1
|
Mao YA, Shi X, Sun P, Spanos M, Zhu L, Chen H, Wang X, Su C, Jin Y, Wang X, Chen X, Xiao J. Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward. Biomaterials 2025; 320:123271. [PMID: 40117750 DOI: 10.1016/j.biomaterials.2025.123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/09/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
Collapse
Affiliation(s)
- Yi-An Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiaozhou Shi
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Pingyuan Sun
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Hang Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xiya Wang
- School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chanyuan Su
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yanjia Jin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou, 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China; Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai, 200444, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Wang L, Yu C, You T, Zhang X, Su H, Cao B, Anwaier S, Xiang H, Dai C, Long X, Han L, Zhang D, Wang J, Zhu P, Yan X, Liang J, Chen Z, Huang H, Zhu S, Sun T, Chen J, Zhu P. Injection of ROS-Responsive Hydrogel Loaded with IL-1β-targeted nanobody for ameliorating myocardial infarction. Bioact Mater 2025; 46:273-284. [PMID: 39811465 PMCID: PMC11732248 DOI: 10.1016/j.bioactmat.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/16/2025] Open
Abstract
The cardiac microenvironment profoundly restricts the efficacy of myocardial regeneration tactics for the treatment of myocardial infarction (MI). A prospective approach for MI therapeutics encompasses the combined strategy of scavenging reactive oxygen species (ROS) to alleviate oxidative stress injury and facilitating macrophage polarization towards the regenerative M2 phenotype. In this investigation, we fabricated a ROS-sensitive hydrogel engineered to deliver our previously engineered IL-1β-VHH for myocardial restoration. In mouse and rat models of myocardial infarction, the therapeutic gel was injected into the pericardial cavity, effectively disseminated over the heart surface, forming an in situ epicardial patch. The IL-1β-VHH released from the hydrogel exhibited penetrative potential into the myocardium. Our results imply that this infarct-targeting gel can adhere to the damaged cardiac tissue and augment the quantity of anti-IL-1β antibodies. Moreover, the anti-IL-1β hydrogel safeguards cardiomyocytes from apoptosis by neutralizing IL-1β and inducing M2-type polarization within the myocardial infarction regions, thereby facilitating therapeutic cardiac repair. Our results emphasize the effectiveness of this synergistic comprehensive treatment modality in the management of MI and showcase its considerable potential for promoting recovery in infarcted hearts.
Collapse
Affiliation(s)
- Lu Wang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Changjiang Yu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ting You
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, China
| | - Xinkui Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Haotao Su
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Bihui Cao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Sainiwaer Anwaier
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Hongmo Xiang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Chengming Dai
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Xiang Long
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Linjiang Han
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Dengfeng Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Junwei Wang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peng Zhu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xinjian Yan
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jialiang Liang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Zerui Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Huanlei Huang
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| | - Shuoji Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Tucheng Sun
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Jimei Chen
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
| | - Ping Zhu
- School of Medicine South China University of Technology, Guangzhou, Guangdong, 510006, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, 510100, China
- Guangdong Provincial People’ S Hospital Ganzhou Hospital, Ganzhou, 341000, China
| |
Collapse
|
3
|
Zhong X, Luo L, Wu J, Li W, Liu X, Ye T, Li Z, Shi P. Adhesion-Assisted Antioxidant-Engineered Mesenchymal Stromal Cells for Enhanced Cardiac Repair in Myocardial Infarction. ACS NANO 2025; 19:11412-11426. [PMID: 40073336 DOI: 10.1021/acsnano.5c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair. Anti-VCAM1 modification facilitates MSC adhesion to inflamed tissue, ensuring MSC retention in the injured myocardium, while PD scavenges ROS surrounding MSCs, creating a conducive environment for cell transplantation. Our data indicate that chemically engineered MSCs effectively disrupt the inflammation-ROS cycle and modulate inflammation-related immune responses, thus improving MI microenvironments. Single-cell RNA sequencing of rat hearts reveals that treatment with engineered MSCs inhibits cardiac fibrosis by suppressing HB-EGF-EGFR signaling between anti-inflammatory macrophages and activated fibrillates. Ultimately, engineered MSCs demonstrate superior therapeutic efficacy in a rat model of MI. This study presents a straightforward, safe, and efficient chemical method for enhancing MSC therapy.
Collapse
Affiliation(s)
- Xianghua Zhong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Jiyuan Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Xinyang Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Tenghui Ye
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan 523059, P. R. China
| | - Peng Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
McMullan E, Joladarashi D, Kishore R. Unpacking Exosomes: A Therapeutic Frontier for Cardiac Repair. Curr Cardiol Rep 2025; 27:73. [PMID: 40111702 PMCID: PMC11925971 DOI: 10.1007/s11886-025-02225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The rising global prevalence of cardiovascular disease is driving the need for innovative biotherapeutics. Recently, exosomes-extracellular vesicles involved in paracrine signaling have shown promise in aiding heart repair associated with cardiovascular conditions. Their therapeutic potential encompasses several beneficial mechanisms, including anti-fibrosis, anti-inflammation, pro-angiogenesis, anti-oxidation, and anti-apoptosis, all contributing to improved cardiac function. This review provides a comprehensive overview of exosomes and highlights the latest research on their effectiveness in addressing current challenges in regenerative cardiac medicine. RECENT FINDINGS Current approaches revolve around elucidating and enhancing how different cell types, cargo, and delivery methods impact healing in a pathological cardiovascular environment. The emerging field of therapeutic exosome research is promising for cardiac regeneration due to the beneficial effects of exosomal cargo. The expansion of mechanistic knowledge and the optimization of techniques are required before standard clinical application.
Collapse
Affiliation(s)
- Elena McMullan
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
5
|
Hu Y, Zhang W, Ali SR, Takeda K, Vahl TP, Zhu D, Hong Y, Cheng K. Extracellular vesicle therapeutics for cardiac repair. J Mol Cell Cardiol 2025; 199:12-32. [PMID: 39603560 PMCID: PMC11788051 DOI: 10.1016/j.yjmcc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted heterogeneous vesicles that play crucial roles in intercellular communication and disease pathogenesis. Due to their non-tumorigenicity, low immunogenicity, and therapeutic potential, EVs are increasingly used in cardiac repair as cell-free therapy. There exist multiple steps for the design of EV therapies, and each step offers many choices to tune EV properties. Factors such as EV source, cargo, loading methods, routes of administration, surface modification, and biomaterials are comprehensively considered to achieve specific goals. PubMed and Google Scholar were searched in this review, 89 articles related to EV-based cardiac therapy over the past five years (2019 Jan - 2023 Dec) were included, and their key steps in designing EV therapies were counted and analyzed. We aim to provide a comprehensive overview that can serve as a reference guide for researchers to design EV-based cardiac therapies.
Collapse
Affiliation(s)
- Yilan Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Weihang Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Shah Rukh Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Koji Takeda
- Division of Cardiac Surgery, Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Torsten Peter Vahl
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Zhang L, Yang C, Li J, Wang L, Zhang Z, Su M, Jiang M, Yang Q, Fu T, He L, Tan W. Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue. Anal Chem 2025; 97:1557-1564. [PMID: 39807532 DOI: 10.1021/acs.analchem.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology. We have developed a novel multivalent cholesterol-modified paranemic crossover DNA (PX-DNA-chol) construct, which is a four-stranded DNA structure containing adjacent double helices intertwined with their local helix axes parallel and serves as an effective synthetic nano-glue. This construct promotes the rapid coalescence of nanoscale EVs into clusters of micrometer scale, thereby streamlining their enrichment. Utilizing a conventional low-speed centrifuge, this intriguing methodology achieves a rapid concentration of EVs within minutes, bypassing the laborious and high-speed centrifugation steps typically required. The quality of EVs isolated by our technique is comparable to that obtained through ultracentrifugation methods. Given these advancements, our PX-DNA-chol-facilitated EVs enrichment protocol is poised to advance the field of EVs research, providing a robust and accessible tool for in-depth studies of EVs.
Collapse
Affiliation(s)
- Lizhuan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Juncai Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Lu Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ziwen Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Minhui Su
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Mengyuan Jiang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Qiuxia Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Lei He
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Ding JY, Meng TT, Du RL, Song XB, Li YX, Gao J, Ji R, He QY. Bibliometrics of trends in global research on the roles of stem cells in myocardial fibrosis therapy. World J Stem Cells 2024; 16:1086-1105. [PMID: 39734477 PMCID: PMC11669986 DOI: 10.4252/wjsc.v16.i12.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Myocardial fibrosis, a condition linked to several cardiovascular diseases, is associated with a poor prognosis. Stem cell therapy has emerged as a potential treatment option and the application of stem cell therapy has been studied extensively. However, a comprehensive bibliometric analysis of these studies has yet to be conducted. AIM To map thematic trends, analyze research hotspots, and project future directions of stem cell-based myocardial fibrosis therapy. METHODS We conducted a bibliometric and visual analysis of studies in the Web of Science Core Collection using VOSviewer and Microsoft Excel. The dataset included 1510 articles published between 2001 and 2024. Countries, organizations, authors, references, keywords, and co-citation networks were examined to identify evolving research trends. RESULTS Our findings revealed a steady increase in the number of publications, with a projected increase to over 200 publications annually by 2030. Initial research focused on stem cell-based therapy, particularly for myocardial infarction and heart failure. More recently, there has been a shift toward cell-free therapy, involving extracellular vesicles, exosomes, and microRNAs. Key research topics include angiogenesis, inflammation, apoptosis, autophagy, and oxidative stress. CONCLUSION This analysis highlights the evolution of stem cell therapies for myocardial fibrosis, with emerging interest in cell-free approaches. These results are expected to guide future scientific exploration and decision-making.
Collapse
Affiliation(s)
- Jing-Yi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tian-Tian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100071, China
| | - Ruo-Lin Du
- Department of Emergency Medicine, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Bin Song
- Department of Intensive Care Unit, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian 463000, Henan Province, China
| | - Yi-Xiang Li
- Department of Chinese Medicine, The Third People's Hospital of Henan Province, Zhengzhou 450000 Henan Province, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Yong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
8
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
9
|
Zhang JJ, Pogwizd SM, Fukuda K, Zimmermann WH, Fan C, Hare JM, Bolli R, Menasché P. Trials and tribulations of cell therapy for heart failure: an update on ongoing trials. Nat Rev Cardiol 2024:10.1038/s41569-024-01098-8. [PMID: 39548233 DOI: 10.1038/s41569-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Heart failure (HF) remains a leading cause of mortality, responsible for 13% of all deaths worldwide. The prognosis for patients with HF is poor, with only a 50% survival rate within 5 years. A major challenge of ischaemia-driven HF is the loss of cardiomyocytes, compounded by the minimal regenerative capacity of the adult heart. To date, replacement of irreversibly damaged heart muscle can only be achieved by complete heart transplantation. In the past 20 years, cell therapy has emerged and evolved as a promising avenue for cardiac repair and regeneration. During this time, cell therapy for HF has encountered substantial barriers in both preclinical studies and clinical trials but the field continues to progress and evolve from lessons learned from such research. In this Review, we provide an overview of ongoing trials of cell-based and cell product-based therapies for the treatment of HF. Findings from these trials will facilitate the clinical translation of cardiac regenerative and reparative therapies not only by evaluating the safety and efficacy of specific cell-based therapeutics but also by establishing the feasibility of novel or underexplored treatment protocols such as repeated intravenous dosing, personalized patient selection based on pharmacogenomics, systemic versus intramural cell delivery, and epicardial engraftment of engineered tissue products.
Collapse
Affiliation(s)
- Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen - Georg-August-University, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Joshua M Hare
- Department of Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
10
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
11
|
Zhang J, Zhang B, Zhang L, Xu X, Cheng Q, Wang Y, Li Y, Jiang R, Duan S, Zhang L. Engineered nanovesicles mediated cardiomyocyte survival and neovascularization for the therapy of myocardial infarction. Colloids Surf B Biointerfaces 2024; 243:114135. [PMID: 39106630 DOI: 10.1016/j.colsurfb.2024.114135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Myocardial infarction (MI) leads to substantial cellular necrosis as a consequence of reduced blood flow and oxygen deprivation. Stimulating cardiomyocyte proliferation and angiogenesis can promote functional recovery after cardiac events. In this study, we explored a novel therapeutic strategy for MI by synthesizing a biomimetic nanovesicle (NV). This biomimetic NVs are composed of exosomes sourced from umbilical cord mesenchymal stem cells, which have been loaded with placental growth factors (PLGF) and surface-engineered with a cardiac-targeting peptide (CHP) through covalent bonding, termed Exo-P-C NVs. With the help of the myocardial targeting effect of homing peptides, NVs can be enriched in the MI site, thus improve cardiac regeneration, reduce fibrosis, stimulate cardiomyocyte proliferation, and promote angiogenesis, ultimately resulted in improved cardiac functional recovery. It was demonstrated that Exo-P-C NVs have the potential to offer novel therapeutic strategies for the improvement of cardiac function and management of myocardial infarction.
Collapse
Affiliation(s)
- Juan Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Beibei Zhang
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan University of Technology, Zhengzhou 450001, China
| | - Linlin Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiaoxia Xu
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qiwei Cheng
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Yuzhou Wang
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Yaqiong Li
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Ru Jiang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Shaobo Duan
- Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China
| | - Lianzhong Zhang
- Zhengzhou University People's Hospital, Zhengzhou 450052, China; Henan Provincial People's Hospital, Zhengzhou 450003, China; Henan Provincial International Joint Laboratory of Ultrasonic Nanotechnology and Artificial Intelligence in Precision Theragnostic Systems, Zhengzhou 450003, China.
| |
Collapse
|
12
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
13
|
Long M, Cheng M. Small extracellular vesicles associated miRNA in myocardial fibrosis. Biochem Biophys Res Commun 2024; 727:150336. [PMID: 38959731 DOI: 10.1016/j.bbrc.2024.150336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Myocardial fibrosis involves the loss of cardiomyocytes, myocardial fibroblast proliferation, and a reduction in angiogenesis, ultimately leading to heart failure, Given its significant implications, it is crucial to explore novel therapies for myocardial fibrosis. Recently one emerging avenue has been the use of small extracellular vesicles (sEV)-carried miRNA. In this review, we summarize the regulatory role of sEV-carried miRNA in myocardial fibrosis. We explored not only the potential diagnostic value of circulating miRNA as biomarkers for heart disease but also the therapeutic implications of sEV-carried miRNA derived from various cellular sources and applications of modified sEV. This exploration is paramount for researchers striving to develop innovative, cell-free therapies as potential drug candidates for the management of myocardial fibrosis.
Collapse
Affiliation(s)
- Minwen Long
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Xu C, Xie Y, Wang B. Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction. Stem Cell Res Ther 2024; 15:323. [PMID: 39334266 PMCID: PMC11438184 DOI: 10.1186/s13287-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Myocardial infarction (MI) is a serious complication of coronary artery disease. This condition is common worldwide and has a profound impact on patients' lives and quality of life. Despite significant advances in the treatment of heart disease in modern medicine, the efficient treatment of MI still faces a number of challenges. Problems such as scar formation and loss of myocardial function after a heart attack still limit patients' recovery. Therefore, the search for a new therapeutic tool that can promote repair and regeneration of myocardial tissue has become crucial. In this context, mesenchymal stromal cells (MSCs) have attracted much attention as a potential therapeutic tool. MSCs are a class of adult stem cells with multidirectional differentiation potential, derived from bone marrow, fat, placenta and other tissues, and possessing properties such as self-renewal and immunomodulation. The application of MSCs may provide a new direction for the treatment of MI. These stem cells have the potential to differentiate into cardiomyocytes and vascular endothelial cells in damaged tissue and to repair and protect myocardial tissue through anti-inflammatory, anti-fibrotic and pro-neovascularization mechanisms. However, the clinical results of MSCs transplantation for the treatment of MI are less satisfactory due to the limitations of the native function of MSCs. Genetic modification has overcome problems such as the low survival rate of transplanted MSCs in vivo and enhanced their functions of promoting neovascularization and differentiation into cardiomyocytes, paving the way for them to become an effective tool for repair therapy after MI. In previous studies, MSCs have shown some therapeutic potential in experimental animals and preliminary clinical trials. This review aims to provide readers with a comprehensive and in-depth understanding to promote the wider application of engineering MSCs in the field of MI therapy, offering new hope for recovery and improved survival of cardiac patients.
Collapse
Affiliation(s)
- Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
15
|
Moreno A, Alarcón-Zapata P, Guzmán-Gútierrez E, Radojkovic C, Contreras H, Nova-Lampeti E, A Zúñiga F, Rodriguez-Alvárez L, Escudero C, Lagos P, Aguayo C. Changes in the Release of Endothelial Extracellular Vesicles CD144+, CCR6+, and CXCR3+ in Individuals with Acute Myocardial Infarction. Biomedicines 2024; 12:2119. [PMID: 39335632 PMCID: PMC11430588 DOI: 10.3390/biomedicines12092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Acute myocardial infarction (AMI) results from vulnerable plaque rupture, causing ischemic cardiomyocyte necrosis and intense inflammation. Paradoxically, this inflammation releases factors that aid heart repair. Recent findings suggest a role for extracellular vesicles (EVs) in intercellular communication during post-AMI cardiac repair. However, EVs' tissue origin and chemokine profile in the blood of patients with AMI remains unclear. This study characterized the tissue origin and chemokine receptor profile of EVs in the coronary and peripheral blood of patients with AMI. The results reveal that vesicles isolated from coronary and peripheral blood plasma are enriched in tetraspanin (CD9) and express CD81+, CD90+, and CD144+. The vesicle size ranged between 145 and 162 nm, with the control group exhibiting smaller vesicles (D10) than the AMI group. Furthermore, all vesicles expressed CCR6 and CXCR3, whereas a small percentage expressed CCR4. In addition, a decrease in CXCR3 and CCR6 expression was observed in coronary and peripheral AMI blood vesicles compared with the control; however, no difference was found between AMI coronary and AMI peripheral blood vesicles. In conclusion, our study demonstrates, for the first time, changes in the number of extracellular vesicles expressing CD144+, CXCR3, and CCR6 in the peripheral circulation of patients with AMI. Extracellular vesicles present in the circulation of patients with AMI hold excellent promise as a potential diagnostic tool.
Collapse
Affiliation(s)
- Alexa Moreno
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
- Clinical Laboratory Program, Faculty of Health Sciences, State University of Southern Manabí, Jipijapa 130402, Ecuador
| | - Pedro Alarcón-Zapata
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Enrique Guzmán-Gútierrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Héctor Contreras
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Estefanía Nova-Lampeti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Felipe A Zúñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Llerenty Rodriguez-Alvárez
- Department of Animal Science, Faculty of Veterinary Sciences, University of Concepcion, Chillán 3780000, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bio-Bio, Chillán 3780000, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3780000, Chile
| | - Paola Lagos
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3780000, Chile
| |
Collapse
|
16
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
17
|
Ren Y, Wang W, Yu C, Wang Y, Qiu Y, Yue Z, Yu Q, Lu J, Che P, Li J, Sun H. An injectable exosome-loaded hyaluronic acid-polylysine hydrogel for cardiac repair via modulating oxidative stress and the inflammatory microenvironment. Int J Biol Macromol 2024; 275:133622. [PMID: 38969034 DOI: 10.1016/j.ijbiomac.2024.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Myocardial infarction (MI) is a serious cardiovascular disease with complex complications and high lethality. Currently, exosome (Exo) therapy has emerged as a promising treatment of ischemic MI due to its antioxidant, anti-inflammatory, and vascular abilities. However, traditional Exo delivery lacks spatiotemporal precision and targeting of microenvironment modulation, making it difficult to localize the lesion site for sustained effects. In this study, an injectable oxidized hyaluronic acid-polylysine (OHA-PL) hydrogel was developed to conveniently load adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) and improve their retention under physiological conditions. The OHA-PL@Exo hydrogel with high spatiotemporal precision is transplanted minimally invasively into the ischemic myocardium to scavenge intracellular and extracellular reactive oxygen species, regulate macrophage polarization, and attenuate inflammation in the early phase of MI. In addition, this synergistic microenvironment modulation can effectively reduce myocardial fibrosis and ventricular remodeling, promote angiogenesis, and restore electrophysiological function in the late stage of MI. Therefore, this hyaluronic acid-polylysine to deliver exosomes has become a promising therapeutic strategy for myocardial repair.
Collapse
Affiliation(s)
- Yuchen Ren
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Weitong Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Chaojie Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yue Wang
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuwei Qiu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhiwei Yue
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qingyu Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Jiajun Lu
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Pengcheng Che
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China.
| | - Junjie Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
18
|
Li H, Zhang J, Tan M, Yin Y, Song Y, Zhao Y, Yan L, Li N, Zhang X, Bai J, Jiang T, Li H. Exosomes based strategies for cardiovascular diseases: Opportunities and challenges. Biomaterials 2024; 308:122544. [PMID: 38579591 DOI: 10.1016/j.biomaterials.2024.122544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Exosomes, as nanoscale extracellular vesicles (EVs), are secreted by all types of cells to facilitate intercellular communication in living organisms. After being taken up by neighboring or distant cells, exosomes can alter the expression levels of target genes in recipient cells and thereby affect their pathophysiological outcomes depending on payloads encapsulated therein. The functions and mechanisms of exosomes in cardiovascular diseases have attracted much attention in recent years and are thought to have cardioprotective and regenerative potential. This review summarizes the biogenesis and molecular contents of exosomes and details the roles played by exosomes released from various cells in the progression and recovery of cardiovascular disease. The review also discusses the current status of traditional exosomes in cardiovascular tissue engineering and regenerative medicine, pointing out several limitations in their application. It emphasizes that some of the existing emerging industrial or bioengineering technologies are promising to compensate for these shortcomings, and the combined application of exosomes and biomaterials provides an opportunity for mutual enhancement of their performance. The integration of exosome-based cell-free diagnostic and therapeutic options will contribute to the further development of cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Hang Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Jun Zhang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Mingyue Tan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China; Department of Geriatrics, Cardiovascular Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Yunfei Yin
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Yiyi Song
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215000, PR China
| | - Yongjian Zhao
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Lin Yan
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China
| | - Ning Li
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230022, PR China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, PR China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, PR China.
| |
Collapse
|
19
|
Abdal Dayem A, Yan E, Do M, Kim Y, Lee Y, Cho SG, Kim DH. Engineering extracellular vesicles for ROS scavenging and tissue regeneration. NANO CONVERGENCE 2024; 11:24. [PMID: 38922501 PMCID: PMC11208369 DOI: 10.1186/s40580-024-00430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024]
Abstract
Stem cell therapy holds promise for tissue regeneration, yet significant challenges persist. Emerging as a safer and potentially more effective alternative, extracellular vesicles (EVs) derived from stem cells exhibit remarkable abilities to activate critical signaling cascades, thereby facilitating tissue repair. EVs, nano-scale membrane vesicles, mediate intercellular communication by encapsulating a diverse cargo of proteins, lipids, and nucleic acids. Their therapeutic potential lies in delivering cargos, activating signaling pathways, and efficiently mitigating oxidative stress-an essential aspect of overcoming limitations in stem cell-based tissue repair. This review focuses on engineering and applying EVs in tissue regeneration, emphasizing their role in regulating reactive oxygen species (ROS) pathways. Additionally, we explore strategies to enhance EV therapeutic activity, including functionalization and incorporation of antioxidant defense proteins. Understanding these molecular mechanisms is crucial for optimizing EV-based regenerative therapies. Insights into EV and ROS signaling modulation pave the way for targeted and efficient regenerative therapies harnessing the potential of EVs.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ellie Yan
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Minjae Do
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Yeongseo Lee
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
- R&D Team, StemExOne Co., Ltd., 307 KU Technology Innovation Bldg, 120, Neungdong-ro, Gwangjin- gu, Seoul, 05029, Republic of Korea.
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD, 21205, USA.
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
20
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
21
|
Su LY, Yao M, Xu W, Zhong M, Cao Y, Zhou H. Cascade encapsulation of antimicrobial peptides, exosomes and antibiotics in fibrin-gel for first-aid hemostasis and infected wound healing. Int J Biol Macromol 2024; 269:132140. [PMID: 38719006 DOI: 10.1016/j.ijbiomac.2024.132140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/19/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Wounding is one of the most common healthcare problems. Bioactive hydrogels have attracted much attention in first-aid hemostasis and wound healing due to their excellent biocompatibility, antibacterial properties, and pro-healing bioactivity. However, their applications are limited by inadequate mechanical properties. In this study, we first prepared edible rose-derived exosome-like nanoparticles (ELNs) and used them to encapsulate antimicrobial peptides (AMP), abbreviated as ELNs(AMP). ELNs(AMP) showed superior intracellular antibacterial activity, 2.5 times greater than AMP, in in vitro cell infection assays. We then prepared and tested an FDA-approved fibrin-gel of fibrinogen and thrombin encapsulating ELNs(AMP) and novobiocin sodium salt (NB) (ELNs(AMP)/NB-fibrin-gels). The fibrin gel showed a sustained release of ELNs(AMP) and NB over the eight days of testing. After spraying onto the skin, the formulation underwent in situ gelation and developed a stable patch with excellent hemostatic performance in a mouse liver injury model with hemostasis in 31 s, only 35.6 % of the PBS group. The fibrin gel exhibited pro-wound healing properties in the mouse-infected skin defect model. The thickness of granulation tissue and collagen of the ELNs(AMP)/NB-fibrin-gels group was 4.00, 6.32 times greater than that of the PBS group. In addition, the ELNs(AMP)/NB-fibrin-gels reduced inflammation (decreased mRNA levels of TNF-α, IL-1β, IL6, MCP1, and CXCL1) at the wound sites and demonstrated a biocompatible and biosafe profile. Thus, we have developed a hydrogel system with excellent hemostatic, antibacterial, and pro-wound healing properties, which may be a candidate for next-generation tissue regeneration with a wide clinical application for first-aid hemostasis and infected wound healing.
Collapse
Affiliation(s)
- Ling-Yan Su
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China
| | - Mengyu Yao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; School of Medical, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming 650000, China
| | - Wen Xu
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China
| | - Minghua Zhong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming 650000, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Xishan District, No.157 Jinbi Road, Kunming 650032, China; Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People's Hospital of Yunnan Province, Kunming 650000, China.
| | - Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, No. 452 Fengyuan Road, Kunming 650000, China; Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650000, China.
| |
Collapse
|
22
|
Gil-Cabrerizo P, Simon-Yarza T, Garbayo E, Blanco-Prieto MJ. Navigating the landscape of RNA delivery systems in cardiovascular disease therapeutics. Adv Drug Deliv Rev 2024; 208:115302. [PMID: 38574952 DOI: 10.1016/j.addr.2024.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Cardiovascular diseases (CVDs) stand as the leading cause of death worldwide, posing a significant global health challenge. Consequently, the development of innovative therapeutic strategies to enhance CVDs treatment is imperative. RNA-based therapies, encompassing non-coding RNAs, mRNA, aptamers, and CRISPR/Cas9 technology, have emerged as promising tools for addressing CVDs. However, inherent challenges associated with RNA, such as poor cellular uptake, susceptibility to RNase degradation, and capture by the reticuloendothelial system, underscore the necessity of combining these therapies with effective drug delivery systems. Various non-viral delivery systems, including extracellular vesicles, lipid-based carriers, polymeric and inorganic nanoparticles, as well as hydrogels, have shown promise in enhancing the efficacy of RNA therapeutics. In this review, we offer an overview of the most relevant RNA-based therapeutic strategies explored for addressing CVDs and emphasize the pivotal role of delivery systems in augmenting their effectiveness. Additionally, we discuss the current status of these therapies and the challenges that hinder their clinical translation.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, INSERM U1148, X. Bichat Hospital, Paris 75018, France
| | - Elisa Garbayo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| | - María J Blanco-Prieto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; Navarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
23
|
Bhat A, Malik A, Yadav P, Ware WJ, Kakalij P, Chand S. Mesenchymal stem cell‐derived extracellular vesicles: Recent therapeutics and targeted drug delivery advances. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3. [DOI: 10.1002/jex2.156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/25/2024] [Indexed: 01/03/2025]
Abstract
AbstractThe targeted drug delivery field is rapidly advancing, focusing on developing biocompatible nanoparticles that meet rigorous criteria of non‐toxicity, biocompatibility, and efficient release of encapsulated molecules. Conventional synthetic nanoparticles (SNPs) face complications such as elevated immune responses, complex synthesis methods, and toxicity, which restrict their utility in therapeutics and drug delivery. Extracellular vesicles (EVs) have emerged as promising substitutes for SNPs, leveraging their ability to cross biological barriers, biocompatibility, reduced toxicity, and natural origin. Notably, mesenchymal stem cell‐derived EVs (MSC‐EVs) have garnered much curiosity due to their potential in therapeutics and drug delivery. Studies suggest that MSC‐EVs, the central paracrine contributors of MSCs, replicate the therapeutic effects of MSCs. This review explores the characteristics of MSC‐EVs, emphasizing their potential in therapeutics and drug delivery for various diseases, including CRISPR/Cas9 delivery for gene editing. It also delves into the obstacles and challenges of MSC‐EVs in clinical applications and provides insights into strategies to overcome the limitations of biodistribution and target delivery.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| | - Anshu Malik
- Institute for Quantitative Health Science and Engineering (IQ) Michigan State University East Lansing Michigan USA
- Department of Biomedical Engineering Michigan State University East Lansing Michigan USA
| | - Poonam Yadav
- Medical Science Interdepartmental Area University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | | | - Pratiksha Kakalij
- Department of Pharmaceutical Sciences University of Nebraska Medical Center Omaha Omaha Nebraska USA
| | - Subhash Chand
- Department of Anesthesiology University of Nebraska Medical Center Omaha Nebraska USA
| |
Collapse
|
24
|
Yan C, Wang X, Wang Q, Li H, Song H, Zhou J, Peng Z, Yin W, Fan X, Yang K, Zhou B, Liang Y, Jiang Z, Shi Y, Zhang S, He S, Li R, Xie J. A Novel Conductive Polypyrrole-Chitosan Hydrogel Containing Human Endometrial Mesenchymal Stem Cell-Derived Exosomes Facilitated Sustained Release for Cardiac Repair. Adv Healthc Mater 2024; 13:e2304207. [PMID: 38175149 PMCID: PMC11468178 DOI: 10.1002/adhm.202304207] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/05/2024]
Abstract
Myocardial infarction (MI) results in cardiomyocyte necrosis and conductive system damage, leading to sudden cardiac death and heart failure. Studies have shown that conductive biomaterials can restore cardiac conduction, but cannot facilitate tissue regeneration. This study aims to add regenerative capabilities to the conductive biomaterial by incorporating human endometrial mesenchymal stem cell (hEMSC)-derived exosomes (hEMSC-Exo) into poly-pyrrole-chitosan (PPY-CHI), to yield an injectable hydrogel that can effectively treat MI. In vitro, PPY-CHI/hEMSC-Exo, compared to untreated controls, PPY-CHI, or hEMSC-Exo alone, alleviates H2O2-induced apoptosis and promotes tubule formation, while in vivo, PPY-CHI/hEMSC-Exo improves post-MI cardiac functioning, along with counteracting against ventricular remodeling and fibrosis. All these activities are facilitated via increased epidermal growth factor (EGF)/phosphoinositide 3-kinase (PI3K)/AKT signaling. Furthermore, the conductive properties of PPY-CHI/hEMSC-Exo are able to resynchronize cardiac electrical transmission to alleviate arrythmia. Overall, PPY-CHI/hEMSC-Exo synergistically combines the cardiac regenerative capabilities of hEMSC-Exo with the conductive properties of PPY-CHI to improve cardiac functioning, via promoting angiogenesis and inhibiting apoptosis, as well as resynchronizing electrical conduction, to ultimately enable more effective MI treatment. Therefore, incorporating exosomes into a conductive hydrogel provides dual benefits in terms of maintaining conductivity, along with facilitating long-term exosome release and sustained application of their beneficial effects.
Collapse
Affiliation(s)
- Changping Yan
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- Department of GynecologyAffiliated Cancer Hospital of Shanxi Medical UniversityTaiyuan030013China
| | - Xinzhu Wang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Qi Wang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Haiyan Li
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Huifang Song
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- Department of AnatomyShanxi Medical UniversityTaiyuan030001China
| | - Jingli Zhou
- Shanxi Provincial People's HospitalAffiliated Hospital of Shanxi Medical UniversityTaiyuan030012China
| | - Zexu Peng
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Wenjuan Yin
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Xuemei Fan
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Kun Yang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Bingrui Zhou
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zengyu Jiang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuwei Shi
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- NHC Key Laboratory of PneumoconiosisShanxi Province Key Laboratory of RespiratoryDepartment of Pulmonary and Critical Care MedicineThe First Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Sanyuan Zhang
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Sheng He
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ren‐Ke Li
- Toronto General Hospital Research InstituteDivision of Cardiovascular SurgeryUniversity Health NetworkUniversity of TorontoTorontoONM5G 2C4Canada
| | - Jun Xie
- The First Hospital of Shanxi Medical UniversityDepartment of Biochemistry and Molecular BiologyShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
25
|
Pang JL, Shao H, Xu XG, Lin ZW, Chen XY, Chen JY, Mou XZ, Hu PY. Targeted drug delivery of engineered mesenchymal stem/stromal-cell-derived exosomes in cardiovascular disease: recent trends and future perspectives. Front Bioeng Biotechnol 2024; 12:1363742. [PMID: 38558788 PMCID: PMC10978787 DOI: 10.3389/fbioe.2024.1363742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, stem cells and their secretomes, notably exosomes, have received considerable attention in biomedical applications. Exosomes are cellular secretomes used for intercellular communication. They perform the function of intercellular messengers by facilitating the transport of proteins, lipids, nucleic acids, and therapeutic substances. Their biocompatibility, minimal immunogenicity, targetability, stability, and engineerable characteristics have additionally led to their application as drug delivery vehicles. The therapeutic efficacy of exosomes can be improved through surface modification employing functional molecules, including aptamers, antibodies, and peptides. Given their potential as targeted delivery vehicles to enhance the efficiency of treatment while minimizing adverse effects, exosomes exhibit considerable promise. Stem cells are considered advantageous sources of exosomes due to their distinctive characteristics, including regenerative and self-renewal capabilities, which make them well-suited for transplantation into injured tissues, hence promoting tissue regeneration. However, there are notable obstacles that need to be addressed, including immune rejection and ethical problems. Exosomes produced from stem cells have been thoroughly studied as a cell-free strategy that avoids many of the difficulties involved with cell-based therapy for tissue regeneration and cancer treatment. This review provides an in-depth summary and analysis of the existing knowledge regarding exosomes, including their engineering and cardiovascular disease (CVD) treatment applications.
Collapse
Affiliation(s)
- Jian-Liang Pang
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
| | - Hong Shao
- Department of Vascular Surgery, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, Zhejiang, China
- Department of Cardiovascular Medicine, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiao-Gang Xu
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Zhi-Wei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Yi Chen
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jin-Yang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd., Hangzhou, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, China
| | - Pei-Yang Hu
- Department of Traumatology, Tiantai People’s Hospital of Zhejiang Province (Tiantai Branch of Zhejiang People’s Hospital), Taizhou, China
| |
Collapse
|
26
|
Cheng X, Henick BS, Cheng K. Anticancer Therapy Targeting Cancer-Derived Extracellular Vesicles. ACS NANO 2024; 18:6748-6765. [PMID: 38393984 DOI: 10.1021/acsnano.3c06462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Extracellular vesicles (EVs) are natural lipid nanoparticles secreted by most types of cells. In malignant cancer, EVs derived from cancer cells contribute to its progression and metastasis by facilitating tumor growth and invasion, interfering with anticancer immunity, and establishing premetastasis niches in distant organs. In recent years, multiple strategies targeting cancer-derived EVs have been proposed to improve cancer patient outcomes, including inhibiting EV generation, disrupting EVs during trafficking, and blocking EV uptake by recipient cells. Developments in EV engineering also show promising results in harnessing cancer-derived EVs as anticancer agents. Here, we summarize the current understanding of the origin and functions of cancer-derived EVs and review the recent progress in anticancer therapy targeting these EVs.
Collapse
Affiliation(s)
- Xiao Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Joint Department of Biomedical EngineeringNorth Carolina State University, Raleigh, North Carolina 27606, United States
| | - Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
27
|
Yu J, Wei Y, Cui Z, Tian J, Cai H, Zhang W. Thermosensitive Capturer Coupled with the CD63 Aptamer for Highly Efficient Isolation of Exosomes. ACS Macro Lett 2024:195-200. [PMID: 38261001 DOI: 10.1021/acsmacrolett.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Exosomes are bioactive substances secreted by various cells that play a crucial role in cell communication. Due to their nanoscale size and interference from nonexosome proteins, the rapid capture and nondestructive release of exosomes remain a technical challenge which significantly hinders their biomedical application. To overcome this obstacle, we have designed a CD63 aptamer-based thermosensitive copolymer for the effective isolation of exosomes from mesenchymal stem cells (MSCs). A thermal-responsive copolymer, poly(N-isopropylacrylamide-co-butyl methacrylate-co-N-hydroxysuccinimide methacrylate) P(NIPAM-co-BMA-co-NHSMA, PNB), was prepared, which could realize reversible hydrophilic/hydrophobic phase transition by varying temperature. Then, CD63 aptamers were further modified to the copolymer to form the PNB-aptamer, where the aptamer units, acting as a "lock and key", specifically bind exosomes. Under the low critical solution temperature (LCST) of the PNB-aptamer, it can maintain a hydrophilic state, capturing exosomes from the cell culture medium. Subsequently, exosome-carrying PNB-aptamers can endure from hydrophilic to hydrophobic phase transition by increasing the temperature above its LCST, and then they can be collected after centrifugation. By introducing the complementary sequence of the CD63 aptamer, the stronger binding affinity between the complementary sequence and the aptamers facilitates the release of exosomes from the PNB-aptamer. The yield of exosome samples captured from a MSC culture medium by the PNB-aptamer system (around 62%) is considerably higher than that obtained by the current "gold standard" ultrafiltration (UC) approach (around 42%). Thus, the PNB-aptamer capturer provides a potential strategy for highly efficient exosome isolation.
Collapse
Affiliation(s)
- Junjun Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Ying Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai 200237, P. R. China
| |
Collapse
|
28
|
Shang Y, Sun L, Gan J, Xu D, Zhao Y, Sun L. A Biomimetic Cardiac Fibrosis-on-a-Chip as a Visible Disease Model for Evaluating Mesenchymal Stem Cell-Derived Exosome Therapy. ACS NANO 2024; 18:829-838. [PMID: 38153966 DOI: 10.1021/acsnano.3c09368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cardiac fibrosis acts as a serious worldwide health issue due to its prevalence in numerous forms of cardiac disease and its essential link to cardiac failure. Considering the efficiency of stem cell therapy for cardiac fibrosis, great efforts have been dedicated to developing accurate models for investigating their underlying therapeutic mechanisms. Herein we present an elaborate biomimetic cardiac fibrosis-on-a-chip based on Janus structural color film (SCF) to provide microphysiological visuals for stem cell therapeutic studies. By coculturing cardiomyocytes (CMs) and cardiac fibroblasts (FBs) on Janus SCF with fibrosis induction, the chip can recreate physiological intercellular crosstalk within the fibrotic microenvironment, elucidating the physiological alterations of fibrotic hearts. In particular, the Janus structural color film possesses superior perceptual capabilities for capturing and responding to a weak cardiac force, demonstrating synchronized structural color shifts. Based on these features, we have not only explored the dynamic relationship between color mapping and the evaluated disease phenotype but also demonstrated the self-reporting capacity of the cardiac fibrosis-on-a-chip for the assessment of mesenchymal stem cell-derived exosome therapy. These features suggest that such a chip can potentially facilitate the evolution of precision medicine strategies and create a protocol for preclinical cardiac drug screening.
Collapse
Affiliation(s)
- Yixuan Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Dongyu Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| |
Collapse
|
29
|
Li J, Lin A, Jiang R, Chen P, Xu C, Hou Y. Exosomes-mediated drug delivery for the treatment of myocardial injury. Ann Med Surg (Lond) 2024; 86:292-299. [PMID: 38222684 PMCID: PMC10783224 DOI: 10.1097/ms9.0000000000001473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular disease has become a major cause of death worldwide. Myocardial injury (MI) caused by myocardial infarction, myocarditis, and drug overdose can lead to impaired cardiac function, culminating in serious consequences such as angina pectoris, arrhythmias, and heart failure. Exosomes exhibit high biocompatibility and target specificity, rendering them an important non-cellular therapy for improving MI. Exosomes are diminutive vesicles that encapsulate nucleic acids and proteins. Exosomes derived from cardiac stem cells themselves have therapeutic effects, and they can also serve as carriers to deliver therapeutic drugs to recipient cells, thereby exerting a therapeutic effect. The molecules within exosomes are encapsulated in a lipid bilayer, allowing them to stably exist in body fluids without being affected by nucleases. Therefore, the utilization of exosomes as drug delivery systems (DDS) for disease treatment has been extensively investigated and is currently undergoing clinical trials. This review summarizes the therapeutic effects of exosomes on MI and provides an overview of current research progress on their use as DDS in MI.
Collapse
Affiliation(s)
- Jiang Li
- Zhengzhou Railway Vocational and Technical College
| | - Aiqin Lin
- Zhengzhou Railway Vocational and Technical College
| | - Rui Jiang
- Zhengzhou Railway Vocational and Technical College
| | | | - Chengyang Xu
- Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuanyuan Hou
- Zhengzhou Railway Vocational and Technical College
| |
Collapse
|
30
|
Yang C, Xue Y, Duan Y, Mao C, Wan M. Extracellular vesicles and their engineering strategies, delivery systems, and biomedical applications. J Control Release 2024; 365:1089-1123. [PMID: 38065416 DOI: 10.1016/j.jconrel.2023.11.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
Extracellular vesicles are nanoscale vesicles that can be secreted by all cell types, are intracellular in origin and have the same composition as their parent cells, play a key role in intercellular communication in organismal health and disease, and are now often used as biomarkers of disease and therapeutic agents in biomedical research. When injected locally or systemically, they have the ability to provide a variety of therapeutic effects, for example, regeneration of skin damage or restoration of cardiac function. However, direct injection of extracellular vesicles may result in their rapid clearance from the injection site.In order to maintain the biological activity of extracellular vesicles and to control the release of effective concentrations for better therapeutic efficacy during long-term disease treatment, the design of an optimized drug delivery system is necessary and different systems for the continuous delivery of extracellular vesicles have been developed. This paper first provides an overview of the biogenesis, composition and physiological function of extracellular vesicles, followed by a review of different strategies for extracellular vesicle isolation and methods for engineering extracellular vesicles. In addition, this paper reviews the latest extracellular vesicle delivery platforms such as micro-nanoparticles, injectable hydrogels, microneedles and scaffold patches. At the same time, the research progress and key cases of extracellular vesicle delivery systems in the field of biomedical therapeutics are described. Finally, the challenges and future trends of extracellular vesicle delivery are discussed.
Collapse
Affiliation(s)
- Chunhao Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yu Duan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
31
|
Zhou Y, Yue T, Ding Y, Tan H, Weng J, Luo S, Zheng X. Nanotechnology translation in vascular diseases: From design to the bench. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1919. [PMID: 37548140 DOI: 10.1002/wnan.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Atherosclerosis is a systemic pathophysiological condition contributing to the development of majority of polyvascular diseases. Nanomedicine is a novel and rapidly developing science. Due to their small size, nanoparticles are freely transported in vasculature, and have been widely employed as tools in analytical imaging techniques. Furthermore, the application of nanoparticles also allows target intervention, such as drug delivery and tissue engineering regenerative methods, in the management of major vascular diseases. Therefore, by summarizing the physical and chemical characteristics of common nanoparticles used in diagnosis and treatment of vascular diseases, we discuss the details of these applications from cellular, molecular, and in vivo perspectives in this review. Furthermore, we also summarize the status and challenges of the application of nanoparticles in clinical translation. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Cardiovascular Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yongwen Zhou
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Qin C, Xu D, Han H, Fang J, Wang H, Liu Y, Wang H, Zhou X, Li D, Ying Y, Hu N, Xu L. Dynamic and Label-Free Sensing of Cardiomyocyte Responses to Nanosized Vesicles for Cardiac Oxidative Stress Injury Therapy. NANO LETTERS 2023; 23:11850-11859. [PMID: 38051785 DOI: 10.1021/acs.nanolett.3c03892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cardiac oxidative stress is a significant phenotype of myocardial infarction disease, a leading cause of global health threat. There is an urgent need to develop innovative therapies. Nanosized extracellular vesicle (nEV)-based therapy shows promise, yet real-time monitoring of cardiomyocyte responses to nEVs remains a challenge. In this study, a dynamic and label-free cardiomyocyte biosensing system using microelectrode arrays (MEAs) was constructed. Cardiomyocytes were cultured on MEA devices for electrophysiological signal detection and treated with nEVs from E. coli, gardenia, HEK293 cells, and mesenchymal stem cells (MSC), respectively. E. coli-nEVs and gardenia-nEVs induced severe paroxysmal fibrillation, revealing distinct biochemical communication compared to MSC-nEVs. Principal component analysis identified variations and correlations between nEV types. MSC-nEVs enhanced recovery without inducing arrhythmias in a H2O2-induced oxidative stress injury model. This study establishes a fundamental platform for assessing biochemical communication between nEVs and cardiomyocytes, offering new avenues for understanding nEVs' functions in the cardiovascular system.
Collapse
Affiliation(s)
- Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Haote Han
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Wang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yingjia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Haobo Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Xin Zhou
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Danyang Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Ning Hu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou 310052, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
33
|
Malhotra K, Van Remortel S, Ly V, Davis DR. Combinatorial Effect of Biomaterials and Extracellular Vesicle Therapy for Heart Failure with Reduced Ejection Fraction: A Systematic Review of Preclinical Studies. Adv Healthc Mater 2023; 12:e2301980. [PMID: 37811703 PMCID: PMC11468038 DOI: 10.1002/adhm.202301980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Heart failure, a pervasive global health burden, necessitates innovative therapeutic strategies. Extracellular vesicles (EVs) have emerged as promising contenders for cardiac repair, owing to their profound influence on fibrosis and inflammation. Merging EVs with biomaterials holds the potential for a synergistic leap in therapeutic efficacy. In this review, the impact of combining EVs with biomaterials in preclinical heart failure models is scrutinized. Fifteen studies, predominantly employing mesenchymal stromal cell-derived EVs along with hyaluronic acid or peptides in coronary ligation models, meet these stringent criteria. The amalgamation of EVs and biomaterials consistently enhances cardiac ejection fraction (1.39; 95% CI: 0.68, 2.11; p = 0.0001) and fractional shortening (1.46, 95% CI: 0.70, 2.22; p = 0.0002) compared to EV monotherapy. Secondary outcomes similarly showcased improvement in the combined treatment group. Although the number of studies analyzed is modest, no indications of publication bias surface. In summary, combination therapy with EVs and biomaterials enhances therapeutic benefit in preclinical heart failure models. The consistent improvement observed across diverse EV sources, biomaterials, and animal models underscores the exciting potential of this synergistic approach.
Collapse
Affiliation(s)
- Kamal Malhotra
- University of Ottawa Heart InstituteDivision of CardiologyDepartment of MedicineUniversity of OttawaOttawaK1Y4W7Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1H8M5Canada
| | - Sophie Van Remortel
- University of Ottawa Heart InstituteDivision of CardiologyDepartment of MedicineUniversity of OttawaOttawaK1Y4W7Canada
| | - Valentina Ly
- Health Sciences LibraryUniversity of OttawaOttawaK1H8M5Canada
| | - Darryl R. Davis
- University of Ottawa Heart InstituteDivision of CardiologyDepartment of MedicineUniversity of OttawaOttawaK1Y4W7Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1H8M5Canada
| |
Collapse
|
34
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
35
|
Wei C, Sun Y, Zeng F, Chen X, Ma L, Liu X, Qi X, Shi W, Gao H. Exosomal miR-181d-5p Derived from Rapamycin-Conditioned MDSC Alleviated Allograft Rejection by Targeting KLF6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304922. [PMID: 37870185 PMCID: PMC10700181 DOI: 10.1002/advs.202304922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Immune rejection and side effects of long-term administration of immunosuppressants are the two major obstacles to allograft acceptance and tolerance. The immunosuppressive extracellular vesicles (EVs)-based approach has been proven to be effective in treating autoimmune/inflammatory disorders. Herein, the anti-rejection advantage of exosomes (Rapa-Exo) from rapamycin-conditioned myeloid-derived suppressor cells (MDSCs) over exosomes (Exo-Nor) from the untreated MDSCs is shown. The exosomal small RNA sequencing and loss-of-function assays reveal that the anti-rejection effect of Rapa-Exo functionally relies on miR-181d-5p. Through target prediction and double-luciferase reporter assay, Kruppel-like factor (KLF) 6 is identified as a direct target of miR-181d-5p. Finally, KLF6 knockdown markedly resolves inflammation and prolongs the survival of corneal allografts. Taken together, these findings support that Rapa-Exo executes an anti-rejection effect, highlighting the immunosuppressive EVs-based treatment as a promising approach in organ transplantation.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Yaru Sun
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Fanxing Zeng
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiunian Chen
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Li Ma
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaolin Qi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Weiyun Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Hua Gao
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| |
Collapse
|
36
|
Wu R, Hu X, Wang J. Current optimized strategies for stem cell-derived extracellular vesicle/exosomes in cardiac repair. J Mol Cell Cardiol 2023; 184:13-25. [PMID: 37801756 DOI: 10.1016/j.yjmcc.2023.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023]
Abstract
Ischemic heart diseases remain the leading cause of death globally, and stem cell-based therapy has been investigated as a potential approach for cardiac repair. Due to poor survival and engraftment in the cardiac ischemic milieu post transplantation, the predominant therapeutic effects of stem cells act via paracrine actions, by secreting extracellular vesicles (EVs) and/or other factors. Exosomes are nano-sized EVs of endosomal origin, and now viewed as a major contributor in facilitating myocardial repair and regeneration. However, EV/exosome therapy has major obstacles before entering clinical settings, such as limited production yield, unstable biological activity, poor homing efficiency, and low tissue retention. This review aims to provide an overview of the biogenesis and mechanisms of stem cell-derived EV/exosomes in the process of cardiac repair and discuss the current advancements in different optimized strategies to produce high-yield EV/exosomes with higher bioactivity, or engineer them with improved homing efficiency and therapeutic potency. In particular, we outline recent findings toward preclinical and clinical translation of EV/exosome therapy in ischemic heart diseases, and discuss the potential barriers in regard to clinical translation of EV/exosome therapy.
Collapse
Affiliation(s)
- Rongrong Wu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China.
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, PR China; State Key Laboratory of Transvascular Implantation Devices, Hangzhou 310009, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, PR China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China.
| |
Collapse
|
37
|
Zhang H, Wan X, Tian J, An Z, Liu L, Zhao X, Zhou Y, Zhang L, Ge C, Song X. The therapeutic efficacy and clinical translation of mesenchymal stem cell-derived exosomes in cardiovascular diseases. Biomed Pharmacother 2023; 167:115551. [PMID: 37783149 DOI: 10.1016/j.biopha.2023.115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023] Open
Abstract
Exosomes, mainly derived from mesenchymal stem cells, provide a good reference for cardiac function repair and clinical application in cardiac and vascular diseases by regulating cardiomyocyte viability, inflammatory levels, angiogenesis, and ventricular remodeling after a heart injury. This review presents the cardioprotective efficacy of mesenchymal stem cell-originated exosomes and explores the underlying molecular mechanisms. Furthermore, we expound on several efficient approaches to transporting exosomes into the heart in clinical application and comment on the advantages and disadvantages of each method.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Xueqi Wan
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Jinfan Tian
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Ziyu An
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Libo Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China; The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, PR China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Yuquan Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Lijun Zhang
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Changjiang Ge
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
38
|
Zuo W, Sun R, Ji Z, Ma G. Macrophage-driven cardiac inflammation and healing: insights from homeostasis and myocardial infarction. Cell Mol Biol Lett 2023; 28:81. [PMID: 37858035 PMCID: PMC10585879 DOI: 10.1186/s11658-023-00491-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Early and prompt reperfusion therapy has markedly improved the survival rates among patients enduring myocardial infarction (MI). Nonetheless, the resulting adverse remodeling and the subsequent onset of heart failure remain formidable clinical management challenges and represent a primary cause of disability in MI patients worldwide. Macrophages play a crucial role in immune system regulation and wield a profound influence over the inflammatory repair process following MI, thereby dictating the degree of myocardial injury and the subsequent pathological remodeling. Despite numerous previous biological studies that established the classical polarization model for macrophages, classifying them as either M1 pro-inflammatory or M2 pro-reparative macrophages, this simplistic categorization falls short of meeting the precision medicine standards, hindering the translational advancement of clinical research. Recently, advances in single-cell sequencing technology have facilitated a more profound exploration of macrophage heterogeneity and plasticity, opening avenues for the development of targeted interventions to address macrophage-related factors in the aftermath of MI. In this review, we provide a summary of macrophage origins, tissue distribution, classification, and surface markers. Furthermore, we delve into the multifaceted roles of macrophages in maintaining cardiac homeostasis and regulating inflammation during the post-MI period.
Collapse
Affiliation(s)
- Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Renhua Sun
- Department of Cardiology, Yancheng No. 1 People's Hospital, No. 66 South Renmin Road, Yancheng, 224000, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, No. 87, Dingjiaqiao, Nanjing, 210009, China.
| |
Collapse
|
39
|
Li N, Zhang T, Zhu L, Sun L, Shao G, Gao J. Recent Advances of Using Exosomes as Diagnostic Markers and Targeting Carriers for Cardiovascular Disease. Mol Pharm 2023; 20:4354-4372. [PMID: 37566627 DOI: 10.1021/acs.molpharmaceut.3c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of human death worldwide. Exosomes act as endogenous biological vectors; they possess advantages of low immunogenicity and low safety risks, also providing tissue selectivity, including the inherent targeting the to heart. Therefore, exosomes not only have been applied as biomarkers for diagnosis and therapeutic outcome confirmation but also showed potential as drug carriers for cardiovascular targeting delivery. This review aims to summarize the progress and challenges of exosomes as novel biomarkers, especially many novel exosomal noncoding RNAs (ncRNAs), and also provides an overview of the improved targeting functions of exosomes by unique engineered approaches, the latest developed administration methods, and the therapeutic effects of exosomes used as the biocarriers of medications for cardiovascular disease treatment. Also, the possible therapeutic mechanisms and the potentials for transferring exosomes to the clinic for CVD treatment are discussed. The advances, in vivo and in vitro applications, modifications, mechanisms, and challenges summarized in this review will provide a general understanding of this promising strategy for CVD treatment.
Collapse
Affiliation(s)
- Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwen Zhu
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Lebo Sun
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Guofeng Shao
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Liu Y, Wang M, Yu Y, Li C, Zhang C. Advances in the study of exosomes derived from mesenchymal stem cells and cardiac cells for the treatment of myocardial infarction. Cell Commun Signal 2023; 21:202. [PMID: 37580705 PMCID: PMC10424417 DOI: 10.1186/s12964-023-01227-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Acute myocardial infarction has long been the leading cause of death in coronary heart disease, which is characterized by irreversible cardiomyocyte death and restricted blood supply. Conventional reperfusion therapy can further aggravate myocardial injury. Stem cell therapy, especially with mesenchymal stem cells (MSCs), has emerged as a promising approach to promote cardiac repair and improve cardiac function. MSCs may induce these effects by secreting exosomes containing therapeutically active RNA, proteins and lipids. Notably, normal cardiac function depends on intracardiac paracrine signaling via exosomes, and exosomes secreted by cardiac cells can partially reflect changes in the heart during disease, so analyzing these vesicles may provide valuable insights into the pathology of myocardial infarction as well as guide the development of new treatments. The present review examines how exosomes produced by MSCs and cardiac cells may influence injury after myocardial infarction and serve as therapies against such injury. Video Abstract.
Collapse
Affiliation(s)
- Yuchang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Minrui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yang Yu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- The Key Laboratory of Medical Electrophysiology of the Ministry of Education, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Laboratory of Nucleic Acids in Medicine for National High-Level Talents, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
41
|
Yuan J, Yang H, Liu C, Shao L, Zhang H, Lu K, Wang J, Wang Y, Yu Q, Zhang Y, Yu Y, Shen Z. Microneedle Patch Loaded with Exosomes Containing MicroRNA-29b Prevents Cardiac Fibrosis after Myocardial Infarction. Adv Healthc Mater 2023; 12:e2202959. [PMID: 36739582 DOI: 10.1002/adhm.202202959] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that poses a serious threat to human health. Uncontrolled and excessive cardiac fibrosis after MI has been recognized as a primary contributor to mortality by heart failure. Thus, prevention of fibrosis or alleviation of fibrosis progression is important for cardiac repair. To this end, a biocompatible microneedle (MN) patch based on gelatin is fabricated to load exosomes containing microRNA-29b (miR-29b) mimics with antifibrotic activity to prevent excessive cardiac fibrosis after MI. Exosomes are isolated from human umbilical cord mesenchymal stem cells and loaded with miR-29b mimics via electroporation, which can be internalized effectively in cardiac fibroblasts to upregulate the expression of miR-29b and downregulate the expression of fibrosis-related proteins. After being implanted in the infarcted heart of a mouse MI model, the MN patch can increase the retention of loaded exosomes in the infarcted myocardium, leading to alleviation of inflammation, reduction of the infarct size, inhibition of fibrosis, and improvement of cardiac function. This design explored the MN patch as a suitable platform to deliver exosomes containing antifibrotic biomolecules locally for the prevention of cardiac fibrosis, showing the potential for MI treatment in clinical applications.
Collapse
Affiliation(s)
- Jianping Yuan
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
- Department of Thoracic and Cardiovascular Surgery, Baotou Central Hospital, Baotou, 014040, P. R. China
| | - Hong Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Chunxia Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Haixin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jingjing Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Yuanyuan Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Yunsheng Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215007, P. R. China
| |
Collapse
|
42
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
43
|
Li L, Cao J, Li S, Cui T, Ni J, Zhang H, Zhu Y, Mao J, Gao X, Midgley AC, Zhu M, Fan G. M2 Macrophage-Derived sEV Regulate Pro-Inflammatory CCR2 + Macrophage Subpopulations to Favor Post-AMI Cardiac Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202964. [PMID: 36950739 PMCID: PMC10190454 DOI: 10.1002/advs.202202964] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 02/21/2023] [Indexed: 05/18/2023]
Abstract
Tissue-resident cardiac macrophage subsets mediate cardiac tissue inflammation and repair after acute myocardial infarction (AMI). CC chemokine receptor 2 (CCR2)-expressing macrophages have phenotypical similarities to M1-polarized macrophages, are pro-inflammatory, and recruit CCR2+ circulating monocytes to infarcted myocardium. Small extracellular vesicles (sEV) from CCR2̶ macrophages, which phenotypically resemble M2-polarized macrophages, promote anti-inflammatory activity and cardiac repair. Here, the authors harvested M2 macrophage-derived sEV (M2EV ) from M2-polarized bone-marrow-derived macrophages for intramyocardial injection and recapitulation of sEV-mediated anti-inflammatory activity in ischemic-reperfusion (I/R) injured hearts. Rats and pigs received sham surgery; I/R without treatment; or I/R with autologous M2EV treatment. M2EV rescued cardiac function and attenuated injury markers, infarct size, and scar size. M2EV inhibited CCR2+ macrophage numbers, reduced monocyte-derived CCR2+ macrophage recruitment to infarct sites, induced M1-to-M2 macrophage switching and promoted neovascularization. Analysis of M2EV microRNA content revealed abundant miR-181b-5p, which regulated macrophage glucose uptake, glycolysis, and mitigated mitochondrial reactive oxygen species generation. Functional blockade of miR-181b-5p is detrimental to beneficial M2EV actions and resulted in failure to inhibit CCR2+ macrophage numbers and infarct size. Taken together, this investigation showed that M2EV rescued myocardial function, improved myocardial repair, and regulated CCR2+ macrophages via miR-181b-5p-dependent mechanisms, indicating an option for cell-free therapy for AMI.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Jiasong Cao
- Tianjin Key Laboratory of Human Development and Reproductive RegulationTianjin Central Hospital of Gynecology ObstetricsTianjin300052China
| | - Sheng Li
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Tianyi Cui
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyu Ni
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Han Zhang
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Jingyuan Mao
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Adam C. Midgley
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Meifeng Zhu
- Key Laboratory of Bioactive Materials for the Ministry of EducationCollege of Life SciencesNankai UniversityTianjin300071China
| | - Guanwei Fan
- State Key Laboratory of Modern Chinese MedicineKey Laboratory of Pharmacology of Traditional Chinese Medical Formulae for the Ministry of EducationTianjin University of Traditional Chinese MedicineTianjin301617China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionState Key Laboratory of Component‐based Chinese MedicineFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjin300193China
| |
Collapse
|
44
|
Lopes D, Lopes J, Pereira-Silva M, Peixoto D, Rabiee N, Veiga F, Moradi O, Guo ZH, Wang XD, Conde J, Makvandi P, Paiva-Santos AC. Bioengineered exosomal-membrane-camouflaged abiotic nanocarriers: neurodegenerative diseases, tissue engineering and regenerative medicine. Mil Med Res 2023; 10:19. [PMID: 37101293 PMCID: PMC10134679 DOI: 10.1186/s40779-023-00453-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
A bio-inspired strategy has recently been developed for camouflaging nanocarriers with biomembranes, such as natural cell membranes or subcellular structure-derived membranes. This strategy endows cloaked nanomaterials with improved interfacial properties, superior cell targeting, immune evasion potential, and prolonged duration of systemic circulation. Here, we summarize recent advances in the production and application of exosomal membrane-coated nanomaterials. The structure, properties, and manner in which exosomes communicate with cells are first reviewed. This is followed by a discussion of the types of exosomes and their fabrication methods. We then discuss the applications of biomimetic exosomes and membrane-cloaked nanocarriers in tissue engineering, regenerative medicine, imaging, and the treatment of neurodegenerative diseases. Finally, we appraise the current challenges associated with the clinical translation of biomimetic exosomal membrane-surface-engineered nanovehicles and evaluate the future of this technology.
Collapse
Affiliation(s)
- Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, 374-37515, Iran
| | - Zhan-Hu Guo
- Integrated Composites Laboratory (ICL), Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Xiang-Dong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - João Conde
- Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, Faculdade de Ciências Médicas, NOVA Medical School, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
45
|
van de Looij SM, de Jong OG, Vermonden T, Lorenowicz MJ. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J Control Release 2023; 355:685-708. [PMID: 36739906 DOI: 10.1016/j.jconrel.2023.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic.
Collapse
Affiliation(s)
- Sanne M van de Looij
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands; Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
46
|
Nian W, Fu C. Exosomes in Myocardial Infarction: Therapeutic Potential and Clinical Application. J Cardiovasc Transl Res 2023; 16:87-96. [PMID: 35672604 DOI: 10.1007/s12265-022-10284-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
Myocardial infarction (MI) remains the leading fatal disease in the world, and with subsequent adverse ventricular remodeling often leading to the development of heart failure, finding new ways to improve the prognosis of MI is important. Exosomes are extracellular vesicles of 30-150 nm secreted by various cells in the body. It is now well recognized that exosomes play an important role in MI, and exosomes may become a new approach to post-MI treatment. It is valuable to study how exosomes are involved in post-MI progression and how exosomes can be modified to improve their effectiveness. In this review, we focus on summarizing the therapeutic potential of exosomes for MI and the current status of clinical applications to provide evidence for the formal use of exosomes in the clinic.
Collapse
Affiliation(s)
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital Affiliated to Wan Nan Medical College, 92# West Zhe Shan Road, Wuhu, Anhui, China. .,Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, Wan Nan Medical College, Wuhu, China.
| |
Collapse
|
47
|
Wang Y, Yang M, Zhang J, Ren J, Liu N, Liu B, Lu L, Yang B. S-Doped carbonized polymer dots inhibit early myocardial fibrosis by regulating mitochondrial function. Biomater Sci 2023; 11:894-907. [PMID: 36524407 DOI: 10.1039/d2bm00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myocardial fibrosis (MF) is a critical pathological lesion in the progression of various acute and chronic cardiovascular diseases. However, there is still a lack of clinically effective drugs and treatments for MF therapies. Herein, for the first time, we developed fluorescent sulfur-doped carbonized polymer dots (S-CPDs) as new nano-antioxidants to reduce the cardiomyocyte damage caused by reactive oxygen species (ROS) in the early stage of fibrotic lesions. In vitro results suggested that the pre-protection of S-CPDs significantly increased the survival rate of H9c2 cells under severe oxidative stress, inhibited the isoproterenol (ISO)-induced hypertrophy of myocardial cells through improving the content of mitochondria related proteins and adenosine triphosphate (ATP) in cells. Moreover, S-CPD administration could effectively decrease cardiac hypertrophy and promote heart function in MF rat models. The rapid internalization, high biocompatibility and fluorescence imaging potential of S-CPDs revealed their promising application prospects in the diagnoses and treatments of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Mingxi Yang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
48
|
Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis. Stem Cell Rev Rep 2023; 19:1051-1066. [PMID: 36696015 DOI: 10.1007/s12015-022-10499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.
Collapse
|
49
|
Chang W, Li P. Bone marrow mesenchymal stromal cell-derived small extracellular vesicles: A novel therapeutic agent in ischemic heart diseases. Front Pharmacol 2023; 13:1098634. [PMID: 36686710 PMCID: PMC9849567 DOI: 10.3389/fphar.2022.1098634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Myocardial injury is a major pathological factor that causes death in patients with heart diseases. In recent years, mesenchymal stromal cells (MSCs) have been generally used in treating many diseases in animal models and clinical trials. mesenchymal stromal cells have the ability to differentiate into osteocytes, adipocytes and chondrocytes. Thus, these cells are considered suitable for cardiac injury repair. However, mechanistic studies have shown that the secretomes of mesenchymal stromal cells, mainly small extracellular vesicles (sEVs), have better therapeutic effects than mesenchymal stromal cells themselves. In addition, small extracellular vesicles have easier quality control characteristics and better safety profiles. Therefore, mesenchymal stromal cell-small extracellular vesicles are emerging as novel therapeutic agents for damaged myocardial treatment. To date, many clinical trials and preclinical experimental results have demonstrated the beneficial effects of bone marrow-derived mesenchymal stromal cells (BMMSCs) and bone marrow-derived mesenchymal stromal cells-small extracellular vesicles on ischemic heart disease. However, the validation of therapeutic efficacy and the use of tissue engineering methods require an exacting scientific rigor and robustness. This review summarizes the current knowledge of bone marrow-derived mesenchymal stromal cells- or bone marrow-derived mesenchymal stromal cells-small extracellular vesicle-based therapy for cardiac injury and discusses critical scientific issues in the development of these therapeutic strategies.
Collapse
Affiliation(s)
| | - Peifeng Li
- *Correspondence: Wenguang Chang, ; Peifeng Li,
| |
Collapse
|
50
|
Okamura A, Yoshioka Y, Saito Y, Ochiya T. Can Extracellular Vesicles as Drug Delivery Systems Be a Game Changer in Cardiac Disease? Pharm Res 2022; 40:889-908. [PMID: 36577860 PMCID: PMC10126064 DOI: 10.1007/s11095-022-03463-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Cardiac diseases such as myocardial infarction and heart failure have been the leading cause of death worldwide for more than 20 years, and new treatments continue to be investigated. Heart transplantation, a curative treatment for severe cardiac dysfunction, is available to only a small number of patients due to the rarity of donors and high costs. Cardiac regenerative medicine using embryonic stem cells and induced pluripotent stem cells is expected to be a new alternative to heart transplantation, but it has problems such as induction of immune response, tumor formation, and low survival rate of transplanted cells. On the other hand, there has been a focus on cell-free therapy using extracellular vesicles (EVs) due to their high biocompatibility and target specificity. Exosomes, one type of EV, play a role in the molecular transport system in vivo and can be considered a drug delivery system (DDS) innate to all living things. Exosomes contain nucleic acids and proteins, which are transported from secretory cells to recipient cells. Molecules in exosomes are encapsulated in a lipid bilayer, which allows them to exist stably in body fluids without being affected by nuclease degradation enzymes. Therefore, the therapeutic use of exosomes as DDSs has been widely explored and is being used in clinical trials and other clinical settings. This review summarizes the current topics of EVs as DDSs in cardiac disease.
Collapse
Affiliation(s)
- Akihiko Okamura
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.,Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| |
Collapse
|