1
|
Craig-Meyer D, Hollenbaugh JA, Morgado S, McGee K, Perkins E, Yarzabek B, Lapinski P, Rowse A, Cooper C, Fortunato M, Cocco M, Cadwallader K, Munday J. Immunophenotypical characterization of immune checkpoint receptor expression in cynomolgus monkeys and human healthy volunteers in resting and in T-cell stimulatory conditions in vitro. J Immunotoxicol 2025; 22:2462106. [PMID: 39945090 DOI: 10.1080/1547691x.2025.2462106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 04/12/2025] Open
Abstract
Immunotherapeutics targeting immune checkpoint receptors or their ligands (i.e., immune checkpoint inhibitors), have been groundbreaking in the field of oncology, radically changing the approach to treatment and improving the clinical outcomes of an ever-expanding list of solid tumors and hematological malignancies. However, immune checkpoint inhibitors (ICI) are not devoid of side effects, collectively regarded as immune-related adverse events (irAE); they are not easily uncovered in preclinical immunotoxicological investigations and are often due to the very low expression of their targets in immunologically-unchallenged non-clinical species. We have characterized expression of a broad range of immune checkpoint receptors in peripheral blood mononuclear cell (PBMC) subpopulations from cynomolgus monkeys and healthy human volunteers, under resting and T-cell stimulatory conditions by multicolor flow cytometry to inform appropriate species selection for modeling potential irAE in immunotherapeutic preclinical research. Focusing on the response of the main lymphocyte populations to interleukin (IL)-2 alone, or in combination with anti-CD3 and anti-CD28 antibodies, checkpoints with shared similarities and key differences between the two species were identified. The results of this first study provide a database for the expression and response to stimulation for immune checkpoint receptors and can help guide future model selection in the design of preclinical studies involving immunotherapeutics directed against these targets.
Collapse
Affiliation(s)
| | | | - Sara Morgado
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Karen McGee
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Ethan Perkins
- Labcorp Early Development Laboratories Limited, Harrogate, UK
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, UK
| | | | | | - Amber Rowse
- Labcorp Early Development Laboratories Inc, Ann Arbor, MI
| | - Chris Cooper
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | - Mara Fortunato
- Labcorp Early Development Laboratories Limited, Huntingdon, UK
| | - Mario Cocco
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| | | | - James Munday
- Labcorp Early Development Laboratories Limited, Harrogate, UK
| |
Collapse
|
2
|
Huang M, Ji Q, Huang H, Wang X, Wang L. Gut microbiota in hepatocellular carcinoma immunotherapy: immune microenvironment remodeling and gut microbiota modification. Gut Microbes 2025; 17:2486519. [PMID: 40166981 PMCID: PMC11970798 DOI: 10.1080/19490976.2025.2486519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, with limited treatment options at advanced stages. The gut microbiota, a diverse community of microorganisms residing in the gastrointestinal tract, plays a pivotal role in regulating immune responses through the gut-liver axis. Emerging evidence underscores its impact on HCC progression and the efficacy of immunotherapy. This review explores the intricate interactions between gut microbiota and the immune system in HCC, with a focus on key immune cells and pathways involved in tumor immunity. Additionally, it highlights strategies for modulating the gut microbiota - such as fecal microbiota transplantation, dietary interventions, and probiotics - as potential approaches to enhancing immunotherapy outcomes. A deeper understanding of these mechanisms could pave the way for novel therapeutic strategies aimed at improving patient prognosis.
Collapse
Affiliation(s)
- Mingyao Huang
- School of Basic Medicine, Putian University, Putian, Fujian, China
- Department of Breast Surgery, Clinical Oncology School of Fujian Medical University, Fuzhou, Fujian, China
| | - Quansong Ji
- Department of Urology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huiyan Huang
- Ward 3, De’an Hospital, Xianyou County, Putian, Fujian, China
| | - Xiaoqian Wang
- Department of Rehabilitation Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Wang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Shi J, He C, Chen L, Xing X, Wei W, Zhang J. Targeting PD-1 post-translational modifications for improving cancer immunotherapy. CELL INSIGHT 2025; 4:100248. [PMID: 40336591 PMCID: PMC12056969 DOI: 10.1016/j.cellin.2025.100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Programmed cell death protein 1 (PD-1) is a critical immune checkpoint receptor that suppresses immune responses largely through its interaction with PD-L1. Tumors exploit this mechanism to evade immune surveillance, positioning immune checkpoint inhibitors targeting the PD-1/PD-L1 axis as groundbreaking advancements in cancer therapy. However, the overall effectiveness of these therapies is often constrained by an incomplete understanding of the underlying mechanisms. Recent research has uncovered the pivotal role of various post-translational modifications (PTMs) of PD-1, including ubiquitination, UFMylation, phosphorylation, palmitoylation, and glycosylation, in regulating its protein stability, localization, and protein-protein interactions. As much, dysregulation of these PTMs can drive PD-1-mediated immune evasion and contribute to therapeutic resistance. Notably, targeting PD-1 PTMs with small-molecule inhibitors or monoclonal antibodies (MAbs) has shown potential to bolster anti-tumor immunity in both pre-clinical mouse models and clinical trials. This review highlights recent findings on PD-1's PTMs and explores emerging therapeutic strategies aimed at modulating these modifications. By integrating these mechanistic insights, the development of combination cancer immunotherapies can be further rationally advanced, offering new avenues for more effective and durable treatments.
Collapse
Affiliation(s)
- Jie Shi
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Chuan He
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Li Chen
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Xixin Xing
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Jinfang Zhang
- Department of Radiation and Medical Oncology, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, Hubei, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
- State Key Laboratory of Metabolism and Regulation in Complex Organisms, College of Life Sciences, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
4
|
Shi Q, Luo Y, Xiang Q, Kang X, Feng Z. CD28 Superfamily Costimulatory Molecules in Chronic Pain: Focus on Immunomodulation. Mol Neurobiol 2025; 62:7915-7926. [PMID: 39956885 DOI: 10.1007/s12035-025-04746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Chronic pain has substantial effects on patients' quality of life and psychological well-being. It does not respond satisfactorily to available medicinal therapeutics because its mechanism remains unclear. Recent studies have shown a strong relationship between chronic pain and immunomodulation. As important members of the immune response, CD28 superfamily costimulatory molecules were demonstrated to have an analgesic effect on chronic pain. Based on research on the role of these molecules in chronic pain, new and highly effective analgesic medicines are anticipated that could be used in combination with some previous analgesic medicines to reduce substance abuse and side effects. This review of the literature will examine the pain-regulating mechanisms of CD28 superfamily costimulatory molecules, focusing on immunomodulation. In addition, this review will discuss the potential and difficulties of developing novel analgesic medicines targeting CD28 superfamily costimulatory molecules.
Collapse
Affiliation(s)
- Qinglu Shi
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yujia Luo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Qiaomin Xiang
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
- Department of Anesthesiology, Ninghai First Hospital, Ningbo, Zhejiang, China
| | - Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Garemilla SSS, Gampa SC, Garimella S. Role of the tumor microenvironment in cancer therapy: unveiling new targets to overcome drug resistance. Med Oncol 2025; 42:202. [PMID: 40332723 DOI: 10.1007/s12032-025-02754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
Cancer is a leading cause of death globally, with resistance to therapy representing a major obstacle to effective treatment. The tumor microenvironment (TME), comprising a complex network to cellular and non-cellular components including cancer-associated fibroblasts, immune cells, the extracellular matrix and region of hypoxia, is integral to cancer progression and therapeutic resistance. This review delves into the multifaceted interactions within the TME that contribute to tumor growth, survival and immune evasion. Key elements such as the role of cancer- associated fibroblasts in remodeling the extracellular matrix and promoting angiogenesis, the influence of immune cells such as tumor-associated macrophages in creating an immunosuppressive milieu and the impact of hypoxia conditions on metabolic adaptation and therapy resistance are thoroughly examined. This review evaluates current and emerging TME-targeted therapeutic strategies, including inhibitors of extracellular matrix components, modulators of immune cell activity and approached to alleviate hypoxia. Combination therapies that integrate TME-targeted agents with conventional treatments such as chemotherapy and immunotherapy are also discussed for their potential to enhance treatment efficacy and circumvent resistance mechanisms. By synthesising recent advances in TME research and therapeutic innovation, this paper aims to underscore the importance of TME in cancer therapy and highlight promising avenues for improving patient outcomes through targeted intervention.
Collapse
Affiliation(s)
| | - Siri Chandana Gampa
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India
| | - Sireesha Garimella
- Department of Life Sciences, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| |
Collapse
|
6
|
Nordbø OP, Eikrem Ø, Kalra PA, Marti HP, Furriol J. Longitudinal serum proteomics identifies inflammatory and metabolic pathways in hypertensive nephrosclerosis progression. Clin Proteomics 2025; 22:17. [PMID: 40325372 PMCID: PMC12054191 DOI: 10.1186/s12014-025-09537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 04/07/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Hypertensive nephrosclerosis (HN) is a major cause of end-stage renal disease; however, few longitudinal studies have employed serum proteomics to document its progression. This study aimed to identify potential circulating biomarkers indicative of disease progression in HN by performing serum proteomic analysis at two time points in patients with progressive and stable disease. METHODS Forty-one patients diagnosed with HN were recruited from the UK Salford Kidney Study, with serum samples collected at baseline and follow-up (1.5-10 years after baseline). Twenty-five patients experienced stable disease course, while 16 patients experienced progressive disease. Proteomics was performed via tandem mass tag labelling and liquid chromatography-tandem mass-spectrometry (LC-MS). Pathway analysis was performed on all significantly abundant proteins, as was network analysis of circulating proteins that are abundant in the kidney according to the Human Protein Atlas. RESULTS Pathway analysis revealed significant enrichment in pathways related to inflammation and infection, including complement and coagulation cascades, as well as metabolic processes in patients with disease progression. Marker abundance levels related to adhesion and the ECM were also altered in progresssive disease follow-up, compared to stable disease follow-up. CONCLUSION The observed changes in inflammatory and adhesion-related pathways may offer valuable insights into the mechanisms driving HN progression and potential targets for intervention.
Collapse
Affiliation(s)
- Ole Petter Nordbø
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
- Department of Medicine, Haugesund Hospital, Helse Fonna, Haugesund, Norway.
| | - Øystein Eikrem
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Philip A Kalra
- Department of Nephrology, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Kaplan Z, Prezioso E, Jain A, Lavu H, Yeo CJ, Bowne WB, Nevler A. Clinical Implications of Mismatch Repair Deficiency in Pancreatic Ductal Adenocarcinoma. Cancer Med 2025; 14:e70960. [PMID: 40366030 DOI: 10.1002/cam4.70960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive and lethal disease, characterized by a limited response to chemotherapy and overall poor prognosis. Pancreatic cancers with a distinct mismatch repair deficiency, although relatively rare, have been shown to be associated with markedly better outcomes in comparison. Furthermore, whereas pancreatic cancers are generally unresponsive to current immunotherapy, this specific group of tumors has been shown to have a notable susceptibility to immune checkpoint inhibitors. AIMS In this review, we aim to summarize the relevant literature regarding mismatch-repair associated pancreatic cancers, the impacted biological mechanisms, and the resulting vulnerabilities for potential opportunistic immunotherapeutic treatment approaches. We will also review the current clinical studies assessing survival outcomes of mismatch repair deficient pancreatic cancers and ongoing clinical trials in this emerging field. RESULTS AND CONCLUSIONS Patients with dMMR/MSI-H pancreatic cancers harbor a distinct phenotype that has increased immune activation, greater responsiveness to immune checkpoint inhibitor therapy and better overall survival when compared to other pancreatic cancers. Although this molecular subtype makes up a small minority of cases, emerging data suggest immunotherapy may offer benefit to these patients.
Collapse
Affiliation(s)
- Zachary Kaplan
- Sidney Kimmel Medical College, Philadelphia, Pennsylvania, USA
| | | | - Aditi Jain
- Jefferson Pancreatic, Biliary, and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Harish Lavu
- Jefferson Pancreatic, Biliary, and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Charles J Yeo
- Jefferson Pancreatic, Biliary, and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Wilbur B Bowne
- Jefferson Pancreatic, Biliary, and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Avinoam Nevler
- Jefferson Pancreatic, Biliary, and Related Cancer Center, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Aden D, Zaheer S, Sureka N, Trisal M, Chaurasia JK, Zaheer S. Exploring immune checkpoint inhibitors: Focus on PD-1/PD-L1 axis and beyond. Pathol Res Pract 2025; 269:155864. [PMID: 40068282 DOI: 10.1016/j.prp.2025.155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/20/2025] [Accepted: 02/25/2025] [Indexed: 04/19/2025]
Abstract
Immunotherapy emerges as a promising approach, marked by recent substantial progress in elucidating how the host immune response impacts tumor development and its sensitivity to various treatments. Immune checkpoint inhibitors have revolutionized cancer therapy by unleashing the power of the immune system to recognize and eradicate tumor cells. Among these, inhibitors targeting the programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have garnered significant attention due to their remarkable clinical efficacy across various malignancies. This review delves into the mechanisms of action, clinical applications, and emerging therapeutic strategies surrounding PD-1/PD-L1 blockade. We explore the intricate interactions between PD-1/PD-L1 and other immune checkpoints, shedding light on combinatorial approaches to enhance treatment outcomes and overcome resistance mechanisms. Furthermore, we discuss the expanding landscape of immune checkpoint inhibitors beyond PD-1/PD-L1, including novel targets such as CTLA-4, LAG-3, TIM-3, and TIGIT. Through a comprehensive analysis of preclinical and clinical studies, we highlight the promise and challenges of immune checkpoint blockade in cancer immunotherapy, paving the way for future advancements in the field.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | - Samreen Zaheer
- Department of Radiotherapy, Jawaharlal Nehru Medical College, AMU, Aligarh, India.
| | - Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| | - Monal Trisal
- Department of Pathology, Hamdard Institute of Medical science and research, Jamia Hamdard, New Delhi, India.
| | | | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
| |
Collapse
|
9
|
Arya SP, Timilsina H, Thennakoon SKS, Postema RM, Jahan R, Reynolds AM, Tan X. A novel peptide targeting PD-1: implications for protein-protein interaction studies and immunotherapy. Chem Commun (Camb) 2025. [PMID: 40304419 DOI: 10.1039/d5cc01198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Chemical ligand binding to PD-1 is a powerful approach for studying protein-protein interactions and advancing immunotherapy. In this study, we introduce a novel II peptide with strong binding affinity for PD-1. Molecular docking analysis reveals key interactions between the II peptide and PD-1, supporting inhibition ELISA data and indicating that the II peptide overlaps with the PD-1/PD-L1 interaction interface.
Collapse
Affiliation(s)
- Satya Prakash Arya
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Hari Timilsina
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | | | - Rick Mason Postema
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Raunak Jahan
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Andrew Michael Reynolds
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| | - Xiaohong Tan
- Department of chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA.
| |
Collapse
|
10
|
Liu R, Jiang X, Dong R, Zhang Y, Gai C, Wei P. Revealing the mechanisms and therapeutic potential of immune checkpoint proteins across diverse protein families. Front Immunol 2025; 16:1499663. [PMID: 40356928 PMCID: PMC12066663 DOI: 10.3389/fimmu.2025.1499663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Host immune responses to antigens are tightly regulated through the activation and inhibition of synergistic signaling networks that maintain homeostasis. Stimulatory checkpoint molecules initiate attacks on infected or tumor cells, while inhibitory molecules halt the immune response to prevent overreaction and self-injury. Multiple immune checkpoint proteins are grouped into families based on common structural domains or origins, yet the variability within and between these families remains largely unexplored. In this review, we discuss the current understanding of the mechanisms underlying the co-suppressive functions of CTLA-4, PD-1, and other prominent immune checkpoint pathways. Additionally, we examine the IgSF, PVR, TIM, SIRP, and TNF families, including key members such as TIGIT, LAG-3, VISTA, TIM-3, SIRPα, and OX40. We also highlight the unique dual role of VISTA and SIRPα in modulating immune responses under specific conditions, and explore potential immunotherapeutic pathways tailored to the distinct characteristics of different immune checkpoint proteins. These insights into the unique advantages of checkpoint proteins provide new directions for drug discovery, emphasizing that emerging immune checkpoint molecules could serve as targets for novel therapies in cancer, autoimmune diseases, infectious diseases, and transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Wei C, Liu M, Zhang W. Programmed cell death protein 1 in cancer cells. Cell Commun Signal 2025; 23:185. [PMID: 40241148 PMCID: PMC12001728 DOI: 10.1186/s12964-025-02155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025] Open
Abstract
Programmed cell death protein 1 (PD-1) is frequently detected in certain subsets of tumor cells, and our understanding of PD-1 signaling consequences has expanded to include control of tumor growth, stemness and drug resistance. Nonetheless, tumor cell-intrinsic PD-1 has been comparatively underexplored in relation to PD-1 expressed on the surface of immune cells as an immune checkpoint, despite the imperative need to comprehensively elucidate the underlying mechanisms of action for achieving optimal responses in tumor immunotherapy. Here, we review the roles of the regulation and function of tumor-intrinsic PD-1 from its expression to degradation processes. Our primary focus is on unraveling its enigmatic influence on tumorigenesis and progression as proposed by recent findings, while navigating the labyrinthine network of regulatory mechanisms governing its expression and intricate functional interplay. We also discuss how the elucidation of the mechanistic underpinnings of tumor-intrinsic PD-1 expression holds the potential to explain the divergent therapeutic outcomes observed with anti-PD-1-based combination therapies, thereby furnishing indispensable insights crucial for synergistic anti-tumor strategies.
Collapse
Affiliation(s)
- Chunlian Wei
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Meijun Liu
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China
| | - Weifen Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Shandong Second Medical University, Weifang, 261053, Shandong, PR China.
| |
Collapse
|
12
|
Huang Y, Sun S, Yin R, Lin Z, Wang D, Wang W, Fu X, Wang J, Lei X, Sun M, Chen S, Wang H. A New Protein-Ligand Trapping System to Rapidly Screen and Discover Small-Molecule Inhibitors of PD-L1 from Natural Products. Molecules 2025; 30:1754. [PMID: 40333811 PMCID: PMC12029895 DOI: 10.3390/molecules30081754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025] Open
Abstract
Chinese herbal medicines have played a significant role in the development of new and effective drugs, but how to identify the active ingredients from complex extracts of traditional Chinese herbal medicines was a research difficulty. In recent years, few studies have focused on high-efficiency identification of small-molecule inhibitors of Programmed Death Ligand 1 with lower antigenicity and flexible structure tunability. In order to identify small molecule inhibitors of PD-L1 from complex Chinese herbal extracts, this study established a protein-ligand trapping system based on high-performance liquid chromatography coupled with a photo-diode array detector, ion trap/quadrupole time-of-flight tandem mass spectrometry, and a Programmed Death Ligand 1 affinity chromatography unit (ACPD-L1-HPLC-PDA-IT-TOF (Q-TOF)-MS) to rapidly screen and identify small-molecule inhibitors of Programmed Death Ligand 1 from Toddalia asiatica (L.) Lam. Fourteen components were then identified as PD-L1 binders, and surface plasmon resonance (SPR) validation results showed that six of them-magnoflorine (6), nitidine (22), chelerythrine (24), jatrorrhizine (13), toddaculin (68), and toddanol (45)-displayed PD-L1 binding activity. Laser scanning confocal microscopy results demonstrated that these compounds effectively inhibited the binding of PD-1 to PD-L1 in a dose-dependent manner. Additionally, flow cytometry analysis indicated they could promote human lung cancer cell line (A549) apoptosis when co-cultured with Peripheral Blood Mononuclear Cells (PBMCs). The system's innovation lies in its first integration of dynamic protein-ligand trapping with multi-dimensional validation, coupled with high-throughput screening capacity for structurally diverse natural products. This workflow overcomes traditional phytochemical screening bottlenecks by preserving native protein conformations during affinity capture while maintaining chromatographic resolution, offering a transformative template for accelerating natural product-derived immunotherapeutics through the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Yazhuo Huang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Senfeng Sun
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Runxin Yin
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daidong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Wanwan Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Xiangyu Fu
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Jing Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Xinyu Lei
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Mimi Sun
- School of Pharmacy, Shanxi University of Chinese Medicine, Xianyang 712046, China
| | - Shizhong Chen
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| | - Hong Wang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Y.H.); (J.W.)
| |
Collapse
|
13
|
Huang S, Kang Y, Liu T, Xiong Y, Yang Z, Zhang Q. The role of immune checkpoints PD-1 and CTLA-4 in cardiovascular complications leading to heart failure. Front Immunol 2025; 16:1561968. [PMID: 40255399 PMCID: PMC12006013 DOI: 10.3389/fimmu.2025.1561968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025] Open
Abstract
Immune checkpoints, such as PD-1 and CTLA-4, are crucial regulators of immune responses, acting as gatekeepers to balance immunity against foreign antigens and self-tolerance. These checkpoints play a key role in maintaining cardiac homeostasis by preventing immune-mediated damage to critical organs like the heart. In this study, we explored the involvement of PD-1 and CTLA-4 in cardiovascular complications, particularly atherosclerosis and myocarditis, which can lead to heart failure. We conducted a comprehensive analysis using animal models and clinical data to assess the effects of immune checkpoint inhibition on cardiac function. Our findings indicate that disruption of PD-1 and CTLA-4 pathways exacerbates myocardial inflammation, accelerates atherosclerotic plaque formation, and promotes the development of heart failure. Additionally, we observed that immune checkpoint inhibition in these models led to increased infiltration of T lymphocytes, higher levels of pro-inflammatory cytokines, and enhanced tissue damage. These results suggest that PD-1 and CTLA-4 are critical in preserving cardiac health, and their inhibition can result in severe cardiovascular toxicity. Our study emphasizes the need for careful monitoring of cardiovascular health in patients undergoing immune checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Shoulian Huang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
| | - Yu Kang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Xiong
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zixuan Yang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
14
|
Abate M, Stroobant E, Fei T, Lin YH, Shimada S, Drebin H, Chen E, Tang LH, Shah SP, Wolchok JD, Janjigian YY, Strong VE, Vardhana SA. Host Tissue Factors Predict Immune Surveillance and Therapeutic Outcomes in Gastric Cancer. Cancer Immunol Res 2025; 13:591-601. [PMID: 39786344 PMCID: PMC11964842 DOI: 10.1158/2326-6066.cir-23-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
The immune composition of solid tumors is typically inferred from biomarkers, such as histologic and molecular classifications, somatic mutational burden, and PD-L1 expression. However, the extent to which these biomarkers predict the immune landscape in gastric adenocarcinoma-an aggressive cancer often linked to chronic inflammation-remains poorly understood. We leveraged high-dimensional spectral cytometry to generate a comprehensive single-cell immune landscape of tumors, normal tissue, and lymph nodes from patients in the Western Hemisphere with gastric adenocarcinoma. The immune composition of gastric tumors could not be predicted by traditional metrics such as tumor histology, molecular classification, mutational burden, or PD-L1 expression via IHC. Instead, our findings revealed that innate immune surveillance within tumors could be anticipated by the immune profile of the normal gastric mucosa. Additionally, distinct T-cell states in the lymph nodes were linked to the accumulation of activated and memory-like CD8+ tumor-infiltrating lymphocytes. Unbiased reclassification of patients based on tumor-specific immune infiltrate generated four distinct subtypes with varying immune compositions. Tumors with a T cell-dominant immune subtype, which spanned The Cancer Genome Atlas molecular subtypes, were exclusively associated with superior responses to immunotherapy. Parallel analysis of metastatic gastric cancer patients treated with immune checkpoint blockade showed that patients who responded to immunotherapy had a pretreatment tumor composition that corresponded to a T cell-dominant immune subtype from our analysis. Taken together, this work identifies key host-specific factors associated with intratumoral immune composition in gastric cancer and offers an immunological classification system that can effectively identify patients likely to benefit from immune-based therapies.
Collapse
Affiliation(s)
- Miseker Abate
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, USA
| | - Emily Stroobant
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teng Fei
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ya-Hui Lin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shoji Shimada
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Digestive Disease Center, Showa University, Northern Yokohama Hospital, Yokohama, Japan
| | - Harrison Drebin
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Eunise Chen
- Department of Surgery, University of Alabama at Birmingham, Heersink School of Medicine, Birmingham, AL, USA
| | - Laura H. Tang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sohrab P. Shah
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Yelena Y. Janjigian
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vivian E. Strong
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Santosha A. Vardhana
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
16
|
Lu J, Yu D, Li H, Qin P, Chen H, Chen L. Promising natural products targeting protein tyrosine phosphatase SHP2 for cancer therapy. Phytother Res 2025; 39:1735-1757. [PMID: 38558278 DOI: 10.1002/ptr.8185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The development of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors is a hot spot in the research and development of antitumor drugs, which may induce immunomodulatory effects in the tumor microenvironment and participate in anti-tumor immune responses. To date, several SHP2 inhibitors have made remarkable progress and entered clinical trials for the treatment of patients with advanced solid tumors. Multiple compounds derived from natural products have been proved to influence tumor cell proliferation, apoptosis, migration and other cellular functions, modulate cell cycle and immune cell activation by regulating the function of SHP2 and its mutants. However, there is a paucity of information about their diversity, biochemistry, and therapeutic potential of targeting SHP2 in tumors. This review will provide the structure, classification, inhibitory activities, experimental models, and antitumor effects of the natural products. Notably, this review summarizes recent advance in the efficacy and pharmacological mechanism of natural products targeting SHP2 in inhibiting the various signaling pathways that regulate different cancers and thus pave the way for further development of anticancer drugs targeting SHP2.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pengcheng Qin
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Henan University, Kaifeng, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Granica M, Laskowski G, Link-Lenczowski P, Graczyk-Jarzynka A. Modulation of N-glycosylation in the PD-1: PD-L1 axis as a strategy to enhance cancer immunotherapies. Biochim Biophys Acta Rev Cancer 2025; 1880:189274. [PMID: 39875060 DOI: 10.1016/j.bbcan.2025.189274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
The modulation of the N-glycosylation status in immune checkpoints, particularly the PD-1/PD-L1 axis, has emerged as a promising approach to enhance cancer immunotherapies. While immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1 have achieved significant clinical success, recent studies highlight the critical role of N-glycosylation in regulating their expression, stability, and function. Alterations in N-glycosylation might affect the efficacy of ICIs by modulating the interactions between immune checkpoints and antibodies used in therapy. This review focuses on the glycosylation of PD-1 and its ligands PD-L1 and PD-L2, examining how N-glycans influence immune responses and contribute to immune evasion by tumors. It explores innovative strategies to modulate glycosylation in tumor and immune cells, including the use of N-glycosylation inhibitors and novel genetic manipulation techniques. Understanding the interplay between N-glycosylation and immune checkpoint functions is essential for optimizing immunotherapy outcomes and overcoming therapeutic resistance in cancer patients.
Collapse
Affiliation(s)
- Monika Granica
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Gustaw Laskowski
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland; Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Agnieszka Graczyk-Jarzynka
- Department of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
18
|
Burns CP, Parker JM, Schaap DM, Wakefield MR, Fang Y. From Bench to Bladder: The Rise in Immune Checkpoint Inhibition in the Treatment of Non-Muscle Invasive Bladder Cancer. Cancers (Basel) 2025; 17:1135. [PMID: 40227644 PMCID: PMC11987787 DOI: 10.3390/cancers17071135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Non-muscle invasive bladder cancer (NMIBC) represents a significant clinical challenge due to its high recurrence rate and need for frequent monitoring. The current treatment modality is bacillus Calmette-Guérin (BCG) therapy combined with chemotherapy after transurethral resection of the bladder tumor (TURBT), which is highly effective in most patients. Yet, the cancer becomes resistant to these treatments in 30-40% of patients, necessitating the need for new treatment modalities. In the cancer world, the development of immune checkpoint inhibitors that target molecules, such as programmed cell death protein-1 (PD-1), its ligand, PD-L1, and Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), have revolutionized the treatment of many cancer types. PD-1/PD-L1 and CTLA-4 are shown to be upregulated in NMIBC in certain circumstances. PD-1/PD-L1 interactions play a role in immune evasion by suppressing T cell activity within the tumor microenvironment (TME), while the binding of CTLA-4 on T cells leads to downregulation of the immune response, making these pathways potential immunotherapeutic targets in NMIBC. This review seeks to understand the role of these therapies in treating NMIBC. We explore the cellular and non-cellular immune landscape in the TME of NMIBC, including Tregs, T effector cells, macrophages, B cells, and relevant cytokines. We also discuss the biological role of PD-1/PD-L1 and CTLA-4 while covering the rationale for these immunotherapies in NMIBC. Finally, we cover key clinical trials that have studied these treatments in NMIBC clinically. Such a study will be helpful for urologists and oncologists to manage patients with NMIBC more effectively.
Collapse
Affiliation(s)
- Caitlin P. Burns
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Jacob M. Parker
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Dylan M. Schaap
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
| | - Mark R. Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, West Des Moines, IA 50266, USA; (C.P.B.); (J.M.P.); (D.M.S.)
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, USA;
- Ellis Fischel Cancer Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
| |
Collapse
|
19
|
Omero F, Speranza D, Murdaca G, Cavaleri M, Marafioti M, Cianci V, Berretta M, Casciaro M, Gangemi S, Santarpia M. The Role of Eosinophils, Eosinophil-Related Cytokines and AI in Predicting Immunotherapy Efficacy in NSCLC Cancer. Biomolecules 2025; 15:491. [PMID: 40305195 PMCID: PMC12024677 DOI: 10.3390/biom15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Immunotherapy and chemoimmunotherapy are standard treatments for non-oncogene-addicted advanced non-small cell lung cancer (NSCLC). Currently, a limited number of biomarkers, including programmed death-ligand 1 (PD-L1) expression, microsatellite instability (MSI), and tumor mutational burden (TMB), are used in clinical practice to predict benefits from immune checkpoint inhibitors (ICIs). It is therefore necessary to search for novel biomarkers that could be helpful to identify patients who respond to immunotherapy. In this context, research efforts are focusing on different cells and mechanisms involved in anti-tumor immune response. Herein, we provide un updated literature review on the role of eosinophils in cancer development and immune response, and the functions of some cytokines, including IL-31 and IL-33, in eosinophil activation. We discuss available data demonstrating a correlation between eosinophils and clinical outcomes of ICIs in lung cancer. In this context, we underscore the role of absolute eosinophil count (AEC) and tumor-associated tissue eosinophilia (TATE) as promising biomarkers able to predict the efficacy and toxicities from immunotherapy. The role of eosinophils and cytokines in NSCLC, treated with ICIs, is not yet fully understood, and further research may be crucial to determine their role as biomarkers of response. Artificial intelligence, through the analysis of big data, could be exploited in the future to elucidate the role of eosinophils and cytokines in lung cancer.
Collapse
Affiliation(s)
- Fausto Omero
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy
| | - Mariacarmela Cavaleri
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Mariapia Marafioti
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| | - Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Section of Legal Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
| | - Massimiliano Berretta
- Medical Oncology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98125 Messina, Italy; (F.O.); (D.S.); (M.C.); (M.M.); (M.S.)
| |
Collapse
|
20
|
Wang F, Gao Y, Chen Y, Li P, Zeng Y, Chen Y, Yin Y, Jia Y, Wang Y. Development of a mitochondria-related gene signature for prognostic assessment in diffuse large B cell lymphoma. Front Oncol 2025; 15:1542829. [PMID: 40182032 PMCID: PMC11966244 DOI: 10.3389/fonc.2025.1542829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Background Mitochondria-related genes (MitoRGs) play a critical role in the pathogenesis of various cancer types. This study aims to develop a novel prognostic model based on a MitoRGs signature for patients with diffuse large B cell lymphoma (DLBCL). Methods Clinical data and gene expression profiles of DLBCL patients were obtained from four datasets in the Gene Expression Omnibus (GEO) database. The Least Absolute Shrinkage and Selection Operator (Lasso) Cox regression analysis, along with multivariate Cox regression analysis, was employed to develop a prognostic MitoRGs signature for patients with DLBCL within the training cohort. The prognostic efficacy of the model was assessed using Kaplan-Meier survival analysis and Receiver Operating Characteristic (ROC) curve analysis. The validation cohorts were used to substantiate the model's predictive capability. Single-sample gene set enrichment analysis (ssGSEA) was employed to examine immune infiltration across various risk groups, and the sensitivities to potential therapeutic agents for patients with DLBCL were also assessed. The role of the mitochondrial-related gene PCK2 in cell proliferation and apoptosis was investigated under varying glucose concentrations. Results An eight-MitoRG signature exhibited independent prognostic significance and robust predictive capability for the survival outcomes of DLBCL patients. Notably, it effectively predicted prognosis across various DLBCL patient subgroups and enhanced the prognostic utility of the International Prognostic Index (IPI) score. Analyses utilizing ssGSEA and assessments of drug sensitivities identified distinct patterns of immune infiltration and differential responses to therapeutic agents among patients stratified into various risk groups. Moreover, a prognostic nomogram integrating age, IPI score, and MitoRGs signature was further developed, demonstrating enhanced prognostic accuracy and clinical applicability for DLBCL patients. In addition, research on phosphoenolpyruvate carboxykinase 2 (PCK2) indicated that silencing PCK2 expression inhibits cellular proliferation and induces apoptosis under conditions of low glucose. Conclusion We developed an innovative prognostic MitoRGs signature to predict outcomes and enhance the prognostic utility of the IPI score in DLBCL, offering a novel perspective for the treatment of DLBCL.
Collapse
Affiliation(s)
- Fujue Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu Gao
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pian Li
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University; Guangxi tumor radiation therapy clinical medical research center, Nanning, China
| | - Yao Zeng
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingying Chen
- Department of Medical Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangcui Yin
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongqian Jia
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongsheng Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Ntsethe A, Dludla PV, Nkambule BB. Impact of Protein Kinase C Activation and Monoclonal Antibodies on Immune Checkpoint Regulation and B Cell Function in Patients with Chronic Lymphocytic Leukemia. Biomedicines 2025; 13:741. [PMID: 40149717 PMCID: PMC11940456 DOI: 10.3390/biomedicines13030741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Chronic lymphocytic leukemia (CLL) is characterized by the proliferation of dysfunctional B cells, resulting in significant immune dysregulation. Patients with CLL exhibit varied responses to B cell receptor (BCR) targeted therapies, emphasizing the need for tailored immunotherapy approaches. This study investigated B cell function in untreated patients with CLL, and we further explored the effects of ex vivo protein kinase C activation on immune checkpoint expression and B cell profiles. Methods: Peripheral blood samples were collected from 21 untreated patients with CLL at King Edward Hospital in South Africa, between 2019 and 2022. B cells were stimulated with phorbol myristate acetate (PMA) and ionomycin. Using flow cytometry, the study explored the levels of B cell subsets and immune checkpoint proteins programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), programmed cell death-ligand 2 (PD-L2) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) expression on various B cell subsets. Results: PMA and ionomycin B cell stimulation upregulated PD-1, CTLA-4 and PD-L2 expression on B cell subsets (p < 0.01). As expected, monoclonal antibodies targeting PD-1, PD-L1 and CTLA-4 significantly downregulated the CTLA-4 expression of B cell subsets (p < 0.05), while PD-L2 exhibited varied responses in different B cell subsets. Moreover, PD-1 and PD-L1 expression on total B cells significantly declined following their blockage (p < 0.01). In addition, these monoclonal antibodies increased the levels of CD19+CD27+ B cells (p < 0.0128) and activated CD19+CD27+ B cells (p < 0.01). Conclusions: Protein kinase C activation on B cells stimulates immune checkpoint expression. The use of monoclonal antibodies on B cells plays a critical role in the B cell function through the reduction in CD38 expressing activated B cells and upregulation of CD19+CD27+ B cells. Moreover, the monoclonal antibody targeting PD-1, PD-L1 and CTLA-4 are effective in reducing the expression of CTLA-4 on B cell subsets, while PD-1 and PD-L1 blockage may be effective in reducing the expression of these immune checkpoints on total B cells.
Collapse
Affiliation(s)
- Aviwe Ntsethe
- Department of Human Physiology, Nelson Mandela University, Gqeberha 6031, South Africa;
| | - Phiwayinkosi Vusi Dludla
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - Bongani Brian Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
22
|
Chen Y, Chen C. The effect of inflammatory proteins on COVID-19 is mediated by blood metabolites: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41852. [PMID: 40101060 PMCID: PMC11922457 DOI: 10.1097/md.0000000000041852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Several studies have suggested that inflammatory proteins may be associated with Coronavirus disease 2019 (COVID-19). However, the specific causal relationship between the 2 and whether blood metabolites act as mediators remains unclear. Therefore, the purpose of the present study is to investigate the causal relationship between inflammatory proteins and COVID-19 and to identify and quantify the role of blood metabolites as potential mediators. Two-sample Mendelian randomization (MR) and 2-step mediated MR analyses were used to investigate the causal relationships between 91 inflammatory proteins, 486 blood metabolites and COVID-19. A random-effects inverse variance weighted (IVW) approach was used as the primary analytical method, supplemented by weighted medians, MR-Egger and MR multivariate residual sums, and outliers to test MR hypotheses. Our results showed that 2 inflammatory proteins (interleukin-10 and interleukin-18) were positively associated with COVID-19 risk, while 1 inflammatory protein (PD-L1) was negatively associated. Further validation was performed using sensitivity analysis. The results of mediated MR showed that Betaine was a mediator of PD-L1 to COVID-19 with a mediation ratio of 15.92%. Our study suggests a genetic causality between specific inflammatory proteins and COVID-19, highlights the potential mediating role of the blood metabolite betaine, and contributes to a deeper understanding of the mechanism of action of severe COVID-19.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Clinical Laboratory, Beijing Anzhen Nanchong Hospital of Capital Medical University & Nanchong Central Hospital, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Chang Chen
- Medical Department, Nanchong Guoning Mental Health Hospital, Nanchong, Sichuan, China
| |
Collapse
|
23
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
24
|
Yao Y, Yang X, Li J, Guo E, Wang H, Sun C, Hong Z, Zhang X, Jia J, Wang R, Ma J, Dai Y, Deng M, Yu C, Sun L, Xie L. Preclinical Characterization of Efficacy and Pharmacodynamic Properties of Finotonlimab, a Humanized Anti-PD-1 Monoclonal Antibody. Pharmaceuticals (Basel) 2025; 18:395. [PMID: 40143171 PMCID: PMC11946465 DOI: 10.3390/ph18030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Finotonlimab (SCTI10A) is a humanized anti-PD-1 antibody tested in Phase III trials for several solid tumor types. Methods: This study characterized the in vitro and in vivo efficacy, Fc-mediated effector function, and non-clinical PK/PD properties of finotonlimab. Results: The results demonstrated that finotonlimab is effective in stimulating human T cell function in vitro and exhibits marked antitumor efficacy in vivo using both PD-1-humanized and PBMC-reconstructed mouse models. Additionally, finotonlimab exhibited minimal impact on the activation of effector cells via Fc receptor-dependent pathways, potentially facilitating PD-1+ T cell killing. In cynomolgus monkeys, finotonlimab exhibited a nonlinear pharmacokinetic (PK) profile in a dose-dependent manner, and a receptor occupancy rate of approximately 90% was observed at 168 h following a single administration of 1 mg/kg. Finotonlimab's PK profile (especially Cmax) was better than that of marketed antibodies. Following a 13-week successive administration of finotonlimab, a pharmacodynamic analysis revealed that a sustained mean receptor occupancy of PD-1 molecules on circulating T cells remained at or above 93% for up to 8 weeks, even at a dose of 3 mg/kg, and that there were higher antibody accumulations in different dose groups. Conclusions: Taken together, the preclinical findings are promising and provide the groundwork for evaluating the efficacy and pharmacodynamic characteristics of finotonlimab in clinical trials.
Collapse
Affiliation(s)
- Yunqi Yao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Xiaoning Yang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jing Li
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Erhong Guo
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Huiyu Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chunyun Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Cancer Biology Center, Frontiers Science Center for New Organic Matter, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Xiao Zhang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Jilei Jia
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Rui Wang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Juan Ma
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Yaqi Dai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Mingjing Deng
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Chulin Yu
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Lingling Sun
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (Y.Y.); (X.Y.); (J.L.); (E.G.); (H.W.); (C.S.); (X.Z.); (J.J.); (R.W.); (J.M.); (Y.D.); (M.D.); (C.Y.); (L.S.)
- Beijing Key Laboratory of Monoclonal Antibody Research and Development, Sino Biological Inc., Beijing 100176, China
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
25
|
Komic H, Schmachtel T, Simoes C, Külp M, Yu W, Jolly A, Nilsson MS, Gonzalez C, Prosper F, Bonig H, Paiva B, Thorén FB, Rieger MA. Continuous map of early hematopoietic stem cell differentiation across human lifetime. Nat Commun 2025; 16:2287. [PMID: 40055319 PMCID: PMC11889232 DOI: 10.1038/s41467-025-57096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/11/2025] [Indexed: 05/13/2025] Open
Abstract
Uncovering early gene network changes of human hematopoietic stem cells (HSCs) leading to differentiation induction is of utmost importance for therapeutic manipulation. We employed single cell proteo-transcriptomic sequencing to FACS-enriched bone marrow hematopoietic stem and progenitor cells (HSPCs) from 15 healthy donors. Pseudotime analysis reveals four major differentiation trajectories, which remain consistent upon aging, with an early branching point into megakaryocyte-erythroid progenitors. However, young donors suggest a more productive differentiation from HSPCs to committed progenitors of all lineages. tradeSeq analysis depicts continuous changes in gene expression of HSPC-related genes (DLK1, ADGRG6), and provides a roadmap of gene expression at the earliest branching points. We identify CD273/PD-L2 to be highly expressed in a subfraction of immature multipotent HSPCs with enhanced quiescence. Functional experiments confirm the immune-modulatory function of CD273/PD-L2 on HSPCs in regulating T-cell activation and cytokine release. Here, we present a molecular map of early HSPC differentiation across human life.
Collapse
Affiliation(s)
- Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tessa Schmachtel
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Catia Simoes
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Marius Külp
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Weijia Yu
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Adrien Jolly
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Malin S Nilsson
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carmen Gonzalez
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Felipe Prosper
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bruno Paiva
- Cancer Center Clínica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IDISNA, CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Fredrik B Thorén
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael A Rieger
- Department of Medicine 2, Hematology/Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Cardio-Pulmonary-Institute, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Ward FJ, Kennedy PT, Al-Fatyan F, Dahal LN, Abu-Eid R. CTLA-4-two pathways to anti-tumour immunity? IMMUNOTHERAPY ADVANCES 2025; 5:ltaf008. [PMID: 40265076 PMCID: PMC12012449 DOI: 10.1093/immadv/ltaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/02/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint inhibitor (ICI) therapies have revolutionized cancer therapy and improved patient outcomes in a range of cancers. ICIs enhance anti-tumour immunity by targeting the inhibitory checkpoint receptors CTLA-4, PD-1, PD-L1, and LAG-3. Despite their success, efficacy, and tolerance vary between patients, raising new challenges to improve these therapies. These could be addressed by the identification of robust biomarkers to predict patient outcome and a more complete understanding of how ICIs affect and are affected by the tumour microenvironment (TME). Despite being the first ICIs to be introduced, anti-CTLA-4 antibodies have underperformed compared with antibodies that target the PD-1/PDL-1 axis. This is due to the complexity regarding their precise mechanism of action, with two possible routes to efficacy identified. The first is a direct enhancement of effector T-cell responses through simple blockade of CTLA-4-'releasing the brakes', while the second requires prior elimination of regulatory T cells (TREG) to allow emergence of T-cell-mediated destruction of tumour cells. We examine evidence indicating both mechanisms exist but offer different antagonistic characteristics. Further, we investigate the potential of the soluble isoform of CTLA-4, sCTLA-4, as a confounding factor for current therapies, but also as a therapeutic for delivering antigen-specific anti-tumour immunity.
Collapse
Affiliation(s)
- Frank J Ward
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Paul T Kennedy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Farah Al-Fatyan
- Medical Sciences and Nutrition, Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Rasha Abu-Eid
- Medical Sciences and Nutrition, Institute of Dentistry, School of Medicine, Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Dentistry, College of Medicine and Health, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
27
|
Zang H, Liu T, Wang X, Cheng S, Zhu X, Huang C, Duan L, Zhao X, Guo F, Wang X, Zhang C, Yang F, Gu Y, Hu H, Gao S. PD-1 IR2 promotes tumor evasion via deregulating CD8 + T cell function. J Immunother Cancer 2025; 13:e010529. [PMID: 40050045 PMCID: PMC11887316 DOI: 10.1136/jitc-2024-010529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 02/22/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The programmed cell death 1 (PD-1) is an immune checkpoint that mediates immune evasion of tumors. Alternative splicing (AS) such as intron retention (IR) plays a crucial role in the immune-related gene processing and its function. However, it is not clear whether PDCD1 encoding PD-1 exists as an IR splicing isoform and what underlying function of such isoform plays in tumor evasion. METHODS An AS isoform of human PDCD1, characterized by the second IR and named PD-1IR2, was identified by reverse transcription-PCR (RT-PCR) and Sanger sequencing. The expression profile of PD1IR2 was assessed by quantitative RT-PCR and flow cytometry, while its function was evaluated through immune cell proliferation, cytokine interleukin 2 secretion, and tumor cell killing assays. PDCD1IR2 CKI mice which specifically conditional knock-in PDCD1IR2 in T cells and humanized peripheral blood mononuclear cells (PBMC)-NOG (NOD.Cg-PrkdcscidIL2rgtm1Sug/JicCrl) mice were utilized to further confirm the physiological function of PD-1IR2 in vivo. RESULTS PD-1IR2 is expressed in a variety of human leukemia cell lines and tumor-infiltrating lymphocytes. PD-1IR2 expression is induced on T cell activation and regulated by the RNA-binding protein hnRNPLL. PD-1IR2 negatively regulates the immune function of CD8+ T cells, indicated by inhibiting T cell proliferation, cytokine production, and tumor cell killing in vitro. PD-1IR2+ CD8+ T cells show impaired antitumor function, which consequently promote tumor evasion in a conditional knock-in mouse model and a PBMC-engrafted humanized NOG mouse model. PD-1IR2 mice exhibit resistance to anti-PD-L1 therapy compared with wild-type mice. CONCLUSIONS PD-1IR2 is a potential immune checkpoint that may mediate potential resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Haojing Zang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
| | - Tongfeng Liu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Xiaodong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuwen Cheng
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaofeng Zhu
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Chang Huang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Medical College, Guizhou University, Guiyang, Guizhou, China
| | - Liqiang Duan
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xujie Zhao
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Fang Guo
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Xuetong Wang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chang Zhang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Department of oncology, The Key Laboratory of Advanced Interdisciplinary Studies, First Affiliated Hospital of Guangzhou Medical University State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong, China
| | - Facai Yang
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Yinmin Gu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Gao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
- School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
29
|
Dey T, Agrawal S. Immunotherapy in cervical cancer: an innovative approach for better treatment outcomes. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002296. [PMID: 40061136 PMCID: PMC11886377 DOI: 10.37349/etat.2025.1002296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/05/2025] [Indexed: 05/04/2025] Open
Abstract
Cervical cancer remains a significant global health challenge, ranking as the fourth most common cancer among women. Persistent infection with high-risk human papillomavirus (HPV) is the primary etiological factor, leading to immune evasion mechanisms that promote tumor development and progression. Immunotherapy has emerged as a transformative approach in the management of cervical cancer, aiming to restore and enhance the body's immune response against tumor cells. Checkpoint inhibitors targeting programmed death-1 (PD-1) and its ligand (PD-L1) have shown promising results in patients with advanced or recurrent cervical cancer. Pembrolizumab, a PD-1 inhibitor, has been approved for PD-L1-positive cervical cancer, demonstrating durable responses. However, low response rates necessitate exploration of combination strategies. Trials are underway combining checkpoint inhibitors with chemotherapy, radiation, or other immunotherapeutic agents to enhance efficacy. Therapeutic vaccines targeting HPV antigens, such as E6 and E7 oncoproteins, are also a focus of active research. These vaccines aim to elicit robust cytotoxic T-cell responses, offering a potential strategy for early intervention and disease control. Adoptive T-cell therapies, including engineered T-cell receptor (TCR) and chimeric antigen receptor (CAR)-T cells, represent cutting-edge advancements, though challenges with tumor heterogeneity and off-target effects persist. However, challenges such as limited response rates and immune evasion mechanisms remain. The tumor microenvironment (TME) in cervical cancer, characterized by immunosuppressive cells and cytokines, poses a significant barrier to effective immunotherapy. Emerging approaches targeting the TME, such as cytokine modulation, hold promise in overcoming resistance mechanisms. Key gaps include a lack of biomarkers for patient selection, insufficient understanding of TME dynamics, and suboptimal strategies for overcoming antigen heterogeneity and immune resistance. This review addresses these issues by providing a comprehensive analysis of the current landscape of cervical cancer immunotherapy, identifying critical barriers, and highlighting emerging approaches, such as combination therapies, novel immune targets, and strategies to modulate the TME, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Treshita Dey
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
30
|
Özdemir BH, Baştürk B, Sayın CB, Haberal M. Programmed Death-Ligand 1 in Renal Allografts With Antibody-Mediated Rejection. EXP CLIN TRANSPLANT 2025; 23:192-201. [PMID: 40223384 DOI: 10.6002/ect.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
OBJECTIVES Despite its known role in promoting tolerance, the function of programmed cell death protein 1/programmed death ligand 1 in antibody-mediated rejection is less clear. We aimed to clarify this role by examining expression of programmed cell death protein 1/programmed death ligand 1 in renal allografts diagnosed with antibody-mediated rejection. MATERIALS AND METHODS We examined 110 patients: 68 with pure antibody-mediated rejection (group 1) and 42 with both antibody-mediated rejection and T-cell mediated rejection (group 2). Renal immune cell infiltration, cytokine expression, and programmed cell death protein 1/programmed death ligand 1 expres-sion were examined immunohistochemically. RESULTS Expression of programmed cell death protein 1/programmed death ligand 1 in endothelial and inflammatory cells was higher in group 2 versus in group 1 (P < .001). Expression of programmed cell death protein 1/programmed death ligand 1 increased with immune cell infiltration. An inverse relationship existed between peritubular capillary DR expression and programmed cell death protein 1/programmed death ligand 1 interaction, with a positive correlation with tubular HLA-DR. Development of interstitial fibrosis was shown in 52.3% of patients with endothelial programmed cell death protein 1/programmed death ligand 1 interaction compared with 12.1% without this interaction (P < .001). Ten-year survival rate was 27.3% in patients with versus 66.7% in patients without endothelial programmed cell death protein 1/programmed death ligand 1 (P < .001) and 31.3% in patients with and 66.1% in patients without inflammatory cell programmed cell death protein 1/programmed death ligand 1 expression (P < .001). CONCLUSIONS Heightened immunological nature in antibody-mediated rejection may influence the unexpected functions of programmed death ligand 1. Inhibitory functions of the programmed cell death protein 1/programmed death ligand 1 pathway may be less effective under strong T-cell activation with high immunological costimulation in antibody-mediated rejection.
Collapse
Affiliation(s)
- Binnaz Handan Özdemir
- From the Pathology Department, Başkent University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
31
|
Silwal AP, Thennakoon SKS, Jahan R, Arya SP, Postema RM, Timilsina HP, Reynolds AM, Kokensparger KB, Tan X. Aptamer-Assisted DNA SELEX: Dual-Site Targeting of a Single Protein. ACS Biomater Sci Eng 2025. [PMID: 40016918 DOI: 10.1021/acsbiomaterials.4c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Heterobivalent fusion aptamers that target a single protein show significant promise for studying protein-protein interactions. However, a major challenge is finding two distinct aptamers that can simultaneously recognize the same protein. In this study, we used a novel technique called Aptamer-Assisted DNA SELEX (AADS) to isolate two distinct aptamers capable of recognizing different sites on the programmed death-ligand 1 (PD-L1) protein. Initially, Aptamer 1 (P1C2) was identified by using conventional DNA SELEX targeting the PD-L1 protein. Subsequently, Aptamer 2 (P1CSC) was obtained via AADS, which was designed to bind to the PD-L1/P1C2 complex. After confirming that both aptamers could simultaneously recognize the PD-L1 protein, we engineered fusion aptamers by optimizing their orientation and linker sequences, resulting in the creation of the optimized fusion aptamer, P1CSC-T7-P1C1. Our fusion aptamer targeting PD-L1 demonstrated remarkable specificity and affinity, effectively inhibiting PD-1/PD-L1 interactions at both the protein and cellular levels. These findings highlight the potential of fusion aptamers via AADS as powerful tools for targeting the PD-L1 protein and cancer cells (A549 cells). This represents a significant advancement in aptamer-based molecular recognition and has the potential to drive innovation as a versatile method for targeting a wide range of proteins.
Collapse
Affiliation(s)
- Achut Prasad Silwal
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | | | - Raunak Jahan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Satya Prakash Arya
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Rick Mason Postema
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Hari Prasad Timilsina
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Andrew Michael Reynolds
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Kaytelee Brooke Kokensparger
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
32
|
Li D, Lan X, Xu L, Zhou S, Luo H, Zhang X, Yu W, Yang Y, Fang X. Influence of gut microbial metabolites on tumor immunotherapy: mechanisms and potential natural products. Front Immunol 2025; 16:1552010. [PMID: 40066456 PMCID: PMC11891355 DOI: 10.3389/fimmu.2025.1552010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/06/2025] [Indexed: 05/13/2025] Open
Abstract
In recent years, tumor immunotherapy has made significant breakthroughs in the treatment of malignant tumors. However, individual differences in efficacy have been observed in clinical practice. There is increasing evidence that gut microbial metabolites influence the efficacy of distal tumor immunotherapy via the gut-liver axis, the gut-brain axis and the gut-breast axis, a process that may involve modulating the expression of immune cells and cytokines in the tumor microenvironment (TME). In this review, we systematically explore the relationship between gut microbial metabolites and tumor immunotherapy, and examine the corresponding natural products and their mechanisms of action. The in-depth exploration of this research area will provide new ideas and strategies to enhance the efficacy of tumor immunotherapy and mitigate adverse effects.
Collapse
Affiliation(s)
- Dongyang Li
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xintian Lan
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Linyi Xu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuo Zhou
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Haoming Luo
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoying Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Yu
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yonggang Yang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- Changchun University of Chinese Medicine, Changchun, China
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
33
|
Connor C, Carr QL, Sweazy A, McMasters K, Hao H. Clinical Approaches for the Management of Skin Cancer: A Review of Current Progress in Diagnosis, Treatment, and Prognosis for Patients with Melanoma. Cancers (Basel) 2025; 17:707. [PMID: 40002300 PMCID: PMC11853469 DOI: 10.3390/cancers17040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Melanoma represents a significant public health challenge due to its increasing incidence and potential for metastasis. This review will explore the current clinical approaches to the management of melanoma, focusing on advancements in diagnosis, treatment, and prognosis. Methods for early detection and accurate staging have been enhanced by new diagnostic strategies. Treatment modalities have expanded beyond traditional surgical excision to include targeted therapy and immunotherapy. Prognostic assessment has benefited from the development of novel biomarkers and genetic profiling. This review will highlight the progress made in the multidisciplinary management of melanoma, underscoring the importance of continuous research to improve patient outcomes.
Collapse
Affiliation(s)
- Colton Connor
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Quinton L. Carr
- School of Medicine, University of Louisville, Louisville, KY 40202, USA; (C.C.); (Q.L.C.)
| | - Alisa Sweazy
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Kelly McMasters
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| | - Hongying Hao
- The Hiram C. Polk, Jr., MD Department of Surgery, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (A.S.); (K.M.)
| |
Collapse
|
34
|
Park MN, Choi J, Maharub Hossain Fahim M, Asevedo EA, Nurkolis F, Ribeiro RIMA, Kang HN, Kang S, Syahputra RA, Kim B. Phytochemical synergies in BK002: advanced molecular docking insights for targeted prostate cancer therapy. Front Pharmacol 2025; 16:1504618. [PMID: 40034825 PMCID: PMC11872924 DOI: 10.3389/fphar.2025.1504618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Achyranthes japonica (Miq.) Nakai (AJN) and Melandrium firmum (Siebold and Zucc.) Rohrb. (MFR) are medicinal plants recognized for their bioactive phytochemicals, including ecdysteroids, anthraquinones, and flavonoids. This study investigates the anticancer properties of key constituents of these plants, focusing on the BK002 formulation, a novel combination of AJN and MFR. Specifically, the research employs advanced molecular docking and in silico analyses to assess the interactions of bioactive compounds ecdysterone, inokosterone, and 20-hydroxyecdysone (20-HE) with key prostate cancer-related network proteins, including 5α-reductase, CYP17, DNMT1, Dicer, PD-1, and PD-L1. Molecular docking techniques were applied to evaluate the binding affinities contributions of the bioactive compounds in BK002 against prostate cancer-hub network targets. The primary focus was on enzymes like 5α-reductase and CYP17, which are central to androgen biosynthesis, as well as on cancer-related proteins such as DNA methyltransferase 1 (DNMT1), Dicer, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1). Based on data from prostate cancer patients, key target networks were identified, followed by in silico analysis of the primary bioactive components of BK002.In silico assessments were conducted to evaluate the safety profiles of these compounds, providing insights into their therapeutic potential. The docking studies revealed that ecdysterone, inokosterone, and 20-hydroxyecdysonec demonstrated strong binding affinities to the critical prostate cancer-related enzymes 5α-reductase and CYP17, contributing to a potential reduction in androgenic activity. These compounds also exhibited significant inhibitory interactions with DNMT1, Dicer, PD-1, and PD-L1, suggesting a capacity to interfere with key oncogenic and immune evasion pathways. Ecdysterone, inokosterone, and 20-hydroxyecdysone have demonstrated the ability to target key oncogenic pathways, and their favorable binding affinity profiles further underscore their potential as novel therapeutic agents for prostate cancer. These findings provide a strong rationale for further preclinical and clinical investigations, supporting the integration of BK002 into therapeutic regimens aimed at modulating tumor progression and immune responses.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | - Estéfani Alves Asevedo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Experimental Pathology Laboratory, Midwest Campus, Federal University of São João del-Rei, Divinópolis, Brazil
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | | | - Han Na Kang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Zielińska MK, Ciążyńska M, Sulejczak D, Rutkowski P, Czarnecka AM. Mechanisms of Resistance to Anti-PD-1 Immunotherapy in Melanoma and Strategies to Overcome It. Biomolecules 2025; 15:269. [PMID: 40001572 PMCID: PMC11853485 DOI: 10.3390/biom15020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Resistance to anti-PD-1 therapy in melanoma remains a major obstacle in achieving effective and durable treatment outcomes, highlighting the need to understand and address the underlying mechanisms. The first key factor is innate anti-PD-1 resistance signature (IPRES), an expression of a group of genes associated with tumor plasticity and immune evasion. IPRES promotes epithelial-to-mesenchymal transition (EMT), increasing melanoma cells' invasiveness and survival. Overexpressed AXL, TWIST2, and WNT5a induce phenotypic changes. The upregulation of pro-inflammatory cytokines frequently coincides with EMT-related changes, further promoting a resistant and aggressive tumor phenotype. Inflamed tumor microenvironment may also drive the expression of resistance. The complexity of immune resistance development suggests that combination therapies are necessary to overcome it. Furthermore, targeting epigenetic regulation and exploring novel approaches such as miR-146a modulation may provide new strategies to counter resistance in melanoma.
Collapse
Affiliation(s)
- Magdalena K. Zielińska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Faculty of Medicine, Warsaw Medical University, 02-091 Warsaw, Poland
| | - Magdalena Ciążyńska
- Chemotherapy Unit and Day Chemotherapy Ward, Specialised Oncology Hospital, 97-200 Tomaszów Mazowiecki, Poland;
- Department of Dermatology, Paediatric Dermatology and Oncology Clinic, Medical University of Lodz, 91-347 Łódź, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.K.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| |
Collapse
|
36
|
Zhang J, Li G, Guo Q, Yang Y, Yang J, Feng X, Yao Z. Allergens in Atopic Dermatitis. Clin Rev Allergy Immunol 2025; 68:11. [PMID: 39924626 DOI: 10.1007/s12016-025-09024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex relationship to allergens. While AD itself is not an allergic reaction and does not necessarily involve allergen sensitization, AD patients show higher rates of sensitization to food and inhalant allergens compared to the general population. Recent evidence refining the "dual allergen exposure hypothesis" demonstrates that early oral exposure to allergens through an intact gastrointestinal barrier typically promotes tolerance, while exposure through compromised skin or respiratory barriers often leads to sensitization. Therefore, the impaired skin barrier function in AD patients increases the risk of transcutaneous sensitization and may interfere with oral tolerance development. Interestingly, AD patients' sensitivity to contact allergens (such as metals and fragrances) is not necessarily higher than that of the general population, which may be related to the inherent properties of these allergens. Personalized allergen testing can help guide appropriate allergen avoidance and reintroduction strategies in AD management. The insights into optimal allergen exposure conditions have also expanded the potential applications of allergen-specific immunotherapy in preventing AD onset in high-risk populations and halting the atopic march.
Collapse
Affiliation(s)
- Jiayan Zhang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Guofang Li
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qiuyang Guo
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yijun Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jinxiang Yang
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaobo Feng
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Zhirong Yao
- Dermatology Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
37
|
Gupta R, Kumar R, Penn CA, Wajapeyee N. Immune evasion in ovarian cancer: implications for immunotherapy and emerging treatments. Trends Immunol 2025; 46:166-181. [PMID: 39855990 PMCID: PMC11835538 DOI: 10.1016/j.it.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, characterized by multiple histological subtypes, each with distinct pathological and clinical features. Current treatment approaches include cytotoxic chemotherapies, poly(ADP-ribose) polymerase (PARP) inhibitors, bevacizumab, hormonal therapy, immunotherapy, and antibody-drug conjugates (ADCs). In this review we discuss immune evasion mechanisms in OC and the role of genetics, the tumor microenvironment, and tumor heterogeneity in influencing these processes. We also discuss the use of immunotherapies for OC treatment, either alone or in combination with other anticancer agents, with a focus on their clinical outcomes. Finally, we highlight emerging immunotherapies that have either succeeded or are on the verge of significantly impacting cancer treatment, and we discuss their potential utility in the effective treatment of OC.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| | - Raj Kumar
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Courtney A Penn
- Division of Gynecological Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL 35233, USA.
| |
Collapse
|
38
|
Gondal MN, Cieslik M, Chinnaiyan AM. Integrated cancer cell-specific single-cell RNA-seq datasets of immune checkpoint blockade-treated patients. Sci Data 2025; 12:139. [PMID: 39843468 PMCID: PMC11754430 DOI: 10.1038/s41597-025-04381-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapies have emerged as a promising avenue for the treatment of various cancers. Despite their success, the efficacy of these treatments is variable across patients and cancer types. Numerous single-cell RNA-sequencing (scRNA-seq) studies have been conducted to unravel cell-specific responses to ICB treatment. However, these studies are limited in their sample sizes and require advanced coding skills for exploration. Here, we have compiled eight scRNA-seq datasets from nine cancer types, encompassing 223 patients, 90,270 cancer cells, and 265,671 other cell types. This compilation forms a unique resource tailored to investigate how cancer cells respond to ICB treatment across cancer types. We meticulously curated, quality-checked, pre-processed, and analyzed the data, ensuring easy access for researchers. Moreover, we designed a user-friendly interface for seamless exploration. By sharing the code and data for creating these interfaces, we aim to assist fellow researchers. These resources offer valuable support to those interested in leveraging and exploring single-cell datasets across diverse cancer types, facilitating a comprehensive understanding of ICB responses.
Collapse
Affiliation(s)
- Mahnoor N Gondal
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| | - Arul M Chinnaiyan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
- Howard Hughes Medical Institute, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Gérard AO, Merino D, Benzaquen J, Destere A, Borchiellini D, Gosset C, Rocher F, Andreani M, Marquette CH, Montaudié H, Drici MD, Sicard A. PDL1 inhibitors may be associated with a lower risk of allograft rejection than PD1 and CTLA4 inhibitors: analysis of the WHO pharmacovigilance database. Front Immunol 2025; 16:1514033. [PMID: 39911399 PMCID: PMC11794220 DOI: 10.3389/fimmu.2025.1514033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Background Transplant recipients face increased cancer mortality due to immunosuppressive treatments. Immune checkpoint inhibitors (ICI) have improved survival rates, but data on the use of these agents in transplant recipients is scarce. ICI may trigger allograft rejection, but the absolute risk of AR between the different ICI classes remains to be defined. Methods VigiBase® (WHO's pharmacovigilance database) was queried for reports of AR involving CTLA4, PD1, or PDL1 inhibitors. Disproportionality analysis compares the proportion of reports with a specific adverse drug reaction (ADR) and a given drug to the proportion of reports with the same ADR and other drugs. A lower 95% confidence interval for the Information Component (IC) >0 suggests a signal. The comparative Reporting Odds Ratios (ROR) for AR, between PD1 and PDL1 inhibitors, was calculated. Results We gathered 159 AR involving an ICI, especially nivolumab (73, 45.9%), mostly affecting kidneys (87, 54.7%). Median time to onset: 28 days. Fatal outcome: 36 reports (22.6%). ICI were significantly associated with AR: IC=1.7 [1.4;1.9]. Specifically, PD1 inhibitors yielded an IC of 2.0 [1.7;2.2] (152 reports observed compared to 38 expected). By contrast, the IC of PDL1 inhibitors was negative: -2.6 [-6.4;-1.0] (1 observed, 9 expected). The comparative ROR of PD1 compared to PDL1 inhibitors was 33.7 [4.7;240.9] (p=0.0005). Conclusions We confirm the association between ICI treatment and AR. Notably, PDL1 inhibitors showed surprisingly low AR reports compared to CTLA4 and PD1 inhibitors. Further prospective studies are warranted to confirm whether PDL1 inhibitors indeed reduce AR risk compared to other ICI.
Collapse
Affiliation(s)
- Alexandre O. Gérard
- Department of Nephrology-Dialysis-Transplantation, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Department of Clinical Pharmacology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, CNRS, University Côte d’Azur, Nice, France
| | - Diane Merino
- Department of Clinical Pharmacology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Molecular and Cellular Pharmacology Institute (IPMC), UMR 7275, CNRS, Université Côte d’Azur, Nice, France
| | - Jonathan Benzaquen
- Molecular and Cellular Pharmacology Q6 Institute (IPMC), UMR 7275, CNRS, Université Côte d'Azur, Nice, France
| | - Alexandre Destere
- Department of Clinical Pharmacology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
| | - Delphine Borchiellini
- Department of Clinical Research and Innovation, Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France
| | - Clément Gosset
- Department of Nephrology-Dialysis-Transplantation, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, CNRS, University Côte d’Azur, Nice, France
| | - Fanny Rocher
- Department of Clinical Pharmacology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
| | - Marine Andreani
- Department of Nephrology-Dialysis-Transplantation, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
| | - Charles-Hugo Marquette
- Molecular and Cellular Pharmacology Q6 Institute (IPMC), UMR 7275, CNRS, Université Côte d'Azur, Nice, France
| | - Henri Montaudié
- Department of Dermatology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Mediterranean Center for Molecular Medicine (C3M), UMR 1065, INSERM, Université Côte d’Azur, Nice, France
| | - Milou-Daniel Drici
- Department of Clinical Pharmacology, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
| | - Antoine Sicard
- Department of Nephrology-Dialysis-Transplantation, Université Côte d’Azur, University Hospital Centre of Nice, Nice, France
- Laboratory of Molecular Physio Medicine (LP2M), UMR 7370, CNRS, University Côte d’Azur, Nice, France
| |
Collapse
|
40
|
Kanp T, Dhuri A, M B, Rode K, Aalhate M, Paul P, Nair R, Singh PK. Exploring the Potential of Nanocarriers for Cancer Immunotherapy: Insights into Mechanism, Nanocarriers, and Regulatory Perspectives. ACS APPLIED BIO MATERIALS 2025; 8:108-138. [PMID: 39791993 DOI: 10.1021/acsabm.4c01797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects. To surmount this challenge, nanoparticle systems have emerged as a potential strategy for transporting immunotherapeutic agents to cancer cells and activating immune cells to combat tumors. Consequently, this process potentially generates an antigen-specific T cells response that effectively suppresses cancer growth. Furthermore, nanoplatforms have high specificity, efficacy, diagnostic potential, and imaging capabilities, making them promising tools for cancer treatment. However, this informative paper delves into the various available immunotherapies, including CAR T cells therapy and immune checkpoint blockade, cytokines, cancer vaccines, and monoclonal antibodies. Furthermore, the paper delves into the concept of theragnostic nanotechnology, which integrates therapy and diagnostics for a more personalized treatment approach for cancer therapy. Additionally, the paper covers the potential benefits of different nanocarrier systems, including marketed immunotherapy products, clinical trials, regulatory considerations, and future prospects for cancer immunotherapy.
Collapse
Affiliation(s)
- Tanmoy Kanp
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Anish Dhuri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Bharath M
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Khushi Rode
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| |
Collapse
|
41
|
Rico LG, Salvia R, Bradford JA, Ward MD, Petriz J. PD-L1 expression in multiple myeloma myeloid derived suppressor cells. Methods Cell Biol 2025; 195:115-141. [PMID: 40180451 DOI: 10.1016/bs.mcb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The Programmed Cell Death Protein 1/Programmed Cell Death Protein Ligand 1 (PD-1/PD-L1) axis stands as one of the most widely acknowledged targets for cancer immunotherapy. This ligand is considered a therapeutic target for this disease as it might play an important role in tumor immune evasion and drug resistance. In multiple myeloma (MM), PD-L1 is overexpressed in abnormal plasma cells and Myeloid-Derived Suppressor Cells (MDSCs). In MDSCs, unlike tumoral cells or derived cell lines, the PD-L1 protein is presented in a conformation not recognized by the monoclonal antibody. In contrast, when stimulating the sample with PMA, the PD-L1 molecule undergoes a conformational change that enables its recognition. Hence, we have developed a flow cytometric screening assay to determine PD-L1 conformational changes in MDSCs based on a minimal manipulation of the sample, to preserve the structure and functionality of the ligand. In this chapter, we provide detailed protocols to assess PD-L1 levels in MDSCs together with the representative results obtained in multiple myeloma patients. The obtained results enable the classification of MM patients based on the different PD-L1 detection after stimulation, which increases compared with unstimulated samples. We also provide protocols to assess kinetic analysis of PD-L1 expression over time and to compare PD-L1 cell surface expression with cytoplasmic expression. Finally, competitive experiments in the presence of durvalumab are also described to study its interaction with PD-L1. This approach can also be used to study the contribution of potential conformational changes in other proteins.
Collapse
Affiliation(s)
- Laura G Rico
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Roser Salvia
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | | - Michael D Ward
- Thermo Fisher Scientific, Fort Collins, CO, United States
| | - Jordi Petriz
- Functional Cytomics Lab, Germans Trias i Pujol Research Institute (IGTP), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Cerdanyola del Vallès, Spain.
| |
Collapse
|
42
|
Dai B, Jiang J, Yu X, Zhan H, Hu Z. Efficacy and safety of nivolumab plus ipilimumab in gastrointestinal cancers: a systematic review and meta-analysis. Front Oncol 2025; 14:1515992. [PMID: 39839773 PMCID: PMC11746121 DOI: 10.3389/fonc.2024.1515992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Gastrointestinal (GI) cancers represent a significant global health burden, and the need for more effective treatment options is exceptionally pressing. The present meta-analysis aimed to explore the efficacy and safety of the combination of nivolumab and ipilimumab in treating GI cancers. Methods A systematic search of four databases (PubMed, Embase, Web of Science, and Cochrane Library) was conducted for articles on the treatment of GI cancers with nivolumab combined with ipilimumab, published from 2014 up to 30 August 2024. The inclusion criteria were designed according to the principles of Participants, Intervention, Control, Outcomes, and Study (PICOS). The control group was chemotherapy or nivolumab monotherapy or nivolumab in combination with other drugs. We extracted data from 10 randomized controlled trials and utilized a random effects model to assess the objective response rate (ORR), median progression-free survival (mPFS), median overall survival (mOS), median duration of response (mDOR), and treatment-related adverse events (TRAEs). The data analysis was conducted using Review Manager version 5.4 and Stata version 12.0. Results Overall, the combination of nivolumab and ipilimumab demonstrated superior outcomes, including a higher ORR (OR = 1.69, P = 0.01), prolonged mOS (MD = 1.74, P = 0.04) and extended mDOR (MD = 5.64, P < 0.00001) compared to the control group. Subgroup analysis demonstrated that the ORR (OR = 1.75, P = 0.02) and mOS (MD = 5.02, P = 0.003) were significantly improved in patients with esophageal cancer. Notably, the ORR in patients with biliary cancer was significantly lower (OR = 0.11, P = 0.04). Additionally, the ORR was significantly higher in the NIVO1 + IPI3group (OR = 2.82, P = 0.01) and NIVO3 + IPI1 group (OR = 1.62, P = 0.01). Regarding safety, there was no statistically significant difference between the combination regimen and the control group in terms of any grade (OR = 0.72, P = 0.26) or grade 3-4 TRAEs (OR = 1.36, P = 0.14). Conclusions Nivolumab in combination with ipilimumab demonstrated significant efficacy in GI cancers (especially esophageal cancer) without causing more adverse reactions. However, its efficacy in biliary cancer still needs to be further proven. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024590994.
Collapse
Affiliation(s)
- Bowen Dai
- Southwest Medical University, Luzhou, China
| | | | - Xiaoyu Yu
- Southwest Medical University, Luzhou, China
| | | | - Zhengchuan Hu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Zhang L, Li YW, Xie T, Sun K, Huang X, Xiong W, Liu RJ. Potential role of P4HB in the tumor microenvironment and its clinical prognostic value: a comprehensive pan-cancer analysis and experimental validation with a focus on KIRC. Cancer Cell Int 2025; 25:1. [PMID: 39754183 PMCID: PMC11697512 DOI: 10.1186/s12935-024-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients. METHODS We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database. In addition, we used the Metascape database to construct protein-protein interaction networks and the single-cell Sequencing database for functional analysis. An immune cell infiltration analysis was performed to explore the potential role of P4HB in TME. We further analyze the relationship between P4HB and immune checkpoint molecules to explore the role of P4HB in immune checkpoint blockade therapy. Finally, the oncogenic role of P4HB in RCC cells was validated using colony formation and wound healing assays. RESULTS RNA and protein levels of P4HB were extensively up-regulated in pan-cancer. However, high P4HB expression was associated with poor survival in KIRC. The clinical relevance analyses of P4HB suggested that high P4HB expression was associated with advanced clinical TNM stage. Moreover, multivariate cox regression analysis indicated that P4HB (HR = 1.372, 95% CI 1.047-1.681, P = 0.019) was an independent risk factor for OS in KIRC. Functional analysis revealed that P4HB is involved in hypoxia, TME and immune system processes. Our study also found that high P4HB expression was significantly correlated with elevated infiltration levels in CD8 + T cells and M2 macrophages. The results of colony formation and wound healing assays showed that knockdown of P4HB inhibited the RCC growth and migration. CONCLUSIONS P4HB is a specific biomarker for KIRC prognosis and is significantly associated with clinical characteristics. In addition, P4HB may play an influential role in TME and is a biomarker for ICB therapy.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yu-Wei Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Tianyi Xie
- Department of Neuroscience, Kenneth P. Dietrich School of Arts & Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wei Xiong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rui-Ji Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
44
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
45
|
Cho SH, Park JM, Lee EH, Song YH, Jang YJ, Choi SB, Heo YS. High-resolution crystal structure of PD-1 in complex with retifanlimab, the FDA-approved immune checkpoint blocking antibody for treating Merkel cell carcinoma. Biochem Biophys Res Commun 2025; 742:151106. [PMID: 39632294 DOI: 10.1016/j.bbrc.2024.151106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Retifanlimab is a humanized monoclonal antibody that specifically targets programmed cell death protein 1 (PD-1), an essential immune checkpoint that modulates T-cell immune responses. Several anti-PD-1 antibodies have been market-approved, marking a significant advancement in the treatment of diverse tumor types by restoring the T-cell immune response. Recently, the US FDA approved retifanlimab for treating metastatic or recurrent locally advanced Merkel cell carcinoma. We present the crystal structure of PD-1 in complex with the retifanlimab Fab at a resolution of 1.54 Å to elucidate the structural basis for the mechanism of action of this antibody. This work clarifies the detailed interactions and conformational alterations that occur upon antibody binding. The epitope of retifanlimab partially overlaps with the ligand binding site, and its binding induced unique conformations of the flexible loops within PD-1, including BC, C'D, and FG loops, thereby optimizing interactions with the antibody. A thorough analysis of its interaction with PD-1 and other FDA-approved anti-PD-1 antibodies may provide valuable insights into the rational design of enhanced therapies to regulate immune responses in cancer treatment.
Collapse
MESH Headings
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/chemistry
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Carcinoma, Merkel Cell/drug therapy
- Carcinoma, Merkel Cell/immunology
- Carcinoma, Merkel Cell/chemistry
- Humans
- Crystallography, X-Ray
- Immune Checkpoint Inhibitors/chemistry
- Immune Checkpoint Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Models, Molecular
- Protein Conformation
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- Skin Neoplasms/pathology
- Protein Binding
Collapse
Affiliation(s)
- Seong-Ha Cho
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Jeong-Min Park
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Eun Ho Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Ye Han Song
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Yu-Jeong Jang
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Seung-Beom Choi
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029. Republic of Korea, Republic of Korea.
| |
Collapse
|
46
|
Liu X, Lei X, Huang S, Yang X. Current Perspectives of Immunotherapy for Hepatocellular Carcinoma. Comb Chem High Throughput Screen 2025; 28:185-201. [PMID: 38031784 DOI: 10.2174/0113862073255266231025111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Hepatocellular carcinoma is the sixth most common tumor and the third leading cause of cancer death worldwide. It ranks fourth in the spectrum of malignant tumor incidence and second in the order of death from major malignant tumors in China. Hepatocellular carcinoma is a complex ecosystem containing non-tumor cells (mainly immune-related cells), and its immunotherapy can stimulate the recognition of specific tumor antigens, inhibit the proliferation of cancer cells, and produce over-memory lymphocytes, which can prevent recurrence. So, immunotherapy of hepatocellular carcinoma is increasingly becoming a research hotspot in liver cancer treatment. With the intensive research in recent years, great progress has been made in immunotherapy for hepatocellular carcinoma, including immune checkpoint inhibitors, pericyte therapy, vaccination, and antiviral therapy. In addition, the study found that the therapeutic effect of combination therapy was enhanced compared to monotherapy. This review summarizes the most prominent immunotherapies currently available for the clinical treatment of patients with HCC and the main opportunities and challenges facing HCC research.
Collapse
Affiliation(s)
- Xiaoyi Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
47
|
Jin B, Qi Y, Chao H, Yang X, Li H, Wan S. Effect of decitabine on PD-L2 methylation in whole blood of iodine-induced autoimmune thyroiditis rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117510. [PMID: 39667324 DOI: 10.1016/j.ecoenv.2024.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/25/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Excessive iodine intake can induce autoimmune thyroiditis (AIT), and the methylation of programmed death receptor 2 (PD-L2) may be involved in the development of iodine-induced AIT. Here, we investigated the immune role of methylation of the susceptibility gene PD-L2 in the occurrence of iodine-induced AIT using the DNA methyltransferase inhibitor Decitabine (Dec) in an experimental autoimmune thyroiditis (EAT) rat model. After injecting Dec intraperitoneally into EAT rats, we performed arsenic-cerium catalytic spectrophotometry, pathological hematoxylin and eosin staining, enzyme-linked immunosorbent assay, quantitative methylation-specific polymerase chain reaction (qMSP), and quantitative real-time polymerase chain reaction (qPCR) to determine the relevant indices. The results showed that compared with the control group, the urinary iodine, thyroid lymphocyte infiltration, thyroglobulin antibody (TgAb), interferon (IFN-γ), and interleukin (IL-23) levels of the EAT rats were significantly increased. The PD-L2 methylation levels were significantly decreased in EAT rats compared to control rats, and the mRNA expression of the PD-L2 was significantly increased. Following Dec intervention, the methylation level of the PD-L2 in rats increased and interferon and interleukin-23 levels decreased, albeit not significantly. However, the mRNA expression of PD-L2 decreased significantly after Dec intervention, and the thyroid function of EAT rats also showed a gradual improvement trend. In summary, hypomethylation of PD-L2 is closely related to the development of iodine-induced AIT. Pro-inflammatory cellular factors are also involved in iodine-induced AIT progression. Although Dec shows promise in the treatment of AIT, further evaluation of its safety is necessary.
Collapse
Affiliation(s)
- Baiming Jin
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Yanbo Qi
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Hong Chao
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Xiaolei Yang
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Hongjie Li
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Siyuan Wan
- Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
48
|
Sasmal P, Prabitha P, Prashantha Kumar BR, Swetha BR, Babasahib SK, Raghavendra NM. Beyond peptides: Unveiling the design strategies, structure activity correlations and protein-ligand interactions of small molecule inhibitors against PD-1/PD-L1. Bioorg Chem 2025; 154:108036. [PMID: 39693923 DOI: 10.1016/j.bioorg.2024.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The landscape of cancer treatment has been transformed by the emergence of immunotherapy, especially through the use of antibodies that target the PD-1/PD-L1 pathway. Recently, there has been a notable increase in interest surrounding immune checkpoint inhibitors for cancer therapy. While antibody-based approaches have drawbacks like high costs and prolonged activity, the approval of monoclonal antibodies such as pembrolizumab and nivolumab has paved the way for a range of alternative therapies, including peptides, peptidomimetics, and small-molecule inhibitors. These smaller molecules, which target the PD-1/PD-L1 interaction, are seen as potential substitutes or supplements to monoclonal antibodies. Our focus in this article is primarily on exploring small molecules designed for PD-1/PD-L1 checkpoint pathway modulation in cancer immunotherapy, along with highlighting current advances in their structural and preclinical/clinical development. The pursuit of therapeutics based on small-molecule inhibitors of the PD-1/PD-L1 axis offers a promising yet intricate avenue for advancing cancer treatment.
Collapse
Affiliation(s)
- Pujan Sasmal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar - 160 062, Punjab, India; Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy (ABMRCP), Bengaluru 560 107, Karnataka, India.
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570 015, Karnataka, India
| | - B R Swetha
- Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Sajeev Kumar Babasahib
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India
| | - Nulgumnalli Manjunathaiah Raghavendra
- Department of Pharmaceutical Chemistry, College of Pharmaceutical Sciences, Dayananda Sagar University (DSU), Bengaluru 560 111, Karnataka, India; Department of Pharmaceutical Chemistry, R R College of Pharmacy, Bengaluru 560 090, Karnataka, India.
| |
Collapse
|
49
|
Bamgbose TT, Schilke RM, Igiehon OO, Nkadi EH, Binwal M, Custis D, Bharrhan S, Schwarz B, Bohrnsen E, Bosio CM, Scott RS, Yurdagul Jr. A, Finck BN, Woolard MD. Lipin-1 restrains macrophage lipid synthesis to promote inflammation resolution. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:85-103. [PMID: 40073265 PMCID: PMC11844145 DOI: 10.1093/jimmun/vkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 03/14/2025]
Abstract
Macrophages are critical to maintaining and restoring tissue homeostasis during inflammation. The lipid metabolic state of macrophages influences their function and polarization, which is crucial to the resolution of inflammation. The contribution of lipid synthesis to proinflammatory macrophage responses is well understood. However, how lipid synthesis regulates proresolving macrophage responses needs to be better understood. Lipin-1 is a phosphatidic acid phosphatase with a transcriptional coregulatory activity that regulates lipid metabolism. We previously demonstrated that lipin-1 supports proresolving macrophage responses, and here, myeloid-associated lipin-1 is required for inflammation resolution, yet how lipin-1-regulated cellular mechanisms promote macrophage proresolution responses is unknown. We demonstrated that the loss of lipin-1 in macrophages led to increased free fatty acid, neutral lipid, and ceramide content and increased phosphorylation of acetyl-CoA carboxylase. The inhibition of the first step of lipid synthesis, the transport of citrate from the mitochondria, reduced lipid content and restored efferocytosis and inflammation resolution in lipin-1mKO mice and macrophages. Our findings suggest macrophage-associated lipin-1 restrains lipid synthesis, promoting proresolving macrophage function in response to proresolving stimuli.
Collapse
Affiliation(s)
- Temitayo T Bamgbose
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Robert M Schilke
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Oluwakemi O Igiehon
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Ebubechukwu H Nkadi
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Monika Binwal
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - David Custis
- Research Core Facility, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Sushma Bharrhan
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Benjamin Schwarz
- Proteins and Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Eric Bohrnsen
- Proteins and Chemistry Section, Research and Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Catharine M Bosio
- Immunity to Pulmonary Pathogens Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Rona S Scott
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - Arif Yurdagul Jr.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Brian N Finck
- Division of Nutritional Sciences and Obesity Medicine, Washington University School of Medicine in St. Louis, St Louis, MO, United States
| | - Matthew D Woolard
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, United States
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center, Shreveport, LA, United States
| |
Collapse
|
50
|
Feghali J, Jackson CM. Therapeutic implications for the PD-1 axis in cerebrovascular injury. Neurotherapeutics 2025; 22:e00459. [PMID: 39368872 PMCID: PMC11840351 DOI: 10.1016/j.neurot.2024.e00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Since the discovery and characterization of the PD-1/PD-L pathway, mounting evidence has emerged regarding its role in regulating neuroinflammation following cerebrovascular injury. Classically, PD-L1 on antigen-presenting cells or tissues binds PD-1 on T cell surfaces resulting in T cell inhibition. In myeloid cells, PD-1 stimulation induces polarization of microglia and macrophages into an anti-inflammatory, restorative phenotype. The therapeutic potential of PD-1 agonism in ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage-related vasospasm, and traumatic brain injury rests on the notion of harnessing the immunomodulatory function of immune checkpoint pathways to temper the harmful effects of immune overactivation and secondary injury while promoting repair and recovery. Immune checkpoint agonism has greater specificity than the wider and non-specific anti-inflammatory effects of other agents, such as steroids. PD-1 agonism has already demonstrated success in clinical trials for rheumatoid arthritis and is being tested in other chronic inflammatory diseases. Further investigation of PD-1 agonism as a therapeutic strategy in cerebrovascular injury can help clarify the mechanisms underlying clinical benefit, develop drugs with optimal pharmacodynamic and pharmacokinetic properties, and mitigate unwanted side effects.
Collapse
Affiliation(s)
- James Feghali
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher M Jackson
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|