1
|
Han H, Zhou Z, Shang T, Li S, Shen X, Fang J, Cui L. Silk Fibroin-Laponite Porous Microspheres as Cell Microcarriers for Osteogenic Differentiation. Tissue Eng Part A 2025; 31:255-266. [PMID: 38666700 DOI: 10.1089/ten.tea.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Silk fibroin (SF) has garnered significant attention as a natural polymer for fabricating porous scaffolds in various engineering applications. However, the limited osteoinductive property of SF has hindered its efficacy in bone repair applications. In this study, we constructed an SF-based injectable porous microcarrier that is doped with laponite (LAP), containing magnesium ions (Mg2+). The influence of freezing temperatures and concentrations of SF and LAP on the structural parameters of SF-LAP microcarriers was investigated. The SF-LAP microcarrier exhibited a porosity of 76.7 ± 1.2% and a controlled pore size of 24.6 ± 4.0 μm. At the 6 weeks of in vitro degradation test, a mild alkaline level in culture medium containing SF-LAP microcarriers was detected. The release of Mg2+ from the SF-LAP microcarrier was maintained at a concentration within the range of 1.2-2.3 mM during the 6 weeks. The seeded human adipose-derived stem cells in the SF-LAP microcarrier demonstrated a significant enhancement in osteogenic differentiation compared with cells seeded in the pure SF microcarrier, as evidenced by quantitative alkaline phosphatase activity and the expression of osteogenic marker genes. These findings underscore the potential of the SF-LAP microcarrier as an ideal cell carrier in the treatment of bone defects.
Collapse
Affiliation(s)
- Haotian Han
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Ting Shang
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuaijun Li
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiang Shen
- Department of Orthopedics, The Fourth Hospital of Changsha, Changsha, China
| | - Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Lei Cui
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Kong R, Chen J, Zhao F, Li Y, Yang H, Zheng Y, He W. Chitosan microcarriers loaded with functional drug for stimulating osteogenesis and angiogenesis in vitro. Int J Biol Macromol 2024; 283:137598. [PMID: 39561828 DOI: 10.1016/j.ijbiomac.2024.137598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Angiogenesis-osteogenesis coupling plays important roles in bone regeneration; therefore, biomaterials capable of stimulating both osteogenesis and angiogenesis show significant influence in bone repair. Herein, chitosan (CS) microcarriers loaded with functional drug dimethyloxalylglycine (DMOG) were prepared using the emulsion phase separation and impregnation method for stimulating osteogenesis and angiogenesis. FTIR and zeta potential analyses confirmed successful DMOG loading into CS microcarriers, primarily through physical adsorption, particularly hydrogen-bond interaction. As the impregnation concentration of DMOG increased, the amounts of DMOG loaded into the microcarriers increased, while the drug encapsulation efficiency decreased. All microcarriers, ranging in size from 200 to 400 μm, revealed quasi-spherical shapes and an interconnected porous structure with pore sizes mainly between 15 and 30 μm, suitable for cell attachment and proliferation. The introduction of DMOG increased the residues of the microcarriers during thermogravimetric analysis. CS/DMOG microcarriers exhibited sustained drug release (for >19 days) and good degradation ability. Furthermore, CS/DMOG microcarriers supported stem cell adhesion and proliferation. They also enhanced stem cell osteogenesis verified by strengthening alkaline phosphatase expression and mineralization. Moreover, they promoted angiogenesis, as evidenced by stimulating endothelial cell migration and tube formation. These results suggest that CS/DMOG microcarriers have the potential to be used for bone tissue regeneration.
Collapse
Affiliation(s)
- Ruirui Kong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Feilong Zhao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiyi Yang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
3
|
Liu X, Huang H, Zhang J, Sun T, Zhang W, Li Z. Recent Advance of Strontium Functionalized in Biomaterials for Bone Regeneration. Bioengineering (Basel) 2023; 10:bioengineering10040414. [PMID: 37106601 PMCID: PMC10136039 DOI: 10.3390/bioengineering10040414] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Bone defect disease causes damage to people’s lives and property, and how to effectively promote bone regeneration is still a big clinical challenge. Most of the current repair methods focus on filling the defects, which has a poor effect on bone regeneration. Therefore, how to effectively promote bone regeneration while repairing the defects at the same time has become a challenge for clinicians and researchers. Strontium (Sr) is a trace element required by the human body, which mainly exists in human bones. Due to its unique dual properties of promoting the proliferation and differentiation of osteoblasts and inhibiting osteoclast activity, it has attracted extensive research on bone defect repair in recent years. With the deep development of research, the mechanisms of Sr in the process of bone regeneration in the human body have been clarified, and the effects of Sr on osteoblasts, osteoclasts, mesenchymal stem cells (MSCs), and the inflammatory microenvironment in the process of bone regeneration have been widely recognized. Based on the development of technology such as bioengineering, it is possible that Sr can be better loaded onto biomaterials. Even though the clinical application of Sr is currently limited and relevant clinical research still needs to be developed, Sr-composited bone tissue engineering biomaterials have achieved satisfactory results in vitro and in vivo studies. The Sr compound together with biomaterials to promote bone regeneration will be a development direction in the future. This review will present a brief overview of the relevant mechanisms of Sr in the process of bone regeneration and the related latest studies of Sr combined with biomaterials. The aim of this paper is to highlight the potential prospects of Sr functionalized in biomaterials.
Collapse
|
4
|
Salim SA, Salaheldin TA, Elmazar MM, Abdel-Aziz AF, Kamoun EA. Smart biomaterials for enhancing cancer therapy by overcoming tumor hypoxia: a review. RSC Adv 2022; 12:33835-33851. [PMID: 36505711 PMCID: PMC9693911 DOI: 10.1039/d2ra06036a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Hypoxia is a distinctive feature of most solid tumors due to insufficient oxygen supply of the abnormal vasculature, which cannot work with the demands of the fast proliferation of cancer cells. One of the main obstacles to limiting the efficacy of cancer medicines is tumor hypoxia. Thus, oxygen is a vital parameter for controlling the efficacy of different types of cancer therapy, such as chemotherapy (CT), photodynamic therapy (PDT), photothermal therapy (PTT), immunotherapy (IT), and radiotherapy (RT). Numerous technologies have attracted much attention for enhancing oxygen distribution in humans and improving the efficacy of cancer treatment. Such technologies include treatment with hyperbaric oxygen therapy (HBO), delivering oxygen by polysaccharides (e.g., cellulose, gelatin, alginate, and silk) and other biocompatible synthetic polymers (e.g., PMMA, PLA, PVA, PVP and PCL), decreasing oxygen consumption, producing oxygen in situ in tumors, and using polymeric systems as oxygen carriers. Herein, this review provides an overview of the relationship between hypoxia in tumor cells and its role in the limitation of different cancer therapies alongside the numerous strategies for oxygen delivery using polysaccharides and other biomaterials as carriers and for oxygen generation.
Collapse
Affiliation(s)
- Samar A. Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt+20-1283320302,Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura UniversityEgypt
| | - Taher A. Salaheldin
- Department of Medicine, Case Western Reserve University School of MedicineClevelandOH44106USA
| | - Mohamed M. Elmazar
- Faculty of Pharmacy, The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt
| | - A. F. Abdel-Aziz
- Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura UniversityEgypt
| | - Elbadawy A. Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE)El-Sherouk CityCairo 11837Egypt+20-1283320302,Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), The City of Scientific Research and Technological Applications (SRTA-City)New Borg Al-Arab City 21934AlexandriaEgypt
| |
Collapse
|
5
|
Olov N, Bagheri-Khoulenjani S, Mirzadeh H. Injectable hydrogels for bone and cartilage tissue engineering: a review. Prog Biomater 2022; 11:113-135. [PMID: 35420394 PMCID: PMC9156638 DOI: 10.1007/s40204-022-00185-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tissue engineering, using a combination of living cells, bioactive molecules, and three-dimensional porous scaffolds, is a promising alternative to traditional treatments such as the use of autografts and allografts for bone and cartilage tissue regeneration. Scaffolds, in this combination, can be applied either through surgery by implantation of cell-seeded pre-fabricated scaffolds, or through injection of a solidifying precursor and cell mixture, or as an injectable cell-seeded pre-fabricated scaffold. In situ forming and pre-fabricated injectable scaffolds can be injected directly into the defect site with complex shape and critical size in a minimally invasive manner. Proper and homogeneous distribution of cells, biological factors, and molecular signals in these injectable scaffolds is another advantage over pre-fabricated scaffolds. Due to the importance of injectable scaffolds in tissue engineering, here different types of injectable scaffolds, their design challenges, and applications in bone and cartilage tissue regeneration are reviewed.
Collapse
Affiliation(s)
- Nafiseh Olov
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran
| | - Shadab Bagheri-Khoulenjani
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| | - Hamid Mirzadeh
- Polymer and Colour Engineering Department, Amirkabir University of Technology, 424 Hafez-Ave., 15875-4413, Tehran, Iran.
| |
Collapse
|
6
|
Liu J, Zhou F, Zhou Q, Hu S, Chen H, Zhu X, Shi F, Yan J, Huang J, Sun J, Zhang F, Gu N. A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. BIOMATERIALS ADVANCES 2022; 136:212777. [PMID: 35929315 DOI: 10.1016/j.bioadv.2022.212777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Granular scaffolds have been extensively used in the clinic to repair irregular maxillofacial defects. There remain some challenges for the repair of trabecular structures in cancellous bone due to the reticular lamella-like morphology. In this study, we fabricated a novel granular scaffold by rational design of components with different degradation rates so that the morphology of the novel scaffold can evolve to match the growth period of bone cells. Here, polycaprolactone (PCL) was used to fabricate porous microspheres as a skeleton with slow degradation. The macropores were filled with quick degraded gelatin to form complete microspheres. Asynchronous degradation of the two components altered the morphology of the evolutive scaffold from compact to porous, gradually exposing the ridge-like skeletons. This scaffold reversed the decline of cellular adhesion to simple porous skeletons during the initial adhesion. Furthermore, the cells were able to grow into the pores and adhere onto the skeletons with an elongated cellular morphology, facilitating osteogenic differentiation. This novel scaffold was experimentally proven to promote the regeneration of alveolar bone along with a good percentage of bone volume and the formation of trabecular structures. We believe this morphology-evolved scaffold is highly promising for regenerative applications in the clinic.
Collapse
Affiliation(s)
- Jun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Fang Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Qiao Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Xinchen Zhu
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi 214001, China
| | - Fan Shi
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jia Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianli Huang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China
| | - Jianfei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China.
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Zhou M, Guo M, Shi X, Ma J, Wang S, Wu S, Yan W, Wu F, Zhang P. Synergistically Promoting Bone Regeneration by Icariin-Incorporated Porous Microcarriers and Decellularized Extracellular Matrix Derived From Bone Marrow Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:824025. [PMID: 35464719 PMCID: PMC9021399 DOI: 10.3389/fbioe.2022.824025] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multifunctionality has becoming essential for bone tissue engineering materials, such as drug release. In this study, icariin (ICA)-incorporated poly(glycolide-co-caprolactone) (PGCL) porous microcarriers were fabricated and then coated with decellularized extracellular matrix (dECM) which was derived from bone marrow mesenchymal stem cells (BMSC). The porous structure was generated due to the soluble gelatin within the microcarriers. The initial released ICA in microcarriers regulated osteogenic ECM production by BMSCs during ECM formation. The dECM could further synergistically enhance the migration and osteogenic differentiation of BMSCs together with ICA as indicated by the transwell migration assay, ALP and ARS staining, as well as gene and protein expression. Furthermore, in vivo results also showed that dECM and ICA exhibited excellent synergistic effects in repairing rat calvarial defects. These findings suggest that the porous microcarriers loaded with ICA and dECM coatings have great potential in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Mengyang Zhou
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xincui Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jie Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shutao Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Shuo Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Weiqun Yan
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
- *Correspondence: Weiqun Yan, ; Feng Wu, ; Peibiao Zhang,
| | - Feng Wu
- Foshan Hospital of Traditional Chinese Medicine/Foshan Hospital of TCM, Foshan, China
- *Correspondence: Weiqun Yan, ; Feng Wu, ; Peibiao Zhang,
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Weiqun Yan, ; Feng Wu, ; Peibiao Zhang,
| |
Collapse
|
8
|
Hao J, Bai B, Ci Z, Tang J, Hu G, Dai C, Yu M, Li M, Zhang W, Zhang Y, Ren W, Hua Y, Zhou G. Large-sized bone defect repair by combining a decalcified bone matrix framework and bone regeneration units based on photo-crosslinkable osteogenic microgels. Bioact Mater 2021; 14:97-109. [PMID: 35310359 PMCID: PMC8892219 DOI: 10.1016/j.bioactmat.2021.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Physiological repair of large-sized bone defects is great challenging in clinic due to a lack of ideal grafts suitable for bone regeneration. Decalcified bone matrix (DBM) is considered as an ideal bone regeneration scaffold, but low cell seeding efficiency and a poor osteoinductive microenvironment greatly restrict its application in large-sized bone regeneration. To address these problems, we proposed a novel strategy of bone regeneration units (BRUs) based on microgels produced by photo-crosslinkable and microfluidic techniques, containing both the osteogenic ingredient DBM and vascular endothelial growth factor (VEGF) for accurate biomimic of an osteoinductive microenvironment. The physicochemical properties of microgels could be precisely controlled and the microgels effectively promoted adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro. BRUs were successfully constructed by seeding BMSCs onto microgels, which achieved reliable bone regeneration in vivo. Finally, by integrating the advantages of BRUs in bone regeneration and the advantages of DBM scaffolds in 3D morphology and mechanical strength, a BRU-loaded DBM framework successfully regenerated bone tissue with the desired 3D morphology and effectively repaired a large-sized bone defect of rabbit tibia. The current study developed an ideal bone biomimetic microcarrier and provided a novel strategy for bone regeneration and large-sized bone defect repair.
The photo-crosslinkable microgels contained both osteogenic ingredient DBM powders and angiogenic growth factor VEGF. The photo-crosslinkable microgels effectively promote adhesion, proliferation, and osteogenic differentiation of BMSCs in vitro. Bone regeneration units (BRUs) successfully achieve reliable bone regeneration in vivo. The combination of DBM scaffold and BRUs successfully regenerate bone tissue with the desired 3D morphology and repair large-sized bone defect of rabbit tibia.
Collapse
|
9
|
Le Q, Madhu V, Hart JM, Farber CR, Zunder ER, Dighe AS, Cui Q. Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World J Stem Cells 2021; 13:1248-1277. [PMID: 34630861 PMCID: PMC8474721 DOI: 10.4252/wjsc.v13.i9.1248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/22/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration.
Collapse
Affiliation(s)
- Quang Le
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Vedavathi Madhu
- Orthopaedic Surgery Research, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Joseph M Hart
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, United States
- Departments of Public Health Sciences and Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, United States
| | - Eli R Zunder
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Abhijit S Dighe
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Quanjun Cui
- Department of Orthopaedic Surgery, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
10
|
Fang J, Wang D, Hu F, Li X, Zou X, Xie J, Zhou Z. Strontium mineralized silk fibroin porous microcarriers with enhanced osteogenesis as injectable bone tissue engineering vehicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112354. [PMID: 34474902 DOI: 10.1016/j.msec.2021.112354] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
In this paper, silk fibroin (SF) porous microcarriers containing strontium were constructed as injectable bone tissue engineering vehicles. The effects of SF concentration and strontium content on micromorphology, element distribution, strontium ion release and cellular behavior of the constructed microcarriers were investigated. The microcarriers with an open interconnected pore can be fabricated by controlling the concentration of SF. The strontium functionalized SF microcarriers showed the sustained release of strontium ion and allowed bone mesenchymal stem cells (BMSCs) to attach, proliferate and secrete extracellular matrix. Furthermore, the strontium functionalized SF microcarriers improved the osteogenic capability of BMSCs in vitro compared with those microcarriers without sustained release of strontium ion. This study presents a valuable approach to fabricate polymeric microcarriers with the capability of sustained release of strontium ion that show potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China; College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Dan Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - FangFang Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Xinru Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Xiaotong Zou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang, School of Medicine, Huzhou University, HuZhou Central Hospital, Huzhou, Zhejiang 313000, PR China
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| |
Collapse
|
11
|
Wenzhi S, Dezhou W, Min G, Chunyu H, Lanlan Z, Peibiao Z. Assessment of nano-hydroxyapatite and poly (lactide-co-glycolide) nanocomposite microspheres fabricated by novel airflow shearing technique for in vivo bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112299. [PMID: 34474850 DOI: 10.1016/j.msec.2021.112299] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/06/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
A novel airflow shearing method was introduced to prepare microspheres efficiently with precisely control of microsphere size and homogeneity. The effects of technical parameters in the formation of the microspheres, such as solution concentration, nozzle size and airflow strength, were investigated. By optimizing the technical parameters (8% PLGA concentration, 27-32 G nozzle size, 6-8 l/min airflow strength), nano-hydroxyapatite and poly(lactide-co-glycolide) nanocomposite (nHA/PLGA) microspheres with a diameter around 250 μm and up to 40 wt% nHA content was prepared successfully. Especially, the microspheres possessed revealed great homogeneity and unique "acorn" appearance with two sides: A hard smooth side as well as a crumpled rough side, generated in the preparation process. Furthermore, the nHA/PLGA microspheres' potential application in bone tissue engineering was studied. In vitro, enhanced proliferation and osteogenic differentiation of the MC3T3-E1 cells was observed on as-prepared nHA/PLGA microspheres with high nHA content. In vivo, the BV/TV value of the microspheres with 20 wt% nHA was up to 75% and similar to the clinical products' performance. Moreover, beside high nHA content, the rough porous surface leads to bone ingrowth, which plays an important role in accelerating bone repair. Therefore, airflow shearing method could be an effective approach to fabricate biocompatible microsphere, and the as-prepared microspheres showed unique surface state and bone repair ability and making them as potential candidates for bone tissue engineering and bone implantation clinical applications.
Collapse
Affiliation(s)
- Song Wenzhi
- Dept. of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun 130031, PR China.
| | - Wang Dezhou
- Dept. of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun 130031, PR China
| | - Guo Min
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625# Renmin Street, Changchun 130022, PR China
| | - Han Chunyu
- Dept. of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun 130031, PR China
| | - Zhao Lanlan
- Dept. of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun 130031, PR China
| | - Zhang Peibiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625# Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
12
|
Wang B, Liu J, Niu D, Wu N, Yun W, Wang W, Zhang K, Li G, Yan S, Xu G, Yin J. Mussel-Inspired Bisphosphonated Injectable Nanocomposite Hydrogels with Adhesive, Self-Healing, and Osteogenic Properties for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32673-32689. [PMID: 34227792 DOI: 10.1021/acsami.1c06058] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Injectable hydrogels have received much attention because of the advantages of simulation of the natural extracellular matrix, microinvasive implantation, and filling and repairing of complex shape defects. Yet, for bone repair, the current injectable hydrogels have shown significant limitations such as the lack of tissue adhesion, deficiency of self-healing ability, and absence of osteogenic activity. Herein, a strategy to construct mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties is developed. The nano-hydroxyapatite/poly(l-glutamic acid)-dextran (nHA/PLGA-Dex) dually cross-linked (DC) injectable hydrogels are fabricated via Schiff base cross-linking and noncovalent nHA-BP chelation. The chelation between bisphosphonate ligands (alendronate sodium, BP) and nHA favors the uniform dispersion of the latter. Moreover, multiple adhesion ligands based on catechol motifs, BP, and aldehyde groups endow the hydrogels with good tissue adhesion. The hydrogels possess excellent biocompatibility and the introduction of BP and nHA both can effectively promote viability, proliferation, migration, and osteogenesis differentiation of MC3T3-E1 cells. The incorporation of BP groups and HA nanoparticles could also facilitate the angiogenic property of endothelial cells. The nHA/PLGA-Dex DC hydrogels exhibited considerable biocompatibility despite the presence of a certain degree of inflammatory response in the early stage. The successful healing of a rat cranial defect further proves the bone regeneration ability of nHA/PLGA-Dex DC injectable hydrogels. The developed tissue adhesive osteogenic injectable nHA/PLGA-Dex hydrogels show significant potential for bone regeneration application.
Collapse
Affiliation(s)
- Bo Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Jia Liu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Dongyang Niu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Nianqi Wu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Wentao Yun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Weidong Wang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Shifeng Yan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| | - Guohua Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR China
| |
Collapse
|
13
|
Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. CRYSTALS 2021. [DOI: 10.3390/cryst11020149] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydroxyapatite (HA) is widely used in bone tissue engineering for its bioactivity and biocompatibility, and a growing number of researchers are exploring ways to improve the physical properties and biological functions of hydroxyapatite. Up to now, HA has been used as inorganic building blocks for tissue engineering or as nanofillers to blend with polymers, furthermore, various methods such as ion doping or surface modification have been also reported to prepare functionalized HA. In this review, we try to give a brief and comprehensive introduction about HA-based materials, including ion-doped HA, HA/polymer composites and surface modified HA and their applications in bone tissue engineering. In addition, the prospective of HA is also discussed. This review may be helpful for researchers to get a general understanding about the development of hydroxyapatite based materials.
Collapse
|
14
|
Fabrication of oxygen and calcium releasing microcarriers with different internal structures for bone tissue engineering: Solid filled versus hollow microparticles. Colloids Surf B Biointerfaces 2021; 197:111376. [DOI: 10.1016/j.colsurfb.2020.111376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/10/2023]
|
15
|
Safiaghdam H, Nokhbatolfoghahaei H, Khojasteh A. Therapeutic Metallic Ions in Bone Tissue Engineering: A Systematic Review of The Literature. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 18:101-118. [PMID: 32802092 PMCID: PMC7393040 DOI: 10.22037/ijpr.2020.112641.13894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An important field of bone tissue engineering (BTE) concerns the design and fabrication of smart scaffolds capable of inducing cellular interactions and differentiation of osteo-progenitor cells. One of these additives that has gained growing attention is metallic ions as therapeutic agents (MITAs). The specific biological advantage that these ions bring to scaffolds as well as other potential mechanical, and antimicrobial enhancements may vary depending on the ion entity, fabrication method, and biomaterials used. Therefore, this article provides an overview on current status of In-vivo application of MITAs in BTE and the remaining challenges in the field. Electronic databases, including PubMed, Scopus, Science direct and Cochrane library were searched for studies on MITAs treatments for BTE. We searched for articles in English from January-2000 to October-2019. Abstracts, letters, conference papers and reviews, In-vitro studies, studies on alloys and studies investigating effects other than enhancement of new bone formation (NBF) were excluded. A detailed summary of relevant metallic ions with specific scaffold material and design, cell type, animal model and defect type, the implantation period, measured parameters and obtained qualitative and quantitative results is presented. No ideal material or fabrication method suited to deliver MITAs can yet be agreed upon, but an investigation into various systems and their drawbacks or potential advantages can lead the future research. A tendency to enhance NBF with MITAs can be observed in the studies. However, this needs to be validated with further studies comparing various ions with each other in the same animal model using critical-sized defects.
Collapse
Affiliation(s)
- Hannaneh Safiaghdam
- Student Research Committee, Dental school, Shahid Beheshti university of medical sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Tissue Cell 2020; 66:101386. [PMID: 32933709 DOI: 10.1016/j.tice.2020.101386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/27/2023]
Abstract
BACKGROUND Ideal bone defect repair scaffolds should be biodegradable, biocompatible, bioactive, porous, and provide adequate mechanical support. However, it is challenging to fabricate such an ideal bone repair scaffold. Previously, we showed that 5 wt.% strontium-doped hydroxyapatite (Sr-HA) scaffolds prepared by spark plasma sintering (SPS) technology exhibited good biocompatibility. Moreover, unlike pure hydroxyapatite (HA) scaffolds, HA scaffolds containing strontium (Sr) exhibited superior bioactivity, higher proliferation rate of BMSCs and MG-63 osteoblast cells, as well as enhanced BMSCs differentiation. METHODS In this study, we prepared pure HA scaffolds and 5 wt.% strontium containing Sr-HA scaffolds by SPS technology without adhesive, ammonium bicarbonate as pore former. Subsequently, scanning electron microscope (SEM) and X-Ray diffraction (XRD) were used to characterize the properties of Sr-HA and HA scaffolds. The ability of the scaffolds to repair bone defects was evaluated using a critical-sized rabbit tibia-bone defect rabbit model. Thirty 3-month-old New Zealand white rabbits were randomly divided into three groups (blank control group, Sr-HA scaffolds implanted group and HA scaffolds implanted group) with 10 rabbits in each group. These rabbits are sacrificed after 8 weeks and 16 weeks of surgery, and the repair effects of each scaffold were evaluated with X-ray, micro-CT, and HE staining. The three-point bending test was employed to assess the mechanical property of repaired bones. RESULTS XRD pattern indicated that Sr-HA and HA scaffolds possess a similar crystal structure after sintering, and that incorporation of strontium did not form impure phase. SEM showed that the porosity of Sr-HA and HA scaffolds was about 40 %. Universal Testing Machine tests showed that Sr-HA scaffolds had better compressive strength than HA scaffolds. Bone defect was obvious, and the fibrous tissue was formed in the bone defects of rabbits in the blank control group after 8 weeks of surgery. Sr-HA and HA scaffolds enhanced osteointegration of the host bone, and extensive woven bone was formed on the surface of the Sr-HA scaffolds. After 16 weeks, the bone strump became blunt and a small amount of callus was formed in the blank control group. Comparatively, the scaffolds were substantially degraded in the Sr-HA scaffolds implanted group while scaffolds shadows still were observed in the HA implanted group. Bone remodeling and cavity recanalization were completely developed in the Sr-HA scaffolds group. The compressive strength of repaired bone in the Sr-HA scaffolds implantation group was higher than that of HA scaffolds implantation group after 8 weeks and 16 weeks of surgery. CONCLUSIONS Our results show that the Sr-HA composite scaffolds can effectively repair bone defects and have good biodegradable properties.
Collapse
|
17
|
Li Y, Zhang Q, Xie X, Xiao D, Lin Y. Review of craniofacial regeneration in China. J Oral Rehabil 2019; 47 Suppl 1:107-117. [PMID: 30868603 DOI: 10.1111/joor.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023]
Abstract
AIM Tissue engineering has been recognised as one of the most effective means to form a new viable tissue for medical purpose. Tissue engineering involves a combination of scaffolds, cells, suitable biochemical and physicochemical factors, and engineering and materials methods. This review covered some biomedicine, such as biomaterials, bioactive factors, and stem cells, and manufacturing technologies used in tissue engineering in the oral maxillofacial region, especially in China. MATERIALS AND METHODS Data for this review were identified by searches of Web of Science and PubMed, and references from relevant articles using the search terms "biomaterials", "oral tissue regeneration", "bioactive factors" and "stem cells". Only articles published in English between 2013 and 2018 were included. CONCLUSION The combination of stem cells, bioactive factors and 3D scaffolds could be of far-reaching significance for the future therapies in tissue repair or tissue regeneration. Furthermore, the review also mentions issues that need to be solved in the application of these biomedicines.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Wei PF, Yuan ZY, Jing W, Guan BB, Liu ZH, Zhang X, Mao JP, Chen DF, Cai Q, Yang XP. Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomater Sci 2019; 7:272-286. [PMID: 30467569 DOI: 10.1039/c8bm00903a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of infected bone defects still remains a formidable clinical challenge, and the design of bone implants with both anti-bacterial activity and osteogenesis effects is nowadays regarded as a powerful strategy for infection control and bone healing.
Collapse
Affiliation(s)
- Peng-Fei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Zuo-Ying Yuan
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Bin-Bin Guan
- Department of Stomatology
- Tianjin Medical University General Hospital
- Tianjin 300052
- P.R. China
| | - Zi-Hao Liu
- Department of Endodontics
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P.R. China
| | - Xu Zhang
- Department of Endodontics
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P.R. China
| | - Jian-Ping Mao
- Department of Spine Surgery
- Beijing Jishuitan Hospital
- Beijing 100035
- P.R. China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering
- Beijing Research institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
- P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiao-Ping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
19
|
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, He Y, Yao H, Ding J. Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. ACS Biomater Sci Eng 2018; 4:3506-3521. [PMID: 33465902 DOI: 10.1021/acsbiomaterials.8b00552] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Pingguo Duan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runsheng Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haoqun Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|