1
|
Xie Z, Sokolov I, Osmala M, Yue X, Bower G, Pett JP, Chen Y, Wang K, Cavga AD, Popov A, Teichmann SA, Morgunova E, Kvon EZ, Yin Y, Taipale J. DNA-guided transcription factor interactions extend human gene regulatory code. Nature 2025:10.1038/s41586-025-08844-z. [PMID: 40205063 DOI: 10.1038/s41586-025-08844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/26/2025] [Indexed: 04/11/2025]
Abstract
In the same way that the mRNA-binding specificities of transfer RNAs define the genetic code, the DNA-binding specificities of transcription factors (TFs) form the molecular basis of the gene regulatory code1,2. The human gene regulatory code is much more complex than the genetic code, in particular because there are more than 1,600 TFs that commonly interact with each other. TF-TF interactions are required for specifying cell fate and executing cell-type-specific transcriptional programs. Despite this, the landscape of interactions between DNA-bound TFs is poorly defined. Here we map the biochemical interactions between DNA-bound TFs using CAP-SELEX, a method that can simultaneously identify individual TF binding preferences, TF-TF interactions and the DNA sequences that are bound by the interacting complexes. A screen of more than 58,000 TF-TF pairs identified 2,198 interacting TF pairs, 1,329 of which preferentially bound to their motifs arranged in a distinct spacing and/or orientation. We also discovered 1,131 TF-TF composite motifs that were markedly different from the motifs of the individual TFs. In total, we estimate that the screen identified between 18% and 47% of all human TF-TF motifs. The novel composite motifs we found were enriched in cell-type-specific elements, active in vivo and more likely to be formed between developmentally co-expressed TFs. Furthermore, TFs that define embryonic axes commonly interacted with different TFs and bound to distinct motifs, explaining how TFs with a similar specificity can define distinct cell types along developmental axes.
Collapse
Affiliation(s)
- Zhiyuan Xie
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ilya Sokolov
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Maria Osmala
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland
| | - Xue Yue
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - J Patrick Pett
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Yinan Chen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Kai Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ayse Derya Cavga
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alexander Popov
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Sarah A Teichmann
- Department of Medicine and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Ekaterina Morgunova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Evgeny Z Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Yimeng Yin
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Jussi Taipale
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Generative and Synthetic Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
- Applied Tumor Genomics Program, Biomedicum, University of Helsinki, Helsinki, Finland.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Yang L, Yu XX, Wang X, Jin CT, Xu CR. The expression order determines the pioneer functions of NGN3 and NEUROD1 in pancreatic endocrine differentiation. SCIENCE ADVANCES 2025; 11:eadt4770. [PMID: 40138419 PMCID: PMC11939047 DOI: 10.1126/sciadv.adt4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Pioneer transcription factors (TFs) initiate chromatin remodeling, which is crucial for gene regulation and cell differentiation. In this study, we investigated how the sequential expression of neurogenin 3 (NGN3) and NEUROD1 affects their pioneering functions during pancreatic endocrine differentiation. Using a genetically engineered mouse model, we mapped NGN3-binding sites, confirming the pivotal role of this molecule in regulating chromatin accessibility. The pioneering function of NGN3 involves dose tolerance, and low doses are sufficient. Although NEUROD1 generally acts as a conventional TF, it can assume a pioneering role in the absence of NGN3. The sequential expression of NeuroD1 and Ngn3 predominantly drives α cell generation, which may explain the inefficient β cell induction observed in vitro. Our findings demonstrate that pioneer activity is dynamically shaped by temporal TF expression and inter-TF interactions, providing insights into transcriptional regulation and its implications for disease mechanisms and therapeutic targeting and enhancing in vitro differentiation strategies.
Collapse
Affiliation(s)
- Liu Yang
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Xin Yu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Chen-Tao Jin
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Cheng-Ran Xu
- State Key Laboratory of Female Fertility Promotion, Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Peng WG, Getachew A, Zhou Y. Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming. Stem Cells 2025; 43:sxaf002. [PMID: 39851272 PMCID: PMC11904897 DOI: 10.1093/stmcls/sxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Heart disease, particularly resulting from myocardial infarction (MI), continues to be a leading cause of mortality, largely due to the limited regenerative capacity of the human heart. Current therapeutic approaches seek to generate new cardiomyocytes from alternative sources. Direct cardiac reprogramming, which converts fibroblasts into induced cardiomyocytes (iCMs), offers a promising alternative by enabling in situ cardiac regeneration and minimizing tumorigenesis concerns. Here we review recent advancements in the understanding of transcriptional and epigenetic mechanisms underlying cardiac reprogramming, with a focus on key early-stage molecular events, including epigenetic barriers and regulatory mechanisms that facilitate reprogramming. Despite substantial progress, human cardiac fibroblast reprogramming and iCM maturation remain areas for further exploration. We also discuss the combinatorial roles of reprogramming factors in governing transcriptional and epigenetic changes. This review consolidates current knowledge and proposes future directions for promoting the translational potential of cardiac reprogramming techniques.
Collapse
Affiliation(s)
- William G Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| |
Collapse
|
4
|
Yu M, Zemke NR, Chen Z, Juric I, Hu R, Raviram R, Abnousi A, Fang R, Zhang Y, Gorkin DU, Li YE, Zhao Y, Lee L, Mishra S, Schmitt AD, Qiu Y, Dickel DE, Visel A, Pennacchio LA, Hu M, Ren B. Integrative analysis of the 3D genome and epigenome in mouse embryonic tissues. Nat Struct Mol Biol 2025; 32:479-490. [PMID: 39681766 PMCID: PMC11919700 DOI: 10.1038/s41594-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
While a rich set of putative cis-regulatory sequences involved in mouse fetal development have been annotated recently on the basis of chromatin accessibility and histone modification patterns, delineating their role in developmentally regulated gene expression continues to be challenging. To fill this gap, here we mapped chromatin contacts between gene promoters and distal sequences across the genome in seven mouse fetal tissues and across six developmental stages of the forebrain. We identified 248,620 long-range chromatin interactions centered at 14,138 protein-coding genes and characterized their tissue-to-tissue variations and developmental dynamics. Integrative analysis of the interactome with previous epigenome and transcriptome datasets from the same tissues revealed a strong correlation between the chromatin contacts and chromatin state at distal enhancers, as well as gene expression patterns at predicted target genes. We predicted target genes of 15,098 candidate enhancers and used them to annotate target genes of homologous candidate enhancers in the human genome that harbor risk variants of human diseases. We present evidence that schizophrenia and other adult disease risk variants are frequently found in fetal enhancers, providing support for the hypothesis of fetal origins of adult diseases.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Ludwig Institute for Cancer Research, La Jolla, CA, USA.
| | - Nathan R Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Ziyin Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ivan Juric
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Center for Immunology and Precision Immuno-Oncology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Rong Hu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- New York Genome Center, New York, NY, USA
| | - Armen Abnousi
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Meta, Bellevue, WA, USA
| | - Rongxin Fang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yanxiao Zhang
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - David U Gorkin
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Yang E Li
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Department of Neurosurgery and Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuan Zhao
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lindsay Lee
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anthony D Schmitt
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- UCSD Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Arima Genomics, Inc., San Diego, CA, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Sana Biotechnology, Seattle, WA, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, Berkeley, CA, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA.
- Center for Epigenomics, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
5
|
Zhou BR, Orris B, Guan R, Lian T, Bai Y. Structural insights into the recognition of native nucleosomes by pioneer transcription factors. Curr Opin Struct Biol 2025; 92:103024. [PMID: 40024204 DOI: 10.1016/j.sbi.2025.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
Pioneer transcription factors possess the unique ability to bind to nucleosomal DNA and locally open closed chromatin, enabling the binding of additional chromatin-associated factors. These factors are pivotal in determining cell fate. Structural studies of pioneer transcription factors interacting with nucleosomes have predominantly relied on model systems incorporating canonical DNA motifs within synthetic, strongly positioned DNA. However, recent advances have revealed structures of several pioneer transcription factors bound to their native nucleosome targets at gene enhancers involved in cell reprogramming. These findings offer fresh insights into how pioneer transcription factors recognize and disrupt compact chromatin. In this review, we summarize these recent discoveries and explore their broader implications.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Benjamin Orris
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Ruifang Guan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Tengfei Lian
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 202892, USA.
| |
Collapse
|
6
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Zhang S, Jin Y, Han Q, Zhao X, Xue L. FOXA3: A Novel Tumor Suppressor in Esophageal Squamous Cell Carcinoma. J Gene Med 2025; 27:e700009. [PMID: 39965898 DOI: 10.1002/jgm.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The forkhead box A (FOXA) family has been extensively studied in cancer research; however, the role of FOXA3 in malignant tumors, particularly esophageal squamous cell carcinoma (ESCC), is not well understood. This study explores the expression and function of FOXA3 in ESCC, assessing its potential as a prognostic marker and therapeutic target. METHODS This study analyzed FOXA3 expression in ESCC tissues and its correlation with patient prognosis. The effects of FOXA3 overexpression on ESCC cell proliferation, migration, and invasion were examined in ESCC cell lines in vitro. Additionally, an in vivo tumorigenesis assay was performed using subcutaneous injection to assess the impact of FOXA3 overexpression on tumor growth. Statistical analyses were conducted to determine the significance of the results. RESULTS FOXA3 expression was significantly reduced in ESCC tissues compared with it in paired adjacent normal tissues, and low FOXA3 expression was significantly associated with poor prognosis in ESCC patients. FOXA3 overexpression markedly inhibited ESCC cell proliferation, migration, and invasion. In addition, overexpression of FOXA3 repressed tumor growth in mice. CONCLUSIONS These findings indicate that FOXA3 acts as a tumor suppressor in ESCC, and its low expression is linked to poor outcomes. FOXA3 may serve as a potential diagnostic and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Siang Zhang
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuxiang Jin
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianyu Han
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xuewei Zhao
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Lei Xue
- Department of Thoracic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Li J, Bao X, Yu W, Chen X, Ni Y, Shi Y, Wang J, Sun Y, Chen A, Zhou W, Ye H. FOXA1 activates NOLC1 transcription through NOTCH pathway to promote cell stemness in lung adenocarcinoma. Kaohsiung J Med Sci 2025; 41:e12930. [PMID: 39789998 PMCID: PMC11827541 DOI: 10.1002/kjm2.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025] Open
Abstract
Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed. RT-qPCR detection of NOLC1 and FOXA1 expression, colony formation assay of cell proliferation, Transwell assay of cell invasion, sphere formation assay of cell stemness, western blot detection of CD133, OCT4, GLI1, NOTCH1 and Hes1 expression, CCK-8 assay of IC50 value of cisplatin, and ChIP and dual-luciferase reporter validation of binding relationship between NOLC1 and FOXA1 were done. NOLC1 expression was elevated in LUAD cells and tissues. Decreased NOLC1 expression inhibited the proliferation and invasive capacity of LUAD cells, prevented LUAD cells from becoming stem cells, and suppressed cisplatin resistance in the cells. Rescue tests demonstrated that NOLC1 activated the NOTCH pathway to increase the stemness of LUAD cells and promoted cisplatin resistance in LUAD cells. The activation of NOLC1 transcription by FOXA1 was validated by bioinformatics prediction and molecular verification, and the FOXA1/NOLC1 axis enhanced the stemness of LUAD cells. Activation of NOLC1 transcription by FOXA1 through NOTCH pathway promoted stemness of LUAD. FOXA1/NOLC1 axis is expected to become a new target for inhibiting stemness of LUAD cells.
Collapse
Affiliation(s)
- Ji‐Fa Li
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Xiao‐Qiong Bao
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Wen‐Wen Yu
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Xiang‐Xiang Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Yang‐Yang Ni
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Yu‐Bo Shi
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Jin‐Cong Wang
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Yang‐Jie Sun
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Ai‐Li Chen
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Wei‐Long Zhou
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| | - Hua Ye
- Department of Respiratory and Critical Care Medicine of Affiliated Yueqing HospitalWenzhou Medical UniversityYueqingChina
| |
Collapse
|
9
|
Alizada A, Martins A, Mouniée N, Rodriguez Suarez JV, Bertin B, Gueguen N, Mirouse V, Papameletiou AM, Rivera AJ, Lau NC, Akkouche A, Maupetit-Mehouas S, Hannon GJ, Nicholson BC, Brasset E. The transcription factor Traffic jam orchestrates the somatic piRNA pathway in Drosophila ovaries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.10.612307. [PMID: 39314383 PMCID: PMC11419008 DOI: 10.1101/2024.09.10.612307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for transposable element (TE) silencing in animal gonads. While the transcriptional regulation of piRNA pathway components in germ cells has been documented in mice and flies, their control in somatic cells of Drosophila ovaries remains unresolved. Here, we demonstrate that Traffic jam (Tj), the Drosophila orthologue of large Maf transcription factors in mammals, is a master regulator of the somatic piRNA pathway. Tj binds to regulatory regions of somatic piRNA factors and the major piRNA cluster flamenco , which carries a Tj-bound enhancer downstream of its promoter. Depletion of Tj in somatic follicle cells causes downregulation of piRNA factors, loss of flam expression and de-repression of gypsy -family TEs. We propose that the arms race between the host and TEs led to the co-evolution of promoters in piRNA pathway genes as well as TE regulatory regions that both rely on a shared transcription factor. Highlights - Traffic jam (Tj) acts as a master regulator of the somatic piRNA pathway in Drosophila . - Tj regulates a network of piRNA pathway genes, mirroring the gene-regulatory mechanism of A-MYB in the mouse testis and Ovo in fly ovaries. - Cis -regulatory elements with Tj motifs are present at the promoters of somatic piRNA pathway genes. - The expression of the flamenco piRNA cluster is directly controlled by Tj.
Collapse
|
10
|
Wang Z, Wang B, Niu D, Yin C, Bi Y, Cattoglio C, Loh KM, Lavis LD, Ge H, Deng W. Mesoscale chromatin confinement facilitates target search of pioneer transcription factors in live cells. Nat Struct Mol Biol 2025; 32:125-136. [PMID: 39367253 DOI: 10.1038/s41594-024-01385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Pioneer transcription factors (PTFs) possess the unique capability to access closed chromatin regions and initiate cell fate changes, yet the underlying mechanisms remain elusive. Here, we characterized the single-molecule dynamics of PTFs targeting chromatin in living cells, revealing a notable 'confined target search' mechanism. PTFs such as FOXA1, FOXA2, SOX2, OCT4 and KLF4 sampled chromatin more frequently than non-PTF MYC, alternating between fast free diffusion in the nucleus and slower confined diffusion within mesoscale zones. Super-resolved microscopy showed closed chromatin organized as mesoscale nucleosome-dense domains, confining FOXA2 diffusion locally and enriching its binding. We pinpointed specific histone-interacting disordered regions, distinct from DNA-binding domains, crucial for confined target search kinetics and pioneer activity within closed chromatin. Fusion to other factors enhanced pioneer activity. Kinetic simulations suggested that transient confinement could increase target association rate by shortening search time and binding repeatedly. Our findings illuminate how PTFs recognize and exploit closed chromatin organization to access targets, revealing a pivotal aspect of gene regulation.
Collapse
Affiliation(s)
- Zuhui Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bo Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Di Niu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Chao Yin
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China
| | - Ying Bi
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China
| | - Claudia Cattoglio
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Kyle M Loh
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Hao Ge
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Beijing International Center for Mathematical Research, Peking University, Beijing, China
| | - Wulan Deng
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences (CLS), Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.
| |
Collapse
|
11
|
Tang H, Yan H, Shivaram S, Lehman S, Sharma N, Smadbeck J, Zepeda-Mendoza C, Tian S, Asmann Y, Vachon C, Gaspar Maia A, Keats J, Bergsagel PL, Fonseca R, Stewart AK, Hsu JS, Kandasamy RK, Pandey A, Kaddoura MA, Maura F, Mitra A, Rajkumar SV, Kumar SK, Elhaik E, Braggio E, Baughn LB. Functional variant rs9344 at 11q13.3 regulates CCND1 expression in multiple myeloma with t(11;14). Leukemia 2025; 39:42-50. [PMID: 39402215 PMCID: PMC11717701 DOI: 10.1038/s41375-024-02363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 01/11/2025]
Abstract
Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by cytogenetic abnormalities, such as t(11;14)(q13;q32), resulting in CCND1 overexpression. The rs9344 G allele within CCND1 is the most significant susceptibility allele for t(11;14). Sequencing data from 2 independent cohorts, CoMMpass (n = 698) and Mayo Clinic (n = 661), confirm the positive association between the G allele and t(11;14). Among 80% of individuals heterozygous for rs9344 with t(11;14), the t(11;14) event occurs on the G allele, demonstrating a biological preference for the G allele in t(11;14). Within t(11;14), the G allele is associated with higher CCND1 expression and elevated H3K27ac and H3K4me3. CRISPR/Cas9 mediated A to G conversion resulted in increased H3K27ac over CCND1 and elevated CCND1 expression. ENCODE ChIP-seq data supported a PAX5 binding site within the enhancer region covering rs9344, showing preferential binding to the G allele. Overexpression of PAX5 resulted in increased CCND1 expression. These results support the importance of rs9344 G enhancer in increasing CCND1 expression in MM.
Collapse
Affiliation(s)
- Hongwei Tang
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Suganti Shivaram
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Stacey Lehman
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Neeraj Sharma
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - James Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, MN, USA
| | - Cinthya Zepeda-Mendoza
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shulan Tian
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Yan Asmann
- Division of Computational Biology, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Celine Vachon
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar Maia
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Keats
- Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - P Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Rafael Fonseca
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Joel-Sean Hsu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Richard K Kandasamy
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Akhilesh Pandey
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Marcella A Kaddoura
- Division of Myeloma, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Francesco Maura
- Division of Myeloma, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Amit Mitra
- Drug Discovery and Development, Auburn University, Auburn, AL, USA
| | - S Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| | - Esteban Braggio
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Linda B Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
De Felice D, Alaimo A, Bressan D, Genovesi S, Marmocchi E, Annesi N, Beccaceci G, Dalfovo D, Cutrupi F, Medaglia S, Foletto V, Lorenzoni M, Gandolfi F, Kannan S, Verma CS, Vasciaveo A, Shen MM, Romanel A, Chiacchiera F, Cambuli F, Lunardi A. Rarγ-Foxa1 signaling promotes luminal identity in prostate progenitors and is disrupted in prostate cancer. EMBO Rep 2025; 26:443-469. [PMID: 39633177 PMCID: PMC11772605 DOI: 10.1038/s44319-024-00335-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling governs cell lineage identity is often missing. Here, leveraging prostate organoid technology, we show that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and specification of prostatic lumen. RA-dependent RARγ activation promotes the expression of Foxa1, which synergizes with the androgen pathway for luminal expansion, cytoarchitecture and function. FOXA1 mutations are common in prostate and breast cancers, though their pathogenic mechanism is incompletely understood. Combining functional genetics with structural modeling of FOXA1 folding and chromatin binding analyses, we discover that FOXA1F254E255 is a loss-of-function mutation compromising its transcriptional function and luminal fate commitment of prostate progenitors. Overall, we define RA as an instructive signal for glandular identity in adult prostate progenitors. Importantly, we identify cancer-associated FOXA1 indels affecting residue F254 as loss-of-function mutations promoting dedifferentiation of adult prostate progenitors.
Collapse
Affiliation(s)
- Dario De Felice
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Alessandro Alaimo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Davide Bressan
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Sacha Genovesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Elisa Marmocchi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Nicole Annesi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Giulia Beccaceci
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Federico Cutrupi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Stefano Medaglia
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Veronica Foletto
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Marco Lorenzoni
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Francesco Gandolfi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (Agency for Science, Technology and Research, A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore, 138671, Singapore
| | - Chandra S Verma
- Bioinformatics Institute (Agency for Science, Technology and Research, A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Alessandro Vasciaveo
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Fulvio Chiacchiera
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy
| | - Francesco Cambuli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy.
- Human Technopole, via Rita Levi Montalcini 1, Milan, Italy.
| | - Andrea Lunardi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, TN, Italy.
| |
Collapse
|
13
|
Sweat ME, Shi W, Keating EM, Ponek A, Li J, Ma Q, Park C, Trembley MA, Wang Y, Bezzerides VJ, Conlon FL, Pu WT. CHD4 Interacts With TBX5 to Maintain the Gene Regulatory Network of Postnatal Atrial Cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626894. [PMID: 39677667 PMCID: PMC11643115 DOI: 10.1101/2024.12.04.626894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia, affecting 59 million individuals worldwide. Impairment of atrial cardiomyocyte (aCM) gene regulatory mechanisms predisposes to atrial fibrillation. The transcription factor TBX5 is essential for normal atrial rhythm, and its inactivation causes loss of aCM enhancer accessibility, looping, and transcriptional identity. Here we investigated the mechanisms by which TBX5 regulates chromatin organization. We found that TBX5 recruits CHD4, a chromatin remodeling ATPase, to 33,170 genomic regions (TBX5-enhanced CHD4 sites). As a component of the NuRD complex, CHD4 functions to repress gene transcription. However, combined snRNA-seq and snATAC-seq of CHD4 knockout (KO) and control aCMs revealed that CHD4 has both gene activator and repressor functions. Genes repressed by CHD4 in aCMs included sarcomeric proteins from non-CM cell lineages. Genes activated by CHD4 in aCMs were characterized by TBX5-enhanced CHD4 recruitment, which enhanced chromatin accessibility and promoted the expression of aCM identity genes. This mechanism of TBX5 recruitment of CHD4 was critical for sinus rhythm because Chd4 AKO mice had increased vulnerability to AF from electrical pacing and a fraction had spontaneous AF. Our findings reveal that CHD4 is essential for maintaining aCM gene expression, aCM identity, and atrial rhythm homeostasis.
Collapse
|
14
|
Li X, Liu C, Lei Z, Chen H, Wang L. Phase-separated chromatin compartments: Orchestrating gene expression through condensation. CELL INSIGHT 2024; 3:100213. [PMID: 39512706 PMCID: PMC11541479 DOI: 10.1016/j.cellin.2024.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Eukaryotic genomes are organized into distinct chromatin compartments, some of which exhibit properties of biomolecular condensates. These condensates primarily form due to chromatin-associated proteins/complexes (CAPs). CAPs play a crucial role in gene expression, functioning as either transcriptional repressors or activators. Phase separation, a well-established biophysical phenomenon, is a key driver of chromatin condensate formation by CAPs. Notably, multivalent CAPs with the ability to engage in diverse interactions promote chromatin compaction, leading to the formation of transcriptionally repressed compartments. Conversely, interactions between intrinsically disordered region (IDR)-containing transcriptional regulators, mediated by their multivalent IDRs, lead to the formation of protein-rich, transcriptionally active droplets on decondensed genomic regions. Interestingly, both repressive heterochromatin and activating euchromatin condensates exhibit spontaneous phase separation and selectively enrich components with concordant transcriptional functions. This review delves into the mechanisms by which transcriptionally repressive CAPs orchestrate the formation of repressed chromatin domains. We further explore how a diverse array of transcription-related CAPs or core histone variants, via phase separation, influence gene expression by inducing erroneous transcription events, regulating expression levels, and facilitating the interconversion of transcriptionally repressed and active regions.
Collapse
Affiliation(s)
- Xin Li
- Beijing Life Science Academy, Beijing, 102209, China
| | - Chengzhi Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhichao Lei
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, Hubei, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, 102209, China
| | - Liang Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, Hubei, China
| |
Collapse
|
15
|
Matrenec R, Oropeza CE, Dekoven E, Matrenec C, Maienschein-Cline M, Chau CS, Green SJ, Kaestner KH, McLachlan A. Foxa deficiency restricts hepatitis B virus biosynthesis through epigenic silencing. J Virol 2024; 98:e0137124. [PMID: 39377604 PMCID: PMC11575325 DOI: 10.1128/jvi.01371-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
In the hepatis B virus (HBV) transgenic mouse model of chronic infection, the forkhead box protein A/hepatocyte nuclear factor 3 (Foxa/HNF3) family of pioneer transcription factors are required to support postnatal viral demethylation and subsequent HBV transcription and replication. Liver-specific Foxa-deficient mice with hepatic expression of only Foxa3 do not support HBV replication but display biliary epithelial hyperplasia with bridging fibrosis. However, liver-specific Foxa-deficient mice with hepatic expression of only Foxa1 or Foxa2 also successfully restrict viral transcription and replication but display only minimal alterations in liver physiology. These observations suggest that the level of Foxa activity, rather than the combination of specific Foxa genes, is a key determinant of HBV biosynthesis. Together, these findings suggest that targeting Foxa activity could lead to HBV DNA methylation and transcriptional inactivation, resulting in the resolution of chronic HBV infections that are responsible for approximately one million deaths annually worldwide. IMPORTANCE The current absence of curative therapies capable of resolving chronic hepatis B virus (HBV) infection is a major clinical problem associated with considerable morbidity and mortality. The small viral genome limits molecular targets for drug development, suggesting that the identification of cellular factors essential for HBV biosynthesis may represent alternative targets for therapeutic intervention. Genetic Foxa deficiency in the neonatal liver of HBV transgenic mice leads to the transcriptional silencing of viral DNA by CpG methylation without affecting viability or displaying an obvious phenotype. Therefore, limiting liver Foxa activity therapeutically may lead to the methylation of viral covalently closed circular DNA (cccDNA), resulting in its transcriptional silencing and ultimately the resolution of chronic HBV infection.
Collapse
Affiliation(s)
- Rachel Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Claudia E. Oropeza
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Eddie Dekoven
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Carly Matrenec
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark Maienschein-Cline
- Research Resources Center, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cecilia S. Chau
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, Illinois, USA
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alan McLachlan
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Choi YG, Ma X, Das S, Sierra-Pagan JE, Larson T, Gong W, Sadek HA, Zhang JJ, Garry MG, Garry DJ. ETV2 transcriptionally activates Rig1 gene expression and promotes reprogramming of the endothelial lineage. Sci Rep 2024; 14:28688. [PMID: 39562637 PMCID: PMC11576751 DOI: 10.1038/s41598-024-78115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
ETV2 is an essential transcription factor as Etv2 null murine embryos lack all vasculature, blood and are lethal early during embryogenesis. Previous studies have established that ETV2 functions as a pioneer factor and directly reprograms fibroblasts to endothelial cells. However, the underlying molecular mechanisms regulating this reprogramming process remain incompletely defined. In the present study, we examined the ETV2-RIG1 cascade as regulators that govern ETV2-mediated reprogramming. Mouse embryonic fibroblasts (MEFs) harboring an inducible ETV2 expression system were used to overexpress ETV2 and reprogram these somatic cells to the endothelial lineage. Single-cell RNA-seq from reprogrammed fibroblasts defined the induction of the transcriptional network involved in Rig1-like receptor signaling pathways. Studies using ChIP-seq, electrophoretic mobility shift assays, and transcriptional assays demonstrated that ETV2 was a direct upstream activator of Rig1 gene expression. We further demonstrated that the knockdown of Rig1 and separately, Nfκb1 using shRNA significantly reduced the efficiency of endothelial cell reprogramming. These results highlight that ETV2 reprograms fibroblasts to endothelial cells by directly activating RIG1. These findings extend our current understanding of the molecular mechanisms underlying ETV2-mediated reprogramming and will be important in the design of revascularization strategies for the treatment of ischemic tissues such as ischemic heart disease.
Collapse
Affiliation(s)
- Young Geun Choi
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thijs Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hesham A Sadek
- Cardiovascular Division, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- NorthStar Genomics, Eagan, MN, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- NorthStar Genomics, Eagan, MN, USA.
| |
Collapse
|
17
|
Won SJ, Zhang Y, Reinhardt CJ, Hargis LM, MacRae NS, DeMeester KE, Njomen E, Remsberg JR, Melillo B, Cravatt BF, Erb MA. Redirecting the pioneering function of FOXA1 with covalent small molecules. Mol Cell 2024; 84:4125-4141.e10. [PMID: 39413792 PMCID: PMC11560529 DOI: 10.1016/j.molcel.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Pioneer transcription factors (TFs) bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic compounds that stereoselectively and site-specifically bind the pioneer TF forkhead box protein A1 (FOXA1) at a cysteine (C258) within the forkhead DNA-binding domain. We show that these covalent ligands react with FOXA1 in a DNA-dependent manner and rapidly remodel its pioneer activity in prostate cancer cells reflected in redistribution of FOXA1 binding across the genome and directionally correlated changes in chromatin accessibility. Motif analysis supports a mechanism where the ligands relax the canonical DNA-binding preference of FOXA1 by strengthening interactions with suboptimal sequences in predicted proximity to C258. Our findings reveal a striking plasticity underpinning the pioneering function of FOXA1 that can be controlled by small molecules.
Collapse
Affiliation(s)
- Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuxiang Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Lauren M Hargis
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole S MacRae
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jarrett R Remsberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael A Erb
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Hilgart E, Zhou W, Martinez-Montes E, Idrizi A, Tryggvadottir R, Gondek LP, Majeti R, Ji H, Koldobskiy MA, Feinberg AP. DNA methylation stochasticity is linked to transcriptional variability and identifies convergent epigenetic disruption across genetically-defined subtypes of AML. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620422. [PMID: 39554147 PMCID: PMC11565875 DOI: 10.1101/2024.10.26.620422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Disruption of the epigenetic landscape is of particular interest in acute myeloid leukemia (AML) due to its relatively low mutational burden and frequent occurrence of mutations in epigenetic regulators. Here, we applied an information-theoretic analysis of methylation potential energy landscapes, capturing changes in mean methylation level and methylation entropy, to comprehensively analyze DNA methylation stochasticity in subtypes of AML defined by mutually exclusive genetic mutations. We identified AML subtypes with CEBPA double mutation and those with IDH mutations as distinctly high-entropy subtypes, marked by methylation disruption over a convergent set of genes. We found a core program of epigenetic landscape disruption across all AML subtypes, with discordant methylation stochasticity and transcriptional dysregulation converging on functionally important leukemic signatures, suggesting a genotype-independent role of stochastic disruption of the epigenetic landscape in mediating leukemogenesis. We further established a relationship between methylation entropy and gene expression variability, connecting the disruption of the epigenetic landscape to transcription in AML. This approach identified a convergent program of epigenetic dysregulation in leukemia, clarifying the contribution of specific genetic mutations to stochastic disruption of the epigenetic and transcriptional landscapes of AML.
Collapse
|
19
|
Begolli R, Patouna A, Vardakas P, Xagara A, Apostolou K, Kouretas D, Giakountis A. Deciphering the Landscape of GATA-Mediated Transcriptional Regulation in Gastric Cancer. Antioxidants (Basel) 2024; 13:1267. [PMID: 39456519 PMCID: PMC11504088 DOI: 10.3390/antiox13101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Gastric cancer (GC) is an asymptomatic malignancy in early stages, with an invasive and cost-ineffective diagnostic toolbox that contributes to severe global mortality rates on an annual basis. Ectopic expression of the lineage survival transcription factors (LS-TFs) GATA4 and 6 promotes stomach oncogenesis. However, LS-TFs also govern important physiological roles, hindering their direct therapeutic targeting. Therefore, their downstream target genes are particularly interesting for developing cancer-specific molecular biomarkers or therapeutic agents. In this work, we couple inducible knockdown systems with chromatin immunoprecipitation and RNA-seq to thoroughly detect and characterize direct targets of GATA-mediated transcriptional regulation in gastric cancer cells. Our experimental and computational strategy provides evidence that both factors regulate the expression of several coding and non-coding RNAs that in turn mediate for their cancer-promoting phenotypes, including but not limited to cell cycle, apoptosis, ferroptosis, and oxidative stress response. Finally, the diagnostic and prognostic potential of four metagene signatures consisting of selected GATA4/6 target transcripts is evaluated in a multi-cancer panel of ~7000 biopsies from nineteen tumor types, revealing elevated specificity for gastrointestinal tumors. In conclusion, our integrated strategy uncovers the landscape of GATA-mediated coding and non-coding transcriptional regulation, providing insights regarding their molecular and clinical function in gastric cancer.
Collapse
Affiliation(s)
- Rodiola Begolli
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Patouna
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Periklis Vardakas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Anastasia Xagara
- Laboratory of Oncology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Mezourlo, 41110 Larissa, Greece
| | - Kleanthi Apostolou
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Demetrios Kouretas
- Laboratory of Animal Physiology, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| | - Antonis Giakountis
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
20
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
21
|
Zhang X, Ma J, Li H, Zhai Y, He F, Wang X, Li Y. OrganogenesisDB: A Comprehensive Database Exploring the Cell-Type Identities and Gene Expression Dynamics during Organogenesis. SMALL METHODS 2024; 8:e2301758. [PMID: 38967205 DOI: 10.1002/smtd.202301758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/02/2024] [Indexed: 07/06/2024]
Abstract
Organogenesis, the phase of embryonic development that starts at the end of gastrulation and continues until birth is the critical process for understanding cellular differentiation and maturation during organ development. The rapid development of single-cell transcriptomics technology has led to many novel discoveries in understanding organogenesis while also accumulating a large quantity of data. To fill this gap, OrganogenesisDB (http://organogenesisdb.com/), which is a comprehensive database dedicated to exploring cell-type identification and gene expression dynamics during organogenesis, is developed. OrganogenesisDB contains single-cell RNA sequencing data for more than 1.4 million cells from 49 published datasets spanning various developmental stages. Additionally, 3324 cell markers are manually curated for 1120 cell types across 9 human organs and 4 mouse organs. OrganogenesisDB leverages various analysis tools to assist users in annotating and understanding cell types at different developmental stages and helps in mining and presenting genes that exhibit specific patterns and play key regulatory roles during cell maturation and differentiation. This work provides a critical resource and useful tool for deciphering cell lineage determination and uncovering the mechanisms underlying organogenesis.
Collapse
Affiliation(s)
- Xinshuai Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Jiacheng Ma
- Tsinghua-Peking Center for Life Sciences, School of Lifescience, Tsinghua University, Beijing, 100084, China
| | - Hongchao Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- College of Life Science, Hebei University, Baoding, Hebei, 071002, China
| | - Yuanjun Zhai
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Xiaowen Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| | - Yang Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
- Research Unit of Proteomics-Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206, China
| |
Collapse
|
22
|
Herbert A. A Compendium of G-Flipon Biological Functions That Have Experimental Validation. Int J Mol Sci 2024; 25:10299. [PMID: 39408629 PMCID: PMC11477331 DOI: 10.3390/ijms251910299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
As with all new fields of discovery, work on the biological role of G-quadruplexes (GQs) has produced a number of results that at first glance are quite baffling, sometimes because they do not fit well together, but mostly because they are different from commonly held expectations. Like other classes of flipons, those that form G-quadruplexes have a repeat sequence motif that enables the fold. The canonical DNA motif (G3N1-7)3G3, where N is any nucleotide and G is guanine, is a feature that is under active selection in avian and mammalian genomes. The involvement of G-flipons in genome maintenance traces back to the invertebrate Caenorhabditis elegans and to ancient DNA repair pathways. The role of GQs in transcription is supported by the observation that yeast Rap1 protein binds both B-DNA, in a sequence-specific manner, and GQs, in a structure-specific manner, through the same helix. Other sequence-specific transcription factors (TFs) also engage both conformations to actuate cellular transactions. Noncoding RNAs can also modulate GQ formation in a sequence-specific manner and engage the same cellular machinery as localized by TFs, linking the ancient RNA world with the modern protein world. The coevolution of noncoding RNAs and sequence-specific proteins is supported by studies of early embryonic development, where the transient formation of G-quadruplexes coordinates the epigenetic specification of cell fate.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, 42 8th Street, Unit 3412, Charlestown, MA 02129, USA
| |
Collapse
|
23
|
Zhang T, Liu S, Durojaye O, Xiong F, Fang Z, Ullah T, Fu C, Sun B, Jiang H, Xia P, Wang Z, Yao X, Liu X. Dynamic phosphorylation of FOXA1 by Aurora B guides post-mitotic gene reactivation. Cell Rep 2024; 43:114739. [PMID: 39276350 DOI: 10.1016/j.celrep.2024.114739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
FOXA1 serves as a crucial pioneer transcription factor during developmental processes and plays a pivotal role as a mitotic bookmarking factor to perpetuate gene expression profiles and maintain cellular identity. During mitosis, the majority of FOXA1 dissociates from specific DNA binding sites and redistributes to non-specific binding sites; however, the regulatory mechanisms governing molecular dynamics and activity of FOXA1 remain elusive. Here, we show that mitotic kinase Aurora B specifies the different DNA binding modes of FOXA1 and guides FOXA1 biomolecular condensation in mitosis. Mechanistically, Aurora B kinase phosphorylates FOXA1 at Serine 221 (S221) to liberate the specific, but not the non-specific, DNA binding. Interestingly, the phosphorylation of S221 attenuates the FOXA1 condensation that requires specific DNA binding. Importantly, perturbation of the dynamic phosphorylation impairs accurate gene reactivation and cell proliferation, suggesting that reversible mitotic protein phosphorylation emerges as a fundamental mechanism for the spatiotemporal control of mitotic bookmarking.
Collapse
Affiliation(s)
- Ting Zhang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Shuaiyu Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Olanrewaju Durojaye
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Fangyuan Xiong
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhiyou Fang
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230027, China
| | - Tahir Ullah
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Hao Jiang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Xia
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Institute of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhikai Wang
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
24
|
Grand RS, Pregnolato M, Baumgartner L, Hoerner L, Burger L, Schübeler D. Genome access is transcription factor-specific and defined by nucleosome position. Mol Cell 2024; 84:3455-3468.e6. [PMID: 39208807 PMCID: PMC11420395 DOI: 10.1016/j.molcel.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Mammalian gene expression is controlled by transcription factors (TFs) that engage sequence motifs in a chromatinized genome, where nucleosomes can restrict DNA access. Yet, how nucleosomes affect individual TFs remains unclear. Here, we measure the ability of over one hundred TF motifs to recruit TFs in a defined chromosomal locus in mouse embryonic stem cells. This identifies a set sufficient to enable the binding of TFs with diverse tissue specificities, functions, and DNA-binding domains. These chromatin-competent factors are further classified when challenged to engage motifs within a highly phased nucleosome. The pluripotency factors OCT4-SOX2 preferentially engage non-nucleosomal and entry-exit motifs, but not nucleosome-internal sites, a preference that also guides binding genome wide. By contrast, factors such as BANP, REST, or CTCF engage throughout, causing nucleosomal displacement. This supports that TFs vary widely in their sensitivity to nucleosomes and that genome access is TF specific and influenced by nucleosome position in the cell.
Collapse
Affiliation(s)
- Ralph Stefan Grand
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Marco Pregnolato
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland
| | - Lisa Baumgartner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Leslie Hoerner
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4003 Basel, Switzerland.
| |
Collapse
|
25
|
Mariani L, Liu X, Lee K, Gisselbrecht SS, Cole PA, Bulyk ML. DNA flexibility regulates transcription factor binding to nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610559. [PMID: 39463949 PMCID: PMC11507811 DOI: 10.1101/2024.09.02.610559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cell fate decisions are controlled by sequence-specific transcription factors (TFs), referred to as 'pioneer' factors, that bind their target sites within nucleosomes ('pioneer binding') and thus initiate chromatin opening. However, pioneers bind just a minority of their recognition sequences present in the genome, suggesting that local sequence context features may regulate pioneer binding. Here, we developed PIONEAR-seq, a highly parallel sequencing-based biochemical assay for high-throughput analysis of TF binding to nucleosomes on nucleosome positioning sequences. Using PIONEAR-seq, we characterized the pioneer binding of 7 human pioneer TFs. Comparison of TF binding to nucleosomes based on the synthetic Widom 601 (W601) model sequence versus three different genomic sequences revealed that the positional preferences of these TFs' binding to nucleosomes (i.e., dyad, periodic and end binding) is determined by the broader sequence context of the nucleosome, rather than being a property intrinsic to the TF. We propose a model where the flexibility and rigidity within nucleosomal DNA regulate where pioneers bind within nucleosomes. Our results suggest that the broader physical properties of nucleosomal DNA represent another layer of cis-regulatory information read out by TFs in eukaryotic genomes.
Collapse
Affiliation(s)
- Luca Mariani
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiao Liu
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biomedical Informatics; Harvard Medical School, Boston, MA 02115
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School, Boston, MA 02115
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Philip A. Cole
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology; Harvard Medical School, Boston, MA 02115
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pathology; Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Zhou BR, Feng H, Huang F, Zhu I, Portillo-Ledesma S, Shi D, Zaret KS, Schlick T, Landsman D, Wang Q, Bai Y. Structural insights into the cooperative nucleosome recognition and chromatin opening by FOXA1 and GATA4. Mol Cell 2024; 84:3061-3079.e10. [PMID: 39121853 PMCID: PMC11344660 DOI: 10.1016/j.molcel.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/10/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Mouse FOXA1 and GATA4 are prototypes of pioneer factors, initiating liver cell development by binding to the N1 nucleosome in the enhancer of the ALB1 gene. Using cryoelectron microscopy (cryo-EM), we determined the structures of the free N1 nucleosome and its complexes with FOXA1 and GATA4, both individually and in combination. We found that the DNA-binding domains of FOXA1 and GATA4 mainly recognize the linker DNA and an internal site in the nucleosome, respectively, whereas their intrinsically disordered regions interact with the acidic patch on histone H2A-H2B. FOXA1 efficiently enhances GATA4 binding by repositioning the N1 nucleosome. In vivo DNA editing and bioinformatics analyses suggest that the co-binding mode of FOXA1 and GATA4 plays important roles in regulating genes involved in liver cell functions. Our results reveal the mechanism whereby FOXA1 and GATA4 cooperatively bind to the nucleosome through nucleosome repositioning, opening chromatin by bending linker DNA and obstructing nucleosome packing.
Collapse
Affiliation(s)
- Bing-Rui Zhou
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Furong Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Iris Zhu
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie Portillo-Ledesma
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA
| | - Dan Shi
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Development Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003, USA; Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003, USA; Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012, USA; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Xu C, Kleinschmidt H, Yang J, Leith EM, Johnson J, Tan S, Mahony S, Bai L. Systematic dissection of sequence features affecting binding specificity of a pioneer factor reveals binding synergy between FOXA1 and AP-1. Mol Cell 2024; 84:2838-2855.e10. [PMID: 39019045 PMCID: PMC11334613 DOI: 10.1016/j.molcel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/19/2024]
Abstract
Despite the unique ability of pioneer factors (PFs) to target nucleosomal sites in closed chromatin, they only bind a small fraction of their genomic motifs. The underlying mechanism of this selectivity is not well understood. Here, we design a high-throughput assay called chromatin immunoprecipitation with integrated synthetic oligonucleotides (ChIP-ISO) to systematically dissect sequence features affecting the binding specificity of a classic PF, FOXA1, in human A549 cells. Combining ChIP-ISO with in vitro and neural network analyses, we find that (1) FOXA1 binding is strongly affected by co-binding transcription factors (TFs) AP-1 and CEBPB; (2) FOXA1 and AP-1 show binding cooperativity in vitro; (3) FOXA1's binding is determined more by local sequences than chromatin context, including eu-/heterochromatin; and (4) AP-1 is partially responsible for differential binding of FOXA1 in different cell types. Our study presents a framework for elucidating genetic rules underlying PF binding specificity and reveals a mechanism for context-specific regulation of its binding.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jianyu Yang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik M Leith
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jenna Johnson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Song Tan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shaun Mahony
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Gopalan SS, Perry BW, Francioli YZ, Schield DR, Guss HD, Bernstein JM, Ballard K, Smith CF, Saviola AJ, Adams RH, Mackessy SP, Castoe TA. Diverse Gene Regulatory Mechanisms Alter Rattlesnake Venom Gene Expression at Fine Evolutionary Scales. Genome Biol Evol 2024; 16:evae110. [PMID: 38753011 PMCID: PMC11243404 DOI: 10.1093/gbe/evae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 07/13/2024] Open
Abstract
Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.
Collapse
Affiliation(s)
- Siddharth S Gopalan
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Yannick Z Francioli
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Drew R Schield
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Hannah D Guss
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Justin M Bernstein
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kaas Ballard
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas Agricultural Experimental Station, University of Arkansas, Fayetteville, AR 72701, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
29
|
Freund MM, Harrison MM, Torres-Zelada EF. Exploring the reciprocity between pioneer factors and development. Development 2024; 151:dev201921. [PMID: 38958075 PMCID: PMC11266817 DOI: 10.1242/dev.201921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Development is regulated by coordinated changes in gene expression. Control of these changes in expression is largely governed by the binding of transcription factors to specific regulatory elements. However, the packaging of DNA into chromatin prevents the binding of many transcription factors. Pioneer factors overcome this barrier owing to unique properties that enable them to bind closed chromatin, promote accessibility and, in so doing, mediate binding of additional factors that activate gene expression. Because of these properties, pioneer factors act at the top of gene-regulatory networks and drive developmental transitions. Despite the ability to bind target motifs in closed chromatin, pioneer factors have cell type-specific chromatin occupancy and activity. Thus, developmental context clearly shapes pioneer-factor function. Here, we discuss this reciprocal interplay between pioneer factors and development: how pioneer factors control changes in cell fate and how cellular environment influences pioneer-factor binding and activity.
Collapse
Affiliation(s)
- Meghan M. Freund
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Melissa M. Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| | - Eliana F. Torres-Zelada
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 52706, USA
| |
Collapse
|
30
|
Kocher AA, Dutrow EV, Uebbing S, Yim KM, Rosales Larios MF, Baumgartner M, Nottoli T, Noonan JP. CpG island turnover events predict evolutionary changes in enhancer activity. Genome Biol 2024; 25:156. [PMID: 38872220 PMCID: PMC11170920 DOI: 10.1186/s13059-024-03300-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.
Collapse
Affiliation(s)
- Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Division of Molecular Genetics and Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Zoetis, Inc, 333 Portage St, Kalamazoo, MI, 49007, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Kristina M Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | | | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
31
|
Orsetti A, van Oosten D, Vasarhelyi RG, Dănescu TM, Huertas J, van Ingen H, Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys Rev 2024; 16:365-382. [PMID: 39099839 PMCID: PMC11297019 DOI: 10.1007/s12551-024-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
Pioneer transcription factors are proteins with a dual function. First, they regulate transcription by binding to nucleosome-free DNA regulatory elements. Second, they bind to DNA while wrapped around histone proteins in the chromatin and mediate chromatin opening. The molecular mechanisms that connect the two functions are yet to be discovered. In recent years, pioneer factors received increased attention mainly because of their crucial role in promoting cell fate transitions that could be used for regenerative therapies. For example, the three factors required to induce pluripotency in somatic cells, Oct4, Sox2, and Klf4 were classified as pioneer factors and studied extensively. With this increased attention, several structures of complexes between pioneer factors and chromatin structural units (nucleosomes) have been resolved experimentally. Furthermore, experimental and computational approaches have been designed to study two unresolved, key scientific questions: First, do pioneer factors induce directly local opening of nucleosomes and chromatin fibers upon binding? And second, how do the unstructured tails of the histones impact the structural dynamics involved in such conformational transitions? Here we review the current knowledge about transcription factor-induced nucleosome dynamics and the role of the histone tails in this process. We discuss what is needed to bridge the gap between the static views obtained from the experimental structures and the key structural dynamic events in chromatin opening. Finally, we propose that integrating nuclear magnetic resonance spectroscopy with molecular dynamics simulations is a powerful approach to studying pioneer factor-mediated dynamics of nucleosomes and perhaps small chromatin fibers using native DNA sequences.
Collapse
Affiliation(s)
- Andrea Orsetti
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Daphne van Oosten
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | | | - Theodor-Marian Dănescu
- Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Jan Huertas
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, England
| | - Hugo van Ingen
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Vlad Cojocaru
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
32
|
Stoeber S, Godin H, Xu C, Bai L. Pioneer factors: nature or nurture? Crit Rev Biochem Mol Biol 2024; 59:139-153. [PMID: 38778580 PMCID: PMC11444900 DOI: 10.1080/10409238.2024.2355885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Chromatin is densely packed with nucleosomes, which limits the accessibility of many chromatin-associated proteins. Pioneer factors (PFs) are usually viewed as a special group of sequence-specific transcription factors (TFs) that can recognize nucleosome-embedded motifs, invade compact chromatin, and generate open chromatin regions. Through this process, PFs initiate a cascade of events that play key roles in gene regulation and cell differentiation. A current debate in the field is if PFs belong to a unique subset of TFs with intrinsic "pioneering activity", or if all TFs have the potential to function as PFs within certain cellular contexts. There are also different views regarding the key feature(s) that define pioneering activity. In this review, we present evidence from the literature related to these alternative views and discuss how to potentially reconcile them. It is possible that both intrinsic properties, like tight nucleosome binding and structural compatibility, and cellular conditions, like concentration and co-factor availability, are important for PF function.
Collapse
Affiliation(s)
- Shane Stoeber
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Holly Godin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel) 2024; 15:710. [PMID: 38927646 PMCID: PMC11202709 DOI: 10.3390/genes15060710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
This review article critically examines the pivotal role of chromatin organization in gene regulation, cellular differentiation, disease progression and aging. It explores the dynamic between the euchromatin and heterochromatin, coded by a complex array of histone modifications that orchestrate essential cellular processes. We discuss the pathological impacts of chromatin state misregulation, particularly in cancer and accelerated aging conditions such as progeroid syndromes, and highlight the innovative role of epigenetic therapies and artificial intelligence (AI) in comprehending and harnessing the histone code toward personalized medicine. In the context of aging, this review explores the use of AI and advanced machine learning (ML) algorithms to parse vast biological datasets, leading to the development of predictive models for epigenetic modifications and providing a framework for understanding complex regulatory mechanisms, such as those governing cell identity genes. It supports innovative platforms like CEFCIG for high-accuracy predictions and tools like GridGO for tailored ChIP-Seq analysis, which are vital for deciphering the epigenetic landscape. The review also casts a vision on the prospects of AI and ML in oncology, particularly in the personalization of cancer therapy, including early diagnostics and treatment optimization for diseases like head and neck and colorectal cancers by harnessing computational methods, AI advancements and integrated clinical data for a transformative impact on healthcare outcomes.
Collapse
Affiliation(s)
- Rogerio M. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Leonard S. Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
| | - Bruna H. Palomares
- Oral Diagnosis Department, Piracicaba School of Dentistry, State University of Campinas, Piracicaba 13414-903, Sao Paulo, Brazil;
| | - Cristiane H. Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA; (L.S.C.); (C.H.S.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
34
|
Zaret K. Learning from chromatin reconstitution: Pioneer factors enabling nucleosome remodelers. Mol Cell 2024; 84:1817. [PMID: 38604174 DOI: 10.1016/j.molcel.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Ken Zaret
- Institute for Regenerative Medicine, Epigenetics Institute, and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
35
|
Ahmad K, Brahma S, Henikoff S. Response to "Learning from chromatin reconstitution: Pioneering factors enabling nucleosome remodelers". Mol Cell 2024; 84:1818. [PMID: 38604173 DOI: 10.1016/j.molcel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sandipan Brahma
- University of Nebraska Medical Center, Department of Genetics, Cell Biology & Anatomy, Omaha, NE, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 PMCID: PMC11867214 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Kobayashi W, Sappler AH, Bollschweiler D, Kümmecke M, Basquin J, Arslantas EN, Ruangroengkulrith S, Hornberger R, Duderstadt K, Tachibana K. Nucleosome-bound NR5A2 structure reveals pioneer factor mechanism by DNA minor groove anchor competition. Nat Struct Mol Biol 2024; 31:757-766. [PMID: 38409506 PMCID: PMC11102866 DOI: 10.1038/s41594-024-01239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Gene expression during natural and induced reprogramming is controlled by pioneer transcription factors that initiate transcription from closed chromatin. Nr5a2 is a key pioneer factor that regulates zygotic genome activation in totipotent embryos, pluripotency in embryonic stem cells and metabolism in adult tissues, but the mechanism of its pioneer activity remains poorly understood. Here, we present a cryo-electron microscopy structure of human NR5A2 bound to a nucleosome. The structure shows that the conserved carboxy-terminal extension (CTE) loop of the NR5A2 DNA-binding domain competes with a DNA minor groove anchor of the nucleosome and releases entry-exit site DNA. Mutational analysis showed that NR5A2 D159 of the CTE is dispensable for DNA binding but required for stable nucleosome association and persistent DNA 'unwrapping'. These findings suggest that NR5A2 belongs to an emerging class of pioneer factors that can use DNA minor groove anchor competition to destabilize nucleosomes and facilitate gene expression during reprogramming.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Anna H Sappler
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
| | | | - Maximilian Kümmecke
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Crystallization Facility, MPIB, Munich, Germany
| | - Eda Nur Arslantas
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | | | - Renate Hornberger
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany
| | - Karl Duderstadt
- Structure and Dynamics of Molecular Machines, MPIB, Munich, Germany
- Department of Bioscience, Technical University of Munich, Garching, Germany
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry (MPIB), Munich, Germany.
| |
Collapse
|
38
|
Nakagawa S, Yamaguchi K, Takane K, Tabata S, Ikenoue T, Furukawa Y. Wnt/β-catenin signaling regulates amino acid metabolism through the suppression of CEBPA and FOXA1 in liver cancer cells. Commun Biol 2024; 7:510. [PMID: 38684876 PMCID: PMC11058205 DOI: 10.1038/s42003-024-06202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Deregulation of the Wnt/β-catenin pathway is associated with the development of human cancer including colorectal and liver cancer. Although we previously showed that histidine ammonia lyase (HAL) was transcriptionally reduced by the β-catenin/TCF complex in liver cancer cells, the mechanism(s) of its down-regulation by the complex remain to be clarified. In this study, we search for the transcription factor(s) regulating HAL, and identify CEBPA and FOXA1, two factors whose expression is suppressed by the knockdown of β-catenin or TCF7L2. In addition, RNA-seq analysis coupled with genome-wide mapping of CEBPA- and FOXA1-binding regions reveals that these two factors also increase the expression of arginase 1 (ARG1) that catalyzes the hydrolysis of arginine. Metabolome analysis discloses that activated Wnt signaling augments intracellular concentrations of histidine and arginine, and that the signal also increases the level of lactic acid suggesting the induction of the Warburg effect in liver cancer cells. Further analysis reveals that the levels of metabolites of the urea cycle and genes coding its related enzymes are also modulated by the Wnt signaling. These findings shed light on the altered cellular metabolism in the liver by the Wnt/β-catenin pathway through the suppression of liver-enriched transcription factors including CEBPA and FOXA1.
Collapse
Affiliation(s)
- Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| | - Kiyoko Takane
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Sho Tabata
- Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
| |
Collapse
|
39
|
Saotome M, Poduval D, Grimm SA, Nagornyuk A, Gunarathna S, Shimbo T, Wade P, Takaku M. Genomic transcription factor binding site selection is edited by the chromatin remodeling factor CHD4. Nucleic Acids Res 2024; 52:3607-3622. [PMID: 38281186 PMCID: PMC11039999 DOI: 10.1093/nar/gkae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Biologically precise enhancer licensing by lineage-determining transcription factors enables activation of transcripts appropriate to biological demand and prevents deleterious gene activation. This essential process is challenged by the millions of matches to most transcription factor binding motifs present in many eukaryotic genomes, leading to questions about how transcription factors achieve the exquisite specificity required. The importance of chromatin remodeling factors to enhancer activation is highlighted by their frequent mutation in developmental disorders and in cancer. Here, we determine the roles of CHD4 in enhancer licensing and maintenance in breast cancer cells and during cellular reprogramming. In unchallenged basal breast cancer cells, CHD4 modulates chromatin accessibility. Its depletion leads to redistribution of transcription factors to previously unoccupied sites. During cellular reprogramming induced by the pioneer factor GATA3, CHD4 activity is necessary to prevent inappropriate chromatin opening. Mechanistically, CHD4 promotes nucleosome positioning over GATA3 binding motifs to compete with transcription factor-DNA interaction. We propose that CHD4 acts as a chromatin proof-reading enzyme that prevents unnecessary gene expression by editing chromatin binding activities of transcription factors.
Collapse
Affiliation(s)
- Mika Saotome
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Deepak B Poduval
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sara A Grimm
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Aerica Nagornyuk
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Sakuntha Gunarathna
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Takashi Shimbo
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Motoki Takaku
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
40
|
Basurto-Cayuela L, Guerrero-Martínez JA, Gómez-Marín E, Sánchez-Escabias E, Escaño-Maestre M, Ceballos-Chávez M, Reyes JC. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43:113855. [PMID: 38427563 DOI: 10.1016/j.celrep.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.
Collapse
Affiliation(s)
- Laura Basurto-Cayuela
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Gómez-Marín
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Sánchez-Escabias
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Escaño-Maestre
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José C Reyes
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain.
| |
Collapse
|
41
|
Tam KJ, Liu L, Hsing M, Dalal K, Thaper D, McConeghy B, Yenki P, Bhasin S, Peacock JW, Wang Y, Cherkasov A, Rennie PS, Gleave ME, Ong CJ. Clinically-observed FOXA1 mutations upregulate SEMA3C through transcriptional derepression in prostate cancer. Sci Rep 2024; 14:7082. [PMID: 38528115 PMCID: PMC10963789 DOI: 10.1038/s41598-024-57854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
FOXA1 is a pioneer transcription factor that is frequently mutated in prostate, breast, bladder, and salivary gland malignancies. Indeed, metastatic castration-resistant prostate cancer (mCRPC) commonly harbour FOXA1 mutations with a prevalence of 35%. However, despite the frequent recurrence of FOXA1 mutations in prostate cancer, the mechanisms by which FOXA1 variants drive its oncogenic effects are still unclear. Semaphorin 3C (SEMA3C) is a secreted autocrine growth factor that drives growth and treatment resistance of prostate and other cancers and is known to be regulated by both AR and FOXA1. In the present study, we characterize FOXA1 alterations with respect to its regulation of SEMA3C. Our findings reveal that FOXA1 alterations lead to elevated levels of SEMA3C both in prostate cancer specimens and in vitro. We further show that FOXA1 negatively regulates SEMA3C via intronic cis elements, and that mutations in FOXA1 forkhead domain attenuate its inhibitory function in reporter assays, presumably by disrupting DNA binding of FOXA1. Our findings underscore the key role of FOXA1 in prostate cancer progression and treatment resistance by regulating SEMA3C expression and suggest that SEMA3C may be a driver of growth and tumor vulnerability of mCRPC harboring FOXA1 alterations.
Collapse
Affiliation(s)
- Kevin J Tam
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael Hsing
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Kush Dalal
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Daksh Thaper
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Brian McConeghy
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
| | - Parvin Yenki
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Satyam Bhasin
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - James W Peacock
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Martin E Gleave
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Christopher J Ong
- Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, BC, Canada.
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Won SJ, Zhang Y, Reinhardt CJ, MacRae NS, DeMeester KE, Njomen E, Hargis LM, Remsberg JR, Melillo B, Cravatt BF, Erb MA. Redirecting the pioneering function of FOXA1 with covalent small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586158. [PMID: 38562719 PMCID: PMC10983899 DOI: 10.1101/2024.03.21.586158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pioneer transcription factors (TFs) exhibit a specialized ability to bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic small molecules that stereoselectively and site-specifically bind the pioneer TF, FOXA1, at a cysteine (C258) within the forkhead DNA-binding domain. We show that these covalent ligands react with FOXA1 in a DNA-dependent manner and rapidly remodel its pioneer activity in prostate cancer cells reflected in redistribution of FOXA1 binding across the genome and directionally correlated changes in chromatin accessibility. Motif analysis supports a mechanism where the covalent ligands relax the canonical DNA binding preference of FOXA1 by strengthening interactions with suboptimal ancillary sequences in predicted proximity to C258. Our findings reveal a striking plasticity underpinning the pioneering function of FOXA1 that can be controlled by small molecules.
Collapse
|
43
|
Felice DD, Alaimo A, Bressan D, Genovesi S, Marmocchi E, Annesi N, Beccaceci G, Dalfovo D, Cutrupi F, Foletto V, Lorenzoni M, Gandolfi F, Kannan S, Verma CS, Vasciaveo A, Shen MM, Romanel A, Chiacchiera F, Cambuli F, Lunardi A. Rarγ -Foxa1 signaling promotes luminal identity in prostate progenitors and is disrupted in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583256. [PMID: 38496627 PMCID: PMC10942448 DOI: 10.1101/2024.03.06.583256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Retinoic acid (RA) signaling is a master regulator of vertebrate development with crucial roles in directing body axis orientation and tissue differentiation, including in the reproductive system. However, a mechanistic understanding of how RA signaling promotes cell lineage identity in different tissues is often missing. Here, leveraging prostate organoid technology, we demonstrated that RA signaling orchestrates the commitment of adult mouse prostate progenitors to glandular identity, epithelial barrier integrity, and ultimately, proper specification of the prostatic lumen. Mechanistically, RA-dependent RARγ activation promotes the expression of the pioneer factor Foxa1, which synergizes with the androgen pathway for proper luminal expansion, cytoarchitecture and function. FOXA1 nucleotide variants are common in human prostate and breast cancers and considered driver mutations, though their pathogenic mechanism is incompletely understood. Combining functional genetics experiments with structural modeling of FOXA1 folding and chromatin binding analyses, we discovered that FOXA1 F254E255 is a loss-of-function mutation leading to compromised transcriptional function and lack of luminal fate commitment of prostate progenitors. Overall, we define RA as a crucial instructive signal for glandular identity in adult prostate progenitors. We propose deregulation of vitamin A metabolism as a risk factor for benign and malignant prostate disease, and identified cancer associated FOXA1 indels affecting residue F254 as loss-of-function mutations promoting dedifferentiation of adult prostate progenitors. Summary: Retinoic acid signaling orchestrates luminal differentiation of adult prostate progenitors.
Collapse
|
44
|
Lim B, Domsch K, Mall M, Lohmann I. Canalizing cell fate by transcriptional repression. Mol Syst Biol 2024; 20:144-161. [PMID: 38302581 PMCID: PMC10912439 DOI: 10.1038/s44320-024-00014-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024] Open
Abstract
Precision in the establishment and maintenance of cellular identities is crucial for the development of multicellular organisms and requires tight regulation of gene expression. While extensive research has focused on understanding cell type-specific gene activation, the complex mechanisms underlying the transcriptional repression of alternative fates are not fully understood. Here, we provide an overview of the repressive mechanisms involved in cell fate regulation. We discuss the molecular machinery responsible for suppressing alternative fates and highlight the crucial role of sequence-specific transcription factors (TFs) in this process. Depletion of these TFs can result in unwanted gene expression and increased cellular plasticity. We suggest that these TFs recruit cell type-specific repressive complexes to their cis-regulatory elements, enabling them to modulate chromatin accessibility in a context-dependent manner. This modulation effectively suppresses master regulators of alternative fate programs and their downstream targets. The modularity and dynamic behavior of these repressive complexes enables a limited number of repressors to canalize and maintain major and minor cell fate decisions at different stages of development.
Collapse
Affiliation(s)
- Bryce Lim
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany
| | - Moritz Mall
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- HITBR Hector Institute for Translational Brain Research gGmbH, 69120, Heidelberg, Germany.
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, Department of Developmental Biology and Cell Networks - Cluster of Excellence, Heidelberg, Germany.
| |
Collapse
|
45
|
Kawamura K, Fujiwara S. The transcription factor AP2 and downstream genes shared by asexual reproduction and zooidal regeneration in the tunicate, Polyandrocarpa misakiensis. Cells Dev 2024; 177:203885. [PMID: 38007002 DOI: 10.1016/j.cdev.2023.203885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Epithelial outpocketing, tunic softening, mesenchymal cell death, dedifferentiation/transdifferentiation, and resistance to environmental stress are major events that occur during asexual reproduction by budding in the tunicate, Polyandrocarpa misakiensis. To identify the molecules underlying these events and compare them with those operating in regeneration, differential gene expression profiles were developed in buds and zooids. Among approximately 40,000 contigs, 21 genes were identified as potentially being involved in asexual reproduction. Genes related to tunic softening, phagocytosis-stimulating opsonin, and stress resistance were activated in the very early stage of budding. At the later stage of budding when buds separated from the parent and entered the developmental stage, genes for cell adhesion, cell death, and differentiation were activated. The transcription factor AP2 was spatio-temporally expressed in a similar pattern to the tunic-softening gene endoglucanase (EndoG). AP2 mRNA activated EndoG when introduced into zooids by electroporation. Eight out of 21 budding-related genes were significantly activated by AP2 mRNA. Polyandrocarpa zooids possess regenerative potential other than budding. Zooidal regeneration accompanied cell death/phagocytosis, cell-cell adhesion/communication, and dedifferentiation/redifferentiation. Consistent with morphological features, eight related genes including SP8 transcription factor were activated during zooidal regeneration. Most of these genes were identical to those induced by AP2 mRNA, indicating that asexual reproduction in P. misakiensis shares AP2-regulated downstream genes with zooidal regeneration. The present results suggest that SP8 may be indispensable for both budding and regeneration and that the potential dedifferentiation-related gene SOXB1 plays a minor role in zooidal regeneration.
Collapse
Affiliation(s)
- Kaz Kawamura
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780, Japan.
| | - Shigeki Fujiwara
- Laboratory of Cellular and Molecular Biotechnology, Faculty of Science, Kochi University, Kochi 780, Japan; Department of Chemistry and Biotechnology, Faculty of Science and Technology, Kochi University, Kochi 780, Japan.
| |
Collapse
|
46
|
St. Peter C, Hossain WA, Lovell S, Rafi SK, Butler MG. Mowat-Wilson Syndrome: Case Report and Review of ZEB2 Gene Variant Types, Protein Defects and Molecular Interactions. Int J Mol Sci 2024; 25:2838. [PMID: 38474085 PMCID: PMC10932183 DOI: 10.3390/ijms25052838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/12/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Mowat-Wilson syndrome (MWS) is a rare genetic neurodevelopmental congenital disorder associated with various defects of the zinc finger E-box binding homeobox 2 (ZEB2) gene. The ZEB2 gene is autosomal dominant and encodes six protein domains including the SMAD-binding protein, which functions as a transcriptional corepressor involved in the conversion of neuroepithelial cells in early brain development and as a mediator of trophoblast differentiation. This review summarizes reported ZEB2 gene variants, their types, and frequencies among the 10 exons of ZEB2. Additionally, we summarized their corresponding encoded protein defects including the most common variant, c.2083 C>T in exon 8, which directly impacts the homeodomain (HD) protein domain. This single defect was found in 11% of the 298 reported patients with MWS. This review demonstrates that exon 8 encodes at least three of the six protein domains and accounts for 66% (198/298) of the variants identified. More than 90% of the defects were due to nonsense or frameshift changes. We show examples of protein modeling changes that occurred as a result of ZEB2 gene defects. We also report a novel pathogenic variant in exon 8 in a 5-year-old female proband with MWS. This review further explores other genes predicted to be interacting with the ZEB2 gene and their predicted gene-gene molecular interactions with protein binding effects on embryonic multi-system development such as craniofacial, spine, brain, kidney, cardiovascular, and hematopoiesis.
Collapse
Affiliation(s)
- Caroline St. Peter
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Waheeda A. Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047, USA;
| | - Syed K. Rafi
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| | - Merlin G. Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, 3901 Rainbow Blvd. MS 4015, Kansas City, KS 66160, USA; (C.S.P.); (W.A.H.); (S.K.R.)
| |
Collapse
|
47
|
Pasterczyk KR, Li XL, Singh R, Zibitt MS, Hartford CCR, Pongor L, Jenkins LM, Hu Y, Zhao PX, Muys BR, Kumar S, Roper N, Aladjem MI, Pommier Y, Grammatikakis I, Lal A. Staufen1 Represses the FOXA1-Regulated Transcriptome by Destabilizing FOXA1 mRNA in Colorectal Cancer Cells. Mol Cell Biol 2024; 44:43-56. [PMID: 38347726 PMCID: PMC10950277 DOI: 10.1080/10985549.2024.2307574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Transcription factors play key roles in development and disease by controlling gene expression. Forkhead box A1 (FOXA1), is a pioneer transcription factor essential for mouse development and functions as an oncogene in prostate and breast cancer. In colorectal cancer (CRC), FOXA1 is significantly downregulated and high FOXA1 expression is associated with better prognosis, suggesting potential tumor suppressive functions. We therefore investigated the regulation of FOXA1 expression in CRC, focusing on well-differentiated CRC cells, where FOXA1 is robustly expressed. Genome-wide RNA stability assays identified FOXA1 as an unstable mRNA in CRC cells. We validated FOXA1 mRNA instability in multiple CRC cell lines and in patient-derived CRC organoids, and found that the FOXA1 3'UTR confers instability to the FOXA1 transcript. RNA pulldowns and mass spectrometry identified Staufen1 (STAU1) as a potential regulator of FOXA1 mRNA. Indeed, STAU1 knockdown resulted in increased FOXA1 mRNA and protein expression due to increased FOXA1 mRNA stability. Consistent with these data, RNA-seq following STAU1 knockdown in CRC cells revealed that FOXA1 targets were upregulated upon STAU1 knockdown. Collectively, this study uncovers a molecular mechanism by which FOXA1 is regulated in CRC cells and provides insights into our understanding of the complex mechanisms of gene regulation in cancer.
Collapse
Affiliation(s)
- Katherine R. Pasterczyk
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ragini Singh
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Meira S. Zibitt
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Corrine Corrina R. Hartford
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Lorinc Pongor
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Lisa M. Jenkins
- Mass Spectrometry Section, Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yue Hu
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Patrick X. Zhao
- Omics Bioinformatic Facility, Genetics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Bruna R. Muys
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Suresh Kumar
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Nitin Roper
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Mirit I. Aladjem
- DNA Replication Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Yves Pommier
- Molecular Pharmacology Group, Developmental Therapeutics Branch, CCR, NCI, NIH, Bethesda, Maryland, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
48
|
Barral A, Zaret KS. Pioneer factors: roles and their regulation in development. Trends Genet 2024; 40:134-148. [PMID: 37940484 PMCID: PMC10873006 DOI: 10.1016/j.tig.2023.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Pioneer factors are a subclass of transcription factors that can bind and initiate opening of silent chromatin regions. Pioneer factors subsequently regulate lineage-specific genes and enhancers and, thus, activate the zygotic genome after fertilization, guide cell fate transitions during development, and promote various forms of human cancers. As such, pioneer factors are useful in directed cell reprogramming. In this review, we define the structural and functional characteristics of pioneer factors, how they bind and initiate opening of closed chromatin regions, and the consequences for chromatin dynamics and gene expression during cell differentiation. We also discuss emerging mechanisms that modulate pioneer factors during development.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Gautam S, Fenner JL, Wang B, Range RC. Evolutionarily conserved Wnt/Sp5 signaling is critical for anterior-posterior axis patterning in sea urchin embryos. iScience 2024; 27:108616. [PMID: 38179064 PMCID: PMC10765061 DOI: 10.1016/j.isci.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/30/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Studies across a diverse group of metazoan embryos indicate that Wnt signaling often activates the transcription factor Sp5, forming a signaling 'cassette' that plays critical roles in many developmental processes. This study explores the role of Wnt/Sp5 signaling during the specification and patterning of the primary germ layers during early anterior-posterior axis formation in the deuterostome sea urchin embryo. Our functional analyses show that Sp5 is critical for endomesoderm specification downstream of Wnt/β-catenin in posterior cells as well as anterior neuroectoderm patterning downstream of non-canonical Wnt/JNK signaling in anterior cells. Interestingly, expression and functional data comparisons show that Wnt/Sp5 signaling often plays similar roles in posterior endomesoderm as well as neuroectoderm patterning along the AP axis of several deuterostome embryos, including vertebrates. Thus, our findings provide strong support for the idea that Wnt-Sp5 signaling cassettes were critical for the establishment of early germ layers in the common deuterostome ancestor.
Collapse
Affiliation(s)
- Sujan Gautam
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jennifer L. Fenner
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Boyuan Wang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ryan C. Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
50
|
Ji D, Shao C, Yu J, Hou Y, Gao X, Wu Y, Wang L, Chen P. FOXA1 forms biomolecular condensates that unpack condensed chromatin to function as a pioneer factor. Mol Cell 2024; 84:244-260.e7. [PMID: 38101414 DOI: 10.1016/j.molcel.2023.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Eukaryotic DNA is packaged into chromatin in the nucleus, restricting the binding of transcription factors (TFs) to their target DNA sites. FOXA1 functions as a pioneer TF to bind condensed chromatin and initiate the opening of local chromatin for gene expression. However, the principles of FOXA1 recruitment and how it subsequently unpacks the condensed chromatin remain elusive. Here, we revealed that FOXA1 intrinsically forms submicron-sized condensates through its N- and C-terminal intrinsically disordered regions (IDRs). Notably, both IDRs enable FOXA1 to dissolve the condensed chromatin. In addition, the DNA-binding capacity of FOXA1 contributes to its ability to both form condensates and dissolve condensed chromatin. Further genome-wide investigation showed that IDRs enable FOXA1 to bind and unpack the condensed chromatin to regulate the proliferation and migration of breast cancer cells. This work provides a principle of how pioneer TFs function to initiate competent chromatin states using their IDRs.
Collapse
Affiliation(s)
- Dengyu Ji
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Changrong Shao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaoyao Hou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xiao Gao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Yichuan Wu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China
| | - Liang Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory for Tumor Invasion and Metastasis, Capital Medical University, Beijing 100069, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|