1
|
Xiao Y, Qu Y, Hu X, Zhao J, Xu S, Zheng L, Liang X. E7 peptide modified poly(ε-caprolactone)/silk fibroin/octacalcium phosphate nanofiber membranes with "recruitment-osteoinduction" potentials for effective guided bone regeneration. Int J Biol Macromol 2025; 305:140862. [PMID: 39952537 DOI: 10.1016/j.ijbiomac.2025.140862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Effective membranes that have the osteogneic potential and the ability to recruit osteoblast precursor cells challenged guided bone regeneration (GBR). Herein, we engineered multifunctional nanofiber membranes by using eletrospun poly(ε-caprolactone) (PCL) and silk fibroin (SF), incorporated with octacalcium phosphate (OCP) and BMSCs-affine peptide (E7) to form the PCL/SF/OCP/E7 (PSOE) nanofiber, wherein the E7 peptide enhances the enrichment of BMSCs, and OCP as osteogenesis promoter. The composite membranes enhance the recruitment and biomineralization processes essential for bone regeneration. Notably, the dual functionality of BMSC recruitment and osteoinduction provides a "recruitment-osteoinduction" strategy that significantly improves bone repair. In vitro analyses confirmed that the PSOE nanofibers have superior hydrophilicity and biocompatibility, and significantly upregulated the expression of osteogenic genes in mesenchymal stem cells, thereby facilitating osteogenic differentiation. In vivo studies using a rat tibial defect model revealed that PSOE nanofibers promoted bone repair within 8 weeks, as validated by micro-CT and histological evaluations. This study highlights the PSOE nanofiber's potential as a promising synthetic periosteum substitute for effective bone regeneration.
Collapse
Affiliation(s)
- Yuanming Xiao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Yangyang Qu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Xuankai Hu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Jinmin Zhao
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China
| | - Sheng Xu
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China; Life Science Research Institute of Guangxi Medical University, Nanning, 530021, PR China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Key Laboratory of Regenerative Medicine, Collaborative Innovation Center of Regenerative Medicine and Medical Biological Resources Development and Application, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, PR China.
| | - Xiaonan Liang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China.
| |
Collapse
|
2
|
San Jacinto Garcia J, Sanz del Olmo N, Hutchinson DJ, Malkoch M. Enhanced Degradability of Thiol-Ene Composites through the Inclusion of Isosorbide-Based Polycarbonates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:40056-40068. [PMID: 39031473 PMCID: PMC11299145 DOI: 10.1021/acsami.4c09626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
Open reduction internal fixation metal plates and screws remain the established standard-of-care for complex fracture fixation. They, however, have drawbacks such as limited customization, soft-tissue adhesions, and a lack of degradation. Bone cements and composites are being developed as alternative fixation techniques in order to overcome these issues. One such composite is a strong, stiff, and shapeable hydroxyapatite-containing material consisting of 1,3,5-triazine-2,4,6-trione (TATO) monomers, which cures through high energy visible light-induced thiol-ene coupling (TEC) chemistry. Previous human cadaver and in vivo studies have shown that patches of this composite provide sufficient fixation for healing bone fractures; however, the composite lacks degradability. To promote degradation through hydrolysis, new allyl-functionalized isosorbide-based polycarbonates have been added into the composite formulation, and their impact has been evaluated. Three polycarbonates with allyl functionalities, located at the termini (aPC1 and aPC2) or in the backbone (aPC3), were synthesized. Composites containing 1, 3, and 5 wt % of aPCs 1-3 were formulated and evaluated with regard to mechanical properties, water absorption, hydrolytic degradation, and cytotoxicity. Allyl-functionalized polycaprolactone (aPCL) was synthesized and used as a comparison. When integrated into the composite, aPC3 significantly impacted the material's properties, with the 5 wt % aPC3 formulation showing a significant increase in degradation of 469%, relative to the formulation not containing any aPCs after 8 weeks' immersion in PBS, along with a modest decrease in modulus of 28% to 4.01 (0.3) GPa. Osteosyntheses combining the aPC3 3 and 5 wt % formulations with screws on synthetic bones with ostectomies matched or outperformed the ones made with the previously studied neat composite with regard to bending stiffness and strength in four-point monotonic bending before and after immersion in PBS. The favorable mechanical properties, increased degradation, and nontoxic characteristics of the materials present aPC3 as a promising additive for the TATO composite formulations. This combination resulted in stiff composites with long-term degradation that are suitable for bone fracture repair.
Collapse
Affiliation(s)
- Jorge San Jacinto Garcia
- Royal Institute of Technology,
School of Chemical Science and Engineering, Department of Fibre and
Polymer Technology, KTH, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Natalia Sanz del Olmo
- Royal Institute of Technology,
School of Chemical Science and Engineering, Department of Fibre and
Polymer Technology, KTH, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Daniel J. Hutchinson
- Royal Institute of Technology,
School of Chemical Science and Engineering, Department of Fibre and
Polymer Technology, KTH, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Michael Malkoch
- Royal Institute of Technology,
School of Chemical Science and Engineering, Department of Fibre and
Polymer Technology, KTH, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Gentili C, Palamà MEF, Sexton G, Maybury S, Shanahan M, Omowunmi-Kayode YY, Martin J, Johnson M, Thompson K, Clarkin O, Coleman CM. Sustainably cultured coral scaffold supports human bone marrow mesenchymal stromal cell osteogenesis. Regen Ther 2024; 26:366-381. [PMID: 39050552 PMCID: PMC11267040 DOI: 10.1016/j.reth.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.
Collapse
Affiliation(s)
- Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Gillian Sexton
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sophie Maybury
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Megan Shanahan
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Yeyetunde Yvonne Omowunmi-Kayode
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - James Martin
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
| | - Martin Johnson
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
- Ecodiversity Ltd, Derryconnell, Schull, Co. Cork, Ireland
| | - Kerry Thompson
- College of Medicine, Nursing and Health Science, School of Medicine, Anatomy Imaging and Microscopy Facility, University of Galway, Galway, Ireland
| | - Owen Clarkin
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Tavakoli M, Emadi R, Salehi H, Labbaf S, Varshosaz J. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications. Int J Biol Macromol 2023; 253:126510. [PMID: 37625748 DOI: 10.1016/j.ijbiomac.2023.126510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/10/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
3D printing fabrication has become a dominant approach for the creation of tissue engineering constructs as it is accurate, fast, reproducible and can produce patient-specific templates. In this study, 3D printing is applied to create nanocomposite scaffold of polylactic acid (PLA)/hardystonite (HT)-graphene oxide (GO). GO is utilized as a coupling agent of alkaline treated HT nanoparticles within PLA matrix. The addition of HT-GO nanoparticles of up to 30 wt% to PLA matrix was found to increase the degradability from 7.33 ± 0.66 to 16.03 ± 1.47 % during 28 days. Also, the addition of 20 wt% of HT-GO nanoparticles to PLA scaffold (PLA/20HTGO sample) significantly increased the compressive strength (from 7.65 ± 0.86 to 14.66 ± 1.01 MPa) and elastic modulus (from 94.46 ± 18.03 to 189.15 ± 10.87 MPa). The apatite formation on the surface of nanocomposite scaffolds in simulated body fluid within 28 days confirmed the excellent bioactivity of nanocomposite scaffolds. The MG63 cell adhesion and proliferation and, also, the rat bone marrow mesenchymal stem cells osteogenic differentiation were highly stimulated on the PLA/20HTGO scaffold. According to the sum of results obtained in the current study, the optimized PLA/20HTGO nanocomposite scaffold is highly promising for hard tissue engineering applications.
Collapse
Affiliation(s)
- Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Novel Drug Delivery Systems Research Centre, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Chayanun S, Chanamuangkon T, Boonsuth B, Boccaccini AR, Lohwongwatana B. Enhancing PEEK surface bioactivity: Investigating the effects of combining sulfonation with sub-millimeter laser machining. Mater Today Bio 2023; 22:100754. [PMID: 37593219 PMCID: PMC10430171 DOI: 10.1016/j.mtbio.2023.100754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023] Open
Abstract
Due to its superior mechanical properties and chemical stability, Polyetheretherketone (PEEK) has emerged as an alternative to conventional metal implants. However, the bio-inertness of PEEK's surface has limited its applications. Ambient sulfonation has been adopted to enhance bioactivity, but its nanoscale topographic changes are insufficient for implant-bone interlock. To further improve bone-implant interlock, this study employs CO2 laser machining to create sub-millimeter (0.5 mm) grooves on PEEK's surface, aiming to encourage bone ingrowth and strengthen the implant-bone interface. This research investigated the physical and chemical properties and bio-interaction of PEEK surface modified by sulfonation (SPEEK), laser machining (L-PEEK), and combination of both technique (L-SPEEK). X-ray photoelectron spectroscopy (XPS) spectra revealed that sulfonation compensates for the surface chemical shift instigated by laser ablation, aligning the surface chemistry of L-SPEEK with that of SPEEK. Furthermore, L-PEEK surfaces presented pores with sizes ranging from 1 to 600 μm, while SPEEK surfaces exhibited pores between 5 and 700 nm. All tested samples demonstrated non-cytotoxicity, with L-SPEEK exhibiting the highest mineralization and ALP activity as 2 and 2.1 times that of intrinsic PEEK, after 21 days of incubation. Microscopic imaging reveals a notably higher extracellular content on L-SPEEK compared to the other groups. This study underscores the potential of combining sub-millimeter laser machining with sulfonation in enhancing early osteogenic markers, providing a promising pathway for future PEEK-based orthopedic applications.
Collapse
Affiliation(s)
- Slila Chayanun
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok, Thailand
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Theerapat Chanamuangkon
- Biomaterial Testing Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Budsaraporn Boonsuth
- Oral Biology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
| | - Boonrat Lohwongwatana
- Biomedical Engineering Research Center, Chulalongkorn University, Bangkok, Thailand
- Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Rothammer M, Strobel P, Zollfrank C, Urmann C. Biocompatible coatings based on photo-crosslinkable cellulose derivatives. Int J Biol Macromol 2023; 250:126063. [PMID: 37524281 DOI: 10.1016/j.ijbiomac.2023.126063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.
Collapse
Affiliation(s)
- Maximilian Rothammer
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Philipp Strobel
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany
| | - Cordt Zollfrank
- Chair for Biogenic Polymers, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany
| | - Corinna Urmann
- TUM Campus Straubing, Technical University of Munich, Schulgasse 16, 94315 Straubing, Germany; Organic-Analytical Chemistry, Weihenstephen-Triesdorf University of Applied Sciences, Schulgasse 16, 94315 Straubing, Germany.
| |
Collapse
|
7
|
Kim TH, Song Z, Jung J, Sung JS, Kang MJ, Shim WB, Lee M, Pyun JC. Functionalized Parylene Films for Enhancement of Antibody Production by Hybridoma Cells. ACS APPLIED BIO MATERIALS 2023; 6:3726-3738. [PMID: 37647153 DOI: 10.1021/acsabm.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.
Collapse
Affiliation(s)
- Tae-Hun Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jaeyong Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Jeong-Soo Sung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Min-Jung Kang
- Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Won-Bo Shim
- Department of Food Science and Technology & Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, Gyeongnam 52828, South Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering and △Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon 22012, South Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
8
|
Sithole MN, Kumar P, Du Toit LC, Erlwanger KH, Ubanako PN, Choonara YE. A 3D-Printed Biomaterial Scaffold Reinforced with Inorganic Fillers for Bone Tissue Engineering: In Vitro Assessment and In Vivo Animal Studies. Int J Mol Sci 2023; 24:ijms24087611. [PMID: 37108772 PMCID: PMC10144578 DOI: 10.3390/ijms24087611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This research aimed to substantiate the potential practicality of utilizing a matrix-like platform, a novel 3D-printed biomaterial scaffold, to enhance and guide host cells' growth for bone tissue regeneration. The 3D biomaterial scaffold was successfully printed using a 3D Bioplotter® (EnvisionTEC, GmBH) and characterized. Osteoblast-like MG63 cells were utilized to culture the novel printed scaffold over a period of 1, 3, and 7 days. Cell adhesion and surface morphology were examined using scanning electron microscopy (SEM) and optical microscopy, while cell viability was determined using MTS assay and cell proliferation was evaluated using a Leica microsystem (Leica MZ10 F). The 3D-printed biomaterial scaffold exhibited essential biomineral trace elements that are significant for biological bone (e.g., Ca-P) and were confirmed through energy-dispersive X-ray (EDX) analysis. The microscopy analyses revealed that the osteoblast-like MG63 cells were attached to the printed scaffold surface. The viability of cultured cells on the control and printed scaffold increased over time (p < 0.05); however, on respective days (1, 3, and 7 days), the viability of cultured cells between the two groups was not significantly different (p > 0.05). The protein (human BMP-7, also known as growth factor) was successfully attached to the surface of the 3D-printed biomaterial scaffold as an initiator of osteogenesis in the site of the induced bone defect. An in vivo study was conducted to substantiate if the novel printed scaffold properties were engineered adequately to mimic the bone regeneration cascade using an induced rabbit critical-sized nasal bone defect. The novel printed scaffold provided a potential pro-regenerative platform, rich in mechanical, topographical, and biological cues to guide and activate host cells toward functional regeneration. The histological studies revealed that there was progress in new bone formation, especially at week 8 of the study, in all induced bone defects. In conclusion, the protein (human BMP-7)-embedded scaffolds showed higher regenerative bone formation potential (week 8 complete) compared to the scaffolds without protein (e.g., growth factor; BMP-7) and the control (empty defect). At 8 weeks postimplantation, protein (BMP-7) significantly promoted osteogenesis as compared to other groups. The scaffold underwent gradual degradation and replacement by new bones at 8 weeks in most defects.
Collapse
Affiliation(s)
- Mduduzi N Sithole
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C Du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Kennedy H Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
9
|
Lee R, Park HJ, Lee WY, Choi Y, Song H. Nanoscale level gelatin-based scaffolds enhance colony formation of porcine testicular germ cells. Theriogenology 2023; 202:125-135. [PMID: 36958136 DOI: 10.1016/j.theriogenology.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/01/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
The extracellular matrix is important in cell growth, proliferation, and differentiation. Gelatin, a support for adhering cells, is used for coating culture plate surfaces of several primary and stem cells. However, gelatin characteristics on culture plates and its cell interactions are not understood. Here, we aimed to identify the effect of gelatin topography on culture plates on the proliferation and colony formation of porcine spermatogonial germ cells (pSGC). To generate different surface topographies, gelatin powder was dissolved in H2O at varying melting temperatures (40, 60, 80, and 120 °C) and coated on the surface of the culture plates. At 40 °C, the pores of the gelatin scaffold were regular ellipses 5-6 μm in diameter and 10-30 nm in thickness. However, at 120 °C, irregular pores 20-30 μm in diameter and 10-20 nm in thickness were obtained. Additionally, the number of attached cells and pSGC colonies were significantly more at 40 °C than at 120 °C after a week of culture. Interestingly, the feeder cells did not settle properly at 120 °C but detached easily from the culture dishes. PSGC colonies were 100 μm in diameter at 40 °C, with small and detached colonies observed at 120 °C. Thus, optimal topography of gelatin was obtained at 40 °C, which was sufficient for the proliferation of feeder cells and the formation of pSGC colonies. Thus, gelatin scaffold conditions at 40 °C and 60 °C were optimal for the derivation and culture of pSGC, and gelatin surface morphology is important for the maintenance of supportive feeder cells for pSGC proliferation and colony formation.
Collapse
Affiliation(s)
- Ran Lee
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyun Jung Park
- Department of Animal Biotechnology, Sangji University, Wonju-si, 26339, Republic of Korea.
| | - Won Young Lee
- Department of Livestock, Korea National University of Agricultures and Fisheries, Jeonju-si, 54874, Republic of Korea.
| | - Youngsok Choi
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Hyuk Song
- Department of Stem Cells & Regenerative Technology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
10
|
Wang Q, Liu Q, Gao J, He J, Zhang H, Ding J. Stereo Coverage and Overall Stiffness of Biomaterial Arrays Underly Parts of Topography Effects on Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6142-6155. [PMID: 36637977 DOI: 10.1021/acsami.2c19742] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface topography is a biophysical factor affecting cell behaviors, yet the underlying cues are still not clear. Herein, we hypothesized that stereo coverage and overall stiffness of biomaterial arrays on the scale of single cells underly parts of topography effects on cell adhesion. We fabricated a series of microarrays (micropillar, micropit, and microtube) of poly(l-lactic acid) (PLLA) using mold casting based on pre-designed templates. The characteristic sizes of array units were less than that of a single cell, and thus, each cell could sense the micropatterns with varied roughness. With human umbilical vein endothelial cells (HUVECs) as the model cell type, we examined spreading areas and cell viabilities on different surfaces. "Stereo coverage" was defined to quantify the actual cell spreading fraction on a topographic surface. Particularly in the case of high micropillars, cells were confirmed not able to touch the bottom and had to partially hang among the micropillars. Then, in our opinion, a cell sensed the overall stiffness combining the bulk stiffness of the raw material and the stiffness of the culture medium. Spreading area and single cell viability were correlated to coverage and topographic feature of the prepared microarrays in particular with the significantly protruded geometry feather. Cell traction forces exerted on micropillars were also discussed. These findings provide new insights into the surface modifications toward biomedical implants.
Collapse
Affiliation(s)
- Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Qingsong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Junhao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai200438, China
| |
Collapse
|
11
|
Erenay B, Sağlam ASY, Garipcan B, Jandt KD, Odabaş S. Bone surface mimicked PDMS membranes stimulate osteoblasts and calcification of bone matrix. BIOMATERIALS ADVANCES 2022; 142:213170. [PMID: 36341745 DOI: 10.1016/j.bioadv.2022.213170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Cellular microenvironments play a crucial role in cell behavior. In addition to the biochemical cues present in the microenvironments, biophysical and biomechanical properties on surfaces have an impact on cellular functionality and eventually cellular fate. Effects of surface topography on cell behavior are being studied extensively in the literature. However, these studies often try to replicate topographical features of tissue surfaces by using techniques such as chemical etching, photolithography, and electrospinning, which may result in the loss of crucial micro- and nano- features on the tissue surfaces such as bone. This study investigates the topographical effects of bone surface by transferring its surface features onto polydimethylsiloxane (PDMS) membranes using soft lithography from a bovine femur. Our results have shown that major features on bone surfaces were successfully transferred onto PDMS using soft lithography. Osteoblast proliferation and calcification of bone matrix have significantly increased along with osteoblast-specific differentiation and maturation markers such as osteocalcin (OSC), osterix (OSX), collagen type I alpha 1 chain (COL1A1), and alkaline phosphatase (ALP) on bone surface mimicked (BSM) PDMS membranes in addition to a unidirectional alignment of osteoblast cells compared to plain PDMS surfaces. This presented bone surface mimicking method can provide a versatile native-like platform for further investigation of intracellular pathways regarding osteoblast growth and differentiation.
Collapse
Affiliation(s)
- Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey
| | - Atiye Seda Yar Sağlam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Boğaziçi University, 34684, Turkey
| | - Klaus D Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research, Friedrich Schiller University, Jena 07743, Germany.
| | - Sedat Odabaş
- Biomaterials and Tissue Engineering Laboratory (BteLAB), Faculty of Science, Department of Chemistry, Ankara University, 06560, Turkey; Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey.
| |
Collapse
|
12
|
Preparation and Characterisation of Cellulose Nanocrystal/Alginate/Polyethylene Glycol Diacrylate (CNC/Alg/PEGDA) Hydrogel Using Double Network Crosslinking Technique for Bioprinting Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to prepare and characterise hydrogel formulations using cellulose nanocrystals (CNCs), alginate (Alg), and polyethylene glycol diacrylate (PEGDA). The CNC/Alg/PEGDA formulations were formed using a double network crosslinking approach. Firstly, CNC was extracted from oil palm trunk, and the size and morphology of the CNCs were characterised using TEM analysis. Secondly, different formulations were prepared using CNCs, Alg, and PEGDA. The mixtures were crosslinked with Ca2+ ions and manually extruded using a syringe before being subjected to UV irradiation at 365 nm. The shear-thinning properties of the formulations were tested prior to any crosslinking, while the determination of storage and loss modulus was conducted post extrusion after the Ca2+ ion crosslink using a rheometer. For the analysis of swelling behaviour, the constructs treated with UV were immersed in PBS solution (pH 7.4) for 48 h. The morphology of the UV crosslinked construct was analysed using SEM imaging. The extracted CNC exhibited rod-like structures with an average diameter and length of around 7 ± 2.4 and 113 ± 20.7 nm, respectively. Almost all CNC/Alg/PEGDA formulations (pre-gel formulation) displayed shear-thinning behaviour with the power-law index η < 1, and the behaviour was more prominent in the 1% [w/v] Alg formulations. The CNC/Alg/PEGDA with 2.5% and 4% [w/v] Alg displayed a storage modulus dominance over loss modulus (G′ > G″) which suggests good shape fidelity. After the hydrogel constructs were subjected to UV treatment at 365 nm, only the F8 construct [4% CNC: 4% Alg: 40% PEGDA] demonstrated tough and flexible characteristics that possibly mimic the native articular cartilage property due to a similar water content percentage (79.5%). In addition, the small swelling ratio of 4.877 might contribute to a minimal change of the 3D construct’s geometry. The hydrogel revealed a rough and wavy surface, and the pore size ranged from 3 to 20 µm. Overall, the presence of CNCs in the double network hydrogel demonstrated importance and showed positive effects towards the fabrication of a potentially ideal 3D bioprinted scaffold.
Collapse
|
13
|
Janmey PA, Hinz B, McCulloch CA. Physics and Physiology of Cell Spreading in Two and Three Dimensions. Physiology (Bethesda) 2021; 36:382-391. [PMID: 34704856 PMCID: PMC8560373 DOI: 10.1152/physiol.00020.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
Cells spread on surfaces and within three-dimensional (3-D) matrixes as they grow, divide, and move. Both chemical and physical signals orchestrate spreading during normal development, wound healing, and pathological states such as fibrosis and tumor growth. Diverse molecular mechanisms drive different forms of cell spreading. This article discusses mechanisms by which cells spread in 2-D and 3-D and illustrates new directions in studies of this aspect of cell function.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Porous 3D Scaffolds Enhance MSC Vitality and Reduce Osteoclast Activity. Molecules 2021; 26:molecules26206258. [PMID: 34684837 PMCID: PMC8541337 DOI: 10.3390/molecules26206258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
In the context of an aging population, unhealthy Western lifestyle, and the lack of an optimal surgical treatment, deep osteochondral defects pose a great challenge for the public health system. Biodegradable, biomimetic scaffolds seem to be a promising solution. In this study we investigated the biocompatibility of porous poly-((D,L)-lactide-ε-caprolactone)dimethacrylate (LCM) scaffolds in contrast to compact LCM scaffolds and blank cell culture plastic. Thus, morphology, cytotoxicity and metabolic activity of human mesenchymal stromal cells (MSC) seeded directly on the materials were analyzed after three and six days of culturing. Further, osteoclastogenesis and osteoclastic activity were assessed using reverse-transcriptase real-time PCR of osteoclast-specific genes, EIA and morphologic aspects after four, eight, and twelve days. LCM scaffolds did not display cytotoxic effects on MSC. After three days, metabolic activity of MSC was enhanced on 3D porous scaffolds (PS) compared to 2D compact scaffolds (CS). Osteoclast activity seemed to be reduced at PS compared to cell culture plastic at all time points, while no differences in osteoclastogenesis were detectable between the materials. These results indicate a good cytocompatibility of LCM scaffolds. Interestingly, porous 3D structure induced higher metabolic activity of MSC as well as reduced osteoclast activity.
Collapse
|
15
|
Bernat R, Maksym P, Tarnacka M, Koperwas K, Knapik-Kowalczuk J, Malarz K, Mrozek-Wilczkiewicz A, Dzienia A, Biela T, Turczyn R, Orszulak L, Hachuła B, Paluch M, Kamiński K. The effect of high-pressure on organocatalyzed ROP of γ-butyrolactone. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci 2021; 294:102451. [PMID: 34098385 DOI: 10.1016/j.cis.2021.102451] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
In recent decades synthetic polymers have gained increasing popularity, and nowadays they are an integral part of people's daily lives. In addition, owing to their competitive advantage and being susceptible to modification, polymers have stimulated the fast development of innovative technologies in many areas of science. Biopolymers are of particular interest in various branches of medicine, such as implantology of bones, cartilage and skin tissues as well as blood vessels. Biomaterials with such specific applications must have appropriate mechanical and strength characteristics and above all they must be compatible with the surrounding tissues, human blood and its components, i.e. exhibit high hemo- and biocompatibility, low or no thrombo- and carcinogenicity, foreign body response (host response), appropriate osteoconduction, osteoinduction and mineralization. For biocompatibility improvement many surface treatment techniques have been utilized leading to fabricate the polymer biomaterials of required properties, also at nanoscale. This review paper discusses the most important physicochemical and biological factors that affect the biocompatibility, thus the reaction of the living organism after insertion of the polymer-based biomaterials, i.e. surface modification and/or degradation, surface composition (functional groups and charge), size and shapes, hydrophilic-hydrophobic character, wettability and surface free energy, topography (roughness, stiffness), crystalline and amorphous structure, nanostructure, cell adhesion and proliferation, cellular uptake. Particularly, the application of polysaccharides (chitosan, cellulose, starch) in the tissue engineering is emphasized.
Collapse
|
17
|
Pripatnanont P, Chankum C, Meesane J, Thonglam J. Physical and biological performances of a semi-resorbable barrier membrane based on silk fibroin-glycerol-fish collagen material for guided bone regeneration. J Biomater Appl 2021; 36:930-942. [PMID: 34152233 DOI: 10.1177/08853282211025781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The fragility of silk fibroin film is a drawback to being used as a barrier membrane. Semi-resorbable barrier membranes maintain function longer than a resorbable membrane and no need to be removed. The study aimed to fabricate semi-resorbable membranes using silk fibroin with glycerol plasticizer (Group A), immobilized with fish collagen (Group B), and then characterized, in vitro biocompatibility tested, and compared with a commercial collagen membrane (Group C). Group B showed more roughness (0.2155 µm) than Group A (0.1424 µm). Group A was more hydrophilic (76.75° ± 3.07°) and more stiffness (28.93% ± 15.56%) than Group B (112.67° ± 1.94°, 42.10% ± 11.46%) and C (54.79% ± 13.44%) without significant difference. Group C had a significantly higher (p < 0.05) swelling degree and less degradation rate than others. Group A showed significantly highest (p < 0.05) cell proliferation. Group C showed more alkaline phosphatase activity than others but no significant difference in osteocalcin and Alizarin Red activity on day 21. The semi-resorbable membrane based on silk fibroin-glycerol possessed good physical and mechanical properties, and well-supported osteoblastic cell proliferation and differentiation.
Collapse
Affiliation(s)
- Prisana Pripatnanont
- CranioMaxillofacial Hard Tissue Engineering Center, Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanokpim Chankum
- CranioMaxillofacial Hard Tissue Engineering Center, Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jutakan Thonglam
- CranioMaxillofacial Hard Tissue Engineering Center, Oral and Maxillofacial Surgery Section, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
18
|
Lei H, Yi T, Fan H, Pei X, Wu L, Xing F, Li M, Liu L, Zhou C, Fan Y, Zhang X. Customized additive manufacturing of porous Ti6Al4V scaffold with micro-topological structures to regulate cell behavior in bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111789. [PMID: 33545915 DOI: 10.1016/j.msec.2020.111789] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Scaffold micro-topological structure plays an important role in the regulation of cell behavior in bone tissue engineering. This paper investigated the effect of 3D printing parameters on the scaffold micro-topological structure and its subsequent cell behaviors. By setting of different 3D printing parameters, i.e., the 3D printing laser power, the scanning interval and the thickness of sliced layers, the highest resolution up to 20 μm can be precisely fabricated. Scaffolds' characterization results indicated that the laser power affected the forming quality of melt tracks, the scanning interval distance determined the size of regularly arranged pores, and the thickness of sliced layers affected the morphological and structural characteristics. By regulating of these printing parameters, customized porous Ti6Al4V scaffold with varied hierarchical micro-topological structure can be obtained. In vitro cell culturing results showed that the regular porous micro-topological structure of scaffolds with the aperture close to cell size was more suitable for cell proliferation and adhesion. The overall distribution of cells on regular porous scaffolds was similar to the orderly arrangement of cultivated crops in the field. The findings suggested that customization of the scaffold provided an effective way to regulate cellular behavior and biological properties.
Collapse
Affiliation(s)
- Haoyuan Lei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Tao Yi
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China
| | - Hongyuan Fan
- School of Mechanical Engineering, Sichuan University, 610065 Chengdu, China.
| | - Xuan Pei
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Lina Wu
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxin Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China.
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 610064 Chengdu, China; School of Biomedical Engineering, Sichuan University, 610064 Chengdu, China
| |
Collapse
|
19
|
DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. ENGINEERED REGENERATION 2020; 1:76-87. [PMID: 38620328 PMCID: PMC7474829 DOI: 10.1016/j.engreg.2020.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Polylactic acid (PLA) is a versatile biopolymer. PLA is synthesized with ease from abundant renewable resources and is biodegradable. PLA has shown promise as a biomaterial in a plethora of healthcare applications such as tissue engineering or regenerative medicine, cardiovascular implants, dental niches, drug carriers, orthopedic interventions, cancer therapy, skin and tendon healing, and lastly medical tools / equipment. PLA has demonstrated instrumental importance as a three-dimensionally (3D) printable biopolymer, which has further been bolstered by its role during the Coronavirus Disease of 2019 (Covid-19) global pandemic. As an abundant filament, PLA has created desperately needed personal protective equipment (PPE) and ventilator modifications. As polymer chemistry continues to advance, so too will the applications and continued efficacy of PLA-based modalities.
Collapse
Affiliation(s)
- Vincent DeStefano
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Salaar Khan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alonzo Tabada
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
20
|
Zhou W, Peng X, Zhou X, Li M, Ren B, Cheng L. Influence of bio-aging on corrosion behavior of different implant materials. Clin Implant Dent Relat Res 2019; 21:1225-1234. [PMID: 31729828 DOI: 10.1111/cid.12865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dental implants and abutments are exposed to challenging oral environment. Corrosion of these materials can affect the overall performance of titanium implants. PURPOSE To investigate the effects of biofilm-induced bio-aging on corrosion behavior of different implant materials surface. MATERIALS AND METHODS Commercial polished titanium (Polish), sand-blasted, large grit, acid-etched surface treated titanium (SLA), microarc oxidation (MAO), and hydroxyapatite (HA) coated titanium were bio-aged with saliva biofilm for 30 days. Titanium surfaces topography, chemical composition, roughness, and water contact angle changes were evaluated. In addition, human gingival fibroblasts (HGFs) adhesion, Streptococcus sanguinis (S. sanguinis) biofilm formation were determined. RESULTS Surface topography, roughness, and chemical composition have no significant changes for all groups after bio-aging (P > .05). Water contact angle of bio-aged SLA was greatly increased (P < .05). While other groups showed no sign of change (P > .05). Adhesion and proliferation of HGFs on the bio-aged SLA titanium surfaces were decreased (P < .05), but increased on bio-aged Polish and HA titanium (P < .05). S. sanguinis biofilm viability was promoted with bio-aging in HA group (P < .05). CONCLUSIONS Biological characteristics of Polish, SLA, and HA titanium surfaces were influenced by bio-aging. While MAO group was relatively resistant to saliva biofilm bio-aging.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Bae EB, Kim HJ, Ahn JJ, Bae HY, Kim HJ, Huh JB. Comparison of Bone Regeneration between Porcine-Derived and Bovine-Derived Xenografts in Rat Calvarial Defects: A Non-Inferiority Study. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3412. [PMID: 31635277 PMCID: PMC6829332 DOI: 10.3390/ma12203412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The present study aimed to compare the bone-regeneration capacity of porcine-derived xenografts to bovine-derived xenografts in the rat calvarial defect model. The observation of surface morphology and in vitro cell studies were conducted prior to the animal study. Defects with a diameter of 8 mm were created in calvaria of 20 rats. The rats were randomly treated with porcine-derived (Bone-XP group) or bovine-derived xenografts (Bio-Oss group) and sacrificed at 4 and 8 weeks after surgery. The new bone regeneration was evaluated by micro-computed tomography (μCT) and histomorphometric analyses. In the cell study, the extracts of Bone-XP and Bio-Oss showed a positive effect on the regulation of osteogenic differentiation of human mesenchymal stem cells (hMSCs) without cytotoxicity. The new bone volume of Bone-XP (17.52 ± 3.78% at 4 weeks and 32.09 ± 3.51% at 8 weeks) was similar to that of Bio-Oss (11.6 ± 3.88% at 4 weeks and 25.89 ± 7.43% at 8 weeks) (p > 0.05). In the results of new bone area, there was no significant difference between Bone-XP (9.08 ± 5.47% at 4 weeks and 25.22 ± 13.56% at 8 weeks) and Bio-Oss groups (5.83 ± 2.56% at 4 weeks and 21.68 ± 11.11% at 8 weeks) (p > 0.05). It can be concluded that the porcine-derived bone substitute may offer a favorable cell response and bone regeneration similar to those of commercial bovine bone mineral.
Collapse
Affiliation(s)
- Eun-Bin Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Ha-Jin Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jong-Ju Ahn
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyun-Young Bae
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Hyung-Joon Kim
- Department of Oral Physiology, Dental Research Institute, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| | - Jung-Bo Huh
- Department of Prosthodontics, Dental Research Institute, Dental and Life Science Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Korea.
| |
Collapse
|
22
|
Yasenchuk Y, Marchenko E, Gunther V, Radkevich A, Kokorev O, Gunther S, Baigonakova G, Hodorenko V, Chekalkin T, Kang JH, Weiss S, Obrosov A. Biocompatibility and Clinical Application of Porous TiNi Alloys Made by Self-Propagating High-Temperature Synthesis (SHS). MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2405. [PMID: 31357702 PMCID: PMC6696327 DOI: 10.3390/ma12152405] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 11/16/2022]
Abstract
Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are biomaterials designed for medical application in substituting tissue lesions and they were clinically deployed more than 30 years ago. The SHS process, as a very fast and economically justified route of powder metallurgy, has distinctive features which impart special attributes to the resultant implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo has been recognized and is not in dispute presently, but the rationale is somewhat disputable. The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore issues of the high biocompatibility level on which additional studies could be carried out, as well as recent progress and key fields of clinical application, yet allowing innovative solutions.
Collapse
Affiliation(s)
- Yuri Yasenchuk
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Ekaterina Marchenko
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Victor Gunther
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Andrey Radkevich
- Research Institute of Medical Problems of the North, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk 660017, Russia
| | - Oleg Kokorev
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Sergey Gunther
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Gulsharat Baigonakova
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Valentina Hodorenko
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia
| | - Timofey Chekalkin
- Research Institute of Medical Materials, Tomsk State University, Tomsk 634045, Russia.
- Kang and Park Medical Co., R&D Center, Ochang 28119, Korea.
| | - Ji-Hoon Kang
- Kang and Park Medical Co., R&D Center, Ochang 28119, Korea
| | - Sabine Weiss
- Department of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, 03044 Cottbus, Germany
| | - Aleksei Obrosov
- Department of Physical Metallurgy and Materials Technology, Brandenburg University of Technology, 03044 Cottbus, Germany
| |
Collapse
|
23
|
Petrova VA, Chernyakov DD, Poshina DN, Gofman IV, Romanov DP, Mishanin AI, Golovkin AS, Skorik YA. Electrospun Bilayer Chitosan/Hyaluronan Material and Its Compatibility with Mesenchymal Stem Cells. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2016. [PMID: 31238491 PMCID: PMC6631200 DOI: 10.3390/ma12122016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Abstract
A bilayer nonwoven material for tissue regeneration was prepared from chitosan (CS) and hyaluronic acid (HA) by needleless electrospinning wherein 10-15 wt% (with respect to polysaccharide) polyethylene oxide was added as spinning starter. A fiber morphology study confirmed the material's uniform defect-free structure. The roughness of the bilayer material was in the range of 1.5-3 μm, which is favorable for cell growth. Electrospinning resulted in the higher orientation of the polymer structure compared with that of corresponding films, and this finding may be related to the orientation of the polymer chains during the spinning process. These structural changes increased the intermolecular interactions. Thus, despite a high swelling degree of 1.4-2.8 g/g, the bilayer matrix maintained its shape due to the large quantity of polyelectrolyte contacts between the chains of oppositely charged polymers. The porosity of the bilayer CS-HA nonwoven material was twice lower, while the Young's modulus and break stress were twice higher than that of a CS monolayer scaffold. Therefore, during the electrospinning of the second layer, HA may have penetrated into the pores of the CS layer, thereby increasing the polyelectrolyte contacts between the two polymers. The bilayer CS-HA scaffold exhibited good compatibility with mesenchymal stem cells. This characteristic makes the developed material promising for tissue engineering applications.
Collapse
Affiliation(s)
- Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daniil D Chernyakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Iosif V Gofman
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova emb. 2, 199034 St. Petersburg, Russia.
| | - Alexander I Mishanin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Alexey S Golovkin
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St Petersburg, Russia.
- Almazov National Medical Research Centre, Akkuratova str. 2., 197341 St. Petersburg, Russia.
| |
Collapse
|
24
|
Song P, Hu C, Pei X, Sun J, Sun H, Wu L, Jiang Q, Fan H, Yang B, Zhou C, Fan Y, Zhang X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B 2019; 7:2865-2877. [PMID: 32255089 DOI: 10.1039/c9tb00093c] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The macro architecture and micro surface topological morphology of implants play essential roles in bone tissue regeneration.
Collapse
|
25
|
Narayanan G, Caydamli Y, Tekinalp H, Matai I, Boy R, Chung C, Shen J, Gupta BS, Tonelli AE. Thermal, mechanical, and topographical evaluation of nonstoichiometric α‐cyclodextrin/poly(ε‐caprolactone) pseudorotaxane nucleated poly(ε‐caprolactone) composite films. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ganesh Narayanan
- Fiber and Polymer Science Program North Carolina State University Raleigh North Carolina 27695
| | - Yavuz Caydamli
- Fiber and Polymer Science Program North Carolina State University Raleigh North Carolina 27695
| | - Halil Tekinalp
- Carbon and Composites Group Oak Ridge National Laboratory Oak Ridge Tennessee 37831
| | - Ishita Matai
- Ubiquitous Analytical Techniques Division CSIR‐Central Scientific Instruments Organization Chandigarh 160030 India
| | - Ramiz Boy
- Department of Textile Engineering Namık Kemal University Corlu/Tekirdag Turkey
| | - Ching‐Chang Chung
- Department of Materials Science and Engineering North Carolina State University Raleigh North Carolina 27606
| | - Jialong Shen
- Fiber and Polymer Science Program North Carolina State University Raleigh North Carolina 27695
| | - Bhupender S. Gupta
- Fiber and Polymer Science Program North Carolina State University Raleigh North Carolina 27695
| | - Alan E. Tonelli
- Fiber and Polymer Science Program North Carolina State University Raleigh North Carolina 27695
| |
Collapse
|
26
|
Yu T, Gleeson SE, Li CY, Marcolongo M. Electrospun poly(ε‐caprolactone) nanofiber shish kebabs mimic mineralized bony surface features. J Biomed Mater Res B Appl Biomater 2018; 107:1141-1149. [DOI: 10.1002/jbm.b.34207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Tony Yu
- Department of Material Science and Engineering Drexel University Philadelphia Pennsylvania
- School of Biomedical Engineering Science and Health Systems Drexel University Philadelphia Pennsylvania
| | - Sarah E. Gleeson
- Department of Material Science and Engineering Drexel University Philadelphia Pennsylvania
| | - Christopher Y. Li
- Department of Material Science and Engineering Drexel University Philadelphia Pennsylvania
| | - Michele Marcolongo
- Department of Material Science and Engineering Drexel University Philadelphia Pennsylvania
| |
Collapse
|
27
|
Ermis M, Antmen E, Hasirci V. Micro and Nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact Mater 2018; 3:355-369. [PMID: 29988483 PMCID: PMC6026330 DOI: 10.1016/j.bioactmat.2018.05.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
Cell-substrate interactions play a crucial role in the design of better biomaterials and integration of implants with the tissues. Adhesion is the binding process of the cells to the substrate through interactions between the surface molecules of the cell membrane and the substrate. There are several factors that affect cell adhesion including substrate surface chemistry, topography, and stiffness. These factors physically and chemically guide and influence the adhesion strength, spreading, shape and fate of the cell. Recently, technological advances enabled us to precisely engineer the geometry and chemistry of substrate surfaces enabling the control of the interaction cells with the substrate. Some of the most commonly used surface engineering methods for eliciting the desired cellular responses on biomaterials are photolithography, electron beam lithography, microcontact printing, and microfluidics. These methods allow production of nano- and micron level substrate features that can control cell adhesion, migration, differentiation, shape of the cells and the nuclei as well as measurement of the forces involved in such activities. This review aims to summarize the current techniques and associate these techniques with cellular responses in order to emphasize the effect of chemistry, dimensions, density and design of surface patterns on cell-substrate interactions. We conclude with future projections in the field of cell-substrate interactions in the hope of providing an outlook for the future studies.
Collapse
Affiliation(s)
- Menekse Ermis
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
| | - Ezgi Antmen
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Middle East Technical University (METU) Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- METU, Department of Biomedical Engineering, Ankara, Turkey
- METU, Department of Biotechnology, Ankara, Turkey
- METU, Department of Biological Sciences, Ankara, Turkey
| |
Collapse
|
28
|
Duan R, Barbieri D, Luo X, Weng J, Bao C, de Bruijn JD, Yuan H. Variation of the bone forming ability with the physicochemical properties of calcium phosphate bone substitutes. Biomater Sci 2018; 6:136-145. [PMID: 29147713 DOI: 10.1039/c7bm00717e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Because of their bioactive properties and chemical similarity to the inorganic component of bone, calcium phosphate (CaP) materials are widely used for bone regeneration. Six commercially available CaP bone substitutes (Bio-Oss, Actifuse, Bi-Ostetic, MBCP, Vitoss and chronOs) as well as two tricalcium phosphate (TCP) ceramics with either a micron-scale (TCP-B) or submicron-scale (TCP-S) surface structure are characterized and their bone forming potential is evaluated in a canine ectopic implantation model. After 12 weeks of implantation in the paraspinal muscle of four beagles, sporadic bone (0.1 ± 0.1%) is observed in two Actifuse implants (2/4), limited bone (2.1 ± 1.4%) in four MBCP implants (4/4) and abundant bone (21.6 ± 4.5%) is formed in all TCP-S implants (4/4). Bone is not observed in any of the Bio-Oss, Bi-Ostetic, Vitoss, chronOs and TCP-B implants (0/4). When correlating the bone forming potential with the physicochemical properties of each material, we observe that the physical characteristics (e.g. grain size and micropore size at the submicron scale) might be the dominant trigger of material directed bone formation via specific mechanotransduction, instead of protein adsorption, surface mineralization and calcium ion release.
Collapse
Affiliation(s)
- Rongquan Duan
- Biomaterials Science and Technology, MIRA Institute, University of Twente, 7500 AE, Enschede, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang Z, Wang Z, Li C, Yin K, Hao D, Lan J. Application of Plasma-Sprayed Zirconia Coating in Dental Implants: Study in Implants. J ORAL IMPLANTOL 2018; 44:37-45. [DOI: 10.1563/aaid-joi-d-17-00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim was to investigate the osseointegration of a novel coating—plasma-sprayed nanostructured zirconia (NSZ)—for dental implants. Nanostructured zirconia coating on non-thread titanium implant was prepared by plasma spraying, and the implant surface morphology, surface roughness, and wettability were measured. In vivo, nanostructured zirconia-coated implants were inserted in rabbit tibia, and the animals were sacrificed at 2, 4, 8, and 12 weeks after implantation. The bond strength between implant and bone was measured with the removal torque (RTQ) test. Osseointegration was observed by scanning electron microscopy (SEM), microcomputerized tomography (micro CT), and histological analyses. Quantified parameters were calculated, including removal torque, bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular separation/spacing (Tb.Sp), and bone-implant contact (BIC) percentage. The statistical differences were detected with a two-tail Mann-Whitney U test (SPSS 20.0). The surface roughness (1.58 μm) and wettability (54.61°) of a nanostructured zirconia-coated implant was more suitable than the titanium implant (0.598 μm, 74.38°) for osseointegration and hierarchical surface morphology seen on the zirconia coating. The histological analyses showed that a zirconia-coated implant induced earlier and had more condensed bone formation than did the titanium implant at 2 and 4 weeks. Quantified parameters showed the significant differences between these 2 groups at an early healing period, but the differences between the 2 groups decreased with an increased healing period. All these results demonstrated that plasma-sprayed zirconia coated implants induced better bone formation than did titanium implants at an early stage.
Collapse
Affiliation(s)
- Zhengfei Huang
- School of Stomatology, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, China
| | - Zhifeng Wang
- Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, China
| | - Chuanhua Li
- Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, China
| | - Kaifeng Yin
- Department of Orthodontics, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, Calif
| | - Dan Hao
- Nantong Stomatological Hospital, Nantong, China
| | - Jing Lan
- Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
30
|
Zaworonkow D, Chekan M, Kusnierz K, Lekstan A, Grajoszek A, Lekston Z, Lange D, Chekalkin T, Kang JH, Gunther V, Lampe P. Evaluation of TiNi-based wire mesh implant for abdominal wall defect management. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaa0b0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
John Ł. Selected developments and medical applications of organic-inorganic hybrid biomaterials based on functionalized spherosilicates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 88:172-181. [PMID: 29636133 DOI: 10.1016/j.msec.2018.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/25/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Well-defined and tailor-made spherosilicates and POSS-based (POSS = Polyhedral Oligomeric Silsesquioxanes) (nano)composites with interesting chemical and mechanical properties have applications in the widely-regarded field of innovative biomaterials. They can serve as delivery systems, three-dimensional scaffolds for specific tissue engineering, biomaterials for orthopedic, cardiovascular, and reconstructive surgery, etc. Such organic-inorganic hybrids are much more effective biomaterials than pure polymers, bioglasses, metals, alloys, and ceramics currently used in medical applications and are considered as next-generation systems in innovative medical approaches. This range of applications creates a strong impetus for novel, cheap, and easy-to-scale-up methods for their synthesis. In this review (highlights since 2006), selected biomaterials consisting of various polymeric derivatives such as polymethacrylates, polylactides, polycaprolactones, polyurethanes, etc., which serve as organic side-arms of POSS and can create polymer platforms for precisely localized spherosilicates among organic matrices, are discussed as a new generation of silicon-based biosystems using spherosilicates, promising biomaterials with a particular use in soft- and hard-tissue engineering.
Collapse
Affiliation(s)
- Łukasz John
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
32
|
Jones MD, Wu X, Chaudhuri J, Davidson MG, Ellis MJ. Zirconium amine tris(phenolate): A more effective initiator for biomedical lactide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:69-74. [PMID: 28866217 DOI: 10.1016/j.msec.2017.03.242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/17/2017] [Accepted: 03/25/2017] [Indexed: 11/26/2022]
Abstract
Here a zirconium amine tris(phenolate) is used as the initiator for the production of polylactide for biomedical applications, as a replacement for a tin initiator (usually tin octanoate). The ring opening polymerization (ROP) was carried out in the melt at 130°C. The zirconium-catalyzed PLA (PLA-Zr) required 30min, resulting in a polydispersity index (PDI) of 1.17, compared to 1h and PDI=1.77 for tin-catalyzed PLA (PLA-Sn). PLA-Zr and PLA-Sn supported osteosarcoma cell (MG63) culture to the same extent (cell number, morphology, extracellular matrix production and osteogenic function) until day 14 when the PLA-Zr showed increased cell number, overall extracellular matrix production and osteogenic function. To conclude, the reduction in reaction time, controllable microstructure and biologically benign nature of the zirconium amine tris(phenolate) initiator shows that it is a more effective initiator for ROP of polylactide for biomedical applications.
Collapse
Affiliation(s)
- Matthew D Jones
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Xujun Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Julian Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK
| | | | - Marianne J Ellis
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
33
|
Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe 2 O 4 for potential cancer hyperthermia therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:901-911. [DOI: 10.1016/j.msec.2017.04.133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/20/2022]
|
34
|
Xu R, Bai Y, Zhao J, Xia H, Kong Y, Yao Z, Yan R, Zhang X, Hu X, Liu M, Yang Q, Luo G, Wu J. Silicone rubber membrane with specific pore size enhances wound regeneration. J Tissue Eng Regen Med 2017; 12:e905-e917. [DOI: 10.1002/term.2414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/07/2017] [Accepted: 01/13/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Rui Xu
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Yang Bai
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
- Department of Otolaryngology, Southwest HospitalThird Military Medical University Chongqing China
| | - Jian Zhao
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu China
| | - Yi Kong
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Zhihui Yao
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Rongshuai Yan
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaorong Zhang
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Xiaohong Hu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Meixi Liu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Qingwu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated HospitalThird Military Medical University Chongqing China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| | - Jun Wu
- Institute of Burn Research, Southwest HospitalThird Military Medical University; State Key Laboratory of Trauma, Burn and Combined Injury; Chongqing Key Laboratory for Disease Proteomics Chongqing China
| |
Collapse
|
35
|
Gutiérrez-Hernández JM, Escobar-García DM, Escalante A, Flores H, González FJ, Gatenholm P, Toriz G. In vitro evaluation of osteoblastic cells on bacterial cellulose modified with multi-walled carbon nanotubes as scaffold for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:445-453. [DOI: 10.1016/j.msec.2017.02.074] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/09/2016] [Accepted: 02/14/2017] [Indexed: 10/20/2022]
|
36
|
Kuo YC, Liu YC, Rajesh R. Pancreatic differentiation of induced pluripotent stem cells in activin A-grafted gelatin-poly(lactide-co-glycolide) nanoparticle scaffolds with induction of LY294002 and retinoic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:384-393. [PMID: 28532044 DOI: 10.1016/j.msec.2017.03.265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 01/09/2023]
Abstract
The differentiation of induced pluripotent stem cells (iPSCs) in biomaterial scaffolds is an emerging area for biomedical applications. This study proposes, for the first time, the production of pancreatic cells from iPSCs in gelatin-poly(lactide-co-glycolide) nanoparticle (PLGA NP) scaffolds. The porosity and swelling ratio of the scaffolds decreased with increases in gelatin and PLGA NP concentrations. The adhesion efficiency of iPSCs in gelatin-PLGA NP scaffolds was found to be higher at 6.7% (w/w) PLGA NP. A 3-step induction of iPSCs was used to differentiate into pancreatic islet cells using activin A, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), and retinoic acid (RA). The ability of iPSCs to differentiate into pancreatic islet cells in a scaffold was demonstrated by immunofluorescence staining and flow-cytometry analysis. The results indicate that the concentration of activin A, LY294002, and RA plays a decisive role in the differentiation of iPSCs into pancreatic cells. Activin A and LY294002 induce the iPSCs into endoderm and RA induces endoderm into islet cells. A maximum insulin secretion by glucose stimulation was obtained with a higher concentration (2μM) of RA. The use of activin A-grafted gelatin-PLGA NP scaffolds induced by LY294002 and RA can be a promising approach to developing pancreatic islet cells from iPSCs.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China.
| | - Yu-Chuan Liu
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, Republic of China
| |
Collapse
|
37
|
Kuo YC, Chen CW. Neuroregeneration of Induced Pluripotent Stem Cells in Polyacrylamide-Chitosan Inverted Colloidal Crystal Scaffolds with Poly(lactide-co-glycolide) Nanoparticles and Transactivator of Transcription von Hippel-Lindau Peptide. Tissue Eng Part A 2017; 23:263-274. [PMID: 28107800 DOI: 10.1089/ten.tea.2016.0139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyacrylamide (PAAM) and chitosan were fabricated by inverted colloidal crystal (ICC) method for scaffolds comprising regular pores. The hybrid PAAM-chitosan ICC scaffolds were grafted with poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) for a rougher pore surface and grafted with transactivator of transcription von Hippel-Lindau (TATVHL) peptide for a better differentiation of induced pluripotent stem (iPS) cells toward neural lineage. By scanning electron microscopy, we found that iPS cells cultured in PAAM-chitosan ICC scaffolds with PLGA NPs at 1.0 mg/mL and TATVHL peptide at 15 μg/mL elongated the axonal length to 15 μm. A combination of PLGA NPs and TATVHL peptide favored the adhesion of iPS cells, reduced the embryonic phenotype after cultivation, and guided the production of βIII tubulin-positive cells in PAAM-chitosan ICC scaffolds. In addition to the differentiation toward neurite-like cells, an increase in the content of TATVHL peptide in PAAM-chitosan ICC scaffolds inhibited the differentiation of iPS cells toward astrocytes. ICC scaffolds composed of PAAM, chitosan, PLGA NPs, and TATVHL peptide can be an efficacious matrix to differentiate iPS cells toward neurons and retard the glial formation for nerve regeneration.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University , Chia-Yi, Taiwan, Republic of China
| | - Chun-Wei Chen
- Department of Chemical Engineering, National Chung Cheng University , Chia-Yi, Taiwan, Republic of China
| |
Collapse
|
38
|
John Ł, Podgórska M, Nedelec JM, Cwynar-Zając Ł, Dzięgiel P. Strontium-doped organic-inorganic hybrids towards three-dimensional scaffolds for osteogenic cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:117-127. [DOI: 10.1016/j.msec.2016.05.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
|
39
|
Agrawal P, Pramanik K. Chitosan-poly(vinyl alcohol) nanofibers by free surface electrospinning for tissue engineering applications. Tissue Eng Regen Med 2016; 13:485-497. [PMID: 30603430 DOI: 10.1007/s13770-016-9092-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/09/2016] [Accepted: 01/31/2016] [Indexed: 11/26/2022] Open
Abstract
Deformities in tissues and organs can be treated by using tissue engineering approach offering the development of biologically functionalized scaffolds from a variety of polymer blends which mimic the extracellular matrix and allow adjusting the material properties to meet the defect architecture. In recent years, research interest has been shown towards the development of chitosan (CS) based biomaterials for tissue engineering applications, because of its minimal foreign body reactions, intrinsic antibacterial property, biocompatibility, biodegradability and ability to be molded into various geometries and forms thereby making it suitable for cell ingrowth and conduction. The present work involves the fabrication of nanofibrous scaffold from CS and poly(vinyl alcohol) blends by free-surface electrospinning method. The morphology and functional characteristics of the developed scaffolds were assessed by field emission scanning electron microscopy and fourier transformed infra-red spectra analysis. The morphological analysis showed the average fiber diameter was 269 nm and thickness of the mat was 200-300 µm. X-ray diffraction study confirmed the crystalline nature of the prepared scaffolds, whereas hydrophilic characteristic of the prepared scaffolds was confirmed by measured contact angle. The scaffolds possess an adequate biodegradable, swelling and mechanical property that is found desirable for tissue engineering applications. The cell study using umbilical cord blood-derived mesenchymal stem cells has confirmed the in vitro biocompatibility and cell supportive property of the scaffold thereby depicting their potentiality for future clinical applications.
Collapse
Affiliation(s)
- Parinita Agrawal
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008 India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008 India
| |
Collapse
|
40
|
Bružauskaitė I, Bironaitė D, Bagdonas E, Bernotienė E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2016. [PMID: 26091616 DOI: 10.1007/sl0616-0159895-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
Affiliation(s)
- Ieva Bružauskaitė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Daiva Bironaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania.
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| | - Eiva Bernotienė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Zygimantu 9, 01102, Vilnius, Lithuania
| |
Collapse
|
41
|
Yassin MA, Leknes KN, Sun Y, Lie SA, Finne-Wistrand A, Mustafa K. Surfactant tuning of hydrophilicity of porous degradable copolymer scaffolds promotes cellular proliferation and enhances bone formation. J Biomed Mater Res A 2016; 104:2049-59. [DOI: 10.1002/jbm.a.35741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Mohammed A. Yassin
- Department of Clinical Dentistry; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
| | - Knut N. Leknes
- Department of Clinical Dentistry; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
| | - Yang Sun
- Department of Clinical Dentistry; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
- Department of Fibre and Polymer Technology; Royal Institute of Technology (KTH); Stockholm Sweden
| | - Stein A. Lie
- Department of Clinical Dentistry; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology; Royal Institute of Technology (KTH); Stockholm Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry; Faculty of Medicine and Dentistry; University of Bergen; Bergen Norway
| |
Collapse
|
42
|
John Ł, Janeta M, Rajczakowska M, Ejfler J, Łydżba D, Szafert S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl)propyl methacrylate–POSS hybrid towards potential tissue engineering applications. RSC Adv 2016. [DOI: 10.1039/c6ra10364b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biomimetic organic–inorganic scaffold with the chemical composition, structural dimensions, topography, and microstructural properties that fulfills the requirements for hard-tissue engineering was developed.
Collapse
Affiliation(s)
- Ł. John
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Janeta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - M. Rajczakowska
- Faculty of Civil Engineering
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - J. Ejfler
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - D. Łydżba
- Faculty of Civil Engineering
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - S. Szafert
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
43
|
Moura CEB, Silva NB, Sa JC, Cavalcanti GB, de Medeiros SRB, Rocha HAO, Papa PC, Alves C. MC3T3-E1 Cells Behavior on Surfaces Bombarded by Argon Ions in Planar Cathode Discharge. Artif Organs 2015; 40:497-504. [DOI: 10.1111/aor.12597] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Juliana Carvalho Sa
- Department of Mechanical Engineering; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - Geraldo Barroso Cavalcanti
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | | | | | | | - Clodomiro Alves
- Department of Mechanical Engineering; Federal University of Rio Grande do Norte; Natal RN Brazil
| |
Collapse
|
44
|
Parmar N, Kumar L, Emmanuel A, Day RM. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence. Regen Med 2015; 9:831-40. [PMID: 25431918 DOI: 10.2217/rme.14.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fecal incontinence is a major public health issue that has yet to be adequately addressed. Obstetric trauma and injury to the anal sphincter muscles are the most common cause of fecal incontinence. New therapies are emerging aimed at repair or regeneration of sphincter muscle and restoration of continence. While regenerative medicine offers an attractive option for fecal incontinence there are currently no validated techniques using this approach. Although many challenges are yet to be resolved, the advent of regenerative medicine is likely to offer disruptive technologies to treat and possibly prevent the onset of this devastating condition. This article provides a review on regenerative medicine approaches for treating fecal incontinence and a critique of the current landscape in this area.
Collapse
Affiliation(s)
- Nina Parmar
- Applied Biomedical Engineering Group, University College London, 21 University Street, London, WC1E 6JJ, UK
| | | | | | | |
Collapse
|
45
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|
46
|
Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2015; 68:355-69. [PMID: 26091616 DOI: 10.1007/s10616-015-9895-4] [Citation(s) in RCA: 455] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022] Open
Abstract
During the last decade biomaterial sciences and tissue engineering have become new scientific fields supplying rising demand of regenerative therapy. Tissue engineering requires consolidation of a broad knowledge of cell biology and modern biotechnology investigating biocompatibility of materials and their application for the reconstruction of damaged organs and tissues. Stem cell-based tissue regeneration started from the direct cell transplantation into damaged tissues or blood vessels. However, it is difficult to track transplanted cells and keep them in one particular place of diseased organ. Recently, new technologies such as cultivation of stem cell on the scaffolds and subsequently their implantation into injured tissue have been extensively developed. Successful tissue regeneration requires scaffolds with particular mechanical stability or biodegradability, appropriate size, surface roughness and porosity to provide a suitable microenvironment for the sufficient cell-cell interaction, cell migration, proliferation and differentiation. Further functioning of implanted cells highly depends on the scaffold pore sizes that play an essential role in nutrient and oxygen diffusion and waste removal. In addition, pore sizes strongly influence cell adhesion, cell-cell interaction and cell transmigration across the membrane depending on the various purposes of tissue regeneration. Therefore, this review will highlight contemporary tendencies in application of non-degradable scaffolds and stem cells in regenerative medicine with a particular focus on the pore sizes significantly affecting final recover of diseased organs.
Collapse
|
47
|
Guckenberger DJ, de Groot TE, Wan AMD, Beebe DJ, Young EWK. Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. LAB ON A CHIP 2015; 15:2364-78. [PMID: 25906246 PMCID: PMC4439323 DOI: 10.1039/c5lc00234f] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This tutorial review offers protocols, tips, insight, and considerations for practitioners interested in using micromilling to create microfluidic devices. The objective is to provide a potential user with information to guide them on whether micromilling would fill a specific need within their overall fabrication strategy. Comparisons are made between micromilling and other common fabrication methods for plastics in terms of technical capabilities and cost. The main discussion focuses on "how-to" aspects of micromilling, to enable a user to select proper equipment and tools, and obtain usable microfluidic parts with minimal start-up time and effort. The supplementary information provides more extensive discussion on CNC mill setup, alignment, and programming. We aim to reach an audience with minimal prior experience in milling, but with strong interests in fabrication of microfluidic devices.
Collapse
Affiliation(s)
- David J Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | |
Collapse
|
48
|
Motamedian SR, Hosseinpour S, Ahsaie MG, Khojasteh A. Smart scaffolds in bone tissue engineering: A systematic review of literature. World J Stem Cells 2015; 7:657-668. [PMID: 25914772 PMCID: PMC4404400 DOI: 10.4252/wjsc.v7.i3.657] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/10/2014] [Accepted: 12/29/2014] [Indexed: 02/06/2023] Open
Abstract
AIM To improve osteogenic differentiation and attachment of cells. METHODS An electronic search was conducted in PubMed from January 2004 to December 2013. Studies which performed smart modifications on conventional bone scaffold materials were included. Scaffolds with controlled release or encapsulation of bioactive molecules were not included. Experiments which did not investigate response of cells toward the scaffold (cell attachment, proliferation or osteoblastic differentiation) were excluded. RESULTS Among 1458 studies, 38 met the inclusion and exclusion criteria. The main scaffold varied extensively among the included studies. Smart modifications included addition of growth factors (group I-11 studies), extracellular matrix-like molecules (group II-13 studies) and nanoparticles (nano-HA) (group III-17 studies). In all groups, surface coating was the most commonly applied approach for smart modification of scaffolds. In group I, bone morphogenetic proteins were mainly used as growth factor stabilized on polycaprolactone (PCL). In group II, collagen 1 in combination with PCL, hydroxyapatite (HA) and tricalcium phosphate were the most frequent scaffolds used. In the third group, nano-HA with PCL and chitosan were used the most. As variable methods were used, a thorough and comprehensible compare between the results and approaches was unattainable. CONCLUSION Regarding the variability in methodology of these in vitro studies it was demonstrated that smart modification of scaffolds can improve tissue properties.
Collapse
Affiliation(s)
- Saeed Reza Motamedian
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Sepanta Hosseinpour
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Mitra Ghazizadeh Ahsaie
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| | - Arash Khojasteh
- Saeed Reza Motamedian, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran PO Box 19839, Iran
| |
Collapse
|
49
|
Kim YB, Kim GH. PCL/alginate composite scaffolds for hard tissue engineering: fabrication, characterization, and cellular activities. ACS COMBINATORIAL SCIENCE 2015; 17:87-99. [PMID: 25541639 DOI: 10.1021/co500033h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alginates have been used widely in biomedical applications because of good biocompatibility, low cost, and rapid gelation in the presence of calcium ions. However, poor mechanical properties and fabrication-ability for three-dimensional shapes have been obstacles in hard-tissue engineering applications. To overcome these shortcomings of alginates, we suggest a new composite system, consisting of a synthetic polymer, poly(ε-caprolactone), and various weight fractions (10-40 wt %) of alginate. The fabricated composite scaffolds displayed a multilayered 3D structure, consisting of microsized composite struts, and they provided a 100% offset for each layer. To show the feasibility of the scaffold for hard tissue regeneration, the composite scaffolds fabricated were assessed not only for physical properties, including surface roughness, tensile strength, and water absorption and wetting, but also in vitro osteoblastic cellular responses (cell-seeding efficiency, cell viability, fluorescence analyses, alkaline phosphatase (ALP) activity, and mineralization) by culturing with preosteoblasts (MC3T3-E1). Due to the alginate components in the composites, the scaffolds showed significantly enhanced wetting behavior, water-absorption (∼12-fold), and meaningful biological activities (∼2.1-fold for cell-seeding efficiency, ∼2.5-fold for cell-viability at 7 days, ∼3.4-fold for calcium deposition), compared with a pure PCL scaffold.
Collapse
Affiliation(s)
- Yong Bok Kim
- Department
of Biomechatronic
Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 110-745, South Korea
| | - Geun Hyung Kim
- Department
of Biomechatronic
Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 110-745, South Korea
| |
Collapse
|
50
|
Effects of surface properties of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) on adhesion and proliferation of mouse fibroblasts. Macromol Res 2015. [DOI: 10.1007/s13233-015-3025-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|