1
|
Zou B, Wang D, Zhong J, He Z, Zhou Y, Yang H, Liu Y, Zeng G, Duan X. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci 2025; 371:123608. [PMID: 40194762 DOI: 10.1016/j.lfs.2025.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
AIMS Calcium oxalate (CaOx) is the predominant form of kidney stones, associated with significant morbidity and recurrence rates. Mesenchymal stem cells (MSCs) have shown promise in treating renal injury, but their impact on CaOx stone formation remains unclear. MATERIALS AND METHODS We established a hyperoxaluria-induced AKI model in mice through intraperitoneal injection of glyoxylate. Two types of MSCs, bone marrow-derived MSCs (BMSCs) and umbilical cord-derived mesenchymal stem cells (UMSCs), were injected through tail vein injection. Histological evaluations and blood biochemical tests were performed to assess crystal deposition and kidney function. The inflammatory response and NLRP3 inflammasome activation were assessed using immunofluorescence, immunohistochemistry, TUNEL staining, and qPCR. In vitro, macrophages were cocultured in the presence of MSCs. ELISA was used to measure IL-1β and IL-18 release. MTS assays assessed renal epithelial cell protection. Western blotting evaluated NLRP3 inflammasome activation in macrophages. KEY FINDINGS Both BMSCs and UMSCs significantly inhibited CaOx crystal deposition and kidney injury by inhibiting NLRP3 inflammasome activation. In vitro, both MSC types suppressed NLRP3 inflammasome activation in macrophages through the NF-κB signaling pathway, leading to decreased release of IL-1β and IL-18 and enhanced protection of renal epithelial cells. This attenuation of renal tubular cell injury is a critical factor in preventing CaOx stone formation. SIGNIFICANCE Our findings reveal that Both BMSCs and UMSCs effectively attenuate hyperoxaluria-induced kidney injury and crystal deposition by inhibiting NLRP3 inflammasome activation. This discovery is helpful for developing new effective therapeutic means for nephrolithiasis.
Collapse
Affiliation(s)
- Bangyu Zou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University; Department of Urology, Changhai Hospital, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghua Zhong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Zhiqing He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Yuhao Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Houmeng Yang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| |
Collapse
|
2
|
Inafuku N, Sowa Y, Kishida T, Sawai S, Ntege EH, Numajiri T, Yamamoto K, Shimizu Y, Mazda O. Investigation of the stemness and wound-healing potential of long-term cryopreserved stromal vascular fraction cells. Regen Ther 2025; 29:128-139. [PMID: 40162021 PMCID: PMC11952815 DOI: 10.1016/j.reth.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Stromal vascular fraction (SVF), a heterogeneous cell population primarily derived from adipose tissue, is widely utilized in regenerative therapies for its wound-healing properties and accessibility. While its immediate availability is advantageous, repeated harvesting can be burdensome, especially for elderly patients, and the regenerative capacity of SVF declines with donor age. Long-term cryopreservation offers a potential solution by allowing the banking of SVF from younger donors for future use; however, the impact of this process on SVF functionality remains elusive. This study investigates the stemness and wound-healing potential of SVF following prolonged cryopreservation. Methods SVF cells were isolated from adipose tissue harvested from twelve patients and cryopreserved for either two months (short-term cryopreserved SVF, S-SVF) or 12-13 years (long-term cryopreserved SVF, L-SVF), with six patients in each group. In vitro assays assessed cell viability and stemness, while in vivo assays evaluated wound-healing ability by administering thawed SVF cells from each group to dorsal wounds in immunodeficient mice, compared with a control group. Non-parametric statistical tests analyzed the differences between groups. Results L-SVF exhibited significantly lower stemness compared to S-SVF. Importantly, the L-SVF group showed significantly improved wound healing compared with the control group, although the wound-healing effect of L-SVF was inferior to that of the S-SVF. Conclusion This study demonstrated that, despite reduced stemness, L-SVF retains partial wound-healing potential after 12-13 years of cryopreservation. These findings highlight the need for optimized cryopreservation protocols to enhance SVF viability and regenerative capacity for clinical applications.
Collapse
Affiliation(s)
- Naoki Inafuku
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Seiji Sawai
- Department of Orthopedics, Jyujyo Takeda Rehabilitation Hospital, Kyoto, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| |
Collapse
|
3
|
Liang G, Ma Y, Deng P, Li S, He C, He H, Liu H, Fan Y, Li Z. Role of cell-based therapies in digestive disorders: Obstacles and opportunities. Regen Ther 2025; 29:1-18. [PMID: 40124469 PMCID: PMC11925584 DOI: 10.1016/j.reth.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Stem cell-based therapies have emerged as a promising frontier in the treatment of gastrointestinal disorders, offering potential solutions for challenges posed by conventional treatments. This review comprehensively examines recent advancements in cell-based therapeutic strategies, particularly focusing on stem cell applications, immunotherapy, and cellular therapies for digestive diseases. It highlights the successful differentiation of enteric neural progenitors from pluripotent stem cells and their application in animal models, such as Hirschsprung disease. Furthermore, the review evaluates clinical trials and experimental studies demonstrating the potential of stem cells in regenerating damaged tissues, modulating immune responses, and promoting healing in conditions like Crohn's disease and liver failure. By addressing challenges, such as scalability, immunogenicity, and ethical considerations, the review underscores the translational opportunities and obstacles in realizing the clinical potential of these therapies. Concluding with an emphasis on future directions, the study provides insights into optimizing therapeutic efficacy and fostering innovations in personalized medicine for digestive disorders.
Collapse
Affiliation(s)
- Guodong Liang
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuehan Ma
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ping Deng
- Medical Department, Jilin Cancer Hospital, Changchun 130012, China
| | - Shufeng Li
- First Department of Gynecological Tumor, Jilin Cancer Hospital, Changchun 130012, China
| | - Chunyan He
- Department of Anaesthesia, Jilin Cancer Hospital, Changchun 130012, China
| | - Haihang He
- Department of Otorhinolaryngology, Oral Maxillofacial, Head and Neck, Jilin Cancer Hospital, Changchun 130012, China
| | - Hairui Liu
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Yunda Fan
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| | - Ze Li
- First Surgery Department of Colorectal, Gastric and Abdominal Tumors, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
4
|
Peltier D, Anh Do-Thi V, Devos T, Blazar BR, Toubai T. Cellular therapies for the prevention and treatment of acute graft-versus-host disease. Stem Cells 2025; 43:sxaf009. [PMID: 40117296 PMCID: PMC12111709 DOI: 10.1093/stmcls/sxaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/14/2024] [Indexed: 03/23/2025]
Abstract
Acute graft-versus-host disease (aGVHD) is a major complication of allogeneic hematopoietic cell transplantation (allo-HCT) that is caused by donor immune cells attacking and damaging host tissues. Immune suppressive small molecule and protein-based therapeutics targeting donor anti-host immune cells are currently used for GVHD prophylaxis and treatment. Even with these therapies, aGVHD progresses to life-threatening steroid-refractory aGVHD (SR-aGVHD) in up to 50% of cases and is a risk factor for the subsequent development of debilitating chronic GVHD. To improve aGVHD-related outcomes, donor graft engineering techniques and adoptive transfer of immune modulatory cells have been explored. Highly rigorous donor graft T-cell depletion approaches have revealed that mitigation of aGVHD can be accompanied by slow immune recovery post-allo-HCT and reduction in anti-microbial and anti-leukemia responses resulting in increased relapse and infection rates, respectively. Recent T-cell separation techniques allowing for precision graft engineering by selectively eliminating aGVHD-causing T-cells (eg, naïve T-cells) without loss of T-cells with beneficial functions and retaining and/or enriching immune regulatory populations (eg, regulatory T-cells (Tregs) or myeloid-derived suppressor cells) have been tested and will continue to improve. Clinical cell-based regulatory therapies have been employed for targeting SR-aGVHD, particularly mesenchymal stem cells (MSCs) and more recently, Tregs. In this review, we summarize aGVHD pathophysiology, highlight newly discovered aGVHD mechanisms, and discuss current and emerging cellular and graft manipulation approaches for aGVHD prevention and treatment.
Collapse
Affiliation(s)
- Daniel Peltier
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Herman B. Wells Center for Pediatric Research, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Van Anh Do-Thi
- Department of Pediatrics, Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Herman B. Wells Center for Pediatric Research, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Timothy Devos
- Department of Hematology, University Hospitals Leuven and Department of Microbiology and Immunology, Laboratory of Molecular Immunology (Rega Institute), KU Leuven, Leuven 3000, Belgium
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Tomomi Toubai
- Department of Internal Medicine III, Division of Hematology and Cell Therapy, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan
- Clinical Research and Trial Center, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Bunkyo City, Tokyo 113-8677, Japan
| |
Collapse
|
5
|
Ruiz MA, Kaiser Junior RLR, Piron-Ruiz G, de Quadros LG. Are mesenchymal stem/stromal cells a novel avenue for the treatment of non-alcoholic fatty liver disease? World J Stem Cells 2025; 17:99638. [DOI: 10.4252/wjsc.v17.i5.99638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/27/2024] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
In this editorial, we comment on the article by Jiang et al. Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by the accumulation of fat in the liver without evidence of significant alcohol consumption. NAFLD can progress to more serious conditions such as non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. This disease is considered an emerging public health problem in several countries as it has increased in recent decades, currently affecting around 30% of the world’s population. The fatty diet and the current lifestyle of the Western population are identified as the main culprits of the disease. Drug treatment aims to reduce the weight of patients and treat metabolic alterations and diseases, including type 2 diabetes mellitus and other comorbidities that coexist with NAFLD. In this scenario, cell therapy with mesenchymal stem/stromal cells (MSCs) has been proposed as a perspective treatment of numerous diseases that do not have definitive curative treatment, such as Crohn’s disease and coronavirus disease 2019. This is due to the versatile, immunomodulatory and regenerative properties of MSCs. The possibility of MSCs being used in patients with severe liver disease progressing to non-alcoholic steatohepatitis or cirrhosis is summarized, because of the therapeutic benefits in reducing fibrosis of affected livers. It remains to be seen when MSC transplantation should be indicated for NAFLD, that is, at what stage of the disease and which phenotype, as well as deciding on the best source of MSCs, the dose, and the administration route. We conclude that well-designed clinical trials are essential in order to obtain robust results for the implementation of this modality in the medical practice.
Collapse
Affiliation(s)
- Milton Artur Ruiz
- Department of Bone Marrow Transplantation, Associação Portuguesa de Beneficência, São José do Rio Preto 15090 470, São Paulo, Brazil
| | - Roberto Luiz R Kaiser Junior
- Department of Bone Marrow Transplantation, Associação Portuguesa de Beneficência, São José do Rio Preto 15090 470, São Paulo, Brazil
| | - Gabriel Piron-Ruiz
- Department of Bone Marrow Transplantation, Beneficência Portuguesa Hospital, São José do Rio Preto 15090 470, São Paulo, Brazil
| | - Luiz Gustavo de Quadros
- Department of Endoscopy, Beneficência Portuguesa Hospital, ABC Medical School, São Bernardo 15015 110, São Paulo, Brazil
| |
Collapse
|
6
|
Bukauskas A, Jucaitienė R, Stoškus M, Valčeckienė V, Bušmaitė G, Slobinas A, Davainis L, Šlepikienė I, Trociukas I, Pečeliūnas V, Griškevičius L, Žučenka A. Mesenchymal stromal cells for steroid-refractory biopsy-proven grade III-IV acute Graft-versus-Host Disease with predominant gastrointestinal involvement. Front Immunol 2025; 16:1600019. [PMID: 40433379 PMCID: PMC12106019 DOI: 10.3389/fimmu.2025.1600019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction Steroid-refractory acute Graft-versus-Host Disease (SR-aGVHD) is a potentially fatal complication occurring in approximately 60-70% of severe grade III-IV GVHD cases, with a higher incidence in patients with gastrointestinal (GI) involvement. GI aGVHD is associated with poor prognosis, with a 2-year overall survival (OS) rate of only 25% in patients with stage 3-4 GI involvement. Mesenchymal stromal cells (MSC) have emerged as a promising therapeutic option due to their favorable efficacy and safety profile. However, data on bone marrow (BM)-derived MSC use in biopsy-proven grade III-IV SR-aGVHD with GI involvement, particularly in stage 3-4 cases, remain limited. Methods This prospective, observational, single-arm, single-center study assessed the efficacy and safety of BM-derived MSC for treating adult patients with biopsy-proven grade III-IV SR-aGVHD with predominant GI involvement. Early (1st-2nd) passage BM-derived MSC were administered weekly at a target dose of 1x106 MSC/kg in two regimens: up to three (MSC3) and six doses (MSC6). Results Fifty-seven adult patients with biopsy-proven III-IV grade SR-aGVHD (93% with GI involvement) received MSC treatment. The overall response rate (ORR) was 39% and 42% on Days 14 and 28, respectively, with no significant differences between the two MSC groups (Day 28 ORR 38% for MSC3 and 44% for MSC6). In patients with stage 3-4 GI involvement, the ORR was 26% and 36% at the corresponding time points with comparable efficacy between the two MSC groups (Day 28 ORR 31% for MSC3 and 38% for MSC6). Day 14 and Day 28 responders had significantly higher OS compared to non-responders (52% vs. 7%, p=0.000; 54% vs. 5%, p=0.000), with a comparable OS benefit observed in patients with stage 3-4 GI involvement (45% vs. 8%, p=0.005; 42% vs. 6%, p=0.005), respectively. MSC treatment had a favorable safety profile. The one, 5 and 10-year OS rates were 27%, 24%, and 24%, respectively. Conclusions The grade III-IV SR-aGVHD patients, including cases with biopsy-proven severe GI involvement, had significantly better clinical outcomes if responses to MSC treatment were observed on Days 14 and 28. Intensified MSC administration schedule has failed to improve the clinical outcomes. MSC studies focusing on aGVHD prevention and (or) first-line treatment in combination with other agents should be considered.
Collapse
Affiliation(s)
- Adomas Bukauskas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Renata Jucaitienė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Mindaugas Stoškus
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Vilma Valčeckienė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Greta Bušmaitė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Artūras Slobinas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Linas Davainis
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Inga Šlepikienė
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Igoris Trociukas
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Valdas Pečeliūnas
- Department of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laimonas Griškevičius
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Andrius Žučenka
- Hematology, Oncology and Transfusion Medicine Center, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Hematology and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
7
|
Daenen LGM, van der Wagen LE, Bonneville EF, López-Corral L, Bukauskas A, Bornhäuser M, Beguin Y, Itäla-Remes M, Hoogenboom JD, de Wreede LC, Malard F, Chabannon C, Dazzi F, Ruggeri A, Kuball J. The use of MSCs in steroid-refractory acute GvHD in Europe: a survey from the EBMT cellular therapy & immunobiology working party. Bone Marrow Transplant 2025; 60:708-714. [PMID: 39979522 DOI: 10.1038/s41409-025-02531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Acute graft-versus-host disease (aGvHD) remains a significant complication of allogeneic hematopoietic cell transplantation, with 40% of patients failing to respond to high-dose steroids. Ruxolitinib has become the standard treatment for steroid-refractory aGvHD (SR-GvHD), but its failure in approximately one-third of cases highlights the need for alternative therapies. Mesenchymal stromal cells (MSCs), known for their immunomodulatory properties, are suggested as a treatment option, but their role in SR-GvHD remains unclear. To better understand MSC therapy outcomes, the EBMT Cellular Therapy & Immunobiology Working Party conducted a survey of centers treating >20 SR-GvHD patients with MSCs between 2007 and 2020. Data from 313 patients were analyzed, revealing a 44.5% overall response rate at day 28. Responders at day 7 had a higher likelihood of maintaining responses by day 28. Using a landmark analysis, the overall survival at 12 months, conditional on being alive at day 28, was 39.2%. Survival at 12 months was 48.6% for responders, compared to 24.4% for non-responders. Despite manufacturing variabilities, MSCs produced by academic pharma appear effective in SR-GvHD, offering a viable treatment alternative for heavily pretreated patients. These findings support further investigation of MSCs to establish standardized protocols and validate their efficacy as third-line therapy for SR-GvHD.
Collapse
Affiliation(s)
- L G M Daenen
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - L E van der Wagen
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - E F Bonneville
- EBMT Study Unit, Leiden, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - L López-Corral
- Hematology Department. Hospital Universitario de Salamanca (Spain), IBSAL, CIBERONC. Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - A Bukauskas
- Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - M Bornhäuser
- University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Y Beguin
- CHU of Liege and University of Liege, Liege, Belgium
| | | | | | - L C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - F Malard
- Service d'Hématologie Clinique et Thérapie Cellulaire, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Centre de Recherche Saint-Antoine (CRSA), INSERM, Paris, France
| | - C Chabannon
- Institut Paoli-Calmettes, Centre de Lutte Contre le Cancer; Centre d'Investigations Cliniques en Biothérapies, Université d'Aix-Marseille, Inserm, CBT 1409, Marseille, France
| | - F Dazzi
- Comprehensive Cancer Centre, King's College London, London, UK
| | - A Ruggeri
- San Raffaele Scientific Institute, Hematology and Bone marrow Transplantation Unit, Milan, Italy
| | - J Kuball
- Department of Hematology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Wang LT, Wang HH, Jiang SS, Chang CC, Hsu PJ, Liu KJ, Sytwu HK, Yen BL, Yen ML. Lack of IFN-γ response of human uterine myometrium-derived MSCs significantly improve multiple IBD parameters compared to bone marrow MSCs: Implications for anti-TNFα-refractory patients. Pharmacol Res 2025; 215:107716. [PMID: 40154933 DOI: 10.1016/j.phrs.2025.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical efficacy of mesenchymal stem cell (MSC) therapy for inflammatory bowel disease (IBD) is inconsistent and often fails to match promising preclinical findings. To improve outcome, we compared MSCs isolated from human uterine myometrium (Ut), a readily-available tissue source from a unique immune niche, to bone marrow (BM) MSCs, the most common source, in a murine IBD model with mechanisms underlying differential effects. In this study, human BMMSCs and UtMSCs were intravenously administered to mice with dextran sulfate sodium-induced colitis and evaluated for disease activity, microbiome composition, and cellular immunity. Bioinformatics analyses including patient data were performed to further specify involved mechanisms with subsequent functional validation performed. We found that UtMSC but not BMMSC treatment significantly reversed disease parameters by improving microbiome and reducing mesenteric lymph node IFN-γ and IL-17A-secreting T cells. Transcriptomic analysis revealed UtMSCs had reduced MHC II pathway activation compared to BMMSCs. Functional validation confirmed UtMSCs compared to BMMSCs expressed lower IFN-γ receptors, prevent MHC II-mediated human unstimulated T cell activation, and modulated stimulated T helper (Th) cells away from effector phenotypes while increasing regulatory T cells (Tregs) and IL-10 levels. Bioinformatics from IBD patients resistant to non-T cell-specific therapies implicated persistent MHC II-mediated Th1/Th17 activation as key drivers of disease. Overall, UtMSCs outperformed BMMSCs in improving microbiota, avoiding IFN-γ responses, and modulating overall Th responses, suggesting this MSC source may offer more significant effectiveness for IBD and Th1/Th17-mediated conditions. Our findings also highlight that understanding MSC source-specific therapeutic mechanisms is crucial for optimizing clinical therapies.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Huan Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | | | - Chia-Chih Chang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Ko-Jiunn Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan; Graduate Institute of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan; Department of Obstetrics & Gynecology, Cathay General Hospital Shiji, New Taipei, Taiwan.
| | - Men-Luh Yen
- Department of Obstetrics & Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan.
| |
Collapse
|
9
|
Passerini L, Forlani A, Gregori S. Advances in Regulatory Cell Therapy for Type 1 Diabetes: Emerging Strategies and Future Directions. Eur J Immunol 2025; 55:e202451722. [PMID: 40426300 PMCID: PMC12117014 DOI: 10.1002/eji.202451722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/30/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing β-cells in the pancreas. Despite advances in insulin therapy and β-cell replacement, a definitive cure addressing the underlying cause of the disease, that is the loss of immune tolerance to β-cells remains elusive. Emerging strategies to reshape the immune response to pancreatic autoantigens include the adoptive transfer of ex vivo cultured regulatory cells, either mesenchymal stem cells (MSCs), regulatory T cells (Tregs), or dendritic cells (DCs), collectively known as regulatory cell therapy. This review aims to provide an overview of the regulatory cell-based approaches for T1D currently under development. Although several clinical trials have demonstrated the safety of in vivo administration of regulatory cells to T1D patients, only mild signs of efficacy have been reported. The most promising results were observed in patients with shorter disease duration and higher residual β-cell mass, suggesting that early interventions may result in clinical benefit. Significant challenges remain, including the long-term efficacy and stability of the infused products. In the future, approaches combining regulatory cell-based therapies with immunomodulatory agents or strategies to restore the damaged insulin-producing cells may hold the key to achieving a functional cure for T1D.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance UnitSan Raffaele Telethon Institute for Gene Therapy (SR‐Tiget)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Aurora Forlani
- Mechanisms of Peripheral Tolerance UnitSan Raffaele Telethon Institute for Gene Therapy (SR‐Tiget)IRCCS San Raffaele Scientific InstituteMilanItaly
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance UnitSan Raffaele Telethon Institute for Gene Therapy (SR‐Tiget)IRCCS San Raffaele Scientific InstituteMilanItaly
| |
Collapse
|
10
|
Hetta HF, Elsaghir A, Sijercic VC, Ahmed AK, Gad SA, Zeleke MS, Alanazi FE, Ramadan YN. Clinical Progress in Mesenchymal Stem Cell Therapy: A Focus on Rheumatic Diseases. Immun Inflamm Dis 2025; 13:e70189. [PMID: 40353645 PMCID: PMC12067559 DOI: 10.1002/iid3.70189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/10/2024] [Accepted: 03/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Rheumatic diseases are chronic immune-mediated disorders affecting multiple organ systems and significantly impairing patients' quality of life. Current treatments primarily provide symptomatic relief without offering a cure. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic option due to their ability to differentiate into various cell types and their immunomodulatory, anti-inflammatory, and regenerative properties. This review aims to summarize the clinical progress of MSC therapy in rheumatic diseases, highlight key findings from preclinical and clinical studies, and discuss challenges and future directions. METHODOLOGY A comprehensive review of preclinical and clinical studies on MSC therapy in rheumatic diseases, including systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, osteoarthritis, osteoporosis, Sjögren's syndrome, Crohn's disease, fibromyalgia, systemic sclerosis, dermatomyositis, and polymyositis, was conducted. Emerging strategies to enhance MSC efficacy and overcome current limitations were also analyzed. RESULTS AND DISCUSSION Evidence from preclinical and clinical studies suggests that MSC therapy can reduce inflammation, modulate immune responses, and promote tissue repair in various rheumatic diseases. Clinical trials have demonstrated potential benefits, including symptom relief and disease progression delay. However, challenges such as variability in treatment response, optimal cell source and dosing, long-term safety concerns, and regulatory hurdles remain significant barriers to clinical translation. Standardized protocols and further research are required to optimize MSC application. CONCLUSION MSC therapy holds promise for managing rheumatic diseases, offering potential disease-modifying effects beyond conventional treatments. However, large-scale, well-controlled clinical trials are essential to establish efficacy, safety, and long-term therapeutic potential. Addressing current limitations through optimized treatment protocols and regulatory frameworks will be key to its successful integration into clinical practice.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Alaa Elsaghir
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| | | | - Abdulrahman K. Ahmed
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Sayed A. Gad
- Emergency Medicine Unit, Department of Anaethesia and Intensive Care, Faculty of MedicineAssiut UniversityAssiutEgypt
| | - Mahlet S. Zeleke
- Menelik II Medical and Health Science CollegeAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of PharmacyUniversity of TabukTabukSaudi Arabia
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of PharmacyAssiut UniversityAssiutEgypt
| |
Collapse
|
11
|
Folsom MR, Lightner AL. Emerging Technologies in Inflammatory Bowel Disease: A Minireview on Future Treatment Modalities. Surg Clin North Am 2025; 105:301-311. [PMID: 40015818 DOI: 10.1016/j.suc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Inflammatory bowel disease (IBD) can present as either Crohn's disease or ulcerative colitis. Both phenotypes are inflammatory conditions of the gastrointestinal tract. Despite scientific advances, the overall incidence and morbidity of IBD continues to increase worldwide. Fortunately, we continue to develop novel therapies, in hopes of providing safer, more effective treatment options. Such therapies include cell therapy, exosome therapy, hyperbaric oxygen therapy, and central nerve stimulation. The aim of this review is to briefly highlight each of these novel therapeutic interventions as they relate to the treatment of IBD.
Collapse
Affiliation(s)
| | - Amy L Lightner
- Scripps Research, Scripps Clinic, 10667 N Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
12
|
Blanc KL, Dazzi F, English K, Farge D, Galipeau J, Horwitz EM, Kadri N, Krampera M, Lalu MM, Nolta J, Patel NM, Shi Y, Weiss DJ, Viswanathan S. ISCT MSC committee statement on the US FDA approval of allogenic bone-marrow mesenchymal stromal cells. Cytotherapy 2025; 27:413-416. [PMID: 39864015 DOI: 10.1016/j.jcyt.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval. This approval will revive investment and enthusiasm in MSC products, further approvals in major markets, and will continue to foreshadow the long-predicted success of MSCs as a pharmaceutical.
Collapse
Affiliation(s)
- Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cell Therapies and Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Stockholm, Sweden
| | - Francesco Dazzi
- School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, United Kingdom; AstraZeneca Biopharma R&D, Cambridge, United Kingdom
| | - Karen English
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland; Department of Biology, Maynooth University, Maynooth, Ireland
| | - Dominique Farge
- Internal Medicine Unit (UF 04) CRMR MATHEC, Autoimmune Diseases and Cell Therapy, Reference Center for Rare Systemic Autoimmune Diseases of Ile-de-France MATHEC, AP-HP, St-Louis Hospital, Paris, France; Université Paris Cité, IRSL, Clinical Research in Hematology, Immunology and Transplantation, Paris, France; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Edwin M Horwitz
- Marcus Center for Advanced Cellular Therapy, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Division of Biology and Biomedical Sciences, Emory University Laney Graduate School, Atlanta, Georgia, USA
| | - Nadir Kadri
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Verona, Italy
| | - Manoj Mathew Lalu
- Acute Care Research Program, Blueprint Translational Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada; Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jan Nolta
- Department of Internal Medicine, Stem Cell Program and Institute for Regenerative Cures, University of California Davis, Sacramento, California, USA
| | - Nikita M Patel
- INmune Bio International, Royal Free Hospital, London, UK
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University Institutes for Translational Medicine, and Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Daniel J Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Moulin D, Sellam J, Berenbaum F, Guicheux J, Boutet MA. The role of the immune system in osteoarthritis: mechanisms, challenges and future directions. Nat Rev Rheumatol 2025; 21:221-236. [PMID: 40082724 DOI: 10.1038/s41584-025-01223-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 03/16/2025]
Abstract
Osteoarthritis (OA) is a chronic joint disease that has long been considered a simple wear-and-tear condition. Over the past decade, research has revealed that various inflammatory features of OA, such as low-grade peripheral inflammation and synovitis, contribute substantially to the pathophysiology of the disease. Technological advances in the past 5 years have revealed a large diversity of innate and adaptive immune cells in the joints, particularly in the synovium and infrapatellar fat pad. Notably, the presence of synovial lymphoid structures, circulating autoantibodies and alterations in memory T cell and B cell populations have been documented in OA. These data indicate a potential contribution of self-reactivity to the disease pathogenesis, blurring the often narrow and inaccurate line between chronic inflammatory and autoimmune diseases. The diverse immune changes associated with OA pathogenesis can vary across disease phenotypes, and a better characterization of their underlying molecular endotypes will be key to stratifying patients, designing novel therapeutic approaches and ultimately ameliorating treatment allocation. Furthermore, examining both articular and systemic alterations, including changes in the gut-joint axis and microbial dysbiosis, could open up novel avenues for OA management.
Collapse
Affiliation(s)
- David Moulin
- Université de Lorraine, CNRS, IMoPA, Nancy, France.
- CHRU-Nancy, IHU INFINY, Nancy, France.
| | - Jérémie Sellam
- Department of Rheumatology, Saint-Antoine Hospital, Centre de Recherche Saint-Antoine, Inserm, Sorbonne Université UMRS 938, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Francis Berenbaum
- Department of Rheumatology, Saint-Antoine Hospital, Centre de Recherche Saint-Antoine, Inserm, Sorbonne Université UMRS 938, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, INSERM, CHU Nantes, UMR1229 Regenerative Medicine and Skeleton, RMeS, Nantes, France
| | - Marie-Astrid Boutet
- Nantes Université, Oniris, INSERM, CHU Nantes, UMR1229 Regenerative Medicine and Skeleton, RMeS, Nantes, France.
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, UK.
| |
Collapse
|
14
|
Xue C, Liu W, Li Y, Yin Y, Tang B, Zhu J, Dong Y, Liu H, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by facilitating M2 polarization via CCL2/CCR2 axis and further inducing formation of regulatory CCR2 + CD4 + T cells. Stem Cell Res Ther 2025; 16:108. [PMID: 40025564 PMCID: PMC11872334 DOI: 10.1186/s13287-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) can secrete large amounts of the chemokine CCL2 under inflammatory conditions and alleviate idiopathic pneumonia syndrome (IPS) by promoting regulatory CCR2 + CD4 + T-cell formation through the CCL2‒CCR2 axis. Given the abundance of macrophages in lung tissue, how these macrophages are regulated by MSC-based prophylaxis via IPS and their interactions with T cells in lung tissue during allo-HSCT are still not fully understood. METHODS An IPS mouse model was established, and MSC-based prophylaxis was administered. In vitro coculture systems and an IPS model were used to study the interactions among MSCs, macrophages and T cells. RESULTS Prophylactic administration of MSCs induced M2 polarization and alleviated acute graft-versus-host disease (aGVHD) and lung injury in an IPS mouse model. In vitro coculture studies revealed that M2 polarization was induced by MSC-released CCL2 and that these M2 macrophages promoted the formation of regulatory CCR2 + CD4 + T cells. Blocking the CCL2-CCR2 interaction in vitro reversed MSC-induced M2 polarization and abolished the induction of CCR2 + CD4 + T-cell formation. Additionally, in vivo administration of a CCL2 or CCR2 antagonist in the IPS mouse model exacerbated aGVHD and lung injury, accompanied by a reduction in M2 macrophages and reduced formation of regulatory CCR2 + CD4 + T cells in lung tissue. CONCLUSIONS MSCs alleviate IPS by facilitating M2 polarization via the CCL2‒CCR2 axis and further inducing the formation of regulatory CCR2 + CD4 + T cells.
Collapse
Affiliation(s)
- Chao Xue
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Jinye Zhu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| |
Collapse
|
15
|
Dawes AJ, Lightner AL. Perianal Fistulizing Crohn's Disease: Outcomes of Surgical Repairs and Current State of Stem Cell-Based Therapies. Clin Colon Rectal Surg 2025; 38:126-140. [PMID: 39944301 PMCID: PMC11813615 DOI: 10.1055/s-0044-1786543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Perianal fistulizing Crohn's disease is one of the most disabling phenotypes of Crohn's disease, due to the severe impairment in quality of life including social and personal wellbeing. A multimodal approach with patient-tailored care is the key to optimal management of this condition. Medical therapy is needed to optimize the luminal disease, and surgical intervention is required to control any associated perianal sepsis and attempt palliative or definitive fistula repair. While several medical and surgical options are available, the majority of patients continue to have symptomatic disease. Fortunately, this continues to drive novel innovations which are revolutionizing the treatment and outcomes of perianal fistulizing Crohn's disease. However, there continues to be a need for randomized trials and consistent metrics utilized for classification and treatment outcomes in order to accurately describe optimal treatment outcomes.
Collapse
Affiliation(s)
- Aaron J. Dawes
- Section of Colon & Rectal Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
- Stanford-Surgery Policy Improvement Research and Education Center, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Amy L. Lightner
- Department of General Surgery, Scripps Clinic, La Jolla, California
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California
| |
Collapse
|
16
|
Boregowda SV, Booker CN, Strivelli J, Phinney DG. Mesenchymal Stem/Stromal Cells (MSCs) from Mouse Pelvic vs. Long Bones Exhibit Disparate Critical Quality Attributes: Implications for Translational Studies. Cells 2025; 14:274. [PMID: 39996746 PMCID: PMC11853496 DOI: 10.3390/cells14040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs from pelvic bone marrow (BMP), a preferred source for human MSCs, and compared their growth, differentiation, and immuno-modulatory activity to those derived from long bone marrow (BML), the traditional source of mouse MSCs. We report that BMP-MSCs exhibit significantly enhanced growth kinetics in 5% and 21% oxygen saturation and superior bi-lineage differentiation and hematopoiesis-supporting activity as compared to BML-MSCs. Additionally, we show that TNF upregulates inducible nitric oxide synthase (NOS2) in BML- and BMP- MSCs and augments their immune suppressive activity in cell-based assays, while interferon-gamma (INFG) upregulates indoleamine, 2-3, dioxygenase (IDO1) and enhances the immune suppressive activity of only BMP-MSCs. These results indicate that mouse MSCs sourced from different bone compartments exhibit measurable differences in critical quality attributes, and these differences are comparable to those observed across species. Based on these differences, BMP- MSCs represent a useful resource to model the behavior of human BM-derived MSCs.
Collapse
Affiliation(s)
| | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (S.V.B.); (C.N.B.); (J.S.)
| |
Collapse
|
17
|
Kim JE, Lee JW, Cha GD, Yoon JK. The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus. Biomimetics (Basel) 2025; 10:49. [PMID: 39851765 PMCID: PMC11760843 DOI: 10.3390/biomimetics10010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Diabetes mellitus (DM) is a fatal metabolic disease characterized by persistent hyperglycemia. In recent studies, mesenchymal stem cell (MSC)-derived exosomes, which are being investigated clinically as a cell-free therapy for various diseases, have gained attention due to their biomimetic properties that closely resemble natural cellular communication systems. These MSC-derived exosomes inherit the regenerative and protective effects from MSCs, inducing pancreatic β-cell proliferation and inhibiting apoptosis, as well as ameliorating insulin resistance by suppressing the release of various inflammatory cytokines. Consequently, MSC-derived exosomes have attracted attention as a novel treatment for DM as an alternative to stem cell therapy. In this review, we will introduce the potential of MSC-derived exosomes for the treatment of DM by discussing the studies that have used MSC-derived exosomes to treat DM, which have shown therapeutic effects in both type 1 and type 2 DM.
Collapse
Affiliation(s)
| | | | | | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si 17546, Gyeonggi-do, Republic of Korea (G.D.C.)
| |
Collapse
|
18
|
Li Y, Song G, Jiang Y, Zhao H, Zhu Y, Song S, Wang L, Wu X. Single-cell transcriptome analysis of stem cells from human exfoliated deciduous teeth investigating functional heterogeneity in immunomodulation. Sci Rep 2024; 14:31279. [PMID: 39732760 PMCID: PMC11682124 DOI: 10.1038/s41598-024-82734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs. In our study, single-cell RNA sequencing (scRNA-seq) revealed that SHED in a low differentiation state (S7) exhibited the powerful ability to recruit multiple immune cells. In contrast, SHED in a relatively high differentiation state (S1) may hold a solid ability to secret many factors with paracrine signaling capacity. The analysis result shows that SHED has more robust immunomodulatory properties than human bone marrow-derived mesenchymal stem cells (hBMSCs) or human umbilical cord-derived mesenchymal stem cells (hUCMSCs). When co-cultured with PBMCs, SHED can enhance the proliferation of Treg and down-regulate TNF-α in vitro. SHED may have some advantages in the treatment of inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yin Li
- Department of Stomatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China.
| | - Guangyuan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Yu Jiang
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Yizhun Zhu
- School of Pharmacy, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Shanshan Song
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Lulu Wang
- Beijing Engineering Research Center of Immunocellular Therapy, Beijing, China
| | - Xueying Wu
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
19
|
Lombardo G, Lechanteur C, Briquet A, Seidel L, Willems E, Servais S, Baudoux E, Kerre T, Zachee P, Herman J, Janssen A, Muller J, Baron F, Beguin Y. Co-infusion of mesenchymal stromal cells to prevent GVHD after allogeneic hematopoietic cell transplantation from HLA-mismatched unrelated donors after reduced-intensity conditioning: a double-blind randomized study and literature review. Stem Cell Res Ther 2024; 15:461. [PMID: 39627816 PMCID: PMC11613890 DOI: 10.1186/s13287-024-04064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) have immunomodulatory and hematopoiesis-supporting properties that could potentially benefit hematopoietic stem cell (HSC) engraftment and decrease the incidence and/or severity of graft-versus-host disease (GVHD). METHODS Based on our previous pilot study, we established a multicenter, prospective, randomized, double-blind trial evaluating the efficacy of co-infusing third-party MSC (1.5-3 × 106/kg) versus placebo on the day of HSC transplantation (HCT) to prevent GVHD in recipients of HLA-mismatched unrelated donors after reduced-intensity conditioning. RESULTS The study planned to include 120 patients to improve 1-year overall survival (OS) from 55 to 77% but was stopped after 9 years for low recruitment (n = 38). One-year OS was 74% in the MSC group and 80% in the placebo group. In multivariate analysis, the incidence of grade II-IV acute GVHD was significantly lower in patients receiving MSC (HR 0.332, 95% CI 0.124-0.890, p = 0.0284). No difference was observed in the incidences of chronic GVHD, infection or relapse, overall or progression-free survival at 1 year or long-term, or hematopoietic and immune reconstitution. CONCLUSIONS Despite premature study closure, the suggested beneficial effect of MSC co-transplantation for the prevention of acute GVHD in HLA-mismatched HCT warrants further investigation.
Collapse
Affiliation(s)
- Gérôme Lombardo
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Chantal Lechanteur
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Alexandra Briquet
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Laurence Seidel
- Center for Biostatistics and Research Methods, CHU and University of Liège, Liège, Belgium
| | - Evelyne Willems
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Sophie Servais
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Etienne Baudoux
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium
| | - Tessa Kerre
- Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Pierre Zachee
- Department of Clinical Hematology, ZNA Stuivenberg, Antwerp, Belgium
| | - Julie Herman
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Audrey Janssen
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Joséphine Muller
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Frédéric Baron
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium
| | - Yves Beguin
- Department of Clinical Hematology, CHU of Liège, 1 Avenue de L'hôpital, 4000, Liège, Belgium.
- Laboratory of Cell and Gene Therapy, CHU and University of Liège, Liège, Belgium.
| |
Collapse
|
20
|
Planken S, De Becker A, Kerre T, Schoemans H, Baron F, Graux C, Van Riet I, Lechanteur C, Baudoux E, Schots R, Beguin Y. Feasibility of co-transplantation of umbilical cord blood and third-party mesenchymal stromal cells after (non)myeloablative conditioning in patients with hematological malignancies. Curr Res Transl Med 2024; 72:103466. [PMID: 39213720 DOI: 10.1016/j.retram.2024.103466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Umbilical cord blood (UCB) is an alternative source of stem cells for patients lacking a 9/10 or 10/10 HLA identical donor. However, after UCB transplantation, time to engraftment and immune recovery are prolonged, increasing the risk of fatal complications. Mesenchymal stromal cells (MSC) can support hematopoietic engraftment and have immunosuppressive effects. The primary objective of this phase I/II multicenter study was to determine the feasibility and safety of UCB transplantation with co-infusion of third party MSC, as assessed by treatment related mortality (TRM) at day 100. Secondary objectives were engraftment, immune recovery, occurrence of graft versus host disease (GVHD), infections, disease free survival, relapse incidence and overall survival. Eleven patients were grafted according to this protocol. Allogeneic transplantation after co-infusion appears feasible with 18 % TRM at day 100. Engraftment data show a median time of 16 days to neutrophil and 27 days to platelet recovery, which is shorter than what is usually reported after UCB transplantation. Only 1 episode of acute GVHD was reported. In conclusion, MSC and UCB co-transplantation is feasible and might help overcome some of the drawbacks of UCB transplantation.
Collapse
Affiliation(s)
- Simon Planken
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium and Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium and Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Tessa Kerre
- UZ Gent, Department of Hematology - SCT Unit, Ghent, Belgium
| | - Hélène Schoemans
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium and Department of Public Health and Primary Care, ACCENT VV, KU Leuven - University of Leuven, Leuven, Belgium
| | - Frédéric Baron
- CHU Sart-Tilman, Department of Hematology, Liège, Belgium
| | - Carlos Graux
- CHU UCL Namur - Godinne, Department of Hematology, Yvoir, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium and Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | - Etienne Baudoux
- CHU Sart-Tilman, Laboratory of Cell and Gene Therapy, Liège, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium and Research Group Hematology and Immunology, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Yves Beguin
- CHU Sart-Tilman, Department of Hematology, Liège, Belgium
| |
Collapse
|
21
|
Cheng G, Wang X, Zhang F, Wang K, Li Y, Guo T, Xu N, Wei W, Yan S. Reparative homing of bone mesenchymal stem cells induced by iMSCs via the SDF-1/CXCR4 axis for articular cartilage defect restoration. Biomed Pharmacother 2024; 181:117649. [PMID: 39536539 DOI: 10.1016/j.biopha.2024.117649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The intrinsic healing ability of articular cartilage is poor after injury or illness, and untreated injury could lead to cartilage degeneration and ultimately osteoarthritis. iMSCs are derived from embryonic induced pluripotent stem cells and have strong therapeutic capabilities in the repair of cartilage defects, while the mechanism of action is unclear. The aim of this study is to clarify the repair mode of iMSCs on cartilage defects in rat knee joints, elucidate the chemotactic effect of iMSCs on autologous BMSCs in rats, and provide a basis for the treatment of cartilage defects and endogenous regeneration with iMSCs. METHODS Based on the establishment of the rat cartilage defect model, the reparative effect of iMSCs on the rat cartilage defect was evaluated. The cartilage repair was evaluated by quantitative score, H&E staining, Masson staining and Safranin-O staining, and the metabolic changes of iMSCs in the joint cavity were detected in vivo. The expression of SOX9, CD29, CD90, ColⅠ, ColⅡ, PCNA, SDF-1, and CXCR4 was detected by immunohistochemistry (IHC), IF, flow cytometry, respectively. After co-culturing iMSCs with BMSCs in vitro, the expression of CXCR4/SDF-1 on the cell membrane surface of BMSCs was detected by western blotting.; The level of p-Akt and p-Erk1/2 in total protein of BMSCs were detected by western blotting. SIGNIFICANCE Our research results provide experimental evidence for the treatment of cartilage defects and endogenous regeneration with iMSCs; This also provides new ideas for the clinical treatment of cartilage defects using iMSCs.
Collapse
Affiliation(s)
- Gang Cheng
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Xulei Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China
| | - Feng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Kang Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Tingting Guo
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Nuo Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China.
| | - Shangxue Yan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China; Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei 230032, China; Laboratory Animal Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
22
|
Mamo T, Cox CA, Demorest C, Fontaine MJ, Hubel A, Kelley L, Khan A, Marks DC, Pati S, Reems JA, Spohn G, Schäfer R, Shi R, Shao L, Stroncek D, McKenna DH. Cryopreservation of mesenchymal stem/stromal cells using a DMSO-free solution is comparable to DMSO-containing cryoprotectants: results of an international multicenter PACT/BEST collaborative study. Cytotherapy 2024; 26:1522-1531. [PMID: 39066775 PMCID: PMC11841823 DOI: 10.1016/j.jcyt.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIM An essential aspect of ensuring availability and stability of mesenchymal stem/stromal cells (MSCs) products for clinical use is that these cells are cryopreserved before individual infusion into patients. Currently, cryopreservation of MSCs involves use of a cryoprotectant solution containing dimethyl sulfoxide (DMSO). However, it is recognized that DMSO may be toxic for both the patient and the MSC product. In this Production Assistance for Cellular Therapies (PACT) and Biomedical Excellence for Safer Transfusion (BEST) Collaborative study, we compared a novel DMSO-free solution with DMSO containing cryoprotectant solutions for freezing MSCs. METHODS A DMSO-free cryoprotectant solution containing sucrose, glycerol, and isoleucine (SGI) in a base of Plasmalyte A was prepared at the University of Minnesota. Cryoprotectant solutions containing 5-10% DMSO (in-house) were prepared at seven participating centers (five from USA, one each from Australia and Germany). The MSCs were isolated from bone marrow or adipose tissue and cultured ex vivo per local protocols at each center. The cells in suspension were frozen by aliquoting into vials/bags. For six out of the seven centers, the vials/bags were placed in a controlled rate freezer (one center placed them at -80°C freezer overnight) before transferring to liquid nitrogen. The cells were kept frozen for at least one week before thawing and testing. Pre- and post-thaw assessment included cell viability and recovery, immunophenotype as well as transcriptional and gene expression profiles. Linear regression, mixed effects models and two-sided t-tests were applied for statistical analysis. RESULTS MSCs had an average viability of 94.3% (95% CI: 87.2-100%) before cryopreservation, decreasing by 4.5% (95% CI: 0.03-9.0%; P: 0.049) and 11.4% (95% CI: 6.9-15.8%; P< 0.001), for MSCs cryopreserved in the in-house and SGI solutions, respectively. The average recovery of viable MSCs cryopreserved in the SGI was 92.9% (95% CI: 85.7-100.0%), and it was lower by 5.6% (95% CI: 1.3-9.8%, P < 0.013) for the in-house solution. Additionally, MSCs cryopreserved in the two solutions had expected level of expressions for CD45, CD73, CD90, and CD105 with no significant difference in global gene expression profiles. CONCLUSION MSCs cryopreserved in a DMSO-free solution containing sucrose, glycerol, and isoleucine in a base of Plasmalyte A had slightly lower cell viability, better recovery, and comparable immunophenotype and global gene expression profiles compared to MSCs cryopreserved in DMSO containing solutions. The average viability of MSCs in the novel solution was above 80% and, thus, likely clinically acceptable. Future studies are suggested to test the post-thaw functions of MSCs cryopreserved in the novel DMSO-free solution.
Collapse
Affiliation(s)
- Theodros Mamo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | - Connor Demorest
- Masonic Cancer Center Biostatistics Core, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Allison Hubel
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Evia Bio, Minneapolis, Minnesota, USA
| | | | - Aisha Khan
- University of Miami, Coral Gables, Florida, USA
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Sydney, Australia
| | - Shibani Pati
- University of California San Francisco, San Francisco, California, USA
| | | | - Gabriele Spohn
- German Red Cross Blood Donor Service and Goethe University Hospital, Frankfurt am Main, Germany
| | - Richard Schäfer
- German Red Cross Blood Donor Service and Goethe University Hospital, Frankfurt am Main, Germany; Medical Center, Center for Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany
| | - Rongye Shi
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lipei Shao
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David Stroncek
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA; Molecular and Cellular Therapeutics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
23
|
Santi L, Beretta S, Berti M, Savoia EO, Passerini L, Mancino M, De Ponti G, Alberti G, Quaranta P, Basso-Ricci L, Avanzini MA, Merelli I, Scala S, Ferrari S, Aiuti A, Bernardo ME, Crippa S. Transcriptomic analysis of BM-MSCs identified EGR1 as a transcription factor to fully exploit their therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119818. [PMID: 39168411 PMCID: PMC11480207 DOI: 10.1016/j.bbamcr.2024.119818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Bone marrow-mesenchymal stromal cells (BM-MSCs) are key components of the BM niche, where they regulate hematopoietic stem progenitor cell (HSPC) homeostasis by direct contact and secreting soluble factors. BM-MSCs also protect the BM niche from excessive inflammation by releasing anti-inflammatory factors and modulating immune cell activity. Thanks to these properties, BM-MSCs were successfully employed in pre-clinical HSPC transplantation models, increasing the rate of HSPC engraftment, accelerating the hematological reconstitution, and reducing the risk of graft failure. However, their clinical use requires extensive in vitro expansion, potentially altering their biological and functional properties. In this work, we analyzed the transcriptomic profile of human BM-MSCs sorted as CD45-, CD105+, CD73+, and CD90+ cells from the BM aspirates of heathy-donors and corresponding ex-vivo expanded BM-MSCs. We found the expression of immune and inflammatory genes downregulated upon cell culture and selected the transcription factor EGR1 to restore the MSC properties. We overexpressed EGR1 in BM-MSCs and performed in vitro tests to study the functional properties of EGR1-overexpressing BM-MSCs. We concluded that EGR1 increased the MSC response to inflammatory stimuli and immune cell control and potentiated the MSC hematopoietic supportive activity in co-culture assay, suggesting that the EGR1-based reprogramming may improve the BM-MSC clinical use.
Collapse
Affiliation(s)
- Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy; Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita Salute" San Raffaele University, Milan, Italy.
| | - Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
24
|
Amison RT, Cheung TS, Giacomini C, Riffo‐Vasquez Y, Galleu A, Savoldelli R, Hicks R, Kozlowska A, Dazzi F. Cryopreserved apoptotic mesenchymal stromal cells retain functional efficacy in suppressing an allergic inflammation in a murine model. Stem Cells Transl Med 2024; 13:979-984. [PMID: 39110907 PMCID: PMC11465169 DOI: 10.1093/stcltm/szae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/05/2024] [Indexed: 10/11/2024] Open
Abstract
Mesenchymal stromal cell (MSC) apoptosis is required for in vivo immunosuppression. However, the induction of apoptosis is heavily dependent on the recipient's immune system. In graft-versus-host disease (GvHD), patients who fail to respond to MSCs are in fact those whose immune cells are unable to induce MSC apoptosis ex vivo. The information is critical to explain why responses in clinical trials vary even though the same sources of MSC products are infused. More importantly, it highlights the need for an alternative MSC treatment for the nonresponders. By using a mouse model of ovalbumin (OVA)-induced allergic inflammation, we demonstrated that we could generate apoptotic MSCs (ApoMSCs) in vitro and use them to successfully reduce allergic airway inflammation. In order to address the logistics of their potential future clinical application, we have shown that ApoMSCs could be cryopreserved without impairing efficacy compared to freshly generated ApoMSCs. We have also highlighted that MSCs need to undergo complete apoptosis before cryopreservation to retain their immunosuppressive activity. The cryopreserved ApoMSCs could serve as a potential future off-the-shelf cellular product, in particular for patients who suffer from inflammatory conditions yet do not harbor the immune capacity to induce MSC apoptosis in vivo. Our data provide proof-of-concept that under laboratory conditions, ApoMSCs can be successfully frozen and thawed without affecting their anti-inflammatory activity, as tested in a murine model of allergic inflammation.
Collapse
Affiliation(s)
- Richard T Amison
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Tik S Cheung
- School of Cancer and Pharmacological Sciences King’s College London, London, United Kingdom
| | - Chiara Giacomini
- School of Cancer and Pharmacological Sciences King’s College London, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
| | - Yanira Riffo‐Vasquez
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
| | - Antonio Galleu
- School of Cancer and Pharmacological Sciences King’s College London, London, United Kingdom
| | - Roberto Savoldelli
- BioPharmaceuticals R&D Cell therapy, AstraZeneca, Cambridge, United Kingdom
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell therapy, AstraZeneca, Cambridge, United Kingdom
| | - Anna Kozlowska
- BioPharmaceuticals R&D Cell therapy, AstraZeneca, Cambridge, United Kingdom
| | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences King’s College London, London, United Kingdom
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
- BioPharmaceuticals R&D Cell therapy, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
25
|
Alsultan A, Farge D, Kili S, Forte M, Weiss DJ, Grignon F, Boelens JJ. International Society for Cell and Gene Therapy Clinical Translation Committee recommendations on mesenchymal stromal cells in graft-versus-host disease: easy manufacturing is faced with standardizing and commercialization challenges. Cytotherapy 2024; 26:1132-1140. [PMID: 38804990 PMCID: PMC12046531 DOI: 10.1016/j.jcyt.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been used in multiple clinical trials for steroid-refractory moderate-severe (grade II-IV) acute graft-versus-host disease (aGVHD) across the world over the last two decades. Despite very promising results in a variety of trials, it failed to get widespread approval by regulatory agencies such as the U.S. Food and Drug Administration and the European Medicines Agency. What lessons can we learn from this for future studies on MSCs and other cell therapy products? Broad heterogeneity among published trials using MSCs in aGVHD was likely the core problem. We propose a standardized approach in regards to donor-related factors, MSCs-related characteristics, as well as clinical trial design, to limit heterogeneity in trials for aGVHD and to fulfill the requirements of regulatory agencies. This approach may be expanded beyond MSCs to other Cell and Gene therapy products and trials in other diseases.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dominique Farge
- Internal Medicine Unit (UF 04): CRMR MATHEC, Autoimmune diseases and Cellular Therapy, St-Louis Hospital, Center of reference for rare systemic autoimmune diseases of Ile-de-France (FAI2R), AP-HP, Hôpital St-Louis, Paris University, IRSL, Paris, France; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sven Kili
- Sven Kili Consulting Ltd., Shrewsbury, UK; Saisei Ventures, Boston, Massachusetts, USA; CCRM, Toronto, Canada
| | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Felix Grignon
- International Society for Cell & Gene Therapy, Vancouver, Canada
| | - Jaap Jan Boelens
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
26
|
Rusch RM, Inagaki E, Taniguchi H, Sakakura S, Tamai R, Nonaka H, Shimizu S, Sato S, Ogawa Y, Masatoshi H, Negishi K, Okano H, Shimmura S. Adipose-derived mesenchymal stromal cells: A study on safety and efficacy in ocular inflammation. Ocul Surf 2024; 34:523-534. [PMID: 39542088 DOI: 10.1016/j.jtos.2024.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study explores the application of adipose-derived mesenchymal stromal cells (adMSCs) as a therapy for ocular inflammatory diseases utilizing a chronic GVHD model. METHODS Human adMSCs were administered via subconjunctival injection into mice with chronic ocular GVHD. Clinical scores and changes in T cell populations were analyzed. RESULTS The study showed significant improvement in corneal integrity, including epithelial damage, opacity, thickness, and structure, after subconjunctival adMSC transplantation. Additionally, adMSC transplantation increased CD45+ and Foxp3+ Tregs while decreasing CD4+ T cells, 1IL17A+ Th17 cells, and IFNγ+ Th1 cells in local cervical lymph nodes. Moreover, adMSC-conditioned media enhanced wound closure and cell migration toward the wound bed in vitro. The cells disappeared within a week suggesting that trophic factors were involved. CONCLUSION The dual benefit of adMSCs in immune-related ocular disorders underscores their potential for clinical application. This study focuses on subconjunctival delivery, effects of adMSCs and migration post-injection, with implications for optimizing cellular therapy application. The observed dual action, combining immunomodulation and tissue repair enhancement, underscores holistic approach of adMSC therapy in regenerative medicine, making it a potent treatment for diseases involving inflammation and tissue damage in the ocular surface.
Collapse
Affiliation(s)
- Robert M Rusch
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hiroko Taniguchi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Saki Sakakura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan
| | | | | | - Shota Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hirayama Masatoshi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Japan
| | - Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Health University, Japan.
| |
Collapse
|
27
|
Jia L, Li N, van Unen V, Zwaginga JJ, Braun J, Hiemstra PS, Koning F, Khedoe PPSJ, Stolk J. Pulmonary and Systemic Immune Profiles Following Lung Volume Reduction Surgery and Allogeneic Mesenchymal Stromal Cell Treatment in Emphysema. Cells 2024; 13:1636. [PMID: 39404398 PMCID: PMC11476308 DOI: 10.3390/cells13191636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Emphysema in patients with chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation. Preclinical studies suggest that lung volume reduction surgery (LVRS) and mesenchymal stromal cell (MSC) treatment dampen inflammation. We investigated the effects of bone marrow-derived MSC (BM-MSC) and LVRS on circulating and pulmonary immune cell profiles in emphysema patients using mass cytometry. Blood and resected lung tissue were collected at the first LVRS (L1). Following 6-10 weeks of recovery, patients received a placebo or intravenous administration of 2 × 106 cells/kg bodyweight BM-MSC (n = 5 and n = 9, resp.) in week 3 and 4 before the second LVRS (L2), where blood and lung tissue were collected. Irrespective of BM-MSC or placebo treatment, proportions of circulating lymphocytes including central memory CD4 regulatory, effector memory CD8 and γδ T cells were higher, whereas myeloid cell percentages were lower in L2 compared to L1. In resected lung tissue, proportions of Treg (p = 0.0067) and anti-inflammatory CD163- macrophages (p = 0.0001) were increased in L2 compared to L1, while proportions of pro-inflammatory CD163+ macrophages were decreased (p = 0.0004). There were no effects of BM-MSC treatment on immune profiles in emphysema patients. However, we observed alterations in the circulating and pulmonary immune cells upon LVRS, suggesting the induction of anti-inflammatory responses potentially needed for repair processes.
Collapse
Affiliation(s)
- Li Jia
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands; (L.J.)
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands (J.S.)
| | - Na Li
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands; (L.J.)
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory of Zoonosis Research of the Ministry of Education, Institute of Zoonosis and College of Veterinary Medicine, Jilin University, Changchun 130012, China
| | - Vincent van Unen
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands; (L.J.)
| | - Jaap-Jan Zwaginga
- Department of Hematology, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, 2333 Leiden, The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands (J.S.)
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands; (L.J.)
| | - P. Padmini S. J. Khedoe
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands (J.S.)
| | - Jan Stolk
- Department of Pulmonology, PulmoScience Lab, Leiden University Medical Center (LUMC), 2333 Leiden, The Netherlands (J.S.)
| |
Collapse
|
28
|
Zorina A, Zorin V, Isaev A, Kudlay D, Manturova N, Ustugov A, Kopnin P. Current Status of Biomedical Products for Gene and Cell Therapy of Recessive Dystrophic Epidermolysis Bullosa. Int J Mol Sci 2024; 25:10270. [PMID: 39408598 PMCID: PMC11476579 DOI: 10.3390/ijms251910270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 10/20/2024] Open
Abstract
This detailed review describes innovative strategies and current products for gene and cell therapy at different stages of research and development to treat recessive dystrophic epidermolysis bullosa (RDEB) which is associated with the functional deficiency of collagen type VII alpha 1 (C7) caused by defects in the COL7A1 gene. The use of allogenic mesenchymal stem/stromal cells, which can be injected intradermally and intravenously, appears to be the most promising approach in the field of RDEB cell therapy. Injections of genetically modified autologous dermal fibroblasts are also worth mentioning under this framework. The most common methods of RDEB gene therapy are gene replacement using viral vectors and gene editing using programmable nucleases. Ex vivo epidermal transplants (ETs) based on autologous keratinocytes (Ks) have been developed using gene therapy methods; one such ET successively passed phase III clinical trials. Products based on the use of two-layer transplants have also been developed with both types of skin cells producing C7. Gene products have also been developed for local use. To date, significant progress has been achieved in the development of efficient biomedical products to treat RDEB, one of the most severe hereditary diseases.
Collapse
Affiliation(s)
- Alla Zorina
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Vadim Zorin
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
- Skincell LLC, Moscow 119333, Russia
| | - Artur Isaev
- Artgen Biotech, Moscow 119333, Russia; (A.Z.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I. M. Sechenov First Moscow State Medical University (The Sechenov University), Moscow 119991, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Natalia Manturova
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Andrei Ustugov
- Department of Plastic and Reconstructive surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- JSC Plastic Surgery and Cosmetology Institute, Moscow 125047, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow 115522, Russia
| |
Collapse
|
29
|
Lin S, Luo Y, Mao X, He W, Xu C, Zeng M. Homeobox B4 optimizes the therapeutic effect of bone marrow mesenchymal stem cells on endotoxin-associated acute lung injury in rats. Am J Med Sci 2024; 368:242-252. [PMID: 38795966 DOI: 10.1016/j.amjms.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/05/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Alveolar capillary endothelial cell (EC) injury has a pivotal role in driving acute respiratory distress syndrome (ARDS) progression and maintaining endothelial homeostasis. A previous ex vivo study revealed that overexpression of homeobox B4 (HOXB4) in bone marrow mesenchymal stem cells (BMSCs) enhanced protection against lipopolysaccharide (LPS)-induced EC injury by activating the Wnt/β-catenin pathway. This in vivo study was performed to verify whether BMSCs overexpressing HOXB4 exert similar protective effects on LPS-induced acute lung injury (ALI) in an animal model. METHODS The ALI rat model was established by intraperitoneal injection of LPS. Wildtype BMSCs or BMSCs overexpressing HOXB4 were then injected via the tail vein. The lung characteristics of rats were visualized by computed tomography. Lung histopathological characteristics and collagen deposition were assessed by hematoxylin-eosin and Masson's staining, respectively, which were combined with the lung wet/dry ratio and proinflammatory factor levels in bronchoalveolar lavage fluid to further evaluate therapeutic effects. Expression of β-catenin and VE-cadherin was assessed by western blotting and immunofluorescence. RESULTS Compared with wildtype BMSCs, overexpression of HOXB4 optimized the therapeutic effects of BMSCs, which manifested as improvements in lung exudation and histopathological features, reduced lung collagen deposition, amelioration of lung permeability, attenuation of lung inflammation, and enhanced expression of β-catenin and VE-cadherin proteins. CONCLUSIONS HOXB4-overexpressing BMSCs optimized the protective effect against LPS-induced ALI by partially activating Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Shan Lin
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, PR China
| | - Yuling Luo
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Xueyan Mao
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Wanmei He
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Caixia Xu
- Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Mian Zeng
- Department of Medical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China.
| |
Collapse
|
30
|
Khastar S, Sattari M. Examining the level of inflammatory cytokines TNF-α and IL-8 produced by osteoblasts differentiated from dental pulp stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:225-232. [PMID: 39308765 PMCID: PMC11411251 DOI: 10.62347/cbmw4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND The use of dental pulp stem cells (DPSCs) in clinical applications instead of bone marrow stem cells is a very promising method capable of significantly changing the future of medical treatment. If further studies prove that DPSCs and the cells differentiated from them do not stimulate the immune system, these cells can be used more reliably in treatment of autoimmune diseases. METHODS In this research, we examined the isolated DPSCs and differentiated osteoblasts from them in medium without inflammatory stimulants in terms of TLR3 and TLR4 gene expression and inflammatory cytokines, including TNF-α and IL-8 using qRT-PCR, and measured the concentration of inflammatory cytokines IL-8 and TNF-α produced by these two types of cells through ELISA. RESULTS The obtained results showed that the expression level of inflammatory cytokines IL-8 and TNF-α in differentiated osteoblasts is significantly different as compared with DPSCs. However, no significant difference was observed in TLR-4 expression between two groups. An increase in TNF-α expression level was found to directly correlate with an increase in the expression of IL-8. The concentration of cytokine TNF-α in osteoblasts was significantly higher than that of IL-8 in DPSCs. CONCLUSION In comparison to DPSCs, osteoblast cells first lead to inflammatory responses. These responses reduce overtime. However, DPSCs retain their immunomodulatory properties and do not show inflammatory responses.
Collapse
Affiliation(s)
- Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| |
Collapse
|
31
|
Niu JW, Li Y, Xu C, Sheng H, Tian C, Ning H, Hu J, Chen J, Li B, Wang J, Lou X, Liu N, Su Y, Sun Y, Qiao Z, Wang L, Zhang Y, Lan S, Xie J, Ren J, Peng B, Wang S, Shi Y, Zhao L, Zhang Y, Chen H, Zhang B, Hu L. Human umbilical cord-derived mesenchymal stromal cells for the treatment of steroid refractory grades III-IV acute graft-versus-host disease with long-term follow-up. Front Immunol 2024; 15:1436653. [PMID: 39211037 PMCID: PMC11357908 DOI: 10.3389/fimmu.2024.1436653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) have been extensively studied as a potential treatment for steroid refractory acute graft-versus-host disease (aGVHD). However, the majority of clinical trials have focused on bone marrow-derived MSCs. Methods In this study, we report the outcomes of 86 patients with grade III-IV (82.6% grade IV) steroid refractory aGVHD who were treated with human umbilical cord-derived mesenchymal stromal cells (UC-MSCs). The patient cohort included 17 children and 69 adults. All patients received intravenous infusions of UC-MSCs at a dose of 1 × 106 cells per kg body weight, with a median of 4 infusions (ranging from 1 to 16). Results The median time between the onset of aGVHD and the first infusion of UC-MSCs was 7 days (ranging from 3 to 88 days). At day 28, the overall response (OR) rate was 52.3%. Specifically, 24 patients (27.9%) achieved complete remission, while 21 (24.4%) exhibited partial remission. The estimated survival probability at 100 days was 43.7%. Following a median follow-up of 108 months (ranging from 61 to 159 months), the survival rate was approximately 11.6% (10/86). Patients who developed acute lower GI tract and liver GVHD exhibited poorer OR rates at day 28 compared to those with only acute lower GI tract GVHD (22.2% vs. 58.8%; p= 0.049). No patient experienced serious adverse events. Discussion These finding suggest that UC-MSCs are safe and effective in both children and adults with steroid refractory aGVHD. UC-MSCs could be considered as a feasible treatment option for this challenging conditon. (NCT01754454).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bin Zhang
- Senior Department of Hematology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Liangding Hu
- Senior Department of Hematology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
32
|
Wang L, Wang J, Xu A, Wei L, Pei M, Shen T, Xian X, Yang K, Fei L, Pan Y, Yang H, Wang X. Future embracing: exosomes driving a revolutionary approach to the diagnosis and treatment of idiopathic membranous nephropathy. J Nanobiotechnology 2024; 22:472. [PMID: 39118155 PMCID: PMC11312222 DOI: 10.1186/s12951-024-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and is associated with high rates of end-stage renal disease. Early detection and precise interventions are crucial for improving patient prognosis and quality of life. However, the current diagnosis primarily relies on renal biopsies and traditional biomarkers, which have limitations. Additionally, targeted therapeutic strategies are lacking. Exosomes, small vesicles that facilitate intercellular communication, have emerged as potential noninvasive diagnostic markers due to their stability, diverse cargo, and rapid detectability. They also hold promise as carriers for gene and drug delivery, presenting innovative opportunities in renal disease prognosis and treatment. However, research on exosomes in the context of idiopathic membranous nephropathy (IMN) remains limited, with a focus on exploring urinary exosomes as IMN markers. In this review, we summarize the current status of MN diagnosis and treatment, highlight the fundamental characteristics of exosomes, and discuss recent advancements in their application to IMN diagnosis and therapy. We provide insights into the clinical prospects of exosomes in IMN and acknowledge potential challenges. This article aims to offer forward-looking insights into the future of exosome-mediated IMN diagnosis and treatment, indicating a revolutionary transformation in this field.
Collapse
Affiliation(s)
- Lin Wang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jinxiang Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China
| | - Ao Xu
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lijuan Wei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Ming Pei
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
| | - Tuwei Shen
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xian Xian
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kang Yang
- Nephrology Department, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, 450099, China
| | - Lingyan Fei
- Department of Nephrology, Kidney and Urology Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Guangdong, 518107, China.
| | - Hongtao Yang
- Nephrology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, People's Republic of China.
| |
Collapse
|
33
|
Yuan F, Li M, Wei X, Fu Y. Co-transplantation of umbilical cord mesenchymal stem cells and peripheral blood stem cells in children and adolescents with refractory or relapsed severe aplastic anemia. Pediatr Hematol Oncol 2024; 41:322-335. [PMID: 38436082 DOI: 10.1080/08880018.2024.2324394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the co-transplantation efficacy of umbilical cord mesenchymal stem cells (UC-MSCs) and peripheral blood stem cells (PBSCs) as a novel approach for refractory or relapsed severe aplastic anemia (R/R SAA) in children and adolescents, thirty-two children and adolescents diagnosed with R/R SAA underwent a retrospective chart review. The patients were categorized into two groups based on the source of PBSCs: the matched sibling donor (MSD) group and the unrelated donor (UD) group. No adverse events related to UC-MSC infusion occurred in any of the patients. The median time for neutrophil engraftment was 13 days (range: 10-23 days), and for platelets, it was 15 days (range: 11-28 days). Acute GVHD of Grade I-II and moderate chronic GVHD were observed in 21.8 and 12.5% of cases, respectively. No statistically significant differences were found between the MSD and UD groups in terms of engraftment, GVHD, and complications, including infection and hemorrhagic cystitis. The median follow-up time was 38.6 months (range: 1.4-140.8 months). As of October 31, 2021, five patients had succumbed, while 27 (84.4%) survived. The 5-year OS rate showed no statistically significant difference between the MSD and UD groups (84.8 ± 10.0 vs. 82.4 ± 9.2%, p = 0.674). In conclusion, the application of UC-MSCs in the treatment of R/R SAA in PBSC transplantation is reliable and safe, they had no graft rejection, low incidence of severe GVHD which may have been contributed by the co-infusion of MSC.
Collapse
Affiliation(s)
- Fangfang Yuan
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Minghui Li
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Xudong Wei
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yuewen Fu
- The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
34
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Lightner AL, Irving PM, Lord GM, Betancourt A. Stem Cells and Stem Cell-Derived Factors for the Treatment of Inflammatory Bowel Disease with a Particular Focus on Perianal Fistulizing Disease: A Minireview on Future Perspectives. BioDrugs 2024; 38:527-539. [PMID: 38914783 PMCID: PMC11247053 DOI: 10.1007/s40259-024-00661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/26/2024]
Abstract
Inflammatory bowel disease remains a difficult disease to effectively treat, especially fistulizing Crohn's disease. Perianal fistulas in the setting of Crohn's disease remain an area of unmet need with significant morbidity in this patient population. Up to one third of Crohn's patients will have perianal fistulizing disease and current medical and surgical interventions are of limited efficacy. Thus, most patients experience significant morbidity, narcotic use, and loss of employment and end up with multiple surgical interventions. Mesenchymal stem cells (MSCs) have shown efficacy in phase 3 clinical trials, but considerable infrastructure challenges make MSCs limited with regard to scalability in clinical practice. Extracellular vesicles, being derived from MSCs and capturing the secretome functionality of MSCs, offer similar physiological utility regarding mechanism, while also providing an off the shelf regenerative medicine product that could be widely used in daily clinical practice.
Collapse
Affiliation(s)
- Amy L Lightner
- Surgery, Scripps Clinic, 10667 N Torrey Pines Rd, La Jolla, CA, 92037, USA.
- Molecular Medicine, Scripps Research Institute, La Jolla, USA.
| | - Peter M Irving
- Guy's and St Thomas' Hospital, London, UK
- King's College London, London, UK
| | | | - Aline Betancourt
- Vitabolus Inc, San Diego, CA, USA
- Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
36
|
[Chinese expert consensus on the diagnosis and treatment of acute graft-versus-host disease after hematopoietic stem cell transplantation (2024)]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:525-533. [PMID: 39134482 PMCID: PMC11310805 DOI: 10.3760/cma.j.cn121090-20240608-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Indexed: 12/06/2024]
Abstract
Despite the continuous improvement in the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), acute graft-versus-host disease (GVHD) remains a major complication and cause of death. In recent years, with the emergence of new drugs for the prevention and treatment of acute GVHD and the update of a series of clinical studies, there have been varying degrees of changes in the routine prevention and treatment regimens for acute GVHD. Based on the main research achievements and the accumulation of clinical experience in this field in recent years, this consensus further updates the "The Consensus on Allogeneic Hematopoietic Stem Cell Transplantation for Hematological Diseases in China-Acute Graft-Versus-Host Disease (2020) .
Collapse
|
37
|
Kannan S, Gokul Krishna S, Gupta PK, Kolkundkar UK. Advantages of pooling of human bone marrow-derived mesenchymal stromal cells from different donors versus single-donor MSCs. Sci Rep 2024; 14:12654. [PMID: 38825595 PMCID: PMC11144708 DOI: 10.1038/s41598-024-62544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/17/2024] [Indexed: 06/04/2024] Open
Abstract
Mesenchymal stromal cells (MSC) from adult bone marrow are the most commonly used cells in clinical trials. MSCs from single donors are the preferred starting material but suffer from a major setback of being heterogeneous that results in unpredictable and inconsistent clinical outcomes. To overcome this, we developed a method of pooling MSCs from different donors and created cell banks to cater clinical needs. Initially, the master cell banks (MCBs) were created at passage 1 (P1) from the bone marrow MSCs isolated from of nine different donors. At this stage, MCBs from three different donors were mixed in equal proportion and expanded till P3 to create working cell banks. Further, the pooled cells and individual donor MSCs were expanded till P5 and cryopreserved and extensively characterised. There was a large heterogeneity among the individual donor MSCs in terms of growth kinetics (90% Coefficient of variation (CV) for cell yield and 44% CV for population doubling time at P5), immunosuppressive ability (30% CV at 1:1 and 300% CV at 1:10 ratio), and the angiogenic factor secretion potential (20% CV for VEGF and71% CV for SDF-1). Comparatively, the pooled cells have more stable profiles (60% CV for cell yield and 7% CV for population doubling time at P5) and exhibit better immunosuppressive ability (15% CV at 1:1 and 32% CV at 1:10 ratio ) and consistent secretion of angiogenic factors (16% CV for VEGF and 51% CV for SDF-1). Further pooling does not compromise the trilineage differentiation capacity or phenotypic marker expression of the MSCs. The senescence and in vitro tumourigenicity characteristics of the pooled cells are also similar to those of individual donor MSCs. We conclude that pooling of MSCs from three different donors reduces heterogeneity among individual donors and produces MSCs with a consistent secretion and higher immunosuppressive profile.
Collapse
Affiliation(s)
- Suresh Kannan
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India.
| | - S Gokul Krishna
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| | - Pawan Kumar Gupta
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| | - Uday Kumar Kolkundkar
- Stempeutics Research Pvt Ltd, 3rd Floor, Manipal Hospitals Whitefield Pvt. Ltd., #143, EPIP Industrial Area, ITPL Main Road, Bangalore, Karnataka, 560 048, India
| |
Collapse
|
38
|
Baccelli F, Gottardi F, Muratore E, Leardini D, Grasso AG, Gori D, Belotti T, Prete A, Masetti R. Ruxolitinib for the treatment of acute and chronic graft-versus-host disease in children: a systematic review and individual patient data meta-analysis. Bone Marrow Transplant 2024; 59:765-776. [PMID: 38402346 PMCID: PMC11161405 DOI: 10.1038/s41409-024-02252-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Steroid-refractory graft-versus-host disease (SR-GvHD) represents a major complication of pediatric allogenic hematopoietic stem cell transplantation. Ruxolitinib, a selective JAK 1-2 inhibitor, showed promising results in the treatment of SR-GvHD in adult trial, including patients >12 years old. This systematic review aims to evaluate ruxolitinib use for SR-GvHD in the pediatric population. Among the 12 studies included, ruxolitinib administration presented slight differences. Overall response rate (ORR) ranged from 45% to 100% in both acute and chronic GvHD. Complete response rates (CR) varied from 9% to 67% and from 0% to 28% in aGvHD and cGvHD, respectively. Individual-patient meta-analysis from 108 children under 12 years showed an ORR and CR for aGvHD of 74% and 56%, respectively, while in cGvHD ORR was 78% but with only 11% achieving CR. Treatment-related toxicities were observed in 20% of patients, including cytopenia, liver toxicity, and infections. Age, weight, graft source, previous lines of therapy, and dose did not significantly predict response, while a higher rate of toxicities was observed in aGvHD patients. In conclusion, ruxolitinib shows promising results in the treatment of SR-GvHD in children, including those under 12 years. Specific pediatric perspective trials are currently ongoing to definitely assess its efficacy and safety.
Collapse
Affiliation(s)
- Francesco Baccelli
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Francesca Gottardi
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Edoardo Muratore
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Davide Leardini
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Antonio Giacomo Grasso
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Tamara Belotti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Arcangelo Prete
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology and Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Kelly K, Bloor AJC, Griffin JE, Radia R, Yeung DT, Rasko JEJ. Two-year safety outcomes of iPS cell-derived mesenchymal stromal cells in acute steroid-resistant graft-versus-host disease. Nat Med 2024; 30:1556-1558. [PMID: 38778211 PMCID: PMC11186752 DOI: 10.1038/s41591-024-02990-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
The first completed clinical trial of induced pluripotent stem cell (iPS cell)-derived cells was conducted in 15 participants with steroid-resistant acute graft-versus-host disease. After intravenous infusion of mesenchymal stromal cells (CYP-001 derived from a clone of human iPS cells), we reported the safety, tolerability and efficacy within the primary evaluation period at day 100. We now report results at the 2-year follow-up: 9 of 15 (60%) participants survived, which compares favorably with previously reported outcomes in studies of steroid-resistant acute graft-versus-host disease. Causes of death were complications commonly observed in recipients of allogeneic hematopoietic stem cell transplantation, and not considered by the investigators to be related to CYP-001 treatment. There were no serious adverse events, tumors or other safety concerns related to CYP-001. In conclusion, systemic delivery of iPS cell-derived cells was safe and well tolerated over 2 years of follow-up, with sustained outcomes up to 2 years after the first infusion. ClinicalTrials.gov registration: NCT02923375 .
Collapse
Affiliation(s)
- Kilian Kelly
- Cynata Therapeutics Limited, Cremorne, Victoria, Australia
| | - Adrian J C Bloor
- Haematology & Transplant Unit, The Christie NHS Foundation Trust, Manchester, UK
| | - James E Griffin
- Department of Bone Marrow Transplantation, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Rohini Radia
- Department of Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David T Yeung
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - John E J Rasko
- Central Clinical School, Faculty of Medicine & Health, University of Sydney, Sydney, New South Wales, Australia.
- Gene and Stem Cell Therapy Program Centenary Institute, University of Sydney, Sydney, New South Wales, Australia.
- Department of Cell and Molecular Therapies, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
40
|
Noori E, Hashemi N, Rezaee D, Maleki R, Shams F, Kazemi B, Bandepour M, Rahimi F. Potential therapeutic options for celiac Disease: An update on Current evidence from Gluten-Free diet to cell therapy. Int Immunopharmacol 2024; 133:112020. [PMID: 38608449 DOI: 10.1016/j.intimp.2024.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Celiac disease (CD) is a chronic autoimmune enteropathy and multifactorial disease caused by inappropriate immune responses to gluten in the small intestine. Weight loss, anemia, osteoporosis, arthritis, and hepatitis are among the extraintestinal manifestations of active CD. Currently, a strict lifelong gluten-free diet (GFD) is the only safe, effective, and available treatment. Despite the social burden, high expenses, and challenges of following a GFD, 2 to 5 percent of patients do not demonstrate clinical or pathophysiological improvement. Therefore, we need novel and alternative therapeutic approaches for patients. Innovative approaches encompass a broad spectrum of strategies, including enzymatic degradation of gluten, inhibition of intestinal permeability, modulation of the immune response, inhibition of the transglutaminase 2 (TG2) enzyme, blocking antigen presentation by HLA-DQ2/8, and induction of tolerance. Hence, this review is focused on comprehensive therapeutic strategies ranging from dietary approaches to novel methods such as antigen-based immunotherapy, cell and gene therapy, and the usage of nanoparticles for CD treatment.
Collapse
Affiliation(s)
- Effat Noori
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran; Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Bahram Kazemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandepour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Department of Biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
41
|
Garcia SG, Sanroque-Muñoz M, Clos-Sansalvador M, Font-Morón M, Monguió-Tortajada M, Borràs FE, Franquesa M. Hollow fiber bioreactor allows sustained production of immortalized mesenchymal stromal cell-derived extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:201-220. [PMID: 39698535 PMCID: PMC11648467 DOI: 10.20517/evcna.2023.76] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 12/20/2024]
Abstract
Aim: Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been reported to hold great potential as cell-free therapies due to their low immunogenicity and minimal toxicity. However, the large doses of MSC-EVs that are required for their clinical application highlight the urgency of finding a large-scale system for MSC-EV manufacture. In this study, we aimed to set up a hollow fiber bioreactor system for the continuous homogenous production of functional and high-quality MSC-EVs. Methods: MSC lines from two donors were immortalized (iMSC) and inoculated into hollow fiber bioreactors. Throughout 4 weeks, conditioned medium was daily harvested. iMSC-EVs were purified and characterized for content, immunophenotype, size, and functionality and compared to 2D cultured iMSC. Results: The iMSC inoculated into the bioreactor remained viable during the whole culture period, and they maintained their MSC phenotype at the end of EV production. Our results showed that the bioreactor system allows to obtain 3D-cultured iMSC-derived EVs (3D-EVs) that are comparable to flask (2D)-cultured iMSC-derived EVs (2D-EVs) in terms of protein and lipid content, size, and phenotype. We also confirm that 3D-derived EVs exhibit comparable functionality to 2D-EVs, showing pro-angiogenic potential in a dose-dependent manner. Conclusions: These findings suggest that setting up a hollow fiber bioreactor system inoculating immortalized MSC lines facilitates the large-scale, functional, and high-quality production of iMSC-EVs. Our results emphasize the great potential of this production methodology to standardize EV production in the pursuit of clinical applications.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Sanroque-Muñoz
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Biochemistry and Cell Biology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
- Authors contributed equally
| | - Marta Clos-Sansalvador
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra 08193, Spain
| | - Miriam Font-Morón
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Marta Monguió-Tortajada
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| | - Francesc E. Borràs
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Health Science research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona 08916, Spain
| |
Collapse
|
42
|
Pérez-Torres Lobato M, Benitez-Carabante MI, Alonso L, Torrents S, Castillo Flores N, Uria Oficialdegui ML, Panesso M, Alonso-Martínez C, Oliveras M, Renedo-Miró B, Vives J, Diaz-de-Heredia C. Mesenchymal stromal cells in the treatment of pediatric hematopoietic cell transplantation-related complications (graft vs. host disease, hemorrhagic cystitis, graft failure and poor graft function): a single center experience. Front Pediatr 2024; 12:1375493. [PMID: 38783918 PMCID: PMC11112085 DOI: 10.3389/fped.2024.1375493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024] Open
Abstract
Objectives To describe mesenchymal stromal cells (MSCs) in the treatment of hematopoietic stem cell transplantation (HSCT) complications and to assess its safety and efficacy. Methods Single-center retrospective study (2016-2023). Patients under 20 years who received MSCs for the treatment of HSCT-related complications were included. Results Thirty patients (53.7% boys), median age at transplant 11 years (range 2-19) were included. MSCs indications were: graft-vs.-host disease (GVHD) in 18 patients (60%), of them 13 had acute GVHD (43.3%) and 5 chronic GVHD (16.7%); Grade 3-4 hemorrhagic cystitis (HC) in 4 (13.3%); poor graft function (PGF) in 6 (20%), 5 of them receiving MSCs with a CD34 stem cell-boost coinfusion; graft failure (GF) in 2 (6.7%), to enhance engraftment after a subsequent HSCT. Infusion-related-adverse-events were not reported. Overall response (OR) was 83% (25/30); 44% of responders (11/25) showed complete response (CR). OR for GVHD, HC, PGF and GF was 83.3%, 100%, 66.7% and 100% respectively. Response rate was 40% (95% CI: 20-55) and 79% (95% CI: 57-89) at 15 and 30 days. With a median follow-up of 21 months (IQR11-52.5), overall survival (OS) was 86% (95% CI: 74-100) and 79% (95% CI: 65-95) at 6 and 12 months post-MSCs infusion. Conclusion In our study, the most frequent indication of MSCs was refractory aGVHD (43.3%). Response rates were high (OR 83%) and safety profile was good.
Collapse
Affiliation(s)
- Maria Pérez-Torres Lobato
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Maria Isabel Benitez-Carabante
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Laura Alonso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | | | - Maria Luz Uria Oficialdegui
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Melissa Panesso
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| | | | - Maria Oliveras
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Berta Renedo-Miró
- Department of Pharmacy, Vall D'Hebron University Hospital, Barcelona, Spain
| | - Joaquim Vives
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
- Banc de Sang I Teixits, Barcelona, Spain
- Department of Medicine, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Diaz-de-Heredia
- Department of Paediatric Oncology and Haematology, Vall D'Hebron University Hospital, Barcelona, Spain
- Vall D'Hebron Research Institute (VHIR), Barcelona, Spain
| |
Collapse
|
43
|
Vallant N, Wolfhagen N, Sandhu B, Hamaoui K, Papalois V. Delivery of Mesenchymal Stem Cells during Hypothermic Machine Perfusion in a Translational Kidney Perfusion Study. Int J Mol Sci 2024; 25:5038. [PMID: 38732257 PMCID: PMC11084391 DOI: 10.3390/ijms25095038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-β by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1β levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1β suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.
Collapse
Affiliation(s)
| | | | | | | | - Vassilios Papalois
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK; (N.V.); (N.W.)
| |
Collapse
|
44
|
Dawoud C, Widmann KM, Czipin S, Pramhas M, Scharitzer M, Stift A, Harpain F, Riss S. Efficacy of cx601 (darvadstrocel) for the treatment of perianal fistulizing Crohn's disease-A prospective nationwide multicenter cohort study. Wien Klin Wochenschr 2024; 136:289-294. [PMID: 37823920 PMCID: PMC11078846 DOI: 10.1007/s00508-023-02283-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/09/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The use of mesenchymal stem cells is considered a novel and promising therapeutic option for patients with perianal fistulizing Crohn's disease; however, data on its clinical application remain scarce. This multicenter nationwide study aimed to assess the clinical efficacy of mesenchymal stem cells in closing complex anal fistulas. METHODS In this study 14 Crohn's disease patients (3 males, 11 females) with complex anal fistulas treated in 3 tertiary hospitals in Austria were included between October 2018 and April 2021. Injection of 120 million allogeneic expanded adipose-derived mesenchymal stem cells (Cx601-darvadstrocel) was performed in each patient. Closure of the external fistula opening without secretion by external manual compression was defined as treatment success. RESULTS The median age of the patient population at the time of surgery was 32 years (range 26-53 years) with a median body mass index of 21.7 kg/m2 (range 16.7-26.6 kg/m2). Of the patients 12 (86%) received monoclonal antibodies (infliximab, adalimumab, ustekinumab, vedolizumab) at the time of surgery. The median number of complex fistulas was 1.4 (range 1-2), The median operative time was 20 min (range 6-50 min) with no perioperative complications. After a median follow-up of 92 weeks, we found successful fistula closure in 57.1% (n = 8) of treated patients. The perianal disease activity index did not improve significantly from initially 7 to a median of 6 after 52 weeks (p = 0.495). CONCLUSION Darvadstrocel is a safe, minimally invasive surgical technique without significant perioperative complications. Clinical success can be expected in about half of the treated patients.
Collapse
Affiliation(s)
- Christopher Dawoud
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kerstin Melanie Widmann
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Sascha Czipin
- Department of Visceral, Transplant and Thoracic Surgery, Centre for Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Pramhas
- First Surgical Department, Klinik Landstraße, Vienna, Austria
| | - Martina Scharitzer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anton Stift
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Felix Harpain
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stefan Riss
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
45
|
Sun Q, Li S, Lin R, Zhao G, Lu J, Liu B, Hu M, Wang W, Yang X, Wei Y, Jia W, Hu Y, Zhang W, Zhu J, Cui D, Zhong L. hUC-MSCs therapy for Crohn's disease: efficacy in TNBS-induced colitis in rats and pilot clinical study. EBioMedicine 2024; 103:105128. [PMID: 38653187 PMCID: PMC11063396 DOI: 10.1016/j.ebiom.2024.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) has recently emerged as a promising new therapeutic strategy for many diseases including perianal fistulizing Crohn's disease (CD). Whether hUC-MSCs can promote the healing of luminal ulcer in CD has not been studied so far. METHODS The model of TNBS-induced colitis in rats was used to confirm the efficacy of hUC-MSCs in the treatment of CD. Then, seventeen CD patients refractory to or unsuitable for currently available therapies were enrolled and received once submucosal local injection through colonoscopy combined with once intravenous drip on the next day. All patients received a 24-week follow-up. Clinical and laboratory assessments were monitored at baseline, week 4, 8, 12, and 24. Endoscopic evaluations were conducted at baseline and week 12. Mucosal specimens were obtained at the margin of lesions by endoscopy biopsies and used for RNA sequencing. Two hUC-MSCs co-culture systems were established in vitro, one with the mucosa specimens and the other with M1 macrophages induced from THP1. The expressions of genes representing inflammation (TNFα, IL-6, and IL-1β) and intestinal barrier function (ZO1, CLAUDIN1, and CDH1) were tested by RT-PCR. FINDINGS hUC-MSCs treatment increased body weight and decreased disease activity index (DAI), colon macroscopic damage index (CMDI), and histopathological score (HPS) of rats with TNBS-induced colitis. The results of the clinical study also showed that this mode of hUC-MSCs application was associated with regression of intestinal ulceration. Eight patients (47%) got endoscopic responses (SES-CD improvement of ≥50% from baseline) and three patients (17.65%) got mucosal healing (SES-CD is zero), with a parallel improvement of clinical and laboratory parameters without serious adverse events. RNA sequencing showed hUC-MSCs therapy was associated with an upregulation of transcripts linked to intestinal epithelial barrier integrity and a downregulation of inflammatory signaling pathways in the intestinal mucosa, especially the TNF signaling pathway, IL-17 signaling pathway, and TLR signaling pathway. RNA expression of intestinal epithelial tight junction protein (ZO1, CLAUDIN1, and CDH1), and the RNA expression of major intestinal inflammatory factors in CD (IL-1β, IL-6, and TNFα, p < 0.001 for all) were improved significantly. Moreover, hUC-MSCs could attenuate the polarization of M1 macrophage induced from THP1, thereby decreasing the mRNA expression of IL-1β, IL-6, and TNFα significantly (p < 0.05 for all). TSG-6 expression was evaluated in hUC-MSCs culture supernatant after treatment with TNFα, IFNγ, and LPS for 48 h. And hUC-MSCs could inhibit the phosphorylation of JAK/STAT1 in the intestinal mucosa of CD patients. INTERPRETATION hUC-MSCs transplantation alleviated TNBS-induced colitis in rats. In this pilot clinical study, preliminary data suggested that this approach to administering hUC-MSCs might have potential for clinical efficacy and manageable safety in treating refractory CD, potentially providing hope for better outcomes. No serious adverse events were observed. FUNDING This work was funded by General Program of National Natural Science Foundation of China (Grant No. 82270639), the Scientific research project of Shanghai Municipal Health Committee (Grant No. 202240001), Specialty Feature Construction Project of Shanghai Pudong New Area Health Commission (Grant No. PWZzb2022-05), Shanghai East Hospital Youth Research and Cultivation Foundation program (Grant No. DFPY2022015), Peak Disciplines (Type IV) of Institutions of Higher Learning in Shanghai and Technology Development Project of Pudong Science, Technology and Economic Commission of Shanghai (Grant No. PKJ2021-Y08).
Collapse
Affiliation(s)
- Qinjuan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Shan Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Ritian Lin
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Guangxi Zhao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinlai Lu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bin Liu
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Engineering Research Center for Nanotechnology, Shanghai 200241, China
| | - Miao Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Wang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xiaoqing Yang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yushuang Wei
- GMP Laboratory of Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenwen Jia
- GMP Laboratory of Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, National Stem Cell Translational Resource Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanni Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Zhang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jiawen Zhu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; National Engineering Research Center for Nanotechnology, Shanghai 200241, China.
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, China.
| |
Collapse
|
46
|
Kollampally SCR, Zhang X, Moskwa N, Nelson DA, Sharfstein ST, Larsen M, Xie Y. Evaluation of Alginate Hydrogel Microstrands for Stromal Cell Encapsulation and Maintenance. Bioengineering (Basel) 2024; 11:375. [PMID: 38671796 PMCID: PMC11048715 DOI: 10.3390/bioengineering11040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) have displayed potential in regenerating organ function due to their anti-fibrotic, anti-inflammatory, and regenerative properties. However, there is a need for delivery systems to enhance MSC retention while maintaining their anti-fibrotic characteristics. This study investigates the feasibility of using alginate hydrogel microstrands as a cell delivery vehicle to maintain MSC viability and phenotype. To accommodate cell implantation needs, we invented a Syringe-in-Syringe approach to reproducibly fabricate microstrands in small numbers with a diameter of around 200 µm and a porous structure, which would allow for transporting nutrients to cells by diffusion. Using murine NIH 3T3 fibroblasts and primary embryonic 16 (E16) salivary mesenchyme cells as primary stromal cell models, we assessed cell viability, growth, and expression of mesenchymal and fibrotic markers in microstrands. Cell viability remained higher than 90% for both cell types. To determine cell number within the microstrands prior to in vivo implantation, we have further optimized the alamarBlue assay to measure viable cell growth in microstrands. We have shown the effect of initial cell seeding density and culture period on cell viability and growth to accommodate future stromal cell delivery and implantation. Additionally, we confirmed homeostatic phenotype maintenance for E16 mesenchyme cells in microstrands.
Collapse
Affiliation(s)
- Sujith Chander Reddy Kollampally
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Xulang Zhang
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Nicholas Moskwa
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
- The Jackson Laboratory of Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Susan T. Sharfstein
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY 12222, USA; (N.M.); (D.A.N.); (M.L.)
| | - Yubing Xie
- Department of Nanoscale Science and Engineering, College of Nanotechnology, Science, and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, NY 12203, USA; (S.C.R.K.); (X.Z.); (S.T.S.)
| |
Collapse
|
47
|
Curley GF, O’Kane CM, McAuley DF, Matthay MA, Laffey JG. Cell-based Therapies for Acute Respiratory Distress Syndrome: Where Are We Now? Am J Respir Crit Care Med 2024; 209:789-797. [PMID: 38324017 PMCID: PMC10995569 DOI: 10.1164/rccm.202311-2046cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
Collapse
Affiliation(s)
- Gerard F. Curley
- Department of Anaesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael A. Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland; and
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
48
|
Grigoropoulos I, Tsioulos G, Kastrissianakis A, Shapira S, Green O, Rapti V, Tsakona M, Konstantinos T, Savva A, Kavatha D, Boumpas D, Syrigos K, Xynogalas I, Leontis K, Ntousopoulos V, Sakka V, Sardelis Z, Fotiadis A, Vlassi L, Kontogianni C, Levounets A, Poulakou G, Gaga M, MacLoughlin R, Stebbing J, Arber N, Antoniadou A, Tsiodras S. The safety and potential efficacy of exosomes overexpressing CD24 (EXO-CD24) in mild-moderate COVID-19 related ARDS. Respir Res 2024; 25:151. [PMID: 38561798 PMCID: PMC10983648 DOI: 10.1186/s12931-024-02759-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
INTRODUCTION EXO-CD24 are exosomes genetically manipulated to over-express Cluster of Differentiation (CD) 24. It consists of two breakthrough technologies: CD24, the drug, as a novel immunomodulator that is smarter than steroids without any side effects, and exosomes as the ideal natural drug carrier. METHODS A randomized, single blind, dose-finding phase IIb trial in hospitalized patients with mild to moderate Coronavirus disease 2019 (COVID-19) related Acute Respiratory Distress Syndrome (ARDS) was carried out in two medical centers in Athens. Patients received either 109 or 1010 exosome particles of EXO-CD24, daily, for five consecutive days and monitored for 28 days. Efficacy was assessed at day 7 among 91 patients who underwent randomization. The outcome was also compared in a post-hoc analysis with an income control group (n = 202) that fit the inclusion and exclusion criteria. RESULTS The mean age was 49.4 (± 13.2) years and 74.4% were male. By day 7, 83.7% showed improved respiratory signs and 64% had better oxygen saturation (SpO2) (p < 0.05). There were significant reductions in all inflammatory markers, most notably in C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, fibrinogen and an array of cytokines. Conversely, levels of the anti-inflammatory cytokine Interleukin-10 (IL-10) were increased (p < 0.05). Of all the documented adverse events, none were considered treatment related. No drug-drug interactions were noted. Two patients succumbed to COVID-19. Post-hoc analysis revealed that EXO-CD24 patients exhibited greater improvements in clinical and laboratory outcomes compared to an observational income control group. CONCLUSIONS EXO-CD24 presents a promising therapeutic approach for hyper-inflammatory state and in particular ARDS. Its unique combination of exosomes, as a drug carrier, and CD24, as an immunomodulator, coupled with inhalation administration, warrants further investigation in a larger, international, randomized, quadri-blind trial against a placebo.
Collapse
Affiliation(s)
- Ioannis Grigoropoulos
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Georgios Tsioulos
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Artemis Kastrissianakis
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Shiran Shapira
- Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel
- Department of Molecular Genetic and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orr Green
- Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel
| | - Vasiliki Rapti
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Maria Tsakona
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Thomas Konstantinos
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Athina Savva
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Dimitra Kavatha
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Dimitrios Boumpas
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Konstantinos Syrigos
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Ioannis Xynogalas
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Konstantinos Leontis
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Vasileios Ntousopoulos
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Vissaria Sakka
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Zafeiris Sardelis
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Andreas Fotiadis
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Lamprini Vlassi
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Chrysoula Kontogianni
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Anastasia Levounets
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Garyfalia Poulakou
- 3, Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, "Sotiria" General Hospital, 11527, Athens, Greece
| | - Mina Gaga
- 7, Respiratory Medicine Department "Sotiria" General Hospital, 11527, Athens, Greece
| | - Ronan MacLoughlin
- R&D Science & Emerging Technologies, Aerogen Ltd., IDA Business Park, Dangan, Galway, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland
| | - Justin Stebbing
- Department of Surgery and Cancer, Anglia Ruskin University, London, UK
- Department of Life Sciences, ARU, Cambridge, UK
| | - Nadir Arber
- Integrated Cancer Prevention Center, Tel-Aviv Sourasky Medical Center, 6 Weizmann St., 6423906, Tel Aviv, Israel.
- Department of Molecular Genetic and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Anastasia Antoniadou
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| | - Sotirios Tsiodras
- 4, Department of Internal Medicine, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, 12462, Athens, Greece
| |
Collapse
|
49
|
Abstract
Regenerative medicine is a highly anticipated field with hopes to provide cures for previously uncurable diseases such as spinal cord injuries and retinal blindness. Most regenerative medical products use either autologous or allogeneic stem cells, which may or may not be genetically modified. The introduction of induced-pluripotent stem cells (iPSCs) has fueled research in the field, and several iPSC-derived cells/tissues are currently undergoing clinical trials. The cornea is one of the pioneering areas of regenerative medicine, and already four cell therapy products are approved for clinical use in Japan. There is one other government-approved cell therapy product approved in Europe, but none are approved in the USA at present. The cornea is transparent and avascular, making it unique as a target for stem cell therapy. This review discusses the unique properties of the cornea and ongoing research in the field.
Collapse
Affiliation(s)
- Shigeto Shimmura
- Department of Clinical Regenerative Medicine, Fujita Medical Innovation Center, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Cellusion Inc., Tokyo, Japan
| |
Collapse
|
50
|
Hu J, Li S, Zhong X, Wei Y, Sun Q, Zhong L. Human umbilical cord mesenchymal stem cells attenuate diet-induced obesity and NASH-related fibrosis in mice. Heliyon 2024; 10:e25460. [PMID: 38356602 PMCID: PMC10864966 DOI: 10.1016/j.heliyon.2024.e25460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of non-alcoholic fatty liver disease (NAFLD) that may progress to cirrhosis and hepatocellular carcinoma but has no available treatment. Mesenchymal stem cells (MSCs) have become increasingly prominent in cell therapy. Human umbilical cord MSCs (hUC-MSCs) are considered superior to other MSCs due to their strong immunomodulatory ability, ease of collection, low immune rejection, and no tumorigenicity. Though hUC-MSCs have received increasing attention in research, they have been rarely applied in any investigations or treatments of NASH and associated fibrosis. Therefore, this study evaluated the therapeutic efficacy of hUC-MSCs in C57BL/6 mice with diet-induced NASH. At week 32, mice were randomized into two groups: phosphate-buffered saline and MSCs, which were injected into the tail vein. At week 40, glucose metabolism was evaluated using glucose and insulin tolerance tests. NASH-related indicators were examined using various biological methods. hUC-MSC administration alleviated obesity, glucose metabolism, hepatic steatosis, inflammation, and fibrosis. Liver RNA-seq showed that the expression of the acyl-CoA thioesterase (ACOT) family members Acot1, Acot2, and Acot3 involved in fatty acid metabolism were altered. The cytochrome P450 (CYP) members Cyp4a10 and Cyp4a14, which are involved in the peroxisome proliferator-activator receptor (PPAR) signaling pathway, were significantly downregulated after hUC-MSC treatment. In conclusion, hUC-MSCs effectively reduced Western diet-induced obesity, NASH, and fibrosis in mice, partly by regulating lipid metabolism and the PPAR signaling pathway.
Collapse
Affiliation(s)
- Jiali Hu
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Li
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yushuang Wei
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Qinjuan Sun
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lan Zhong
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| |
Collapse
|