1
|
Liu C, Xia S, Wang B, Li J, Wang X, Ren Y, Zhou X. Osteopontin promotes tumor microenvironment remodeling and therapy resistance. Cancer Lett 2025; 617:217618. [PMID: 40058726 DOI: 10.1016/j.canlet.2025.217618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Osteopontin (OPN) is a multifunctional secretory protein which can be expressed and secreted by a variety of tumor cells and immune cells. Tumor microenvironment remodeling provides favorable conditions for tumor progression, immune escape and therapy resistance. As a bridge molecule in crosstalk between tumor cells and tumor microenvironment, OPN can not only come from tumor cells to regulate the functions of various immune cells, promoting the formation of immunosuppressive environment, but also can be secreted by immune cells to act on tumor cells, leading to tumor progression, thus constructing a positive feedback regulatory network. Here, we summarize the molecular structure, source and receptor of OPN, and clarify the mechanism of OPN on tumor-associated macrophages, dendritic cells, myeloid-derived suppressor cells, tumor progression and therapy resistance to comprehensively understand the great potential of OPN as a tumor biomarker and therapeutic target.
Collapse
Affiliation(s)
- Chao Liu
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Shunjin Xia
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Bo Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Jiayong Li
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Xuyan Wang
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China
| | - Yu Ren
- Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China; Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngological Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China; Key Laboratory of Basic and Translational Medicine on Head & Neck Cancer, Tianjin, 300060, China; State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, 300060, China.
| |
Collapse
|
2
|
Ge QM, Hu QH, Liu JX, Min YL, Liang RB, Li B, Shi WQ, Lin Q, Yuan Q, Li QY, Shao Y. Cancer antigen 153: A risk factor for ocular metastases in patients with breast cancer. Exp Ther Med 2024; 28:421. [PMID: 39301252 PMCID: PMC11412098 DOI: 10.3892/etm.2024.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/19/2022] [Indexed: 09/22/2024] Open
Abstract
Ocular metastasis (OM) in breast cancer (BC) always predicts poor prognosis. The present study explored differences in tumor markers in patients with BC with and without OM, and attempted to determine risk factors for OM in patients with BC. This study involved 629 patients with BC. Patients' clinical features were tested using χ2 test, unpaired Student's t-test and Mann-Whitney U. These parameters were analyzed using binary logistic regression to obtain risk factors for OM. A receiver operating characteristic curve was then established to determine the diagnostic value for OM. There were no significant differences in age, sex, menopausal state, and pathological type between the two groups. Significantly more axillary lymph node metastases were observed in the OM group compared with the non-ocular metastases group. Cancer antigen 153 (CA153) was revealed to be a significant independent risk factor for OM in patients with BC. The cutoff CA153 value for diagnosis of OM was 43.00 u/ml, the sensitivity was 96.15% and the specificity was 96.02%. In conclusion, CA153 was demonstrated to be a risk factor for OM in patients with BC. High levels of CA153 were associated with OM in patients with BC.
Collapse
Affiliation(s)
- Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiao-Hao Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jia-Xiang Liu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Xiao W, Xu C. Cystine/cysteine metabolism regulates the progression and response to treatment of triple‑negative breast cancer (Review). Oncol Lett 2024; 28:521. [PMID: 39268159 PMCID: PMC11391256 DOI: 10.3892/ol.2024.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/04/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer is the most prevalent neoplasm affecting women globally, of which a notable proportion of cases are triple-negative breast cancer (TNBC). However, there are limited curative treatment options for patients with TNBC, despite advancements in the field. Amino acids and amino acid transporters serve vital roles in the regulation of tumor metabolism. Notably, cystine and cysteine can interconvert via a redox reaction, with cysteine exerting control on cell survival and growth and exogenous cystine serving a crucial role in the proliferation of numerous types of cancers. Breast cancer has been reported to disrupt the cystine/cysteine metabolism pathway, as cystine and cysteine transporters affect the development and growth of tumors. The present review aims to provide a comprehensive overview of the metabolic pathways involving cystine and cysteine in normal and TNBC cells. Furthermore, the roles of cystine and cysteine transporters in TNBC progression and metastasis and their potential as therapeutic targets for treatment of TNBC are evaluated.
Collapse
Affiliation(s)
- Wanting Xiao
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
4
|
Preston SEJ, Dahabieh MS, Flores González RE, Gonçalves C, Richard VR, Leibovitch M, Dakin E, Papadopoulos T, Lopez Naranjo C, McCallum PA, Huang F, Gagnon N, Perrino S, Zahedi RP, Borchers CH, Jones RG, Brodt P, Miller WH, del Rincón SV. Blocking tumor-intrinsic MNK1 kinase restricts metabolic adaptation and diminishes liver metastasis. SCIENCE ADVANCES 2024; 10:eadi7673. [PMID: 39270021 PMCID: PMC11397505 DOI: 10.1126/sciadv.adi7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.
Collapse
Affiliation(s)
- Samuel E. J. Preston
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Raúl Ernesto Flores González
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christophe Gonçalves
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Matthew Leibovitch
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Eleanor Dakin
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Theodore Papadopoulos
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Carolina Lopez Naranjo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Paige A. McCallum
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Natascha Gagnon
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Stephanie Perrino
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christoph H. Borchers
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Pnina Brodt
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Departments of Surgery, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
5
|
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A, Behzadifard M. Concise review: breast cancer stems cells and their role in metastases. Ann Med Surg (Lond) 2024; 86:5266-5275. [PMID: 39238997 PMCID: PMC11374310 DOI: 10.1097/ms9.0000000000002270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/04/2024] [Indexed: 09/07/2024] Open
Abstract
Background Breast cancer stem cells (BCSCs) have been suggested to be responsible for the development of Breast cancer (BC). The aim of this study was to evaluate BCSCs and the target organs microenvironment immunophenotyping markers in common BC metastases, and therapeutic targets regarding to the mentioned criteria. Material and methods This narrative review involved searching international databases; PubMed, Google Scholar using predetermined keywords including breast cancer, breast cancer stem cells, breast cancer metastases, immunophenotyping, immunohistochemistry and metastases. The search results were assessed based on the title, abstract, and full text of the articles, and relevant findings were included in the review. Results BCSCs express high amounts of aldehyde dehydrogenase 1 (ALDH1), Ganglioside 2 (GD2), CD44 and CD133 but are negative for CD24 marker. CXCR4 and OPN have high expression in the cells and may contribute in BC metastasis to the bone. Nestin, CK5, prominin-1 (CD133) markers in BCSCs have been reported to correlate with brain metastasis. High expression of CD44 in BCSCs and CXCL12 expression in the liver microenvironment may contribute to BC metastasis to the liver. Aberrantly expressed vascular cell adhesion molecule-1 (VCAM-1) that binds to collagen and elastin fibers on pulmonary parenchyma, and CXCR4 of BCSCs and CXCL12 in lung microenvironment may promote the cells homing and metastasis to lung. Conclusion As in various types of BC metastases different markers that expressed by the cells and target organ microenvironment are responsible, BCSCs immunophenotyping can be used as target markers to predict the disease prognosis and treatment.
Collapse
Affiliation(s)
| | | | - Amir Atashi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences
| | - Alireza Momeni
- Department of hematology and Oncology, School of Medicine
| | - Mahin Behzadifard
- Department of Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
6
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
7
|
Wang D, Keyoumu K, Yu R, Wen D, Jiang H, Liu X, Di X, Zhang S. Extracellular matrix marker LAMC2 targets ZEB1 to promote TNBC malignancy via up-regulating CD44/STAT3 signaling pathway. Mol Med 2024; 30:61. [PMID: 38760717 PMCID: PMC11100204 DOI: 10.1186/s10020-024-00827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.
Collapse
Affiliation(s)
- Ding Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Kailibinuer Keyoumu
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
- The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Rongji Yu
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Xinchun Liu
- The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, 410000, Hunan, China.
| | - Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
Xu Z. CRISPR/Cas9-mediated silencing of CD44: unveiling the role of hyaluronic acid-mediated interactions in cancer drug resistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2849-2876. [PMID: 37991544 DOI: 10.1007/s00210-023-02840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
A comprehensive overview of CD44 (CD44 Molecule (Indian Blood Group)), a cell surface glycoprotein, and its interaction with hyaluronic acid (HA) in drug resistance mechanisms across various types of cancer is provided, where CRISPR/Cas9 gene editing was utilized to silence CD44 expression and examine its impact on cancer cell behavior, migration, invasion, proliferation, and drug sensitivity. The significance of the HA-CD44 axis in tumor microenvironment (TME) delivery and its implications in specific cancer types, the influence of CD44 variants and the KHDRBS3 (KH RNA Binding Domain Containing, Signal Transduction Associated 3) gene on cancer progression and drug resistance, and the potential of targeting HA-mediated pathways using CRISPR/Cas9 gene editing technology to overcome drug resistance in cancer were also highlighted.
Collapse
Affiliation(s)
- Zhujun Xu
- Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China.
| |
Collapse
|
9
|
Yu C, Yuan H, Xu Y, Luo Y, Wu ZH, Zhong JJ, Xiao JH. Hyaluronan delays human amniotic epithelial stem cell senescence by regulating CD44 isoform switch to activate AKT/mTOR signals. Biomed Pharmacother 2024; 170:116100. [PMID: 38159379 DOI: 10.1016/j.biopha.2023.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
The replicative senescence of human amniotic epithelial stem cells (hAECs) is a major concern towards its clinical application. This study found that a 300-kDa hyaluronic acid (HA) could effectively delay the replicative senescence of hAECs, as indicated by the downregulation of cellular senescence markers and alteration of the cell cycle, and substantially improve the differentiation capacities of hAECs. HA was confirmed to regulate the CD44 isoform switch by upregulating the CD44s and downregulating the CD44v, thus exerting an anti-aging effect. We further found that HA induced the upregulation of hyaluronan synthase (HAS) 2, resulting in the activation of epithelial splicing regulatory protein 1 (ESRP1) and alternative splicing of CD44 mRNA, thereby promoting CD44s expression and inhibiting CD44v expression. Knockdown of HAS2 blocked ESRP1 expression and attenuated the anti-aging effects of HA. Hermes-1, a specific blocker of CD44, caused partial loss of the anti-aging effect of HA, upregulated senescence markers, and downregulated stemness markers. Furthermore, CD44s receptor activation was shown to initiate the AKT/mTOR downstream signaling. Conclusively, the study suggested that HA delayed hAEC senescence by regulating CD44 isoform switch to activate the AKT/mTOR signaling pathway, and there is potential for the clinical application of hAECs in combination with HA.
Collapse
Affiliation(s)
- Chao Yu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Huan Yuan
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China
| | - Zuo-Hui Wu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| | - Jian-Jiang Zhong
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Guizhou Provincial Key Laboratory of Medicinal Biotechnology & Research Center for Translational Medicine in Colleges and Universities, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China; Department of Ultrasonography, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563003, China.
| |
Collapse
|
10
|
Kwon MJ. Role of epithelial splicing regulatory protein 1 in cancer progression. Cancer Cell Int 2023; 23:331. [PMID: 38110955 PMCID: PMC10729575 DOI: 10.1186/s12935-023-03180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
As aberrant alternative splicing by either dysregulation or mutations of splicing factors contributes to cancer initiation and progression, splicing factors are emerging as potential therapeutic targets for cancer therapy. Therefore, pharmacological modulators targeting splicing factors have been under development. Epithelial splicing regulatory protein 1 (ESRP1) is an epithelial cell-specific splicing factor, whose downregulation is associated with epithelial-mesenchymal transition (EMT) by regulating alternative splicing of multiple genes, such as CD44, CTNND1, ENAH, and FGFR2. Consistent with the downregulation of ESRP1 during EMT, it has been initially revealed that high ESRP1 expression is associated with favorable prognosis and ESRP1 plays a tumor-suppressive role in cancer progression. However, ESRP1 has been found to promote cancer progression in some cancers, such as breast and ovarian cancers, indicating that it plays a dual role in cancer progression depending on the type of cancer. Furthermore, recent studies have reported that ESRP1 affects tumor growth by regulating the metabolism of tumor cells or immune cell infiltration in the tumor microenvironment, suggesting the novel roles of ESRP1 in addition to EMT. ESRP1 expression was also associated with response to anticancer drugs. This review describes current understanding of the roles and mechanisms of ESRP1 in cancer progression, and further discusses the emerging novel roles of ESRP1 in cancer and recent attempts to target splicing factors for cancer therapy.
Collapse
Affiliation(s)
- Mi Jeong Kwon
- Vessel-Organ Interaction Research Center (MRC), College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea.
- BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
11
|
Tang Z, Xia Z, Wang X, Liu Y. The critical role of osteopontin (OPN) in fibrotic diseases. Cytokine Growth Factor Rev 2023; 74:86-99. [PMID: 37648616 DOI: 10.1016/j.cytogfr.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Fibrosis is a pathological condition characterized by the excessive deposition of extracellular matrix components in tissues and organs, leading to progressive architectural remodelling and contributing to the development of various diseases. Osteopontin (OPN), a highly phosphorylated glycoprotein, has been increasingly recognized for its involvement in the progression of tissue fibrosis. This review provides a comprehensive overview of the genetic and protein structure of OPN and focuses on our current understanding of the role of OPN in the development of fibrosis in the lungs and other tissues. Additionally, special attention is given to the potential of OPN as a biomarker and a novel therapeutic target in the treatment of fibrosis.
Collapse
Affiliation(s)
- Ziyi Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zijing Xia
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangpeng Wang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; Rare Diseases Center, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Deng H, Gao J, Cao B, Qiu Z, Li T, Zhao R, Li H, Wei B. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing. Cell Oncol (Dordr) 2023; 46:1675-1690. [PMID: 37354353 DOI: 10.1007/s13402-023-00835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most malignant tumors worldwide. Thus, it is necessary to explore the underlying mechanisms of GC progression and develop novel therapeutic regimens. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed and regulate the malignant behaviors of cancer cells. Our previous research demonstrated that lncRNA colon cancer-associated transcript 2 (CCAT2) has potential value for GC diagnosis and discrimination. However, the functional mechanisms of lncRNA CCAT2 in GC development remain to be explored. METHODS GC and normal adjacent tissues were collected to detect the expression of lncRNA CCAT2, ESRP1 and CD44 in clinical specimens and their clinical significance for GC patients. Cell counting kit-8, wound healing and transwell assays were conducted to investigate the malignant behaviors in vitro. The generation of nude mouse xenografts by subcutaneous, intraperitoneal and tail vein injection was performed to examine GC growth and metastasis in vivo. Co-immunoprecipitation, RNA-binding protein pull-down assay and fluorescence in situ hybridization were performed to reveal the binding relationships between ESRP1 and CD44. RESULTS In the present study, lncRNA CCAT2 was overexpressed in GC tissues compared to adjacent normal tissues and correlated with short survival time of patients. lncRNA CCAT2 promoted the proliferation, migration and invasion of GC cells. Its overexpression modulates alternative splicing of Cluster of differentiation 44 (CD44) variants and facilitates the conversion from the standard form to variable CD44 isoform 6 (CD44v6). Mechanistically, lncRNA CCAT2 upregulated CD44v6 expression by binding to epithelial splicing regulatory protein 1 (ESRP1), which subsequently mediates CD44 alternative splicing. The oncogenic role of the lncRNA CCAT2/ESRP1/CD44 axis in the promotion of malignant behaviors was verified by both in vivo and in vitro experiments. CONCLUSIONS Our findings identified a novel mechanism by which lncRNA CCAT2, as a type of protein-binding RNA, regulates alternative splicing of CD44 and promotes GC progression. This axis may become an effective target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huan Deng
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, 100091, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710021, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
13
|
Yan Z, Hu X, Tang B, Deng F. Role of osteopontin in cancer development and treatment. Heliyon 2023; 9:e21055. [PMID: 37867833 PMCID: PMC10587537 DOI: 10.1016/j.heliyon.2023.e21055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein secreted intracellularly and extracellularly by various cell types, including NK cells, macrophages, osteoblasts, T cells, and cancer cells. Owing to its diverse distribution, OPN plays a role in cell proliferation, stem-cell-like properties, epithelial-mesenchymal transformation, glycolysis, angiogenesis, fibrosis, invasion, and metastasis. In this review, we discuss recent findings, interpret representative studies on OPN expression in cancer, clarify that elevated OPN levels are observed in multiple cancer types (including colorectal, breast, lung, and liver cancer), and explore how OPN-macrophage interactions shape the tumor microenvironment. We also summarize progress in OPN research with regard to tumor therapy, which can facilitate the development of novel anti-tumor treatment strategies.
Collapse
Affiliation(s)
- Zhihua Yan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
14
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
15
|
Nairuz T, Mahmud Z, Manik RK, Kabir Y. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev Rep 2023:10.1007/s12015-023-10529-x. [PMID: 37129728 DOI: 10.1007/s12015-023-10529-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 05/03/2023]
Abstract
The term "cancer stem cells" (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells' ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.
Collapse
Affiliation(s)
- Tahsin Nairuz
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Yearul Kabir
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
16
|
Varsha VK, Savita JK, Girish HC, Shyamala K. Role of hypoxia and epithelial-mesenchymal transition in the formation and maintenance of oral cancer stem cells in oral squamous cell carcinomas and metastatic lymph node: An immunohistochemical analysis. J Oral Maxillofac Pathol 2023; 27:307-314. [PMID: 37854934 PMCID: PMC10581292 DOI: 10.4103/jomfp.jomfp_368_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 10/20/2023] Open
Abstract
Background Inspite of having advanced treatment modalities the overall survival rate in oral squamous cell carcinoma (OSCC) remains poor. This is considered to be mainly due to local recurrence and distant metastasis. Various studies have concentrated on the role of oral cancer stem cells (OCSCs) in the progression and metastasis of OSCC. However, the role of tumor microenvironment components has been less delved into. Hence clarity on cell biology and metastatic potential OCSCs is essential for the development of more effective anti-cancer treatment. Aim To establish the role of OCSCs in different grades of OSCC and metastatic lymph nodes through the expression of cluster of differentiation 44 (CD44). To demonstrate and correlate the role of hypoxia and Epithelial mesenchymal transition (EMT) in the various grades and metastatic lymph nodes in the formation and maintenance of OCSCs by employing Hypoxia-inducible factor-1 Alpha (HIF 1α) and Snail respectively. Method and Material A total of 36 cases of OSCC, 12 from each grade and 12 normal oral mucosal tissues were included in the study. Immunohistochemical staining was performed for the demonstration of CD44, HIF1α, and Snail. Statistics Descriptive analysis, Chi-square, and Spearman's rank correlation were used to analyze frequency and proportion, to compare expression and correlate between lesion proper and lymph node in each group respectively. Results Significant expression of CD44, HIF1 α, and Snail among advancing grades of OSCC and their metastatic lymph node were observed. A positive correlation was seen between them. Conclusions The prognosis of OSCC can be improved by better understanding and targeting the molecules involved in the formation and maintenance of OCSCs.
Collapse
Affiliation(s)
- VK Varsha
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - JK Savita
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - HC Girish
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| | - K Shyamala
- Department of Oral and Maxillofacial Pathology, Rajarajeswari Dental College and Hospital, #14, Ramohalli Cross, Mysore Road, Kumbalgodu, Bengaluru, Karnataka, India
| |
Collapse
|
17
|
Wang Q, Li S, Xu C, Hua A, Wang C, Xiong Y, Deng Q, Chen X, Yang T, Wan J, Ding ZY, Zhang BX, Yang X, Li Z. A novel lonidamine derivative targeting mitochondria to eliminate cancer stem cells by blocking glutamine metabolism. Pharmacol Res 2023; 190:106740. [PMID: 36958408 DOI: 10.1016/j.phrs.2023.106740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/25/2023]
Abstract
Cancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC50 values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND. Mechanistically, we reveal that HYL001 downregulates glutaminase (GLS) expression to block glutamine metabolism, blunt tricarboxylic acid cycle, and amplify mitochondrial oxidative stress, leading to apoptotic cell death. Therefore, HYL001 displays significant antitumor activity in vivo, both as a single agent and combined with paclitaxel. Furthermore, HYL001 represses CSCs of fresh tumor tissues derived from liver cancer patients. This study provides critical implications for CSCs biology and development of potent anti-CSCs drugs.
Collapse
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qingyuan Deng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Tian Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, P. R. China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
| |
Collapse
|
18
|
Ghasempour S, Freeman SA. The glycocalyx and immune evasion in cancer. FEBS J 2023; 290:55-65. [PMID: 34665926 DOI: 10.1111/febs.16236] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
In order to establish malignant lesions, tumors must first evade their detection by immune cells. Tumors achieve this by embellishing and tailoring their glycocalyx, a network of polysaccharides and glycosylated proteins that refracts the phagocytic efforts of myeloid cells, shrouds neoantigens and other ligands from cells of the acquired immune system, and skews immune responses. The barriers imposed by the glycocalyx are biophysical and also linked to the inhibitory receptor signaling pathways of immune cells that engage tumor sialic acids as markers of healthy "self". This would explain the pressure for cancers to upregulate the synthases, transmembrane mucins, and other heavily sialylated glycoproteins involved in establishing a repulsive glycocalyx. Accordingly, individual tumor cells that are best capable of constructing a shielding glycocalyx on their surface show higher metastatic potential in immunocompetent mice. Reciprocally, therapeutics have recently been devised to edit and dismantle the glycocalyx barrier in an effort to invigorate an immune response aimed at tumor destruction. We discuss the features of the tumor-associated glycocalyx that afford immune evasion of cancers and how strategies that target this barrier may potentiate antitumor immunity.
Collapse
Affiliation(s)
- Sina Ghasempour
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| |
Collapse
|
19
|
Spadea A, Pingrajai P, Tirella A. Hyaluronic Acid-Based Nanotechnologies for Delivery and Treatment. BIOMEDICAL APPLICATIONS AND TOXICITY OF NANOMATERIALS 2023:103-128. [DOI: 10.1007/978-981-19-7834-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Zhang L, Chen W, Liu S, Chen C. Targeting Breast Cancer Stem Cells. Int J Biol Sci 2023; 19:552-570. [PMID: 36632469 PMCID: PMC9830502 DOI: 10.7150/ijbs.76187] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The potential roles of breast cancer stem cells (BCSCs) in tumor initiation and recurrence have been recognized for many decades. Due to their strong capacity for self-renewal and differentiation, BCSCs are the major reasons for poor clinical outcomes and low therapeutic response. Several hypotheses on the origin of cancer stem cells have been proposed, including critical gene mutations in stem cells, dedifferentiation of somatic cells, and cell plasticity remodeling by epithelial-mesenchymal transition (EMT) and the tumor microenvironment. Moreover, the tumor microenvironment, including cellular components and cytokines, modulates the self-renewal and therapeutic resistance of BCSCs. Small molecules, antibodies, and chimeric antigen receptor (CAR)-T cells targeting BCSCs have been developed, and their applications in combination with conventional therapies are undergoing clinical trials. In this review, we focus on the features of BCSCs, emphasize the major factors and tumor environment that regulate the stemness of BCSCs, and discuss potential BCSC-targeting therapies.
Collapse
Affiliation(s)
- Lu Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China
| | - Wenmin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Kunming College of Life Sciences, the University of the Chinese Academy of Sciences, Kunming 650201, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences; State Key Laboratory of Genetic Engineering; Cancer Institutes; Key Laboratory of Breast Cancer in Shanghai; The Shanghai paracrine Key Laboratory of Medical Epigenetics; Shanghai Key Laboratory of Radiation Oncology; The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology; Shanghai Medical College; Fudan University, Shanghai 200032, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming 650201, China.,Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China.,The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China.,✉ Corresponding authors: Ceshi Chen, E-mail: or Suling Liu, E-mail:
| |
Collapse
|
21
|
Li M, Yan T, Wang M, Cai Y, Wei Y. Advances in Single-Cell Sequencing Technology and Its Applications in Triple-Negative Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:465-474. [PMID: 36540278 PMCID: PMC9760048 DOI: 10.2147/bctt.s388534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/07/2022] [Indexed: 09/10/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and is mainly treated with chemotherapy-based combination therapy. In recent years, with the increasing development of global precision medicine, single-cell sequencing (SCS) has become one of the most promising technologies in the field of biotechnology. Moreover, the related application of this technology in TNBC has been applied and developed. By using SCS to study the heterogeneity of TNBC tumor cells, metastasis, drug resistance mechanisms, mutations, and cloning; it can further guide clinical chemotherapy, targeted therapy, and immunotherapy. To further reflect the importance of SCS in TNBC, this paper elaborated on and summarized the research and application progress of SCS in TNBC.
Collapse
Affiliation(s)
- Meng Li
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Tingting Yan
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Miaozhou Wang
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Yanqiu Cai
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| | - Yingyuan Wei
- Graduate School of Qinghai University, Qinghai University, Xining, Qinghai Province, People’s Republic of China
| |
Collapse
|
22
|
Nakajima T, Uehara T, Iwaya M, Matsuda K, Wada M, Nagaya T, Ehara T, Ota H. Osteopontin expression in the invasive front stroma of colorectal adenocarcinoma is associated with tumor budding and prognosis. Pathol Res Pract 2022; 240:154190. [PMID: 36332325 DOI: 10.1016/j.prp.2022.154190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tumor budding (TB) is an important prognostic factor in colorectal carcinoma (CRC). Osteopontin (OPN) functions in various processes such as immune response, migration and invasion, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis. However, the involvement of OPN and CD44v6, which is a receptor for OPN, in TB has not been clarified. Therefore, we examined the relationship of OPN with TB in CRC and compared the clinicopathological features. METHODS We investigated the expression of OPN and CD44v6 in 83 cases of CRC by immunostaining and analyzed the clinicopathological features. RESULTS OPN expression was observed mostly in the cytoplasm of stromal cells such as macrophages and fibroblasts, and rarely in cancer cells. There was a significant correlation between OPN positivity and the degree of differentiation at the invasive front and TB grade. CD44v6 was positive in cancer cells in 72 cases (86.7 %) and negative in 11 cases (13.3 %). A statistically significant effect on overall survival (OS) was identified between the OPN-positive group [median OS: 1586 (range, 30-2749) days] and the OPN-negative group [median OS: 1901 (range, 8-2665) days] (log-rank test, p = 0.011). CONCLUSIONS OPN analysis in CRC stromal cells may have prognostic implications.
Collapse
Affiliation(s)
- Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Mai Iwaya
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kazuyuki Matsuda
- Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Megumi Wada
- Department of Clinical Laboratory, Nagano Red Cross Hospital, Nagano, Japan
| | - Tadanobu Nagaya
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehito Ehara
- Department of Surgery, North Alps Medical Center Azumi Hospital, Ikeda, Japan
| | - Hiroyoshi Ota
- Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
23
|
Underlying mechanisms of epithelial splicing regulatory proteins in cancer progression. J Mol Med (Berl) 2022; 100:1539-1556. [PMID: 36163376 DOI: 10.1007/s00109-022-02257-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
Cancer is the second-leading disease-related cause of global mortality after cardiovascular disease. Despite significant advances in cancer therapeutic strategies, cancer remains one of the major obstacles to human life extension. Cancer pathogenesis is extremely complicated and not fully understood. Epithelial splicing regulatory proteins (ESRPs), including ESRP1 and ESRP2, belong to the heterogeneous nuclear ribonucleoprotein family of RNA-binding proteins and are crucial regulators of the alternative splicing of messenger RNAs (mRNAs). The expression and activity of ESRPs are modulated by various mechanisms, including post-translational modifications and non-coding RNAs. Although a growing body of evidence suggests that ESRP dysregulation is closely associated with cancer progression, the detailed mechanisms remain inconclusive. In this review, we summarize recent findings on the structures, functions, and regulatory mechanisms of ESRPs and focus on their underlying mechanisms in cancer progression. We also highlight the clinical implications of ESRPs as prognostic biomarkers and therapeutic targets in cancer treatment. The information reviewed herein could be extremely beneficial to the development of individualized therapeutic strategies for cancer patients.
Collapse
|
24
|
CD44+/CD24- Expression as predictors of ovarian cancer chemoresistance: immunohistochemistry and flow cytometry study. J Egypt Natl Canc Inst 2022; 34:44. [DOI: 10.1186/s43046-022-00143-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/23/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
The conventional standard treatment for ovarian cancer is not very effective, and the disease is fatal for women. Cancer Stem Cells (CSCs) that express CD44+/CD24- can contribute to chemoresistance and a poor prognosis. We seek to investigate the expression of CSCs (CD44+/CD24-) in ovarian cancer and their predictive significance.
Methods
The ambispective cohort was performed on 64 patients (32 patients in each group) at four hospitals (Cipto Mangunkusumo, Tarakan, Fatmawati, and Dharmais Hospital). Debulking surgery was performed on the patients, followed by histopathological analysis. The patients had six rounds of chemotherapy and were under monitoring for six months. The therapeutic responses were evaluated using the RECIST criteria (Response Criteria in Solid Tumors) and categorized as chemoresistant or chemosensitive. Using immunohistochemistry, we directly assess the CSCs from ovarian cancer tissue and using flow cytometry to assess the CSCs from the blood.
Results
High CSCs expression and ovarian cancer chemoresistance were significantly related in both trials (p 0.05). A better outcome was obtained using CD44+/CD24- immunohistochemistry.
Conclusions
We conclude that there is a substantial association between high CSCs expression and chemoresistance in ovarian cancer and that CSCs immunohistochemistry has a higher predictive value.
Collapse
|
25
|
Sihombing UHM, Andrijono, Purwoto G, Gandamihardja S, Harahap AR, Rustamadji P, Kekalih A, Widyawati R, Fuady DR. Expression of CD44+/CD24-, RAD6 and DDB2 on chemotherapy response in ovarian Cancer: A prospective flow cytometry study. Gynecol Oncol Rep 2022; 42:101005. [PMID: 35707599 PMCID: PMC9189034 DOI: 10.1016/j.gore.2022.101005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
Abstract
Dear editor of Gynecologic Oncology Reports, these are the research highlights: CD44+/CD24- overexpression in blood circulation is associated with ovarian cancer chemoresistance. RAD6 overexpression in blood circulation is associated with ovarian cancer chemoresistance. CD44+/CD24- expression in blood circulation is a good predictor of ovarian cancer chemoresistance. Backgrounds Ovarian cancer is the 8th deadliest common cancer in women around the world. Almost all ovarian cancer patients would experience chemoresistance, recurrence, and poor prognosis after cytoreductive surgery and platinum-based chemotherapy. Chemoresistant cancer cells have characteristic expressions of cancer stem cell proteins (CSCs) CD44+/CD24-, RAD6 and DDB2. The increased expression of CD44+/CD24-, RAD6, and decreased DDB2 are believed to be associated with chemoresistance, recurrence, and poor prognosis of the disease. Thus, this study’s objective is to analyze the correlation between the expression of CD44+/CD24-, RAD6 and DDB2 with ovarian cancer chemoresistance. Materials and methods This study was conducted with a prospective cohort of 64 patients who is divided into two groups (32 patients in each group) at the Obstetrics-gynecology and pathology department of Cipto Mangunkusumo, Tarakan, Dharmais, and Fatmawati Hospital. All suspected ovarian cancer patients underwent cytoreductive debulking and histopathological examination. Chemotherapy was given for six series followed by six months of observation. After the observation, we determined the therapy’s response with the RECIST Criteria (Response Criteria in Solid Tumors) and then classified the results into chemoresistant or chemosensitive groups. Flow cytometry blood tests were then performed to examine the expression of CD44+/CD24-, RAD6 and DDB2. Results There was a significant relationship between increased levels of CD44+/CD24-, and RAD6 (p < 0.05) levels with the chemoresistance of ovarian cancer. The logistic regression test showed that the CD44+/CD24– was better marker. Conclusions These results indicate that CD44+/CD24 and RAD6 expressions are significantly associated with ovarian cancer chemoresistance, and CD44+/CD24- is the better marker to predict ovarian cancer chemoresistance.
Collapse
|
26
|
Gao F, Zhang G, Liu Y, He Y, Sheng Y, Sun X, Du Y, Yang C. Activation of CD44 signaling in leader cells induced by tumor-associated macrophages drives collective detachment in luminal breast carcinomas. Cell Death Dis 2022; 13:540. [PMID: 35680853 PMCID: PMC9184589 DOI: 10.1038/s41419-022-04986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
Collective detachment of cancer cells at the invading front could generate efficient metastatic spread. However, how cancer cell clusters shed from the leading front remains unknown. We previously reported that the dynamic expression of CD44 in breast cancers (BrCas) at collectively invading edges was associated with tumor-associated macrophages (TAMs). In this study, we first observed that the highly expressed CD44 (CD44high) cancer cell clusters were located in the BrCa circulating vessels, accompanied by CD206+ TAMs. Next, we identified that the cancer cell clusters can be converted to an invasive CD44high state which was induced by TAMs, thus giving rise to CD44-associated signaling mediated cohesive detachment. Then, we showed that disrupting CD44-signaling inhibited the TAMs triggered cohesive detaching using 3D organotypic culture and mouse models. Furthermore, our mechanistic study showed that the acquisition of CD44high state was mediated by the MDM2/p53 pathway activation which was induced by CCL8 released from TAMs. Blocking of CCL8 could inhibit the signaling cascade which decreased the CD44-mediated cohesive detachment and spread. Our findings uncover a novel mechanism underlying collective metastasis in BrCas that may be helpful to seek for potential targets.
Collapse
Affiliation(s)
- Feng Gao
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China ,grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Guoliang Zhang
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yiwen Liu
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yiqing He
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yumeng Sheng
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Xiaodan Sun
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Yan Du
- grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Cuixia Yang
- grid.412528.80000 0004 1798 5117Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China ,grid.412528.80000 0004 1798 5117Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| |
Collapse
|
27
|
Guo L, Ke H, Zhang H, Zou L, Yang Q, Lu X, Zhao L, Jiao B. TDP43 promotes stemness of breast cancer stem cells through CD44 variant splicing isoforms. Cell Death Dis 2022; 13:428. [PMID: 35504883 PMCID: PMC9065105 DOI: 10.1038/s41419-022-04867-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Alternative splicing (AS) is a promising clinical target for cancer treatment at the post-transcriptional level. We previously identified a unique AS profile in triple-negative breast cancer (TNBC), which is regulated by the splicing regulator TAR DNA-binding protein-43 (TDP43), thus indicating the crucial role of TDP43 in heterogeneous TNBC. Cluster of differentiation 44 (CD44), a widely recognized marker for breast cancer stem cells (BCSCs), is extensively spliced into CD44 variant AS isoforms (CD44v) during the development of breast cancer. At present, however, the regulatory mechanism of CD44v is not fully understood. In the current study, we found that loss of TDP43 inhibits BCSC stemness by reducing the abundance of CD44v. In addition, serine-arginine-rich splicing factor 3 (SRSF3), another splicing factor and partner of TDP43, acts as an upstream regulator of TDP43 to maintain CD44v isoforms and thereafter BCSC stemness. Mechanistically, SRSF3 stabilizes the mRNA of TDP43 by inhibiting nonsense-mediated decay (NMD). These findings illustrate the important role of complicated regulatory networks formed by splicing factors in TNBC progression, thus providing potential therapeutic targets from an AS perspective.
Collapse
Affiliation(s)
- Lu Guo
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.410726.60000 0004 1797 8419Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201 China
| | - Hao Ke
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Honglei Zhang
- grid.440773.30000 0000 9342 2456Center for Scientific Research, Yunnan University of Chinese Medicine, Kunming, 650500 Yunnan China
| | - Li Zou
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qin Yang
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Xuemei Lu
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Limin Zhao
- grid.260463.50000 0001 2182 8825Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031 Jiangxi China
| | - Baowei Jiao
- grid.9227.e0000000119573309State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201 Yunnan China ,grid.9227.e0000000119573309KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| |
Collapse
|
28
|
Evaluation of Immunoregulatory Biomarkers on Plasma Small Extracellular Vesicles for Disease Progression and Early Therapeutic Response in Head and Neck Cancer. Cells 2022; 11:cells11050902. [PMID: 35269524 PMCID: PMC8909035 DOI: 10.3390/cells11050902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Cancers (HNCs) have highly immunosuppressive properties. Small extracellular vesicles (sEVs), including exosomes, nanosized mediators of intercellular communication in the blood, carry immunosuppressive proteins and effectively inhibit anti-tumor immune responses in HNCs. This study evaluates immunosuppressive markers on sEVs from 40 HNC patients at different disease stages and 3- and 6-month follow-up after surgery and/or chemoradiotherapy. As controls, sEVs from normal donors (NDs) are examined. Immunoregulatory surface markers on sEVs were detected as relative fluorescence intensity (RFI) using on-bead flow cytometry, and their expression levels were monitored in the early and late stages of HNC and during follow-up. In parallel, the sEV-mediated apoptosis of CD8+ Jurkat cells was assessed. Together with TGF-β1 and PD-L1 abundance, total sEV proteins are elevated with disease progression. In contrast, total sEV protein, including TGF-β1, PD-1 and PD-L1, decrease upon therapy response during follow-up. Overall survival analysis implies that high sEV PD-1/PD-L1 content is an unfavorable prognostic marker in HNC. Consistently, the sEV-mediated induction of apoptosis in CD8+ T cells correlates with the disease activity and therapy response. These findings indicate that a combination of immunoregulatory marker profiles should be preferred over a single marker to monitor disease progression and therapy response in HNC.
Collapse
|
29
|
The molecular underpinning of geminin-overexpressing triple-negative breast cancer cells homing specifically to lungs. Cancer Gene Ther 2022; 29:304-325. [PMID: 33723406 DOI: 10.1038/s41417-021-00311-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 01/31/2023]
Abstract
Triple-negative breast cancer (TNBCs) display lung metastasis tropism. However, the mechanisms underlying this organ-specific pattern remains to be elucidated. We sought to evaluate the utility of blocking extravasation to prevent lung metastasis. To identify potential geminin overexpression-controlled genetic drivers that promote TNBC tumor homing to lungs, we used the differential/suppression subtractive chain (D/SSC) technique. A geminin overexpression-induced lung metastasis gene signature consists of 24 genes was discovered. We validated overexpression of five of these genes (LGR5, HAS2, CDH11, NCAM2, and DSC2) in worsening lung metastasis-free survival in TNBC patients. Our data demonstrate that LGR5-induced β-catenin signaling and stemness in TNBC cells are geminin-overexpression dependent. They also demonstrate for the first-time expression of RSPO2 in mouse lung tissue only and exacerbation of its secretion in the circulation of mice that develop geminin overexpressing/LGR5+-TNBC lung metastasis. We identified a novel extravasation receptor complex, consists of CDH11, CD44v6, c-Met, and AXL on geminin overexpressing/LGR5+-TNBC lung metastatic precursors, inhibition of any of its receptors prevented geminin overexpressing/LGR5+-TNBC lung metastasis. Overall, we propose that geminin overexpression in normal mammary epithelial (HME) cells promotes the generation of TNBC metastatic precursors that home specifically to lungs by upregulating LGR5 expression and promoting stemness, intravasation, and extravasation in these precursors. Circulating levels of RSPO2 and OPN can be diagnostic biomarkers to improve risk stratification of metastatic TNBC to lungs, as well as identifying patients who may benefit from therapy targeting geminin alone or in combination with any member of the newly discovered extravasation receptor complex to minimize TNBC lung metastasis.
Collapse
|
30
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
31
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
32
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
33
|
Liu Y, Zhang P, Wu Q, Fang H, Wang Y, Xiao Y, Cong M, Wang T, He Y, Ma C, Tian P, Liang Y, Qin LX, Yang Q, Yang Q, Liao L, Hu G. Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63. Nat Commun 2021; 12:5232. [PMID: 34475402 PMCID: PMC8413371 DOI: 10.1038/s41467-021-25552-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Disseminated tumor cells often fall into a long term of dormant stage, characterized by decreased proliferation but sustained survival, in distant organs before awakening for metastatic growth. However, the regulatory mechanism of metastatic dormancy and awakening is largely unknown. Here, we show that the epithelial-like and mesenchymal-like subpopulations of breast cancer stem-like cells (BCSCs) demonstrate different levels of dormancy and tumorigenicity in lungs. The long non-coding RNA (lncRNA) NR2F1-AS1 (NAS1) is up-regulated in the dormant mesenchymal-like BCSCs, and functionally promotes tumor dissemination but reduces proliferation in lungs. Mechanistically, NAS1 binds to NR2F1 mRNA and recruits the RNA-binding protein PTBP1 to promote internal ribosome entry site (IRES)-mediated NR2F1 translation, thus leading to suppression of ΔNp63 transcription by NR2F1. Furthermore, ΔNp63 downregulatio results in epithelial-mesenchymal transition, reduced tumorigenicity and enhanced dormancy of cancer cells in lungs. Overall, the study links BCSC plasticity with metastatic dormancy, and reveals the lncRNA as an important regulator of both processes. Disseminated tumor cells often become dormant before awakening for metastatic growth. Here, the authors report that the lncRNA, NR2F1-AS1, is upregulated in dormant mesenchymal-like breast cancer stem-like cells and promotes dissemination but inhibits proliferation, leading to metastatic dormancy.
Collapse
Affiliation(s)
- Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Houqin Fang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengxin Ma
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingcheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Institute of Nutrition and Health, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Qian J, LeSavage BL, Hubka KM, Ma C, Natarajan S, Eggold JT, Xiao Y, Fuh KC, Krishnan V, Enejder A, Heilshorn SC, Dorigo O, Rankin EB. Cancer-associated mesothelial cells promote ovarian cancer chemoresistance through paracrine osteopontin signaling. J Clin Invest 2021; 131:e146186. [PMID: 34396988 DOI: 10.1172/jci146186] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of gynecological malignancy-related deaths, due to its widespread intraperitoneal metastases and acquired chemoresistance. Mesothelial cells are an important cellular component of the ovarian cancer microenvironment that promote metastasis. However, their role in chemoresistance is unclear. Here, we investigated whether cancer-associated mesothelial cells promote ovarian cancer chemoresistance and stemness in vitro and in vivo. We found that osteopontin is a key secreted factor that drives mesothelial-mediated ovarian cancer chemoresistance and stemness. Osteopontin is a secreted glycoprotein that is clinically associated with poor prognosis and chemoresistance in ovarian cancer. Mechanistically, ovarian cancer cells induced osteopontin expression and secretion by mesothelial cells through TGF-β signaling. Osteopontin facilitated ovarian cancer cell chemoresistance via the activation of the CD44 receptor, PI3K/AKT signaling, and ABC drug efflux transporter activity. Importantly, therapeutic inhibition of osteopontin markedly improved the efficacy of cisplatin in both human and mouse ovarian tumor xenografts. Collectively, our results highlight mesothelial cells as a key driver of ovarian cancer chemoresistance and suggest that therapeutic targeting of osteopontin may be an effective strategy for enhancing platinum sensitivity in ovarian cancer.
Collapse
Affiliation(s)
- Jin Qian
- Department of Radiation Oncology
| | | | - Kelsea M Hubka
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, New South Wales, Australia
| | | | | | | | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University, St. Louis, Missouri, USA
| | - Venkatesh Krishnan
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| | - Oliver Dorigo
- Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| | - Erinn B Rankin
- Department of Radiation Oncology.,Department of Obstetrics and Gynecology, Stanford University, Stanford, California, USA
| |
Collapse
|
35
|
Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166228. [PMID: 34311079 DOI: 10.1016/j.bbadis.2021.166228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Bhupendra Mehra
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Anupama Gupta
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
36
|
Nakhjavani M, Smith E, Palethorpe HM, Tomita Y, Yeo K, Price TJ, Townsend AR, Hardingham JE. Anti-Cancer Effects of an Optimised Combination of Ginsenoside Rg3 Epimers on Triple Negative Breast Cancer Models. Pharmaceuticals (Basel) 2021; 14:ph14070633. [PMID: 34208799 PMCID: PMC8308773 DOI: 10.3390/ph14070633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Key problems of chemotherapies, as the mainstay of treatment for triple-negative breast cancer (TNBC), are toxicity and development of tumour resistance. Using response surface methodology, we previously optimised the combination of epimers of ginsenoside Rg3 (Rg3) for anti-angiogenic action. Here, we show that the optimised combination of 50 µM SRg3 and 25 µM RRg3 (C3), derived from an RSM model of migration of TNBC cell line MDA-MB-231, inhibited migration of MDA-MB-231 and HCC1143, in 2D and 3D migration assays (p < 0.0001). C3 inhibited mammosphere formation efficiency in both cell lines and decreased the CD44+ stem cell marker in the mammospheres. Molecular docking predicted that Rg3 epimers had a better binding score with IGF-1R than with EGFR, HER-2 or PDGFR, and predicted an mTOR inhibitory function of Rg3. C3 affected the signalling of AKT in MDA-MB-231 and HCC1143 mammospheres. In a mouse model of metastatic TNBC, an equivalent dose of C3 (23 mg/kg SRg3 + 11 mg/kg RRg3) or an escalated dose of 46 mg/kg SRg3 + 23 mg/kg RRg3 was administered to NSG mice bearing MDA-MB-231-Luc cells. Calliper and IVIS spectrum measurement of the primary and secondary tumour showed that the treatment shrunk the primary tumour and decreased the load of metastasis in mice. In conclusion, this combination of Rg3 epimers showed promising results as a potential treatment option for TNBC patients.
Collapse
Affiliation(s)
- Maryam Nakhjavani
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (Y.T.); (K.Y.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Eric Smith
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (Y.T.); (K.Y.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Correspondence: ; Tel.: +61-8-8222-6142
| | - Helen M. Palethorpe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia;
| | - Yoko Tomita
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (Y.T.); (K.Y.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Kenny Yeo
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (Y.T.); (K.Y.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| | - Tim J. Price
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Amanda R. Townsend
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
- Oncology Unit, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
| | - Jennifer E. Hardingham
- Molecular Oncology, Basil Hetzel Institute, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia; (M.N.); (Y.T.); (K.Y.); (J.E.H.)
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (T.J.P.); (A.R.T.)
| |
Collapse
|
37
|
Gu P, Sun M, Li L, Yang Y, Jiang Z, Ge Y, Wang W, Mu W, Wang H. Breast Tumor-Derived Exosomal MicroRNA-200b-3p Promotes Specific Organ Metastasis Through Regulating CCL2 Expression in Lung Epithelial Cells. Front Cell Dev Biol 2021; 9:657158. [PMID: 34249913 PMCID: PMC8264457 DOI: 10.3389/fcell.2021.657158] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023] Open
Abstract
Malignant metastasis is the most important cause of death in breast cancer (BC) patients, while the lung is a major inflammation and metastatic target organ. Exosomes are nano-sized vesicles that could be uptaken by resident cells to generate the pre-metastatic niche before tumor cells preferentially motility. In the present study, we demonstrated that high expression of C-C motif chemokine ligand 2 (CCL2) in lung could recruit the myeloid-derived suppressor cells (MDSCs) and contribute to the establishment of microenvironment. CCL2 provided recruitment of immune cells under carcinomas conditions and inflammatory responses. We also developed the novel mice model for specific over-expressing CCL2 in the lung, and verified that the BC organotropic metastasis was not because of the enhanced tumor cell proliferation, but the regulatory expression of CCL2 in the target organ. To better explore the crosstalk of exosomal molecules and CCL2 in host tissue, we constructed the "education" lung by exosomes intravenous injection and determined the prominent exosome-uptake by alveolar epithelial type II cells in vivo. Furthermore, we identified the exosomal microRNA-200b-3p could bind to PTEN, which may involved in the regulation of AKT/NF-κB/CCL2 cascades. Therefore, our study suggest that CCL2 expression in the lung was regulated by BC-derived exosomal microRNA, which primed the pre-metastastatic niche and may be a prognostic marker for the development of BC lung metastasis.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mayu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Lei Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Zheshun Jiang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Ge
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Wang
- Department of Oncology, Shanghai Tenths People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai, China
| |
Collapse
|
38
|
Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, Muchardt C. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res 2021; 49:6213-6237. [PMID: 34086943 PMCID: PMC8216461 DOI: 10.1093/nar/gkab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.
Collapse
Affiliation(s)
- Eric Batsché
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Jia Yi
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Oriane Mauger
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Etienne Kornobis
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Benjamin Hopkins
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Charlotte Hanmer-Lloyd
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christian Muchardt
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| |
Collapse
|
39
|
Fontanella RA, Sideri S, Di Stefano C, Catizone A, Di Agostino S, Angelini DF, Guerrera G, Battistini L, Battafarano G, Del Fattore A, Campese AF, Padula F, De Cesaris P, Filippini A, Riccioli A. CD44v8-10 is a marker for malignant traits and a potential driver of bone metastasis in a subpopulation of prostate cancer cells. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0495. [PMID: 34018387 PMCID: PMC8330537 DOI: 10.20892/j.issn.2095-3941.2020.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10pos) and display stem cell-like features and a marked invasive phenotype in vitro that is lost upon CD44v8-10 silencing. METHODS Flow cytometry, enzyme-linked immunoassay, immunofluorescence, and Western blot were used for phenotypic and immunologic characterization. Real-time quantitative polymerase chain reaction and functional assays were used to assess osteomimicry. RESULTS Analysis of epithelial-mesenchymal transition markers showed that CD44v8-10pos PC3 cells surprisingly display epithelial phenotype and can undergo osteomimicry, acquiring bone cell phenotypic and behavioral traits. Use of specific siRNA evidenced the ability of CD44v8-10 variant to confer osteomimetic features, hence the potential to form bone-specific metastasis. Moreover, the ability of tumors to activate immunosuppressive mechanisms which counteract effective immune responses is a sign of the aggressiveness of a tumor. Here we report that CD44v8-10pos cells express programmed death ligand 1, a negative regulator of anticancer immunity, and secrete exceptionally high amounts of interleukin-6, favoring osteoclastogenesis and immunosuppression in bone microenvironment. Notably, we identified a novel pathway activated by CD44v8-10, involving tafazzin (TAZ) and likely the Wnt/TAZ axis, known to play a role in upregulating osteomimetic genes. CONCLUSIONS CD44v8-10 could represent a marker of a more aggressive bone metastatic PC population exerting a driver role in osteomimicry in bone. A novel link between TAZ and CD44v8-10 is also shown.
Collapse
Affiliation(s)
- Rosaria A. Fontanella
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Sideri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Chiara Di Stefano
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Di Agostino
- Department of Health Sciences School of Medicine – “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | | | | | | | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | | | - Fabrizio Padula
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Paola De Cesaris
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| |
Collapse
|
40
|
Song Z, Chen W, Athavale D, Ge X, Desert R, Das S, Han H, Nieto N. Osteopontin Takes Center Stage in Chronic Liver Disease. Hepatology 2021; 73:1594-1608. [PMID: 32986864 PMCID: PMC8106357 DOI: 10.1002/hep.31582] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Osteopontin (OPN) was first identified in 1986. The prefix osteo- means bone; however, OPN is expressed in other tissues, including liver. The suffix -pontin means bridge and denotes the role of OPN as a link protein within the extracellular matrix. While OPN has well-established physiological roles, multiple "omics" analyses suggest that it is also involved in chronic liver disease. In this review, we provide a summary of the OPN gene and protein structure and regulation. We outline the current knowledge on how OPN is involved in hepatic steatosis in the context of alcoholic liver disease and non-alcoholic fatty liver disease. We describe the mechanisms whereby OPN participates in inflammation and liver fibrosis and discuss current research on its role in hepatocellular carcinoma and cholangiopathies. To conclude, we highlight important points to consider when doing research on OPN and provide direction for making progress on how OPN contributes to chronic liver disease.
Collapse
Affiliation(s)
- Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, IL
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, IL,Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
41
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−).
Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Xiao Y, Cong M, Li J, He D, Wu Q, Tian P, Wang Y, Yang S, Liang C, Liang Y, Wen J, Liu Y, Luo W, Lv X, He Y, Cheng DD, Zhou T, Zhao W, Zhang P, Zhang X, Xiao Y, Qian Y, Wang H, Gao Q, Yang QC, Yang Q, Hu G. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation. Cancer Cell 2021; 39:423-437.e7. [PMID: 33450198 DOI: 10.1016/j.ccell.2020.12.012] [Citation(s) in RCA: 327] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022]
Abstract
Lung metastasis is the major cause of breast cancer-related mortality. The neutrophil-associated inflammatory microenvironment aids tumor cells in metastatic colonization in lungs. Here, we show that tumor-secreted protease cathepsin C (CTSC) promotes breast-to-lung metastasis by regulating recruitment of neutrophils and formation of neutrophil extracellular traps (NETs). CTSC enzymatically activates neutrophil membrane-bound proteinase 3 (PR3) to facilitate interleukin-1β (IL-1β) processing and nuclear factor κB activation, thus upregulating IL-6 and CCL3 for neutrophil recruitment. In addition, the CTSC-PR3-IL-1β axis induces neutrophil reactive oxygen species production and formation of NETs, which degrade thrombospondin-1 and support metastatic growth of cancer cells in the lungs. CTSC expression and secretion are associated with NET formation and lung metastasis in human breast tumors. Importantly, targeting CTSC with compound AZD7986 effectively suppresses lung metastasis of breast cancer in a mouse model. Overall, our findings reveal a mechanism of how tumor cells regulate neutrophils in metastatic niches and support CTSC-targeting approaches for cancer treatment.
Collapse
Affiliation(s)
- Yansen Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Min Cong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiatao Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dasa He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qiuyao Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Pu Tian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Chenxi Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yajun Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jili Wen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingjie Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenqian Luo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianzhe Lv
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yunfei He
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Tianhao Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Wenjing Zhao
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Peiyuan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xue Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Ji'nan, 250012, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
43
|
Guo Q, Liu Y, He Y, Du Y, Zhang G, Yang C, Gao F. CD44 activation state regulated by the CD44v10 isoform determines breast cancer proliferation. Oncol Rep 2021; 45:7. [PMID: 33649828 PMCID: PMC7876991 DOI: 10.3892/or.2021.7958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 12/27/2022] Open
Abstract
The cell surface glycoprotein CD44 displays different active statuses; however, it remains unknown whether the activation process of CD44 is critical for tumor development and progression. The aim of the present study was to investigate whether breast cancer (BCa) cells with different activation states of CD44 show similar or distinct functional characteristics and to further examine the mechanisms regulating CD44 activities. A feature for the ‘activated’ state of CD44 is that it can bind to its principal ligand hyaluronan (HA). The binding of CD44 with HA is usually influenced by CD44 alternative splicing, resulting in multiple CD44 isoforms that determine CD44 activities. Flow cytometry was used to sort BCa cell subsets based on CD44-HA binding abilities (HA−/low vs. HAhigh). Subsequently, cell proliferation and colony formation assays were performed in vitro, and CD44 expression patterns were analyzed via western blotting. The results demonstrated that the CD44 variant isoform 10 (CD44v10) was highly expressed in a HA−/low binding subset of BCa cells, which exhibited a significantly higher proliferation capacity compared with the HAhigh binding subpopulation. Knockdown of CD44v10 isoform in HA−/low binding subpopulation induced an increase in HA binding ability and markedly inhibited proliferation. Furthermore, the mechanistic analysis identified that CD44v10 facilitated cell proliferation via activation of ERK/p38 MAPK and AKT/mTOR signaling. Moreover, the knockdown of CD44v10 expression downregulated the phosphorylation of ERK, AKT and mTOR, while no alteration was observed in p38 phosphorylation. Collectively, the present study identified a subset of fast-growing BCa cells characterized by CD44v10 expression, which may serve as a specific therapeutic target for BCa.
Collapse
Affiliation(s)
- Qian Guo
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiwen Liu
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yiqing He
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yan Du
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoliang Zhang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Cuixia Yang
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Feng Gao
- Department of Clinical Laboratory and Molecular Biology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
44
|
Xu C, Gu Z, Liu J, Lin X, Wang C, Li J, Fu Y, Cheng X, Zhuang Z. Adenosquamous carcinoma of the breast: a population-based study. Breast Cancer 2021; 28:848-858. [PMID: 33580464 PMCID: PMC8213591 DOI: 10.1007/s12282-021-01222-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 11/29/2022]
Abstract
Background To summarize the clinicopathological characteristics, prognosis, and management of breast adenosquamous carcinoma (ASC). Methods A population-based study was performed using retrospectively extracted data from the Surveillance, Epidemiology, and End Results database for breast cancer patients with histological diagnoses of ASC, infiltrating duct carcinoma (IDC) and squamous cell carcinoma (SCC) from 2004 to 2016. Results ASC presented similar tumor size but low histological grade and less lymph node metastasis compared to IDC. ASC expressed less positive rate of hormone receptors and barely HER2, which was similar with SCC. ASC patients underwent the similar surgical and systematic treatment as IDC, only with less radiotherapy. Median follow-up data of 78 months showed that the prognosis of IDC patients was better than that of ASC patients (all p < 0.05 for BCSM and OS). ASC was not an independent prognosis factor of breast cancer. After propensity score matching (PSM), no significant difference in BCSM nor OS was observed between ASC and IDC groups. In HR-negative patients, the prognosis of ASC was similar with that of IDC, and both were superior to SCC. In HR-positive patients, the 5-year survival rate of ASC was 63.5%, which was far less than that in ASC of HR-negative (81.0%). Multivariate analysis showed that older age (age > 60) and advanced AJCC-stage were independent factors of poor prognosis in ASC, breast-conserving surgery was also ideally suited for ASC. Conclusions ASC has unique clinicopathological characteristics and prognosis. It is imperative to focus on a more precise and personalized treatment management of ASC patients.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Zhangyuan Gu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Juan Liu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Lin
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Cheng Wang
- Department of Breast Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Affiliated To Shanghai, Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Yun Fu
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaolin Cheng
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
45
|
Aramini B, Masciale V, Grisendi G, Banchelli F, D'Amico R, Maiorana A, Morandi U, Dominici M, Haider KH. Cancer stem cells and macrophages: molecular connections and future perspectives against cancer. Oncotarget 2021; 12:230-250. [PMID: 33613850 PMCID: PMC7869576 DOI: 10.18632/oncotarget.27870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) have been considered the key drivers of cancer initiation and progression due to their unlimited self-renewal capacity and their ability to induce tumor formation. Macrophages, particularly tumor-associated macrophages (TAMs), establish a tumor microenvironment to protect and induce CSCs development and dissemination. Many studies in the past decade have been performed to understand the molecular mediators of CSCs and TAMs, and several studies have elucidated the complex crosstalk that occurs between these two cell types. The aim of this review is to define the complex crosstalk between these two cell types and to highlight potential future anti-cancer strategies.
Collapse
Affiliation(s)
- Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Grisendi
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto D'Amico
- Center of Statistic, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Uliano Morandi
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
46
|
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, Gupta R, Mallya K, Prajapati DR, Lele SM, C Caffrey T, L Grem J, Grandgenett PM, Hollingsworth MA, Murry DJ, Batra SK, Ponnusamy MP. Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene 2021; 40:215-231. [PMID: 33110235 PMCID: PMC10041665 DOI: 10.1038/s41388-020-01518-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) metastasizes to distant organs, which is the primary cause of mortality; however, specific features mediating organ-specific metastasis remain unexplored. Emerging evidence demonstrates that cancer stem cells (CSCs) and cellular metabolism play a pivotal role in metastasis. Here we investigated the role of distinct subtypes of pancreatic CSCs and their metabolomic signatures in organ-specific metastatic colonization. We found that PDAC consists of ALDH+/CD133+ and drug-resistant (MDR1+) subtypes of CSCs with specific metabolic and stemness signatures. Human PDAC tissues with gemcitabine treatment, autochthonous mouse tumors from KrasG12D; Pdx1-Cre (KC) and KrasG12D; Trp53R172H; Pdx-1 Cre (KPC) mice, and KPC- Liver/Lung metastatic cells were used to evaluate the CSC, EMT (epithelial-to-mesenchymal transition), and metabolic profiles. A strong association was observed between distinct CSC subtypes and organ-specific colonization. The liver metastasis showed drug-resistant CSC- and EMT-like phenotype with aerobic glycolysis and fatty acid β-oxidation-mediated oxidative (glyco-oxidative) metabolism. On the contrary, lung metastasis displayed ALDH+/CD133+ and MET-like phenotype with oxidative metabolism. These results were obtained by evaluating FACS-based side population (SP), autofluorescence (AF+) and Alde-red assays for CSCs, and Seahorse-based oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and fatty acid β-oxidation (FAO)-mediated OCR assays for metabolic features along with specific gene signatures. Further, we developed in vitro human liver and lung PDAC metastasis models by using a combination of liver or lung decellularized scaffolds, a co-culture, and a sphere culture methods. PDAC cells grown in the liver-mimicking model showed the enrichment of MDR1+ and CPT1A+ populations, whereas the PDAC cells grown in the lung-mimicking environment showed the enrichment of ALDH+/CD133+ populations. In addition, we observed significantly elevated expression of ALDH1 in lung metastasis and MDR1/LDH-A expression in liver metastasis compared to human primary PDAC tumors. Our studies elucidate that distinct CSCs adapt unique metabolic signatures for organotropic metastasis, which will pave the way for the development of targeted therapy for PDAC metastasis.
Collapse
Affiliation(s)
- Rama Krishna Nimmakayala
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Saravanakumar Marimuthu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gautam K Shailendra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Yashpal S Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Seema Chugh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramakanth Chirravuri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Dipakkumar R Prajapati
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Subodh M Lele
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas C Caffrey
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jean L Grem
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul M Grandgenett
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Daryl J Murry
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, 986145 Nebraska Medical Center, Omaha, NE, 68198-6145, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA. .,Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
47
|
Liang RB, Yu K, Wu JL, Liu JX, Lin Q, Li B, Zhang YQ, Ge QM, Li QY, Shu HY, Shao Y. Risk factors and their diagnostic values for ocular metastases in invasive ductal carcinoma. Cancer Med 2020; 10:824-832. [PMID: 33336932 PMCID: PMC7897965 DOI: 10.1002/cam4.3656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Invasive ductal carcinoma (IDC) is a major type of breast cancer. Ocular metastasis (OM) in IDC is rarely seen, but patients with OM often have a poor prognosis. Furthermore, OM is difficult to detect in the early stages by common imaging examinations. In the present study, we tried to figure out the risk factors of OM in IDC and evaluate their diagnostic values for early detection. There were 1192 IDC patients who were divided into two groups according to ocular metastasis involved in this study. Clinical parameters of those patients were used to detect differences. The binary logistic regression test was then used to determine the risk factors of OM in IDC. Furthermore, ROC curves of both single and combined risk factors were established to examine their diagnostic values. The incidence of axillary lymph node metastases was significantly higher in the OM group (p = 0.002). Higher carbohydrate antigen 153 (CA153), lower apolipoprotein A1 (ApoA1), and hemoglobin (Hb) were risk factors for OM in IDC (p < 0.001, p < 0.001, p = 0.038, respectively). In the single risk factor ROC analysis, cutoff values of CA153, ApoA1, and Hb were 43.3 u/mL (CI: 0.966-0.984, p < 0.001), 1.11 g/L (CI: 0.923-0.951, p < 0.001), and 112 g/L (CI: 0.815-0.857, p < 0.001), respectively. Among the ROC curves of combined risk factors, CA153+ApoA1+Hb had the best accuracy, with the sensitivity and specificity of 89.47% and 99.32%, respectively (CI: 0.964-0.983, p < 0.001). CA153, ApoA1, and Hb are risk factors for OM in IDC. In clinical practice, the three parameters could be used as predictive factors for the early detection of OM.
Collapse
Affiliation(s)
- Rong-Bin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kang Yu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jie-Li Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, Fujian Province, China
| | - Jia-Xiang Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yu-Qing Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
48
|
Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, Rodriguez-Rodriguez L. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol 2020; 10:589601. [PMID: 33335857 PMCID: PMC7736609 DOI: 10.3389/fonc.2020.589601] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress in cancer therapy over the last decades, ovarian cancer remains the most lethal gynecologic malignancy worldwide with the five-year overall survival rate less than 30% due to frequent disease recurrence and chemoresistance. CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic progression, cancer stem cell maintenance, and chemoresistance development via multiple mechanisms across many cancers, including ovarian, and represents a promising therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer development, such as signal transducer and activator of transcription 3 (STAT3). Given that both CD44 and STAT3 are strongly implicated in the metastatic progression and chemoresistance of ovarian tumors, this review summarizes currently available evidence about functional crosstalk between CD44 and STAT3 in human malignancies with an emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3 interaction in driving cancer progression and metastasis, we discuss how CD44 and STAT3 support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis, immunosuppression, and cancer metabolic reprogramming in favor of cancer progression. Finally, we review the current state of therapeutic CD44 targeting and propose superior treatment possibilities for ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
49
|
Bei Y, Cheng N, Chen T, Shu Y, Yang Y, Yang N, Zhou X, Liu B, Wei J, Liu Q, Zheng W, Zhang W, Su H, Zhu W, Ji J, Shen P. CDK5 Inhibition Abrogates TNBC Stem-Cell Property and Enhances Anti-PD-1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001417. [PMID: 33240752 PMCID: PMC7675186 DOI: 10.1002/advs.202001417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Nan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Laura and Isaac Perlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNYUSA
| | - Yuxin Shu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ye Yang
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Xinyu Zhou
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baorui Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Wei
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Qin Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wei‐Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| |
Collapse
|
50
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 544] [Impact Index Per Article: 108.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|