glycine level and downstream transsulfuration cysteine biosynthesis, promoting cysteine metabolism and cellular hydrogen sulfide (H2 S) production. This metabolic rewiring decreased oxidative phosphorylation and ROS levels, enhancing chemical reprogramming. In sum, our study identifies Syk-Cn-NFAT signaling axis as a new barrier of chemical reprogramming and suggests metabolic rewiring and redox homeostasis as important opportunities for controlling cell fates.
Collapse
Affiliation(s)
- Weiyun Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shaofang Ren
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yunkun Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xi Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Juanjuan Qu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Xiaojie Ma
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qian Deng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Zhensheng Hu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Jin
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Ziyu Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Wenyan Ge
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yibing Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Nannan Yang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China
| | - Qin Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jiaqi Pu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guo Chen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, China.,Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiqiang Liu
- College of Life Science, Shanxi University, Taiyuan, China
| | - Saiyong Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Vandana JJ, Lacko LA, Chen S. Phenotypic technologies in stem cell biology. Cell Chem Biol 2021; 28:257-270. [PMID: 33651977 DOI: 10.1016/j.chembiol.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
The high-throughput phenotypic screen (HTPS) has become an emerging technology to discover synthetic small molecules that regulate stem cell fates. Here, we review the application of HTPS to identify small molecules controlling stem cell renewal, reprogramming, differentiation, and lineage conversion. Moreover, we discuss the use of HTPS to discover small molecules/polymers mimicking the stem cell extracellular niche. Furthermore, HTPSs have been applied on whole-animal models to identify small molecules regulating stem cell renewal or differentiation in vivo. Finally, we discuss the examples of the utilization of HTPS in stem cell-based disease modeling, as well as in the discovery of novel drug candidates for cancer, diabetes, and infectious diseases. Overall, HTPSs have provided many powerful tools for the stem cell field, which not only facilitate the generation of functional cells/tissues for replacement therapy, disease modeling, and drug screening, but also help dissect molecular mechanisms regulating physiological and pathological processes.
Collapse
Affiliation(s)
- J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lauretta A Lacko
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
23
|
Chemicals orchestrate reprogramming with hierarchical activation of master transcription factors primed by endogenous Sox17 activation. Commun Biol 2020; 3:629. [PMID: 33128002 PMCID: PMC7603307 DOI: 10.1038/s42003-020-01346-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/11/2020] [Indexed: 11/26/2022] Open
Abstract
Mouse somatic cells can be chemically reprogrammed into pluripotent stem cells (CiPSCs) through an intermediate extraembryonic endoderm (XEN)-like state. However, it is elusive how the chemicals orchestrate the cell fate alteration. In this study, we analyze molecular dynamics in chemical reprogramming from fibroblasts to a XEN-like state. We find that Sox17 is initially activated by the chemical cocktails, and XEN cell fate specialization is subsequently mediated by Sox17 activated expression of other XEN master genes, such as Sall4 and Gata4. Furthermore, this stepwise process is differentially regulated. The core reprogramming chemicals CHIR99021, 616452 and Forskolin are all necessary for Sox17 activation, while differently required for Gata4 and Sall4 expression. The addition of chemical boosters in different phases further improves the generation efficiency of XEN-like cells. Taken together, our work demonstrates that chemical reprogramming is regulated in 3 distinct “prime–specify–transit” phases initiated with endogenous Sox17 activation, providing a new framework to understand cell fate determination. Yang, Xu, Gu et al. demonstrate that activation of endogenous Sox17 pushes fibroblasts to an extraembryonic endoderm-like state in chemically induced reprogramming of somatic cells into stem cells. This study provides insights into how chemicals prime the transition of somatic cells into stem cells.
Collapse
|
24
|
Yuan ZD, Zhu WN, Liu KZ, Huang ZP, Han YC. Small Molecule Epigenetic Modulators in Pure Chemical Cell Fate Conversion. Stem Cells Int 2020; 2020:8890917. [PMID: 33144865 PMCID: PMC7596432 DOI: 10.1155/2020/8890917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 12/26/2022] Open
Abstract
Although innovative technologies for somatic cell reprogramming and transdifferentiation provide new strategies for the research of translational medicine, including disease modeling, drug screening, artificial organ development, and cell therapy, recipient safety remains a concern due to the use of exogenous transcription factors during induction. To resolve this problem, new induction approaches containing clinically applicable small molecules have been explored. Small molecule epigenetic modulators such as DNA methylation writer inhibitors, histone methylation writer inhibitors, histone acylation reader inhibitors, and histone acetylation eraser inhibitors could overcome epigenetic barriers during cell fate conversion. In the past few years, significant progress has been made in reprogramming and transdifferentiation of somatic cells with small molecule approaches. In the present review, we systematically discuss recent achievements of pure chemical reprogramming and transdifferentiation.
Collapse
Affiliation(s)
- Zhao-Di Yuan
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ning Zhu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ke-Zhi Liu
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Grade 19, Sun Yat-sen University Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Yan-Chuang Han
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
25
|
Functional Oocytes Derived from Granulosa Cells. Cell Rep 2020; 29:4256-4267.e9. [PMID: 31875537 DOI: 10.1016/j.celrep.2019.11.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of genomically stable and functional oocytes has great potential for preserving fertility and restoring ovarian function. It remains elusive whether functional oocytes can be generated from adult female somatic cells through reprogramming to germline-competent pluripotent stem cells (gPSCs) by chemical treatment alone. Here, we show that somatic granulosa cells isolated from adult mouse ovaries can be robustly induced to generate gPSCs by a purely chemical approach, with additional Rock inhibition and critical reprogramming facilitated by crotonic sodium or acid. These gPSCs acquired high germline competency and could consistently be directed to differentiate into primordial-germ-cell-like cells and form functional oocytes that produce fertile mice. Moreover, gPSCs promoted by crotonylation and the derived germ cells exhibited longer telomeres and high genomic stability like PGCs in vivo, providing additional evidence supporting the safety and effectiveness of chemical induction, which is particularly important for germ cells in genetic inheritance.
Collapse
|
26
|
Chen P, Zhao X, Tian GG, Yuan X, Li X, Li Z, Yu X, Hu R, Wang Y, Pei X, Zhou H, Wu J. C28 induced autophagy of female germline stem cells in vitro with changes of H3K27 acetylation and transcriptomics. Gene 2020; 766:145150. [PMID: 32949695 DOI: 10.1016/j.gene.2020.145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/17/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
There are a few studies indicating that small molecular compounds affect the proliferation, differentiation, apoptosis, and autophagy of female germline stem cells (FGSCs). However, whether small molecular compound 28 (C28) affect development of FGSCs remains unknown. In this study, we found that C28 reduced the viability and proliferation of FGSCs, respectively. Additionally, western blotting showed that the expression of autophagy marker light chain 3 beta II (LC3B-II) was significantly increased and expression of sequestosome-1 (SQSTM1) was significantly reduced in C28-treated groups. Immunofluorescence showed that, in C28-treated groups, the number of LC3B-II-positive puncta was increased significantly. These results indicated that C28 induced autophagy of FGSCs in vitro. Furthermore, data from Chromatin Immunoprecipitation Sequencing for H3K27ac showed that autophagy-related biological processes such as regulation of mitochondrial membrane potential, Golgi vesicle transport, and cellular response to reactive oxygen species were different after C28-treated. In addition, RNA-Seq showed that the expression of genes (Trib3, DDIT3, and ATF4) related to endoplasmic reticulum (ER) stress was enhanced by C28. These results suggest that the changes of H3K27ac and ER stress might be associated with C28-induced FGSC autophagy.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xinyan Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Yuan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xinyue Li
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Zezhong Li
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, JiaoTong University, Shanghai, China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Rong Hu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China; Reproductive Medicine Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Yanrong Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, JiaoTong University, Shanghai, China.
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China; Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Wang B, Wu L, Li D, Liu Y, Guo J, Li C, Yao Y, Wang Y, Zhao G, Wang X, Fu M, Liu H, Cao S, Wu C, Yu S, Zhou C, Qin Y, Kuang J, Ming J, Chu S, Yang X, Zhu P, Pan G, Chen J, Liu J, Pei D. Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. Cell Rep 2020; 27:3473-3485.e5. [PMID: 31216469 DOI: 10.1016/j.celrep.2019.05.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/07/2019] [Accepted: 05/18/2019] [Indexed: 01/24/2023] Open
Abstract
Reprogramming somatic cells to pluripotency by Oct4, Sox2, Klf4, and Myc represent a paradigm for cell fate determination. Here, we report a combination of Jdp2, Jhdm1b, Mkk6, Glis1, Nanog, Essrb, and Sall4 (7F) that reprogram mouse embryonic fibroblasts or MEFs to chimera competent induced pluripotent stem cells (iPSCs) efficiently. RNA sequencing (RNA-seq) and ATAC-seq reveal distinct mechanisms for 7F induction of pluripotency. Dropout experiments further reveal a highly cooperative process among 7F to dynamically close and open chromatin loci that encode a network of transcription factors to mediate reprogramming. These results establish an alternative paradigm for reprogramming that may be useful for analyzing cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linlin Wu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuting Liu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxiang Yao
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yaofeng Wang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guoqing Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Meijun Fu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shangtao Cao
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junqi Kuang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Ming
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Chu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China.
| |
Collapse
|
28
|
Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP. An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Rev Rep 2020; 15:286-313. [PMID: 30417242 DOI: 10.1007/s12015-018-9861-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than a decade ago, a pioneering study reported generation of induced Pluripotent Stem Cells (iPSCs) by ectopic expression of a cocktail of reprogramming factors in fibroblasts. This study has revolutionized stem cell research and has garnered immense interest from the scientific community globally. iPSCs hold tremendous potential for understanding human developmental biology, disease modeling, drug screening and discovery, and personalized cell-based therapeutic applications. The seminal study identified Oct4, Sox2, Klf4 and c-Myc as a potent combination of genes to induce reprogramming. Subsequently, various reprogramming factors were identified by numerous groups. Most of these studies have used integrating viral vectors to overexpress reprogramming factors in somatic cells to derive iPSCs. However, these techniques restrict the clinical applicability of these cells as they may alter the genome due to random viral integration resulting in insertional mutagenesis and tumorigenicity. To circumvent this issue, alternative integration-free reprogramming approaches are continuously developed that eliminate the risk of genomic modifications and improve the prospects of iPSCs from lab to clinic. These methods establish that integration of transgenes into the genome is not essential to induce pluripotency in somatic cells. This review provides a comprehensive overview of the most promising DNA-free reprogramming techniques that have the potential to derive integration-free iPSCs without genomic manipulation, such as sendai virus, recombinant proteins, microRNAs, synthetic messenger RNA and small molecules. The understanding of these approaches shall pave a way for the generation of clinical-grade iPSCs. Subsequently, these iPSCs can be differentiated into desired cell type(s) for various biomedical applications.
Collapse
Affiliation(s)
- Manash P Borgohain
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Chandrima Dey
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Poulomi Adhikari
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
29
|
He X, Chi G, Li M, Xu J, Zhang L, Song Y, Wang L, Li Y. Characterisation of extraembryonic endoderm-like cells from mouse embryonic fibroblasts induced using chemicals alone. Stem Cell Res Ther 2020; 11:157. [PMID: 32299508 PMCID: PMC7164364 DOI: 10.1186/s13287-020-01664-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 11/10/2022] Open
Abstract
Background The development of somatic reprogramming, especially purely chemical reprogramming, has significantly advanced biological research. And chemical-induced extraembryonic endoderm-like (ciXEN) cells have been confirmed to be an indispensable intermediate stage of chemical reprogramming. They resemble extraembryonic endoderm (XEN) cells in terms of transcriptome, reprogramming potential, and developmental ability in vivo. However, the other characteristics of ciXEN cells and the effects of chemicals and bFGF on the in vitro culture of ciXEN cells have not been systematically reported. Methods Chemicals and bFGF in combination with Matrigel were used to induce the generation of ciXEN cells derived from mouse embryonic fibroblasts (MEFs). RNA sequencing was utilised to examine the transcriptome of ciXEN cells, and PCR/qPCR assays were performed to evaluate the mRNA levels of the genes involved in this study. Hepatic functions were investigated by periodic acid-Schiff staining and indocyanine green assay. Lactate production, ATP detection, and extracellular metabolic flux analysis were used to analyse the energy metabolism of ciXEN cells. Results ciXEN cells expressed XEN-related genes, exhibited high proliferative capacity, had the ability to differentiate into visceral endoderm in vitro, and possessed the plasticity allowing for their differentiation into induced hepatocytes (iHeps). Additionally, the upregulated biological processes of ciXEN cells compared to those in MEFs focused on metabolism, but their energy production was independent of glycolysis. Furthermore, without the cocktail of chemicals and bFGF, which are indispensable for the generation of ciXEN cells, induced XEN (iXEN) cells remained the expression of XEN markers, the high proliferative capacity, and the plasticity to differentiate into iHeps in vitro. Conclusions ciXEN cells had high plasticity, and energy metabolism was reconstructed during chemical reprogramming, but it did not change from aerobic oxidation to glycolysis. And the cocktail of chemicals and bFGF were non-essential for the in vitro culture of ciXEN cells.
Collapse
Affiliation(s)
- Xia He
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Lihong Zhang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yaolin Song
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Lina Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.,Department of Paediatrics, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
30
|
Ge JY, Zheng YW, Liu LP, Isoda H, Oda T. Impelling force and current challenges by chemicals in somatic cell reprogramming and expansion beyond hepatocytes. World J Stem Cells 2019; 11:650-665. [PMID: 31616541 PMCID: PMC6789182 DOI: 10.4252/wjsc.v11.i9.650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/07/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
In the field of regenerative medicine, generating numerous transplantable functional cells in the laboratory setting on a large scale is a major challenge. However, the in vitro maintenance and expansion of terminally differentiated cells are challenging because of the lack of specific environmental and intercellular signal stimulations, markedly hindering their therapeutic application. Remarkably, the generation of stem/progenitor cells or functional cells with effective proliferative potential is markedly in demand for disease modeling, cell-based transplantation, and drug discovery. Despite the potent genetic manipulation of transcription factors, integration-free chemically defined approaches for the conversion of somatic cell fate have garnered considerable attention in recent years. This review aims to summarize the progress thus far and discuss the advantages, limitations, and challenges of the impact of full chemicals on the stepwise reprogramming of pluripotency, direct lineage conversion, and direct lineage expansion on somatic cells. Owing to the current chemical-mediated induction, reprogrammed pluripotent stem cells with reproducibility difficulties, and direct lineage converted cells with marked functional deficiency, it is imperative to generate the desired cell types directly by chemically inducing their potent proliferation ability through a lineage-committed progenitor state, while upholding the maturation and engraftment capacity posttransplantation in vivo. Together with the comprehensive understanding of the mechanism of chemical drives, as well as the elucidation of specificity and commonalities, the precise manipulation of the expansion for diverse functional cell types could broaden the available cell sources and enhance the cellular function for clinical application in future.
Collapse
Affiliation(s)
- Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan.
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
31
|
Cao S, Yu S, Li D, Ye J, Yang X, Li C, Wang X, Mai Y, Qin Y, Wu J, He J, Zhou C, Liu H, Zhao B, Shu X, Wu C, Chen R, Chan W, Pan G, Chen J, Liu J, Pei D. Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency. Cell Stem Cell 2019; 22:529-542.e5. [PMID: 29625068 DOI: 10.1016/j.stem.2018.03.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/05/2018] [Accepted: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Despite its exciting potential, chemical induction of pluripotency (CIP) efficiency remains low and the mechanisms are poorly understood. We report the development of an efficient two-step serum- and replating-free CIP protocol and the associated chromatin accessibility dynamics (CAD) by assay for transposase-accessible chromatin (ATAC)-seq. CIP reorganizes the somatic genome to an intermediate state that is resolved under 2iL condition by re-closing previously opened loci prior to pluripotency acquisition with gradual opening of loci enriched with motifs for the OCT/SOX/KLF families. Bromodeoxyuridine, a critical ingredient of CIP, is responsible for both closing and opening critical loci, at least in part by preventing the opening of loci enriched with motifs for the AP1 family and facilitating the opening of loci enriched with SOX/KLF/GATA motifs. These changes differ markedly from CAD observed during Yamanaka-factor-driven reprogramming. Our study provides insights into small-molecule-based reprogramming mechanisms and reorganization of nuclear architecture associated with cell-fate decisions.
Collapse
Affiliation(s)
- Shangtao Cao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyong Yu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Dongwei Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jing Ye
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoshan Wang
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanbang Mai
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yue Qin
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangping He
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunhua Zhou
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bentian Zhao
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Shu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuman Wu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruiping Chen
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Waiyee Chan
- CUHK-GIBH Joint Laboratory of Stem Cell and Regenerative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Guangjin Pan
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China; CUHK-GIBH Joint Laboratory of Stem Cell and Regenerative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; GUANGZHOU Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China
| | - Jing Liu
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; CUHK-GIBH Joint Laboratory of Stem Cell and Regenerative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; GUANGZHOU Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China.
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou 510530, China; CUHK-GIBH Joint Laboratory of Stem Cell and Regenerative Medicine, Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; GUANGZHOU Regenerative Medicine and Health Guangdong Laboratory at GIBH, Guangzhou 510530, China.
| |
Collapse
|
32
|
Zhao Y. Chemically induced cell fate reprogramming and the acquisition of plasticity in somatic cells. Curr Opin Chem Biol 2019; 51:146-153. [PMID: 31153758 DOI: 10.1016/j.cbpa.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/08/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022]
Abstract
The nature of somatic cell fate has always been considered relatively unchangeable. Only in rare cases, in response to highly specific environmental cues, do differentiated mammalian somatic cells transform into other cell types. However, the fact that cell fate reprogramming can be accomplished by utilizing chemical cocktails, in the absence of any genetic alterations, suggests that the fate determination of somatic cells is much more malleable than previously believed. The use of chemical cocktails to directly alter cell fate sheds light on an important, yet less explored approach to regenerative medicine: the use of chemicals to restore functions to injured, aging or diseased tissues. Here, we review and discuss the recent developments, inspirations, and challenges encountered when modulating cell fate reprogramming with chemicals, and investigate how chemical biology impacts the future of cell fate reprogramming and regenerative medicine.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, MOE Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China.
| |
Collapse
|
33
|
Tang W, Guo R, Shen SJ, Zheng Y, Lu YT, Jiang MM, Cui X, Jiang CZ, Xie X. Chemical cocktails enable hepatic reprogramming of human urine-derived cells with a single transcription factor. Acta Pharmacol Sin 2019; 40:620-629. [PMID: 30315254 DOI: 10.1038/s41401-018-0170-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Human liver or hepatocyte transplantation is limited by a severe shortage of donor organs. Direct reprogramming of other adult cells into hepatic cells may offer a solution to this problem. In a previous study, we have generated hepatocyte-like cells from mouse fibroblasts using only one transcription factor (TF) plus a chemical cocktail. Here, we show that human urine-derived epithelial-like cells (hUCs) can also be transdifferentiated into human hepatocyte-like cells (hiHeps) using one TF (Foxa3, Hnf1α, or Hnf4α) plus the same chemical cocktail CRVPTD (C, CHIR99021; R, RepSox; V, VPA; P, Parnate; T, TTNPB; and D, Dznep). These hiHeps express multiple hepatocyte-specific genes and display functions characteristic of mature hepatocytes. With the introduction of the large T antigen, these hiHeps can be expanded in vitro and can restore liver function in mice with concanavalin-A-induced acute liver failure. Our study provides a strategy to generate functional hepatocyte-like cells from hUCs by using a single TF plus a chemical cocktail.
Collapse
|
34
|
Chen W, Huang Q, Ma S, Li M. Progress in Dopaminergic Cell Replacement and Regenerative Strategies for Parkinson's Disease. ACS Chem Neurosci 2019; 10:839-851. [PMID: 30346716 DOI: 10.1021/acschemneuro.8b00389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder symptomatically characterized by resting tremor, rigidity, bradykinesia, and gait impairment. These motor deficits suffered by PD patients primarily result from selective dysfunction or loss of dopaminergic neurons of the substantia nigra pars compacta (SNpc). Most of the existing therapies for PD are based on the replacement of dopamine, which is symptomatically effective in the early stage but becomes increasingly less effective and is accompanied by serious side effects in the advanced stages of the disease. Currently, there are no strategies to slow neuronal degeneration or prevent the progression of PD. Thus, the prospect of regenerating functional dopaminergic neurons is very attractive. Over the last few decades, significant progress has been made in the development of dopaminergic regenerative strategies for curing PD. The most promising approach seems to be cell-replacement therapy (CRT) using human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), which are unlimitedly available and have gained much success in preclinical trials. Despite the challenges, stem cell-based CRT will make significant steps toward the clinic in the coming decade. Alternatively, direct lineage reprogramming, especially in situ direct conversion of glia cells to induced neurons, which exhibits some advantages including no ethical concerns, no risk of tumor formation, and even no need for transplantation, has gained much attention recently. Evoking the endogenous regeneration ability of neural stem cells (NSCs) is an idyllic method of dopaminergic neuroregeneration which remains highly controversial. Here, we review many of these advances, highlighting areas and strategies that might be particularly suited to the development of regenerative approaches that restore dopaminergic function in PD.
Collapse
Affiliation(s)
- Weizhao Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
35
|
Zhang M, Wang L, An K, Cai J, Li G, Yang C, Liu H, Du F, Han X, Zhang Z, Zhao Z, Pei D, Long Y, Xie X, Zhou Q, Sun Y. Lower genomic stability of induced pluripotent stem cells reflects increased non-homologous end joining. Cancer Commun (Lond) 2018; 38:49. [PMID: 30045759 PMCID: PMC6060453 DOI: 10.1186/s40880-018-0313-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) share many common features, including similar morphology, gene expression and in vitro differentiation profiles. However, genomic stability is much lower in iPSCs than in ESCs. In the current study, we examined whether changes in DNA damage repair in iPSCs are responsible for their greater tendency towards mutagenesis. METHODS Mouse iPSCs, ESCs and embryonic fibroblasts were exposed to ionizing radiation (4 Gy) to introduce double-strand DNA breaks. At 4 h later, fidelity of DNA damage repair was assessed using whole-genome re-sequencing. We also analyzed genomic stability in mice derived from iPSCs versus ESCs. RESULTS In comparison to ESCs and embryonic fibroblasts, iPSCs had lower DNA damage repair capacity, more somatic mutations and short indels after irradiation. iPSCs showed greater non-homologous end joining DNA repair and less homologous recombination DNA repair. Mice derived from iPSCs had lower DNA damage repair capacity than ESC-derived mice as well as C57 control mice. CONCLUSIONS The relatively low genomic stability of iPSCs and their high rate of tumorigenesis in vivo appear to be due, at least in part, to low fidelity of DNA damage repair.
Collapse
Affiliation(s)
- Minjie Zhang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Ke An
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Guochao Li
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caiyun Yang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Huixian Liu
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Fengxia Du
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Xiao Han
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zilong Zhang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zitong Zhao
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duanqing Pei
- The Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, P. R. China
| | - Yuan Long
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yingli Sun
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
| |
Collapse
|
36
|
Mai T, Markov GJ, Brady JJ, Palla A, Zeng H, Sebastiano V, Blau HM. NKX3-1 is required for induced pluripotent stem cell reprogramming and can replace OCT4 in mouse and human iPSC induction. Nat Cell Biol 2018; 20:900-908. [PMID: 30013107 PMCID: PMC6101038 DOI: 10.1038/s41556-018-0136-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is now routinely accomplished by overexpression of the four Yamanaka factors (OCT4, SOX2, KLF4, MYC (or OSKM))1. These iPSCs can be derived from patients' somatic cells and differentiated toward diverse fates, serving as a resource for basic and translational research. However, mechanistic insights into regulators and pathways that initiate the pluripotency network remain to be resolved. In particular, naturally occurring molecules that activate endogenous OCT4 and replace exogenous OCT4 in human iPSC reprogramming have yet to be found. Using a heterokaryon reprogramming system we identified NKX3-1 as an early and transiently expressed homeobox transcription factor. Following knockdown of NKX3-1, iPSC reprogramming is abrogated. NKX3-1 functions downstream of the IL-6-STAT3 regulatory network to activate endogenous OCT4. Importantly, NKX3-1 substitutes for exogenous OCT4 to reprogram both mouse and human fibroblasts at comparable efficiencies and generate fully pluripotent stem cells. Our findings establish an essential role for NKX3-1, a prostate-specific tumour suppressor, in iPSC reprogramming.
Collapse
Affiliation(s)
- Thach Mai
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Glenn J Markov
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Jennifer J Brady
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,23andMe Inc, Mountain View, CA, USA
| | - Adelaida Palla
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA
| | - Hong Zeng
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Vittorio Sebastiano
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.,Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Fu H, Tian CL, Ye X, Sheng X, Wang H, Liu Y, Liu L. Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports 2018; 11:70-87. [PMID: 29861168 PMCID: PMC6066961 DOI: 10.1016/j.stemcr.2018.05.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Chemically induced pluripotent stem cells (CiPSCs) may provide an alternative and attractive source for stem cell-based therapy. Sufficient telomere lengths are critical for unlimited self-renewal and genomic stability of pluripotent stem cells. Dynamics and mechanisms of telomere reprogramming of CiPSCs remain elusive. We show that CiPSCs acquire telomere lengthening with increasing passages after clonal formation. Both telomerase activity and recombination-based mechanisms are involved in the telomere elongation. Telomere lengths strongly indicate the degree of reprogramming, pluripotency, and differentiation capacity of CiPSCs. Nevertheless, telomere damage and shortening occur at a late stage of lengthy induction, limiting CiPSC formation. We find that histone crotonylation induced by crotonic acid can activate two-cell genes, including Zscan4; maintain telomeres; and promote CiPSC generation. Crotonylation decreases the abundance of heterochromatic H3K9me3 and HP1α at subtelomeres and Zscan4 loci. Taken together, telomere rejuvenation links to reprogramming and pluripotency of CiPSCs. Crotonylation facilitates telomere maintenance and enhances chemically induced reprogramming to pluripotency.
CiPSCs acquire telomere elongation after clonal formation with increasing passages Both telomerase and recombination mechanisms are involved in the telomere elongation Telomere damage and shortening can occur during late stage of lengthy induction Crotonylation activates Zscan4 and promotes telomere elongation and CiPSC induction
Collapse
Affiliation(s)
- Haifeng Fu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Cheng-Lei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hua Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yifei Liu
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06511, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Department of Cell Biology and Genetics, College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Small molecule-induced cellular fate reprogramming: promising road leading to Rome. Curr Opin Genet Dev 2018; 52:29-35. [PMID: 29857280 DOI: 10.1016/j.gde.2018.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022]
Abstract
Cellular fate reprogramming holds great promise to generate functional cell types for replenishing new cells and restoring functional loss. Inspired by transcription factor-induced reprogramming, the field of cellular reprogramming has greatly advanced and developed into divergent streams of reprogramming approaches. Remarkably, increasing studies have shown the power and advantages of small molecule-based approaches for cellular fate reprogramming, which could overcome the limitations of conventional transgenic-based reprogramming. In this concise review, we discuss these findings and highlight the future potentiality with particular focus on this new trend of chemical reprogramming.
Collapse
|
39
|
Genome-wide DNA methylation analysis reveals that mouse chemical iPSCs have closer epigenetic features to mESCs than OSKM-integrated iPSCs. Cell Death Dis 2018; 9:187. [PMID: 29416007 PMCID: PMC5833453 DOI: 10.1038/s41419-017-0234-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022]
Abstract
Induced pluripotent stem cells can be derived from somatic cells through ectopic expression of transcription factors or chemical cocktails. Chemical iPSCs (C-iPSCs) and OSKM-iPSCs (4F-iPSCs) have been suggested to have similar characteristics to mouse embryonic stem cells (mESCs). However, their epigenetic equivalence remains incompletely understood throughout the genome. In this study, we have generated mouse C-iPSCs and 4F-iPSCs, and further compared the genome-wide DNA methylomes of C-iPSCs, 4F-iPSCs, and mESCs that were maintained in 2i and LIF. Three pluripotent stem cells tend to be low methylated overall, however, DNA methylations in some specific regions (such as retrotransposons) are cell type-specific. Importantly, C-iPSCs are more hypomethylated than 4F-iPSCs. Bisulfite sequencing indicated that DNA methylation status in several known imprinted clusters, such as: Dlk1-Dio3 and Peg12-Ube3a, in C-iPSCs are closer to those of mESCs than 4F-iPSCs. Overall, our data demonstrate the reprogramming methods-dependent epigenetic differences of C-iPSCs and 4F-iPSCs and reveal that C-iPSCs are more hypomethylated than OSKM-integrated iPSCs.
Collapse
|
40
|
Cao S, Yu S, Chen Y, Wang X, Zhou C, Liu Y, Kuang J, Liu H, Li D, Ye J, Qin Y, Chu S, Wu L, Guo L, Li Y, Shu X, Chen J, Liu J, Pei D. Chemical reprogramming of mouse embryonic and adult fibroblast into endoderm lineage. J Biol Chem 2017; 292:19122-19132. [PMID: 28935668 DOI: 10.1074/jbc.m117.812537] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
We report here an approach to redirecting somatic cell fate under chemically defined conditions without transcription factors. We start by converting mouse embryonic fibroblasts to epithelial-like cells with chemicals and growth factors. Subsequent cell fate mapping reveals a robust induction of SOX17 in the resulting epithelial-like cells that can be further reprogrammed to endodermal progenitor cells. Interestingly, these cells can self-renew in vitro and further differentiate into albumin-producing hepatocytes that can rescue mice from acute liver injury. Our results demonstrate a rational approach to convert mouse embryonic fibroblasts to hepatocytes and suggest that this mechanism-driven approach may be generalized for other cells.
Collapse
Affiliation(s)
- Shangtao Cao
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shengyong Yu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Chen
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaoshan Wang
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China.,the Guangzhou Branch of the Supercomputing Center of the Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Chunhua Zhou
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Liu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junqi Kuang
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - He Liu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongwei Li
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China.,the Guangzhou Branch of the Supercomputing Center of the Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Jing Ye
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yue Qin
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shilong Chu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Linlin Wu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Guo
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaodong Shu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jiekai Chen
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China.,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the Guangzhou Branch of the Supercomputing Center of the Chinese Academy of Sciences, Guangzhou 510530, China, and
| | - Jing Liu
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China, .,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Duanqing Pei
- From the Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Beijing 100049, China, .,the Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,the Guangzhou Branch of the Supercomputing Center of the Chinese Academy of Sciences, Guangzhou 510530, China, and
| |
Collapse
|
41
|
Li Y, Li L, Chen ZN, Gao G, Yao R, Sun W. Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication 2017; 9:032001. [DOI: 10.1088/1758-5090/aa7e9a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Guo R, Tang W, Yuan Q, Hui L, Wang X, Xie X. Chemical Cocktails Enable Hepatic Reprogramming of Mouse Fibroblasts with a Single Transcription Factor. Stem Cell Reports 2017; 9:499-512. [PMID: 28757167 PMCID: PMC5550014 DOI: 10.1016/j.stemcr.2017.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 12/31/2022] Open
Abstract
Liver or hepatocytes transplantation is limited by the availability of donor organs. Functional hepatocytes independent of the donor sources may have wide applications in regenerative medicine and the drug industry. Recent studies have demonstrated that chemical cocktails may induce reprogramming of fibroblasts into a range of functional somatic cells. Here, we show that mouse fibroblasts can be transdifferentiated into the hepatocyte-like cells (iHeps) using only one transcription factor (TF) (Foxa1, Foxa2, or Foxa3) plus a chemical cocktail. These iHeps show typical epithelial morphology, express multiple hepatocyte-specific genes, and acquire hepatocyte functions. Genetic lineage tracing confirms the fibroblast origin of these iHeps. More interestingly, these iHeps are expandable in vitro and can reconstitute the damaged hepatic tissues of the fumarylacetoacetate hydrolase-deficient (Fah−/−) mice. Our study provides a strategy to generate functional hepatocyte-like cells by using a single TF plus a chemical cocktail and is one step closer to generate the full-chemical iHeps.
Fibroblasts are converted to iHeps using only one TF plus a chemical cocktail Genetic lineage tracing confirms the fibroblast origin of these iHeps The iHeps are expendable and functional both in vitro and in vivo
Collapse
Affiliation(s)
- Ren Guo
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Wei Tang
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qianting Yuan
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China
| | - Lijian Hui
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy for Sciences, 320 Yueyang Road, 200031 Shanghai, China
| | - Xin Wang
- Key Laboratory of National Education, Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University, Hohhot 010021, China; Department of Laboratory Medicine and Pathology, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
43
|
Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev 2017; 46:104-113. [PMID: 28755566 DOI: 10.1016/j.gde.2017.07.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
The revolutionizing somatic cell reprogramming/transdifferentiation technologies provide a new path for cell replacement therapies and drug screening. The original method for reprogramming involves the delivery of exogenous transcription factors, leading to the safety concerns about the possible genome integration. Many efforts have been taken to avoid genetic alteration in somatic cell reprogramming/transdifferentiation by using non-integrating gene delivery approaches, cell membrane permeable proteins, and small molecule compounds. Compared to other methods, small-molecule compounds have several unique advantages, such as structural versatility and being easy to control in a time-dependent and concentration-dependent way. More importantly, small molecules have been used as drugs to treat human diseases for thousands of years. So the small molecule approach to reprogramming might be more acceptable in clinical-related uses. In the past few years, small molecule approaches have made significant progresses in inducing pluripotent or functional differentiated cells from somatic cells. Here we review the recent achievements of chemical reprogramming/transdifferentiation and discuss the advantages and challenges facing this strategy in future applications.
Collapse
Affiliation(s)
- Xin Xie
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yanbin Fu
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-based Bio-medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian Liu
- CAS Key Laboratory of Receptor Research, The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
44
|
The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis Cartilage 2017; 25:616-624. [PMID: 27919783 DOI: 10.1016/j.joca.2016.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
The development of induced pluripotent stem cells (iPSCs) technology has opened up new horizons for development of new research tools especially for skeletal dysplasias, which often lack human disease models. Regenerative medicine and tissue engineering could be the next areas to benefit from refinement of iPSC methods to repair focal cartilage defects, while applications for osteoarthritis (OA) and drug screening have evolved rather slowly. Although the advances in iPSC research of skeletal dysplasias and repair of focal cartilage lesions are not directly relevant to OA, they can be considered to pave the way to future prospects and solutions to OA research, too. The same problems which face the present cell-based treatments of cartilage injuries concern also the iPSC-based ones. However, established iPSC lines, which have no genomic aberrations and which efficiently differentiate into extracellular matrix secreting chondrocytes, could be an invaluable cell source for cell transplantations in the future. The safety issues concerning the recipient risks of teratoma formation and immune response still have to be solved before the potential use of iPSCs in cartilage repair of focal cartilage defects and OA.
Collapse
|
45
|
Hawkins KE, Moschidou D, Faccenda D, Wruck W, Martin-Trujillo A, Hau KL, Ranzoni AM, Sanchez-Freire V, Tommasini F, Eaton S, De Coppi P, Monk D, Campanella M, Thrasher AJ, Adjaye J, Guillot PV. Human Amniocytes Are Receptive to Chemically Induced Reprogramming to Pluripotency. Mol Ther 2017; 25:427-442. [PMID: 28153093 PMCID: PMC5368475 DOI: 10.1016/j.ymthe.2016.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/11/2016] [Accepted: 11/27/2016] [Indexed: 01/05/2023] Open
Abstract
Restoring pluripotency using chemical compounds alone would be a major step forward in developing clinical-grade pluripotent stem cells, but this has not yet been reported in human cells. We previously demonstrated that VPA_AFS cells, human amniocytes cultivated with valproic acid (VPA) acquired functional pluripotency while remaining distinct from human embryonic stem cells (hESCs), questioning the relationship between the modulation of cell fate and molecular regulation of the pluripotency network. Here, we used single-cell analysis and functional assays to reveal that VPA treatment resulted in a homogeneous population of self-renewing non-transformed cells that fulfill the hallmarks of pluripotency, i.e., a short G1 phase, a dependence on glycolytic metabolism, expression of epigenetic modifications on histones 3 and 4, and reactivation of endogenous OCT4 and downstream targets at a lower level than that observed in hESCs. Mechanistic insights into the process of VPA-induced reprogramming revealed that it was dependent on OCT4 promoter activation, which was achieved independently of the PI3K (phosphatidylinositol 3-kinase)/AKT/mTOR (mammalian target of rapamycin) pathway or GSK3β inhibition but was concomitant with the presence of acetylated histones H3K9 and H3K56, which promote pluripotency. Our data identify, for the first time, the pluripotent transcriptional and molecular signature and metabolic status of human chemically induced pluripotent stem cells.
Collapse
Affiliation(s)
- Kate E Hawkins
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Dafni Moschidou
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Alex Martin-Trujillo
- Imprinting and Cancer Group, Cancer Epigenetic and Biology Program, Bellvitge Institute for Biomedical Research (IDIBELL), Hospital Duran i Reynals, Barcelona 08908, Spain
| | - Kwan-Leong Hau
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Imperial College London, National Heart and Lung Institute, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Anna Maria Ranzoni
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK
| | | | - Fabio Tommasini
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK; Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Simon Eaton
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - Paolo De Coppi
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - David Monk
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College (RVC), Royal College Street, London NW1 0TU, UK; Consortium for Mitochondrial Research, University College London, Royal College Street, London NW1 0TU, UK
| | - Adrian J Thrasher
- Institute for Child Health, University College London, London WC1N 1EH, UK
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Pascale V Guillot
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London (UCL), London WC1E 6HX, UK.
| |
Collapse
|
46
|
Abstract
Forced expression of lineage-specific transcription factors in somatic cells can result in the generation of different cell types in a process named direct reprogramming, bypassing the pluripotent state. However, the introduction of transgenes limits the therapeutic applications of the produced cells. Numerous small-molecules have been introduced in the field of stem cell biology capable of governing self-renewal, reprogramming, transdifferentiation and regeneration. These chemical compounds are versatile tools for cell fate conversion toward desired outcomes. Cell fate conversion using small-molecules alone (chemical reprogramming) has superiority over arduous traditional genetic techniques in several aspects. For instance, rapid, transient, and reversible effects in activation and inhibition of functions of specific proteins are of the profits of small-molecules. They are cost-effective, have a long half-life, diversity on structure and function, and allow for temporal and flexible regulation of signaling pathways. Additionally, their effects could be adjusted by fine-tuning concentrations and combinations of different small-molecules. Therefore, chemicals are powerful tools in cell fate conversion and study of stem cell and chemical biology in vitro and in vivo. Moreover, transgene-free and chemical-only transdifferentiation approaches provide alternative strategies for the generation of various cell types, disease modeling, drug screening, and regenerative medicine. The current review gives an overview of the recent findings concerning transdifferentiation by only small-molecules without the use of transgenes.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
47
|
Li C, Liu B, Zhong S, Wang H. MEK inhibitor PD0325901 and vitamin C synergistically induce hypomethylation of mouse embryonic stem cells. Oncotarget 2016; 7:39730-39739. [PMID: 27213595 PMCID: PMC5129966 DOI: 10.18632/oncotarget.9452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
A rationally selected combination of small-molecule chemicals can affect cell plasticity and fate, suggesting an open chemistry way to manipulate cells to achieve a specific goal. Here we for the first time demonstrate that a combination of vitamin C (Vc) and PD0325901 can achieve about 90% erasure of 5-methylcytosine (5mC) within 5 days (decreasing from 3.2 to ~ 0.3 5mC per 100 C) in mouse embryonic stem cells (ESCs). The hypomethylated level is comparable to that of gonadal primordial germ cells (PGCs), whose pluripotency is closely associated with the global DNA hypomethylation. In contrast, Vc or PD0325901 alone only induces a moderately reduced level of global DNA methylation. Our mechanistic study suggested that PD0325901 elevated expression of Prdm14, which repressed de novo methyltransferase Dnmt3b and its cofactor Dnmt3l at levels of protein, via the mode to eliminate 5mC from de novo synthesis. By further addition of Vc, the oxidation of 5mC as catalyzed by Tet1/Tet2 dioxygenases was significantly increased as manifested by the elevated level of 5-hydroxymethylcytosine. However, by the depletion of Tet1/Tet2, Vc failed to enhance PD0325901-stimulated hypomethylation of ESCs' genomic DNA. Furthermore, mouse ESCs in Vc/PD0325901-supplemented medium show great morphology and pluripotency. Therefore, we demonstrate a novel and synergistic chemical approach for promoting hypomethylation and sustaining pluripotency of ESCs.
Collapse
Affiliation(s)
- Cuiping Li
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baodong Liu
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shangwei Zhong
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
48
|
Xu A, Cheng L. Chemical transdifferentiation: closer to regenerative medicine. Front Med 2016; 10:152-65. [PMID: 27142989 DOI: 10.1007/s11684-016-0445-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 12/15/2022]
Abstract
Cell transdifferentiation, which directly switches one type of differentiated cells into another cell type, is more advantageous than cell reprogramming to generate pluripotent cells and differentiate them into functional cells. This process is crucial in regenerative medicine. However, the cell-converting strategies, which mainly depend on the virus-mediated expression of exogenous genes, have clinical safety concerns. Small molecules with compelling advantages are a potential alternative in manipulating cell fate conversion. In this review, we briefly retrospect the nature of cell transdifferentiation and summarize the current developments in the research of small molecules in promoting cell conversion. Particularly, we focus on the complete chemical compound-induced cell transdifferentiation, which is closer to the clinical translation in cell therapy. Despite these achievements, the mechanisms underpinning chemical transdifferentiation remain largely unknown. More importantly, identifying drugs that induce resident cell conversion in vivo to repair damaged tissue remains to be the end-goal in current regenerative medicine.
Collapse
Affiliation(s)
- Aining Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Cheng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
49
|
|
50
|
Xu Y, Zhang M, Li W, Zhu X, Bao X, Qin B, Hutchins AP, Esteban MA. Transcriptional Control of Somatic Cell Reprogramming. Trends Cell Biol 2016; 26:272-288. [DOI: 10.1016/j.tcb.2015.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
|